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Abstract. We propose a family of measures of consistency (and induced
conflict) derived from a definition of consistent belief functions intro-
duced previously. Besides satisfying the desired properties of monotonic-
ity, boundedness, and extreme values, the novel family encompasses the
existing probabilistic and logical consistency measures which are shown
to correspond to two extremes of the family (lower sharp bound and
upper asymptotic limit respectively). We illustrate the definitions and
measures of consistency within an example of vessel destination estima-
tion with inconsistent sources.

1 Introduction

In maritime security, the measurement of inconsistency may reveal maritime
anomalies such as vessels deviating from normalcy (e.g., “off-route vessels”, “too
fast vessels”) and those possibly spoofing the Automatic Identification System
(AIS) signal (by, e.g., changing their actual type, concealing their current posi-
tion, hiding their actual destination) to hide suspect behaviour [1, 2]. Having a
sound and proper measurement of inconsistency or, equivalently, consistency is
thus of paramount importance for such intelligent systems.

Theoretical research on (in)consistency was pioneered by the artificial intel-
ligence community working on knowledge bases over logical languages. Classical
logic is explosive, i.e., everything is a consequence of an inconsistency, so solv-
ing inconsistent knowledge bases is a major challenge. A variety of approaches
have been proposed in the literature. Hunter and Konieczny [3] introduced the
minimal inconsistent sets, while some other authors [4, 5] proposed to attach
probabilities or degrees of beliefs to propositions rather than truth values.

The consistency notion plays also a central role in the belief function set-
ting [6, 7] as it is directly related to the way conflict between pieces of evidence
may be defined: as the inconsistency yielded by their conjunctive combination [8].
The two notions of inconsistency and conflict have been subject to studies whose
starting point was often the logical interpretation of belief functions. Cuzzolin [9]
provided a definition of consistent belief functions as a counterpart of consistent
knowledge bases [10]. Destercke and Burger [8] proposed an axiomatic approach



to conflict which extends the properties of conflict between sets. Recently, Pi-
chon and al. [11] revisited and extended some of Destercke and Burger’s results.
In particular, they proposed a novel family of consistency definitions that en-
compasses the so-called probabilistic and logical definitions proposed in [8].

In this paper, we pursue this work and propose a new parametrised family
of consistency (and their associated conflict) measures, study their properties
and illustrate their use and interest on a vessel destination estimation problem.
It is organized as follows. Necessary concepts of belief function theory as well
as classical consistency and conflict notions and measures are first recalled. In
Section 3, a parameterised family of consistency (and their associated conflict)
measures is unveiled and its special cases and properties are discussed. We con-
clude and sketch the steps for future work in Section 4.

2 Background

In this section, we provide a brief reminder of necessary concepts on belief func-
tions and recall the existing consistency definitions and measures in this setting.

2.1 Uncertainty representation with belief functions

Preliminaries Let the belief about the actual value of an uncertain variable x
defined over a frame X be represented by a mass function which is a mapping
m : 2X → [0, 1] such that

∑
A⊆X m(A) = 1.M denotes the set of mass functions

defined over X . The set of focal sets of m is denoted F(m) and its cardinality
is denoted F := |F(m)|. We allow m(∅), the mass associated to the empty set,
to be strictly positive, which captures the fact that the true value of x may be
outside the frame of discernment.

Example 1. We denote by X = {Imperia,Savona,Genova,La Spezia,Livorno} =
{d1, d2, d3, d4, d5} the set of possible destinations of a vessel. A cleaning-matching
algorithm that “cleans” the AIS reported destination by formatting it in the
standard format and matches it to a standard database (the World Port Index)
of port names is applied. The algorithm identifies “SAVONA” as the closest
name in the World Port Index with a confidence degree of 0.8, and identifies
“SAVOONGA” (Alaska region) as a possible match, with a confidence of 0.2.
This can be encoded by the following mass function: m1(d2) = 0.8;m1(∅) = 0.2.

Information encoded in a mass function m can be equivalently represented
by different set-measures among which the plausibility Pl and the commonality
q measures defined for every A ∈ 2X by:

Pl(A) =
∑

A∩B 6=∅

m(B); q(A) =
∑
B⊇A

m(B). (1)

The contour function pl is defined over X by:

pl(x) = Pl({x}) = q({x}). (2)



When two mass functions provided by two sources inform on the same entity,
their combination can be performed in several ways. In particular, if the sources
are independent, the combination is performed using the conjunctive operator:

m1 ∩©2(A) =
∑

B∩C=A

m1(B)m2(C) ∀A ⊆ X ,

The commonality function satisfies:

q1 ∩©2(A) = q1(A)q2(A) ∀A ⊆ X . (3)

Conflict and Consistency Different definitions of (total) consistency have
been proposed in the belief function literature, among which the so-called prob-
abilistic and logical definitions [8]:

Definition 1 (Logical consistency [8]). A mass function m is logically con-
sistent iff

⋂
A∈F A 6= ∅.

Definition 2 (Probabilistic consistency [8]). A mass function m is proba-
bilistically consistent iff m(∅) = 0.

Two desirable properties of consistency measures for a mass function m are also
provided in [8]:

1. Property 1 (Bounded): A measure of consistency should be bounded.
2. Property 2 (Extreme consistent values): A measure of consistency should

reach its maximal value if and only if m is totally consistent (according to
the considered definition of total consistency), and its minimal value if and
only if m is totally inconsistent, i.e., m(∅) = 1.

Two consistency measures satisfying these properties for, respectively, Defini-
tions 1 and 2 of total consistency, are [8]:

φπ(m) = max
x∈X

pl(x); φm(m) = 1−m(∅). (4)

Other measures have been proposed in the literature, such as Yager’s [12]:

φY (m) =
∑

A∩B 6=∅

m(A)m(B). (5)

A conflict measure κx :M×M→ [0, 1] between two mass functions can be
defined from a consistency measure by:

κx(m1,m2) := 1− φx(m1 ∩©2), (6)

where x ∈ {m,Y, π}. These three conflict measures have been proved in [11, 8]
to satisfy a set of desirable axioms for a conflict measure proposed in [8].



2.2 N-consistency definition and measures

Probabilistic and logical consistency definitions require, respectively, each of the
focal sets, and the intersection of all focal sets, to be non-empty. In-between
properties of the focal sets may also be useful to capture as illustrated by the
following example.

Example 2. We consider two other sources that inform about the destination
of the vessel: a Track-to-Route algorithm (S2) which associates a vessel to pre-
computed maritime routes based on its kinematics features, and a Vessel Traffic
Service (VTS) operator (S3) who is monitoring the marine traffic for some port
authority, and who based on experience provides a subjective assessment of the
vessels destination. S2 and S3 provide the following assessments: m2({d3}) = 0.2;
m2({d1, d2, d3}) = 0.6; m2({d1, d2}) = 0.2, and m3({d4}) = 0.1; m3({d3}) = 0.1;
m3({d1, d2}) = 0.8.

Both mass functions are equally consistent according to the probabilistic and
logical measures as we can see that they satisfy: φm(m2) = φm(m3) = 1 and
φπ(m2) = φπ(m3) = 0.8. We can therefore not compare the two assessments
in terms of internal consistency using these measures. However, if we refine the
analysis and consider for instance the pairwise intersection of the focal sets, m2

appears “less inconsistent” than m3 since its focal sets are “more” (pairwise)
intersecting. This suggests the definition of other measures of internal consistency
that can capture refined notions of consistency based on the degree of intersection
of the focal sets.

To this aim, we proposed recently in [11] a family of definitions of consistency:

Definition 3 (N-consistency [11]). A mass function m is said to be consis-
tent of order N (N -consistent for short), with 1 ≤ N ≤ F, iff its focal sets are
N -wise consistent, i.e., if ∀FN ⊆ F s.t. |FN | = N , we have:⋂

A∈FN

A 6= ∅.

In addition, we proposed in [11] an associated family of consistency measures
φN from M to [0, 1] defined for any m ∈M and 1 ≤ N ≤ F by:

φN (m) = 1−m(N)(∅), (7)

where m(N) denotes the result of the conjunctive combination of m with itself
N times (m(1) = m).

The family satisfies the following properties [11]:

– For every N ∈ [1,F], φN satisfies Properties 1 and 2 in the case where total
consistency is understood according to the N -consistency definition.

– Probabilistic and Yager consistency (definition and measure) coincide, re-
spectively, with 1-consistency and 2-consistency.

– m is logically consistent iff it is F-consistent.



– The family is monotonic in N for any given mass function m:

φ1(m) = φm(m) ≥ φ2(m) ≥ · · · ≥ φF(m).

Example 3. Going back to the previous example, we have:
φ1(m2) = 1 > φ2(m2) = 0.92 > φ3(m2) = φF(m2) = 0.88 > φπ(m2) = 0.8; and
φ1(m3) = 1 > φπ(m3) = 0.8 > φ2(m3) = 0.66 > φ3(m3) = φF(m3) = 0.514.
Using these measures, it becomes possible to compare m2 and m3 in terms of
internal consistency: in particular, the intuition that m2 appears less inconsistent
than m3 when considering pairwise consistency is captured by measure φ2.

It appears that the measure φπ does not belong to and can not be ordered
within the φN family. In particular, it is not possible to compare the two mea-
sures that capture the same notion of logical consistency: φπ and φF. In the
following, we show that such a comparison becomes possible through a simple
transformation of the φN family.

3 Monotonically ordered consistency measures

In the following, we first propose a new family of consistency measures derived
from the φN family (Section 3.1), and then show that the probabilistic φm and
logical φπ consistency measures belong to the family and can be ordered within
it (Section 3.2).

3.1 A new family of consistency measures

Definition 4. Let m be a mass function ofM. The ψN measure of N -consistency
of m, for N ∈ N>0, is the measure ψN :M→ [0, 1] defined for any m ∈M by:

ψN (m) := (1−m(N)(∅)) 1
N . (8)

Note that the new proposed family is simply the N -th root of the probabilistic
consistency of the family of mass functions m(N), N ∈ N>0, since:

ψN (m) = (ψ1(m(N)))
1
N . (9)

It encompasses the probabilistic consistency measure which is retrieved when
N = 1 and ψ1(m) = φm(m). However, contrary to the φN family, the 2-
consistency measure ψ2 does not coincide anymore with Yager’s φY . We however
have that ψ2 =

√
φY .

Proposition 1. ψN measures satisfy Properties 1 and 2 for the N -consistency
definition.

Proof Sketch. This stems from the result that the measure φm, or equivalently
ψ1, satisfies both properties and the relation (9) between the measures ψN and
ψ1.



Although it is obvious that the family φN is monotonic in N for all m ∈M, the
equivalent result for the family ψN still holds but is less trivial, as stated by the
proposition below and following proof.

Proposition 2. For all m ∈M and N ≥ 1:

ψN (m) ≥ ψN+1(m).

Proof Sketch. For any two mass functions m1 and m2 in M we have:

m1 ∩©2(∅) ≥ 1− (1−m1(∅))(1−m2(∅)).

The right-hand value is reached when the non-empty focal sets of both mass
functions intersect, in which case there is no creation of empty focal sets in
the combination, and m1 ∩©2(∅) is solely due to the propagation of the masses
of the empty sets of both mass functions. When m1 = m2, it is easy to prove
by recursion and using the previous inequality that the following relation holds
between m(∅) and m(N)(∅):

m(N)(∅) ≥ 1− (1−m(∅))N , which is equivalent to φ1(m) ≥ (φN (m))
1
N .

When m1 = m and m2 = m(N), the first inequality yields: m1 ∩©2(∅) =

m(N+1)(∅) ≥ 1− (1−m(N)(∅))(1−m(∅)). Since m(∅) and m(N)(∅) are related
by the recursive relation, we can deduce that:
m(N+1)(∅) ≥ 1− (1−m(N)(∅)(1−m(N)(∅)) 1

N , i.e., ψN+1(m) ≤ ψN (m).

In the following, we study the relation between the existing and the new
measures.

3.2 Relation with the existing measures

We are interested in studying the relation between the logical consistency mea-
sure φπ and the proposed family, in particular ψF since, we recall, ψF captures
the same definition of total consistency as φπ.

We start by reporting a result on the relation between the first term of the
family, i.e., the probabilistic consistency measure, and the logical one φπ.

Lemma 1. Every mass function m ∈M with F focal sets satisfies:

ψ1(m) ≥ φπ(m) ≥ ψ1(m)

F∗
,

where F∗ denotes the number of non-empty focal sets of m.

Proof Sketch. The left-hand side of the inequality is a known result [8]. The
right-hand part stems from observing that:

φπ(m) ≥ max
A∈F

(m(A)) ≥ 1−m(∅)
F∗

.

Actually, the result in Lemma 1 holds between measures φπ and ψN for all
N ≥ 1:



Proposition 3. For every m ∈M with F focal sets, and for every N ≥ 1:

ψN (m) ≥ φπ(m) ≥ ψN (m)

(F∗N )
1
N

,

where F∗N denotes the number of non-empty focal sets of m(N). Also, the series
ψN (m) converges asymptotically to φπ(m):

lim
N→∞

ψN (m) = φπ(m).

Proof Sketch. The inequalities stem from Lemma 1 applied to the mass function
m(N), together with equation (9) and the relation: φπ(m(N)) = (φπ(m))N which
stems from equations (3) and (2). For the second part of the proposition, ψN (m)
is a decreasing bounded series, so it converges. Since the number of focal sets
of m(N) stops increasing after F auto-combinations of m, then lim

N→∞
(F∗N ) is a

constant and lim
N→∞

(F∗N )
1
N = 1.

By combining Propositions 2 and 3, it appears that the logical consistency
measure corresponds to the upper asymptotic limit of the ψN family:

Proposition 4. For every mass function m defined over X with F focal sets:

φm(m) = ψ1(m) ≥ ψ2(m) ≥ . . . ≥ ψF(m) ≥ φπ(m) = lim
N→∞

ψN (m).

and for every pair m1 and m2:

κm(m1,m2) ≤ κ2(m1,m2) ≤ . . . ≤ κF12
(m1,m2) ≤ κπ(m1,m2) = lim

N→∞
κN (m1,m2).

where κN (m1,m2) = 1− ψN (m1 ∩©2) and F12 the number of focal sets of m1 ∩©2.

The analysis of the internal consistency of the belief function resulting from
the conjunctive combination of the belief functions issued by some sources, i.e.,
of their conflict, can be used in several ways to improve the estimation confi-
dence on the fusion output. This can be done by discounting or discarding the
most conflicting sources [13], or re-questioning those that are inconsistent with
a certain reference source. A deep analysis of the conflict is therefore necessary
as illustrated herafter.

Example 4. To estimate the destination of the vessel, both the Track-to-Route
and VTS operator rely on some extra contextual information (S4) encoded by
a mass function m4. The mass functions m2 and m3 are actually the results of
the conjunctive combination of some mass functions m2b and m3b encoding the
specific sources knowledge and m4: m2 = m2b ∩©4;m3 = m3b ∩©4. We are inter-
ested in determining which of the sources is more in conflict with the contextual
knowledge which is highly reliable and trusted. The conflict values are, using
κN (m2b,m4) = 1− ψN (m2) and κN (m3b,m4) = 1− ψN (m3):
κm(m2b,m4) = 0;κ2(m2b,m4) = 0.041;κ3(m2b,m4) = 0.042;κπ(m2b,m4) = 0.2;
κm(m3b,m4) = 0;κ2(m3b,m4) = 0.187;κ2(m3b,m4) = 0.198;κπ(m3b,m4) = 0.2.
The probabilistic and logical conflict measures do not allow one to identify which
of S2 and S3 is more in conflict with S4, while the in-between conflict measures
do, and suggest that S3 is more conflicting with S4 than S2.



4 Conclusions and future work

In this paper, we proposed a parametrised family of consistency measures and
illustrated its properties and interest with an example of multi-source vessel des-
tination estimation problem. The family satisfies desired consistency measures
properties such as boundedness and extreme values, and is monotonic. In ad-
dition, it subsumes the probabilistic and logical measures as, respectively, the
lower sharp bound and the upper asymptotic limit.

In a future work, we will investigate the geometric interpretation of the pro-
posed family of measures as well as the partial order induced by the vector
(ψ1, ..., ψF) on the mass functions space. It will also be interesting to know
whether the new conflict measures introduced in this paper satisfy the conflict
axioms of [8]. Other open questions such as the choice of the “best” measure (or
level of consistency) will also be addressed considering theoretical and practical
aspects such as the computational cost or some user’s expectations about the
measures semantics.
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