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Abstract. Evidential calibration methods of binary classifiers improve
upon probabilistic calibration methods by representing explicitly the cal-
ibration uncertainty due to the amount of training (labelled) data. This
justified yet undesirable uncertainty can be reduced by adding training
data, which are in general costly. Hence the need for strategies that, given
a pool of unlabelled data, will point to interesting data to be labelled,
i.e., to data inducing a drop in uncertainty greater than a random selec-
tion. Two such strategies are considered in this paper and applied to an
ensemble of binary SVM classifiers on some classical binary classification
datasets. Experimental results show the interest of the approach.
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1 Introduction

Probabilistic calibration methods, such as isotonic and logistic (Platt scaling)
regressions, allow to learn from training data how to transform classifier outputs
into probabilities that an instance belongs to each of the classes [1]. They are
useful for the many applications where it is important to provide such probabil-
ities rather than mere crisp decisions and where the available classifiers output
scores, such as SVMs, or inaccurate probabilities, such as Naive Bayes [1,2].
Besides, they have been mainly designed so far for binary classification.

A limitation of these methods is that they do not take into account the un-
certainty due to the amount of training data in their probability estimates and,
in particular, the less training data, the more uncertain the probability esti-
mates [3]. To address this issue, the calibration problem has been considered
recently in the framework of belief function theory, yielding so-called evidential
calibration methods (see [3] for the calibration of a single binary classifier and [4]
for the calibration of an ensemble of binary classifiers). These latter methods are
able to represent explicitly the uncertainty due to the amount of training data,
which is important in critical application domains and also leads to better clas-
sification performance than probabilistic calibration methods as shown in [3,4].

While it is important to represent the aforementioned uncertainty, it is even
better if this uncertainty is as small as possible. In order to reduce it, one needs
to bring in additional training (labelled) data, which may be costly and hence



must be done in an efficient manner, i.e., such that for any given number of
added labelled data the uncertainty is reduced as much as possible. It is a similar
problem to that of active learning [5], except that the primary focus is not on
improving accuracy but rather on reducing uncertainty, and it is the problem
tackled in this paper.

Specifically, we consider the following setting: we assume an initial set of
labelled data from which some classifiers can be evidentially calibrated, and
then we consider that it is possible to ask iteratively an oracle to label some
data from a pool of data with missing labels. We study two strategies to decide
which instances from the pool should be given to the oracle. These strategies
are in the spirit of the so-called uncertainty sampling strategy framework from
active learning [5], where instances in the pool are ordered according to how
much the current classifier is the most unsure about.

This paper is organized as follows. Section 2 recalls the necessary background
on the evidential calibration of binary classifiers. Then, Section 3 presents two
strategies for the active evidential calibration of such classifiers and reports ex-
perimental results when these strategies are applied to binary SVM classifiers.
Finally, Section 4 concludes the paper.

2 Evidential calibration

Evidential calibration of binary classifiers, as introduced in [3] for the case of a
single classifier and further developed in [4] for an ensemble of classifiers, relies
on some recent results by Kanjanatarakul et al. [6,7] concerning the prediction
of a Bernoulli random variable, which are recalled in the next section.

We will assume that the reader has some basic knowledge of the theory of
belief functions (a reminder can be found in [7]).

2.1 Prediction of a Bernoulli random variable

Kanjanatarakul et al. [6,7] proposed a general approach which, given some knowl-
edge about some parameter θ obtained by observing a realization x of some
random quantity X with distribution fθ(x) and represented by a belief function
BelΘx

1, makes it possible to make statements in the form of a belief function
BelYx about some random quantity Y ∈ Y whose conditional distribution gx,θ(y)
given X = x depends on θ.

In particular, if Y is a binary random variable (Y = {0, 1}) with associated
Bernoulli distribution B(θ), θ ∈ [0, 1], and if BelΘx is a consonant belief function
whose associated contour function plΘx is unimodal and continuous, we have [6]:

BelYx ({1}) = θ̂ −
∫ θ̂

0

plΘx (u)du, P lYx ({1}) = θ̂ +

∫ 1

θ̂

plΘx (u)du, (1)

1 BelΘx must be induced by a source [7]. It may be obtained by a number of evidential
methods to statistical inference, and in particular the likelihood-based evidential
method [8] in which case BelΘx is the consonant belief function whose contour func-
tion is the normalized likelihood function given the observed data x.



where θ̂ maximizes plΘx . The degree of belief BelYx ({1}) represents the amount
of evidence strictly supporting Y = 1 while the plausibility PlYx ({1}) = 1 −
BelYx ({0}) is the amount of evidence not contradicting it. Besides, the difference
PlYx ({1}) − BelYx ({1}), which is equal to the mass mY

x({0, 1}) assigned to the
ignorance, is merely the area under the contour function plΘx and the size of this
area tends to 0 if, e.g., X follows a binomial distribution with parameters n and
θ, BelΘx is obtained using the likelihood-based method and n tends to infinity [6].

2.2 Evidential calibration methods

Let C = {(s1, y1), . . . , (sn, yn)} be some training data in a binary classification
problem, where si ∈ S for some domain S is the output provided by a pre-
trained classifier for the i-th training sample with label yi ∈ {0, 1}. For a test
sample of output s ∈ S and unknown label y ∈ {0, 1}, any evidential calibration
method proposed in [3] returns two values: the belief BelYC,s({1}) and plausibility
PlYC,s({1}) that y = 1. These methods obtain these two values by seeing the label
y of the test sample as the realization of a random variable Y with a Bernoulli
distribution B(θ) given knowledge about θ represented by some consonant be-
lief function BelΘC,s with contour function plΘC,s depending on C and s, and by
applying then to Y the prediction approach recalled in Section 2.1.

The only difference between the evidential calibration methods in [3] is thus
the way plΘC,s is defined. There are indeed several ways to define plΘC,s: it depends
on which probabilistic calibration method is extended and on which evidential
approach to statistical inference is used (see [3, Section 4] for details). In this
paper, we focus on the evidential calibration methods where plΘC,s is obtained
using the likelihood-based evidential approach to statistical inference, as Xu et
al. [3] showed that this is the approach presenting overall the best performances.

More precisely, let us consider two cases: S = {0, 1} and S = R. The case
S = {0, 1} corresponds to a classifier returning binary outputs and it will allow
us to investigate in Section 3 the behaviours of our active evidential calibration
strategies in a simple setting. The case S = R corresponds to a classifier return-
ing scores, such as a SVM classifier, and it will allow us to recall shortly and
progressively the arguably most involved and best evidential calibration method
considered so far to deal with an ensemble of classifiers – the behaviours of our
active strategies with respect to this latter calibration scheme of an ensemble of
classifiers will also be investigated in Section 3.

The case S = {0, 1} can be handled using the likelihood-based evidential
extension of the binning calibration method [3], in which case we have2:

plΘC,s(θ) =
θks(1− θ)ns−ks

θ̂kss (1− θ̂s)ns−ks
, ∀s ∈ S, (2)

with ks= |{(si, yi) ∈ C|si = s, yi = 1}|, ns= |{(si, yi) ∈ C|si = s}| and θ̂s=ks/ns.
2 Eq. (2) corresponds to a degenerate binning approach with only two bins. It can be
derived rigorously without referring to the evidential binning calibration, by follow-
ing a similar reasoning to the one used in [3] to obtain this latter calibration.



The case S = R can be handled using the likelihood-based evidential exten-
sion of the logistic regression [3], in which case plΘC,s is defined as:

plΘC,s(θ) = sup
σ1∈R

plΣC (ln(θ
−1 − 1)− σ1s, σ1), ∀s ∈ S, (3)

with plΣC (σ) =
L(σ)
L(σ̂) , ∀σ = (σ0, σ1) ∈ Σ = R2, where L(σ) =

∏n
i=1 p

ti
i (1−pi)1−ti ,

with pi = 1
1+exp(σ0+σ1si)

and ti = N1+1
N1+2 if yi = 1, ti = 1

N0+2 if yi = 0, with
Nj = |{(si, yi) ∈ C|yi = j}|, and σ̂ maximizing L.

Of particular interest is that using plΘC,s defined by (2) or by (3) in Eq. (1),
PlYC,s({1}) − BelYC,s({1}) = mY

C,s({0, 1}) decreases as n increases [3]. In other
words, mY

C,s({0, 1}) reflects the amount of training data, and in particular the
less training data there are, the more ignorance or uncertainty there is.

Let us now consider a somewhat more complex problem, where we have
an ensemble of m classifiers such that given a test sample of unknown label
y ∈ {0, 1}, we obtain a vector of outputs s = (s1, ..., sm) ∈ Rm with sj the output
of the j-th classifier. In order to be able to interpret s with respect to y, a solution
proposed in [4] consists in calibrating jointly the classifiers. A joint calibration
proceeds similarly as the calibration of a single classifier: the label y is seen as the
realization of a random variable with a Bernoulli distribution B(θ) and a belief
function BelYC,s is derived using the prediction approach (1) from knowledge on
θ represented by a contour function plΘC,s depending on s and a training set
C = {(s1, y1), . . . , (sn, yn)} where si is the output vector provided by the m
classifiers for the i-th training sample with label yi ∈ {0, 1}. More specifically,
Minary et al. [4] proposed an evidential joint calibration corresponding to the
likelihood-based evidential extension of the multiple logistic regression, which
is a generalization of the evidential logistic regression recalled above and, in
particular, the definition of plΘC,s derived in [4] is a straightforward multivariate
generalization of (3) (due to lack of space, we refer the reader to [4] for the
detailed definition of plΘC,s).

3 Active evidential calibration

As we have seen, evidential calibration methods return for a test sample with
classifier output s a degree of belief BelYC,s({1}) and a plausibilityPlYC,s({1})
representing, respectively, the amount of evidence strictly supporting that the
label y of the sample is 1 and the amount of evidence not contradicting it. Hence,
the greater the interval [BelYC,s({1}), P lYC,s({1})], the more uncertain one is about
the actual support that should be given to y = 1. It is thus clear that while it
is important that uncertainty induced by the training data be represented, this
uncertainty should be small enough otherwise no useful conclusion about y may
be drawn, that is, the calibrated classifier is not useful.

In order to reduce the uncertainty, one needs to add some training (labelled)
data. It is generally possible and relatively easy to obtain some unlabelled data
but, depending on the domain, labelling it may be costly. Besides, it may be



the case that not all training data are equivalent with respect to the drop in
uncertainty that they induce. Hence, it seems useful to devise some strategies
that, given a pool of unlabelled data, will point to interesting data to be labelled,
that is, to data that will induce a drop in uncertainty greater than selecting
at random data in the pool. We refer to such strategies as active evidential
calibration strategies, or active strategies for short, in opposition to the passive
strategy, which is the selection at random. We propose two such strategies in
Section 3.1, which we then test on a single classifier and on an ensemble of
classifiers in Sections 3.2 and 3.3, respectively.

3.1 Active strategies

In pool-based active learning [5], an active learner asks queries in the form of
unlabelled instances (taken from the pool) to be labeled by an oracle, and the
labeled instances are then moved to the learning set, with the aim that classifica-
tion accuracy will improve faster than with a random selection strategy. Several
query strategy frameworks have been proposed [5]. In particular, uncertainty
sampling for a classifier with probabilistic outputs selects the unlabelled pool
instance for which the classifier output has the greatest (Shannon) entropy.

Since our aim is to reduce the uncertainty represented by the quantitymY
C,s({0, 1})

for any given test instance of score s ∈ S, a natural query strategy is to select
from a pool P = {sP1 , . . . , sPp } of unlabelled instances with classifier outputs sPk ,
k = 1, . . . , p, the instance s∗ ∈ P that has the greatest uncertainty mY

C,s∗({0, 1}).
We note that an uncertainty measure for a mass function mY is the general-
ized Hartley measure [9], which evaluates its nonspecificity and is defined as
GH(mY) :=

∑
A⊆Ym

Y(A) log2 |A|; if Y = {0, 1}, we have GH(mY)=mY({0, 1}).
Hence, this strategy is similar to that of uncertainty sampling in active learning,
except that it uses another uncertainty measure (the generalized Hartley mea-
sure instead of the Shannon entropy), and may thus be called Hartley Sampling
(HS). It selects the instance s∗HS ∈ P such that

s∗HS = argmax
sP∈P

GH(mY
C,sP ). (4)

In addition to the HS strategy, we consider for comparison purposes another
query strategy, which is closer to uncertainty sampling of active learning: this
second strategy, called Pignistic Sampling (PS), selects the instance s∗PS ∈ P
whose associated pignistic probability distribution [10] denoted BetP (mY

C,s∗PS
)

has the greatest (Shannon) entropy:

s∗PS = argmax
sP∈P

H(BetP (mY
C,sP )), (5)

with H(P ) the Shannon entropy of probability distribution P . Note that since
uncertainty sampling is designed to improve accuracy, one might expect that PS
will improve accuracy, but it is not clear whether it will improve uncertainty.

Let us remark that the generalized Hartley measure and the Shannon entropy
of the pignistic transformation have previously shown their interest in improving
classification accuracy in the context of active classification [11].



3.2 Active evidential calibration of a classifier with binary outputs

The active strategies described in the previous section are first tested with re-
spect to a single classifier with binary outputs, i.e., S = {0, 1}, in which case the
classifier is calibrated using (2). The test is conducted using simulated data.

Specifically, let P (S = s, Y = y), s ∈ S, y ∈ Y, denote a given bivariate
Bernoulli distribution for the pair (S, Y ) of binary random variables S and Y ,
where S represents the classifier output and Y the true class. Such a distribution
is completely characterized by the marginal probabilities P (S = 1) and P (Y = 1)
and the covariance σ between S and Y [12].

In our experiment, we chose P (S = 1) = P (Y = 1) = 0.5 and considered
all possible joint distributions P (S = s, Y = y), s ∈ S, y ∈ Y, having those
marginals: these are all the distributions that are obtained by choosing σ ∈
[−0.25, 0.25], which is the range of possible values for σ given these marginals.

We drew randomly 106 samples in each of these joint distributions. We used
a 1000-fold cross-validation procedure over these samples: the samples are ran-
domly split into 1000 folds. Each fold (which contains 1000 samples) is in turn
considered as the test set, and the other folds are combined to obtain a dataset
which is randomly split into two parts: the first part composed of 10 instances
is used as initial training data set C for the evidential calibration of the classi-
fier, and the second part composed of the remaining instances acts as the pool.
The maximal number of queries for each query strategy (HS, PS and Random
Sampling (RS)) was set to 120. For each fold used as test set and for each query
strategy, we computed the average of the uncertainty, i.e., ignorance with re-
spect to the label after calibration, of the test instances as the number of queries
increases. Finally, we averaged these latter averages over the 1000 test folds.

Figure 1 shows the performances in terms of uncertainty reduction achieved
by the active strategies HS and PS with respect to the passive one (RS) used as
reference. HS performs globally better than RS (up to 12% better) – it becomes
equivalent to RS when σ gets closer to 0 and the number of queries increases, as
well as when σ gets closer to −0.25 and 0.25, which are all extreme dependence
situations between S and Y . PS is beneficial with respect to RS for roughly the
same zones as HS, albeit to a slightly lesser extent, but clearly detrimental (up
to 55% worse) as the number of queries increases and as we get closer to σ = 0.
Let us note that similar figures are obtained when other marginal probabilities
P (S = 1) and P (Y = 1) are used (the figures are then somewhat distorted
versions of the ones presented here).

3.3 Active evidential joint calibration of binary SVM classifiers

The active strategies are now tested with respect to an ensemble of 3 SVM clas-
sifiers (trained with the LIBSVM library), which are jointly calibrated using the
evidential multiple logistic regression described in Section 2.2. We used 6 binary
classification datasets from the UCI repository: Australian, Heart, Ionosphere,
Sonar, WDBC, Diabetes. Each dataset was randomly partitioned into 6 subsets:
3 subsets of 20 instances each to train each SVM, one subset of 100 instances
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Fig. 1: Comparison of active strategies for a classifier with binary outputs.

to act as test set (except for Sonar, for which we used only 50 test samples due
to its relatively small size), one subset of 10 instances to train the initial joint
calibration of the classifiers, one subset containing the remaining instances and
acting as the pool. Over the test set, we computed the average uncertainty of
the strategies RS, HS and PS, as well as their Brier score (mean squared er-
ror), which is a standard performance (accuracy-like) measure for probabilistic
calibration methods [1,2] (to compute this score, we transformed the belief func-
tions yielded by the evidential calibration into probability distributions using the
pignistic transformation). We limited the number of queries to 20. The whole
process was repeated for 100 rounds of random partitioning, and the obtained
results were averaged over the rounds and then over the 6 datasets. These av-
erages are presented in Figure 2. As in the previous experiment, HS is better
than PS to improve uncertainty, and this time PS is always better uncertainty-
wise than RS. In addition, HS is better with respect to the Brier score than PS,
which in turn improves upon RS. Overall, this experiment indicates that both
strategies HS and PS may improve the uncertainty as well as the Brier score in
comparison to RS, and that HS may be a better choice than PS.

4 Conclusions

In this paper, the benefits of two active strategies with respect to reducing the
uncertainty (and also improving the performance) of the evidential calibration of
binary classifiers were investigated. Preliminary experiments showed that while
the Pignistic sampling strategy may be beneficial, it may be surpassed by Hartley
sampling. Future works include conducting more extensive experiments (with
other classifiers, datasets, calibration methods, training sets and pool sizes) to
refine these conclusions, finding theoretical explanations for them in the spirit of
those existing in active learning [5] and applying the approach to a driver state
detection system whose calibration data are costly.
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