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Abstract. In this paper, we introduce a new method called SPSC (Sim-
ulation, Partitioning, Selection, Cloning) to estimate efficiently the prob-
ability of possible solutions in stochastic simulations. This method can
be applied to any type of simulation, however it is particularly suitable
for multi-agent-based simulations (MABS). Therefore, its performance
is evaluated on a well-known MABS and compared to the classical ap-
proach, i.e., Monte Carlo.

Keywords: stochastic simulation · multi-agent-based simulation · solu-
tion space exploration

1 Introduction

Multi-agent-based simulations (MABS) are widely used in various fields to study
complex systems [6]. Most of them are combined with stochasticity to represent
non fully controllable phenomena and use a discrete-time approach to facilitate
model construction. Such model can generally be described as taking some initial
conditions and some parameter set as inputs, in order to return outputs at each
time step (c.f. Figure 1).

Before running into exploration of the parameter set or the initial condition
space, we must first analyze outcomes from a fixed parameter set and initial
conditions. Let us denote a stochastic simulation outputs (called observables in
the following) at a final time step T as a random vector XT . Then a key question
to address is: what is the probability P(XT ∈ S) = θS of a specific solution S?

Stochastic
Model

Initial conditions

Parameter set

Observables

∆t

Fig. 1. Illustration of a discrete-time stochastic simulation

The classical method to handle this question is Monte Carlo simulation
(MC) [7]. It consists in simulating a number n of replications and building an
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estimator θ̂S of θS defined as:

θ̂S =
1

n

n∑
i=1

1S(Xi
T ) (1)

where 1S is the indicator function of the set S and Xi
T the value of observables

in the ith replication. The issue with this approach is that for the estimator to
be good, the number n has generally to be large, as illustrated in Section 2.

Some methods have been developed to speed-up the computation of such
simulations, such as splitting [3] or polyagent [5]. However, they look for specific
solutions (rare or mean), assume a particular modeling approach (Markov chains
or agent-based) and require some low-level manipulations of the model.

In this paper, we propose a policy that simulates an authorized number N of
replications and is as generic as the MC approach yet provides a better estimator
when computational resources are limited (i.e. small N).

The paper is organized as follows: Section 2 recalls and illustrates a stan-
dard approach to determine the required number of replications in Monte Carlo
simulation for a single observable. The design principles and the approach pro-
posed to answer the above-mentioned issues are presented in Section 3 and then
applied to a classical MABS in Section 4. Section 5 concludes the paper.

2 Monte Carlo simulation, how many replications?

We recall in this section a standard approach to determine the number n(XT,i) of

replications to obtain a good estimator θ̂Si of the probability P(XT,i ∈ Si) = θSi
of some solution Si where XT,i is one observable of the vector XT . Suppose a

desired relative error ε for the estimator θ̂Si at confidence level 1− α :

P(
|θ̂Si − θSi |

θSi
≤ ε) ≥ 1− α. (2)

The minimal value for n(XT,i) to verify (2) can be determined by applying the
following algorithm [1, p. 449]:

1. Simulate n0 replications. (n0 observations X1
T,i, . . . , X

n0

T,i)
2. Compute

n(XT,i) = d(
Z1−(α2 ) · si
ε ·XT,i

)2e (3)

where Z1−(α/2) is the 100(1 − α/2) quantile of the normal distribution, si
stands for the sample standard deviation over the n0 observations and XT,i

is the sample mean value over the n0 observations. The conventional values
for n0, ε and α are respectively 150, 0.05 and 0.05.

Afterward, we can then deduce the necessary number n satisfying every observ-
able as:

n = max
XT,i∈XT

n(XT,i) (4)
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To illustrate this algorithm, let us take an academic example. We consider an
environment containing vegetation and 2 types of agents: preys consuming the
vegetation and predators hunting preys for food. Both preys and predators can
move without restriction in the environment. This model has been implemented
on the Similar platform [4] and is based on the NetLogo wolf sheep predation
model [8]. The set of observables here consists of the populations of different
species at each time step. The necessary number n for some arbitrarily chosen
parameter set and initial state of the simulation, using the conventional values
for n0, ε and α, is 3600 (c.f. Table 1). However, if we want a more precise estima-
tion, the necessary number n of replications increases drastically: for example,
considering a relative error ε = 0.005 yields a necessary number of replications
n = 7249285.

Table 1. Determination of the necessary number of replications for the prey predator
model implemented on the Similar platform. The parameters applied are n0 = 150,
ε = 0.05 and α = 0.05.

XT,i si XT,i n(XT,i)

number of preys 697.83 783.77 1219
number of predators 196.95 128.67 3600

3 A new execution policy for stochastic simulations

In this section, we introduce a new execution policy for stochastic simulations
called SPSC (Simulation, Partitioning, Selection, Cloning). This approach relies
on a decomposition of the probability of interest that we explain first.

3.1 Decomposition of the probability of interest

The probability P(XT ∈ S) concerns the observables with respect to a specific
solution S at some final time step T . Thanks to the law of total probability,
considering some intermediate time step j before T , we can write

P(XT ∈ S) =
∑
Sj∈Pj

P(XT ∈ S|Xj ∈ Sj)P(Xj ∈ Sj) (5)

where Pj is a partition of the state space of the random vector Xj .

More generally, considering all time steps before T , we can obtain the follow-
ing decomposition by assuming a discrete-time system where Xi depends only
on Xi−1:
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P(XT ∈ S) =
∑

ST−1∈PT−1

...
S1∈P1

T−1∏
i=0

P(Xi+1 ∈ Si+1|Xi ∈ Si) (6)

where Pi, i = 1, ..., T − 1, is a partition of the state space of Xi, ST = S and
S0 is the initial state of the simulation.

3.2 SPSC: Simulation, Partitioning, Selection, Cloning

Inspired by the decomposition (6), we split the time interval [0, T ] into m pieces:
[t(0), t(1)], [t(1), t(2)], ..., [t(m−1), t(m)] where t(0) = 0 < t(1) < ... < t(m−1) <
t(m) = T . Then, for each interval [t(i), t(i+1)] the following steps are applied (c.f.
Figures 2 and 3):

Simulation Simulate N replications from t(i) to t(i+1), i ∈ {0, . . . ,m − 1},
where N corresponds to the number of replications we authorize for the
simulation.

Partitioning At time t(i+1), form a partition of the space of observables of
these N replications. This can be done by applying a clustering algorithm.

Selection Choose one or multiple representative replications (which we call
delegates) from each partition and discard the other replications.

Cloning Clone the selected delegates to obtain N replications in total.

Initial states

SIMULATION

PARTITIONINGSELECTION

CLONING Final states

loop from t(0) to t(m−1)

enter
at time t(0)

at time t(m)

exit

Fig. 2. SPSC process diagram

Once the iterations are finished, we have created for each t(i) a partition
P(i) for the state space of Xt(i) . For an element S(i) ∈P(i) of the partition at
time step t(i), after the selection and cloning steps, it has ni cloned replications.
Besides, among these ni cloned replications, after evolving to the next time step
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t(i+1), some of them (ni+1 replications) belong to some element S(i+1) ∈P(i+1).
We propose to use the numbers ni and ni+1 to approximate the conditional
probability P(Xt(i+1)

∈ S(i+1)|Xt(i) ∈ S(i)) by:

P̂ (Xt(i+1)
∈ S(i+1)|Xt(i) ∈ S(i)) =

ni+1

ni
(7)

Finally, we define an estimator θ̂S for P(XT ∈ S) using a similar decomposition
as that of Equation (6), based on time steps t(i) and (7):

θ̂S =
∑

S(m−1)∈P(m−1)

...
S(1)∈P(1)

m−1∏
i=0

P̂ (Xt(i+1)
∈ S(i+1)|Xt(i) ∈ S(i)) (8)

where S(m) = S and S(0) = S0.

t(1)t(0)

delegate

of S1
(1)

delegate

of S2
(1)

delegate

of S3
(1)

t(2)

delegate

of S1
(2)

delegate

of S2
(2)

delegate

of S3
(2)

Partitioning
First

replication

Cloning
and

Simulation
Selection Partitioning

Cloning
and

Simulation

Fig. 3. Illustration of the first and second iterations of SPSC, starting from a single
initial state.

3.3 Implementation

We describe here a simple implementation of SPSC used in the experiment in
Section 4:

Simulation No special action is taken in this step.
Partitioning N replications provide N instances of observables. To form a par-

tition in the space of observables, we can take advantage of existing unsuper-
vised learning algorithm which can separate instances by multiple subgroups.
The well-known clustering process kmeans has been chosen to fulfill the task.
The number of cluster k is preset to 15.
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Selection From any element S(i) ∈P(i) of an intermediate partition, we select
the replication which is the nearest to the center using euclidean distance on
the space of observables.

Cloning After partitioning and selection, k delegates are obtained to be cloned.
To come back to N replications in total, we clone each delegate bNk c times.

If k does not divide N , we select randomly the remainder number N−k∗bNk c
of delegates to produce one more clone per selected delegate.

The time interval [0, T ] is homogeneously split into m = 5 pieces (i.e. ∀i ∈
{0, 1, . . . , 5}, t(i) = i× T

5 ).

4 Experiment

Let us take the prey predator model mentioned previously in Section 2 as an
example. As this model is well-known and well-studied, we can give some possible
solutions before launching simulations:

S1: Extinction of preys and predators, only vegetation remains.
S2: Predators go extinct, preys live without nature enemy’s harass.
S3: All species survive and form a stable ecosystem.

Now the question is, for an arbitrary parameter set and initial condition, what
is the probability of these solutions at a given time step (e.g. T = 1000)? To
answer this question, the MC approach recalled in Section 2 is generally used.

In the following, we compare the performances of MC and SPSC. The valida-
tion is done by comparing the outputs of these methods with the same limited
number of replications N = 50. By repeating the simulations 1000 times, we
will be able to compare statistically the results obtained by MC and SPSC. Two
performance measures are considered here : 1) The detection rate of a specific
solution S. 2) The precision of the probability estimator for a specific solution.
Before evaluating these performance measures, we have done 30000 replications
using MC in order to provide reference values for the comparisons:

Pref (S1) ≈ 0.0065, Pref (S2) ≈ 0.0126, Pref (S3) ≈ 0.981 (9)

The detection rates obtained with MC and SPSC policies, i.e, the capacity
of identifying a specific solution, from N = 50 replications are summed up in
Table 2. The first three columns indicate the detection rate of single solutions and
the last column indicate the detection rate for the three solutions simultaneously.
We can then deduce that SPSC explores more efficiently the solution space.

To evaluate the precision of the probability estimator, the absolute error
between the probability estimator outcomes and the references is computed:

Err(Si) = |P̂ (Si)− Pref (Si)|. (10)

Furthermore, to gain an entire vision on the three solutions simultaneously, we
consider also the mean of three solutions relative errors:

Err =
∑

1≤i≤3

| P̂ (Si)− Pref (Si)
Pref (Si)

|. (11)
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Table 2. Detection rates obtained with MC and SPSC when launching 50 replications.

S1 S2 S3 S1, S2 and S3
MC 0.236 0.455 1 0.102

SPSC 0.332 0.617 1 0.203

Histograms of these errors for the policies SPSC and MC are shown in Fig. 4.
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Fig. 4. Comparison of errors

We can notice that the distribution of errors are not normal nor symmetric.
Thus, to compare the errors from MC and SPSC policies, the Wilcoxon-Mann-
Whitney test is applied with the threshold α = 0.05. The test results are pre-
sented in Table 3 with p-value and alternative hypotheses, we can then conclude
that SPSC yields better probability estimates for each solution than MC.

Table 3. Hypothesis and p-value given by Wilcoxon-Mann-Whitney test.

Target solution Alternative hypotheses p-value Conclusion

S1 ErrSPSC < ErrMC 2.2e-16 ErrSPSC < ErrMC

S2 ErrSPSC < ErrMC 3.163e-16 ErrSPSC < ErrMC

S3 ErrSPSC < ErrMC 9.849e-09 ErrSPSC < ErrMC

S1, S2 and S3 ErrSPSC < ErrMC 2.2e-16 ErrSPSC < ErrMC
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5 Conclusions and perspectives

We have introduced a generic policy called SPSC for executing stochastic simu-
lations that deals with the weakness of MC when the number of replications is
limited. It treats simulations as black boxes and therefore, does not rely upon a
priori knowledge. We have also presented a simple implementation of SPSC and
run it on a classic stochastic MABS model. By comparing the results obtained
with SPSC and with MC, we can conclude that SPSC gives a better solution
probability estimation and can reveal more different solutions than MC.

The first perspectives of this work are related to the impact of the parame-
ters (N , k, etc.), the partitioning algorithm as well as the selection and cloning
strategies on the performance. For instance, instead of having the same number
of clones for each delegate, we could clone more the delegates from small parti-
tions and less the delegates from large partitions. Theoretical properties of the
proposed solution as well as its interest for multimodal transport simulation will
also be investigated.

Moreover, since we deal with small sample size at each intermediate time
step, we could take advantage of modern tools [2] for statistical inference to

compute the estimator θ̂S .

Acknowledgement

This work is partly funded by the ELSAT2020 project, which is co-financed by
the European Union with the European Regional Development Fund, the French
state and the Hauts de France Region Council.

References

1. Banks, J., Carson II, J., Nelson, B., Nicol, D.: Discrete-event system simulation.
Pearson, 5th edn. (2010)

2. Kanjanatarakul, O., Denœux, T., Sriboonchitta, S.: Prediction of future observa-
tions using belief functions: A likelihood-based approach. Int J Approx Reason 72,
71–94 (2016)

3. L’Ecuyer, P., Le Gland, F., Lezaud, P., Tuffin, B.: Rare Event Simulation using
Monte Carlo Methods, chap. Splitting Techniques. Wiley (2009)

4. Morvan, G., Kubera, Y.: On time and consistency in multi-agent-based simulations.
CoRR arXiv:1703.02399 (2017)

5. Parunak, H.: Pheromones, probabilities and multiple futures. In: Multi-Agent-Based
Simulation XI, LNCS, vol. 6532, pp. 44–60. Springer (2011)

6. Railsback, S., Grimm, V.: Agent-Based and Individual-Based Modeling: A Practical
Introduction. Princeton University Press (2011)

7. Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo method. John
Wiley & Sons, third edn. (2016)

8. Wilensky, U.: NetLogo wolf sheep predation model.
http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation, Center for
Connected Learning and Computer-Based Modeling, Northwestern University.
Evanston, IL. (1997)


