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Abstract: Non-synchronous vibrations arising near the stall boundary of compressors are a1

recurring and potentially safety-critical problem in modern aero-engines. Recent numerical2

and experimental investigations have shown that these vibrations are caused by the lock-in3

of circumferentially convected aerodynamic disturbances and structural vibration modes, and4

that it is possible to predict unstable vibration modes using coupled linear models. This paper5

aims to further investigate non-synchronous vibrations by casting a reduced model for NSV6

in the frequency domain and analysing stability for a range of parameters. It is shown how,7

and why, under certain conditions linear models are able to capture a phenomenon, which has8

traditionally been associated with aerodynamic non-linearities. The formulation clearly highlights9

the differences between convective non-synchronous vibrations and flutter and identifies the10

modifications necessary to make quantitative predictions.11

Keywords: non-synchronous vibration; flutter; aeroelastic instability; compressor12

1. Introduction13

The drive towards reduced engine weight and fuel burn has pushed compressors to-14

wards lighter designs with increased stage loading, leading to a rise of non-synchronous15

vibrations (NSV) near the stall boundary. The term ‘non-synchronous vibration’ gen-16

erally encompasses any vibration at frequencies which are not integer multiples of the17

shaft frequency, i.e., frequencies not induced by engine-order excitations. This includes18

buffeting, rotating stall and self-excited vibrations (flutter). In recent literature, however,19

the term NSV has often been used to describe a subset of non-synchronous vibrations,20

where circumferentially propagating aerodynamic disturbances lock in with the rotor’s21

natural vibration modes, and this terminology is adapted in this Introduction.22

Without extensive instrumentation or detailed numerical analysis, it is often impos-23

sible to distinguish between different types of non-integral vibrations. Throughout the24

history of turbomachines, controversies around vibrations near the stall boundary have25

been recognised [1]. It has been questioned whether vibrations caused by stall flutter26

[2], rotating stall [3], unstable/stable stall [4] and ‘NSV’ [5] have distinct root causes or27

are simply different terms for one phenomenon. This paper aims to demonstrate the28

differences between NSV and flutter by explaining the physical mechanisms responsible29

for NSV and comparing a reduced order model for its prediction against flutter models.30

To outline the similarities between the two phenomena, we first review them.31

Flutter is a self-excited aeroelastic instability, where aerodynamic forces amplify the32

vibration. It often, but not exclusively, occurs at the stall boundary and its defining33

criteria are:34
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• The aeroelastic system is linearly unstable.35

• The unsteady aerodynamic forces are generated by the blade vibration, i.e., the36

instability requires the participation of the structure.37

Although the aerodynamics involved in flutter are often non-linear, linear theory is38

used to discriminate between stability and instability. For quantitative predictions of39

blade amplitudes and stresses during flutter, non-linearities must be taken into account.40

For a more detailed discussion of flutter the reader is referred to, for example, the work41

of Sisto [1], Carter and Kilpatrick [6], Corral [7] or Duquesne et al. [8].42

Compared to flutter, NSV is less well defined and therefore warrants a summary of43

recent literature. One frequently cited study on NSV was published by Baumgartner et44

al. [9] and discusses the excitation of structural vibration modes by so-called ‘rotating45

instabilities’, aerodynamic disturbances which propagate around the circumference. The46

paper has received a lot of attention, but it delivers few physical explanations regarding47

the nature of these disturbances or the mechanisms by which fluid and structure couple.48

(In the authors’ opinion, the interpretation in this paper is misleading, and an interpreta-49

tion of the measured data which is consistent with the latest understanding of NSV is50

possible [10]). Kielb et al. [5] provided a physical explanation of NSV in the front stages51

of a compressor rig. The vibrations resembled flutter but typical flutter parameters, such52

as reduced frequency, incidence angle and Mach number, were uncharacteristically high,53

and the frequency of vibration measured differed from the in-vacuo structural frequency.54

Subsequent studies indicated that the source of vibration was an aerodynamic instability55

which locked in with a rotor vibration mode. The conceptual understanding of this study56

has underpinned many subsequent studies, and, in the majority of these, vibrations57

occurred close to stall and have been associated with stall precursors (but not with58

rotating stall). Vo et al. [11] and later Vo [12], for example, reported non-synchronous59

vibrations after stall criteria, such as leading edge spillage and trailing edge back-flow,60

were met and short length-scale pre-stall disturbances, known as spikes, developed.61

Brandstetter et al. [13] used experiments on a transonic research compressor to show62

how a circumferentially propagating vortical disturbance locked in with rotor vibrations63

in the first torsional eigenmode. The vortical disturbance which existed before onset of64

vibration also resembled stall precursors previously identified as ‘radial vortices’ [14–16].65

A subsequent numerical study by Stapelfeldt and Brandstetter [17] investigated the66

influence of various parameters on the lock-in phenomenon and made it possible to qual-67

itatively and quantitatively relate the circumferentially convected vortical disturbance68

to the aerodynamic forcing and resulting blade deflections. In this work, we propose69

the term ‘convective NSV’ to differentiate this particular type of non-synchronous vibra-70

tion from others, such as flutter or vibrations driven by acoustic resonances or vortex71

shedding. Using the knowledge gathered during the last 20 years, the characteristics of72

convective NSV can be summarised as follows:73

• It occurs near the stall boundary but before rotating stall cells form.74

• Prior to convective NSV, frequency spectra of unsteady pressure contain broadband75

frequencies, which result from multi-wave number disturbances propagating at76

approximately 50% of the rotor speed in the direction opposing rotation (in the77

rotor frame of reference).78

• At the onset of vibration, the aerodynamic disturbance locks in with the struc-79

tural vibration and the broadband spectrum changes to a coherent aerodynamic80

disturbance with a distinct frequency peak.81

Two important criteria must be fulfilled for it to occur:82

• The mean aerodynamics must promote the circumferential convection of vortic-83

ity, i.e., the blade must react to small changes in incidence by shedding vorticity,84

while the passage must be blocked close to the casing to allow the circumferential85

transport.86
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• The blade vibration must be able to modulate the propagation velocity of the87

aerodynamic disturbance to create a coherent disturbance in resonance with the88

vibration pattern.89

Following the description of the phenomenon in [17], we present a semi-analytical90

model based on forced single-degree of freedom oscillators to predict unstable vibration91

modes. The aerodynamic forcing term in this model is linearly dependent on the blade-92

deflection amplitude, although non-linearities are observed for high blade vibration93

amplitudes. At first sight, the phenomenon could be mistaken as flutter, satisfying94

both of the characteristic criteria listed above. This and the similarities in experimental95

signatures of flutter and NSV renewed doubt on the distinction between the two. The96

aim of the current paper is to further analyse the reduced order model in order to clearly97

illustrate why flutter and convective NSV are two different phenomena.98

2. Review of NSV Model99

The model presented by Stapelfeldt and Brandstetter [17] uses single-degree of100

freedom mass oscillators to represent blades on a rigid disk. In its simplest form, the101

individual blades are tuned and structurally uncoupled but aerodynamically coupled by102

a forcing term. In the case of convective NSV, the forcing is caused by a circumferentially103

propagating vortical disturbance. This is schematically shown in Figure 1.104
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Figure 1. (a) Sketch of rotor indicating blade numbering and sign convention and propagation of
disturbance and (b) schematic of the model.

It has been demonstrated that the behaviour of the 3D rotor blades undergoing
torsional motion can be adequately modelled in a quasi-2D analysis, considering the
twist of a spanwise section. In this case, the modal force can be approximated by the
moment induced by the unsteady lift and the modal displacement q can be replaced
with twist of the blade α (α ∝ q). If the changes in the location of the centre of pressure
are negligible, the simplified equation of motion for the system becomes:

α̈(t) + Dα̇(t) + Kα(t) = c1L′(t) (1)

where c1 is a constant of proportionality between the 2D unsteady lift, L’, and 3D mass-
normalised modal force. D and K are the diagonal damping and stiffness matrices.
respectively. As this is describing a twist motion, the modal force is a moment, but, to
align with convention, we refer to it as modal force. Since the aerodynamic disturbance
can be quantified in terms of convected vorticity, the modal force term on the right-hand
side can be further specified. It can be considered as a superposition of the force induced
directly by the blade oscillation and that caused by a circumferentially propagating
vortical disturbance, which is also referred to as the aerodynamic disturbance in the
following. Assuming that apparent mass effects are negligible and that the twist velocity
is small compared to the inlet velocity, we can use the model of Theodorsen [18] to
approximate the unsteady lift due to blade twist and the Kutta–Joukowski theorem to
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approximate the force induced by a travelling disturbance. This results in the following
equation of motion [17]:

α̈(t) + Dα̇(t) + Kα(t) =
1
2

c1ρv2
∞cL̃αα(t)︸ ︷︷ ︸

force due to vibration

+ c1ρv∞ L̃ΓΓ(t)︸ ︷︷ ︸
force due to convected disturbance

(2)

where ρ is the density, v∞ is the relative inlet velocity and c is the blade chord. The105

coefficient L̃α models the unsteady aerodynamic response of the blade. Similar to106

Theodorsen’s function, it is a function of the reduced frequency k and operating point,107

but, for simplicity, we assume a constant operating point and tuned system to drop108

these dependencies. In the second term on the right-hand side, L̃Γ is a complex constant109

accounting for the unsteady effects induced by the vortical disturbance Γ(t). It models110

the change in amplitude and phase relative to the quasi-steady force.111

The lift coefficient L̃Γ is a function of reduced frequency and blade deflection ampli-
tude but is assumed to be constant here, since the reduced frequency is kept constant
and the blade deflections are assumed to be small (α < 2◦). The convection of circula-
tion around the circumference, Γ(t), couples the different rotor blades aerodynamically.
Equation (2) clearly shows that the right-hand side of the equation of motion for the
NSV problem comprises two terms: the first one models the forces induced by vibration,
Fv, and the second one those induced by a circumferentially travelling aerodynamic
disturbance, Fa:

α̈(t) + Dα̇(t) + Kα(t) = Fv(t) + Fa(t) (3)

At first sight, Equation (3) resembles a forced response problem, where the excitation
forces Fa can be linearly superimposed with the vibration forces Fv. In the absence of any
vibration-independent aerodynamic unsteadiness (Fa = 0), Equation (3) describes the
flutter case. In the case of NSV, experimental measurements and simulations indicate that
the aerodynamic disturbance is modified by the blade vibration [13]. Furthermore, in
the computational model used to study NSV, the aerodynamic disturbance is generated
by the oscillating blades (Γ ∝ α̇), such that both terms on the right-hand side depend on
the blade vibration:

α̈(t) + Dα̇(t) + Kα(t) = Fv(α(t)) + Fa(α̇(t)) (4)

From Equation (4) alone, it is impossible to distinguish between NSV and flutter.112

In the following, we further analyse the nature of the aerodynamic forcing term Fa to113

demonstrate that there are some key differences between the two phenomena.114

3. Frequency Domain Description115

In the model shown above, the aerodynamic forcing results only from the blade116

vibration and is linearly dependent on the blade vibration amplitude. Under some117

assumptions, it is possible to recast it into the frequency domain and predict stability118

using eigenvalue analysis.119

3.1. Derivation of Influence Coefficients120

To cast the system into the frequency domain, we derive an expression for the aero-121

dynamic influence coefficients (AICs) based on the assumptions of vibrating blades and122

circumferentially convected aerodynamic disturbances. AICs are coefficients describing123

the forcing (amplitude and phase) generated by an oscillating blade on other blades in124

the assembly. They are normally used to determine the aerodynamic damping in all125

nodal diameters from a single vibrating blade, in experiments as well as simulations.126

Detailed explanations can be found in, for example, the work of Crawley [19].127

To derive the AICs, we assume that the rotor blades are vibrating at an angular128

frequency ωv in the rotor frame of reference, in nodal diameter Nv, such that the struc-129
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tural inter-blade phase-angle is given by σv = 2πNv/NB. The aerodynamic disturbance130

has circumferential propagation speed ΩR
a in the rotor frame of reference. The sign131

convention is such that a positive circumferential direction is in the direction of rotation132

and therefore ΩR
a < 0, as illustrated in Figure 1. The aerodynamic disturbance is being133

emitted at frequency ωa in the rotor frame of reference. This could be, for example,134

vorticity being shed from one blade as a result of an aerodynamic instability, but it could135

also be due to vibration in a structural eigenfrequency ωv. Since it is difficult to induce136

sufficiently small variations to cause local vortex shedding in numerical simulations, the137

CFD simulations used to calibrate the model in [17] relied on vibration as a disturbance138

trigger. We therefore consider the special case where the aerodynamic disturbance is139

originating from the vibrating blade and ωa = ωv. Since the disturbance is generated140

by the blade vibration, the distinction between Fv and Fa is not clear (see Equation (141

4)). We now demonstrate why it is nevertheless necessary by deriving an expression of142

aerodynamic forcing on a single blade in an assembly of NB blades. For this, it is helpful143

to distinguish between the situation before lock-in and after lock-in.144

3.1.1. Before Lock-In145

To distinguish between Fv and Fa, we consider that it takes a finite time, namely:

T = − 2π

NBΩR
a

(5)

for a disturbance emitted from a given blade at the beginning of blade vibration at t = 0
to travel one pitch. Any force experienced by the trailing blade before this is defined as
Fv, and the difference between the total force and the force due to blade vibration is the
force due to the aerodynamic disturbance Fa.

F(t) =

{
Fv(t) for t < T
Fv(t) + Fa(t) for t ≥ T

(6)

The force due to the aerodynamic disturbance is a superposition of the forces Fa,n
caused by N preceding blades. Note that N here is the number of blades that have an
influence on a given blade, which is not necessarily equal to NB. The force becomes:

F(t) =

{
F̃veiωR

v t for t < T
F̃veiωR

v t + ∑N−1
n=0 Fa,n(t) for T < t < NT

(7)

with n counting against the direction of disturbance propagation. As defined above, in
the case analysed here, the forces are periodic with frequency ωv:

Fa,n = F̃a,neiωvt (8)

We can now derive an expression for Fa(t) in terms of the force experienced by a146

blade due to the oscillation of its predecessors and inter-blade phase angles.147

The aerodynamic inter blade phase angle, i.e., the phase lag of the disturbance
between two subsequent blades is given by:

σa = ωvT = − 2πωv

NBΩR
a

(9)

The blades are not necessarily vibrating in phase but before lock-in the vibration
can be random without a fixed inter-blade phase angle. We therefore define the vibration
of individual blades through the inter-blade phase angle σv,n:

α0 = α̂eiωvt, αn = α̂eiωvt+σv,n (10)
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where α̂ is the vibration amplitude, which is assumed to be constant between blades.148

The aerodynamic disturbance attenuates while travelling around the circumference as149

vorticity is not convected purely circumferentially but also axially out of the domain.150

Assuming an exponential decay of the disturbance, the forcing amplitude generated by151

the nth preceding blade is modelled as F̃a,n = F̃∗a e−nra , where F̃∗a is the complex constant152

representing the force caused by an immediately preceding blade. The expression for153

Fa(t) becomes:154

Fa(t) =
N−1

∑
n=0

F̃∗a e−nra ei(ωvt+σv,n−nσa) (11)

=
N−1

∑
n=0

F̃∗a e−nra ei(σv,n−nσa)eiωvt (12)

It is now possible to compare this to the flutter case, where Fv(t) = F̃veiωR
v t. To do

this, we set the number of preceding blades to infinity, consistent with a periodic state,
and we assume vibration at a fixed inter-blade phase angle given by:

σv,n = −n
2πNv

NB
= −nσv (13)

Equation (12) then becomes:

Fa(t) = F̃∗a eiωvt
∞

∑
n=0

e−nra e−in(σv+σa)

= F̃∗a eiωvt

[
1− e−ra e−i(σv+σa)

1− 2e−ra cos(σv + σa) + e−2ra

]
(14)

where the equality ∑∞
k=0 pkeikx = [1− peix]/[1− 2p cos x + p2] is used. The sum of the

inter-blade phase angles expressed in terms of nodal diameters and frequencies is:

σv + σa = 2π

[
Nv + ωv/ΩR

a
NB

]
(15)

Two differences between convective NSV and flutter become apparent in Equations (12)155

and (14). There are two distinct time scales in the case of NSV: the vibration time scale156

and the aerodynamic, or convective, time scale, nσa = −nωv/(NBΩR
a ). If the convective157

time scale is not an integer multiple of the vibration period, the phase-lag between the158

aerodynamic disturbance and vibration modulates the forcing, creating a beating signal.159

The amplitude of this depends on the decay coefficient ra. For a given ra, the amplification160

in time of the force generated by the aerodynamic disturbance, which we measure here161

as an amplitude ratio F̂a/F̂∗a , reaches a maximum if the frequency is in resonance with162

the vibration frequency, i.e., ωR
v = NaΩR

a , as in a forced response function. This is shown163

in Figure 2, for different decay coefficients, where the amplification for a fixed vibration164

frequency and range of propagation speeds ΩR
a was computed. However, unlike classical165

forced response, the aerodynamic excitation in this scenario depends on the vibration166

amplitude.167
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Figure 2. Amplification of disturbance for different decay coefficients.

The other difference results from the decay coefficient ra. The value of ra determines168

how many blades are influenced by the vibration of a given blade. For low values of ra,169

it is possible that an aerodynamic disturbance originating from one blade travels around170

the entire circumference and returns to the original blade.171

3.1.2. After Lock-In172

The numerical studies in [17] showed how lock-in of the disturbance and a vibration
pattern is achieved through a phase-modulation of the disturbance when it is interacting
with an oscillating blade and the establishment of a nodal diameter pattern such that the
phase-speed of the aerodynamic disturbance matches that of the structure. In this case,
the resonance condition

ωR
v = NaΩR

a where Na = {1, 2, . . . , n} (16)

is fulfilled, i.e., an integer number of aerodynamic wave lengths fits into the circumfer-
ence. Substituting Equation (16) into Equation (15), we then see that:

σv + σa = 2π
Nv − Na

NB
= 2πm where m = {1, 2, . . . , n} (17)

such that Equation (14) simplifies to:

Fa(t) = F̃∗a eiωvt 1
1− e−ra

(18)

Considering a case where the disturbance rapidly decays over the circumference,
i.e., ra → ∞, recovers the expression for flutter:

lim
ra→∞

Fa(t) = F̃∗a eiωvt (19)

In the case of ra → 0, the aerodynamic forcing amplitude diverges even in the173

absence of a coupled fluid–structure instability.174

The above analysis examines the relationship between NSV and flutter. Equation (18)175

shows how, even after lock-in, when it is impossible to distinguish unsteadiness resulting176

from aerodynamics from that of vibration, the physics governing the system are different.177

In the case of NSV, the attenuation of a circumferentially propagating disturbance is low,178

while it is high in the case of flutter. In other words, in the case of NSV, an aerodynamic179

instability exists, which does not require participation of the structure. This is not the case180

for flutter.181

To further illustrate the difference between NSV and flutter, it is useful to compare182

the above description to an aerodynamic influence coefficient (AIC) formulation which183

can then be used to analyse the stability of the system.184
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3.2. Comparison to Classical AIC Approach185

When the number of preceding blades considered in the summation is less than the
number of blades in the circumference N ≤ NB − 1, which is a valid choice for rapid
decay of the aerodynamic disturbance, Equation (12) becomes:

Fa(t) =
N−1

∑
n=0

F̃∗a e−nra ei[ωvt−n(σv+σa)] (20)

Noting that the amplitude of the force is proportional to the blade modal velocity,
because vorticity is being generated by the blade oscillation [17], and including the
forces resulting from vibration on the vibrating blade itself, Fv(t), this can be rewritten
to resemble a classical aerodynamic influence coefficient formulation. In this case, the
equation of motion for a given blade and inter-blade phase angle, σv, becomes:

α̈ + 2ζvωvα̇ + ω2
vα = C̃vα +

N−1

∑
n=0

C̃a,nσv
α̇n (21)

where the first term on the right-hand side represents the aerodynamic influence of the
blade on itself and the sum contains the contribution of all other blades. The solution for
the modal displacement is assumed to be a complex exponential,

α = α̂eλt where λ = −ωvζ ± iωv

√
ω2

ω2
v
− ζ2 (22)

such that the solution to the eigenvalue problem will give the aeroelastic frequency, ω,
and aerodynamic damping, ζ. The blade influence coefficients C̃a,nσv

and C̃v relate to the
aerodynamic force coefficient F̃∗a as follows:

C̃a,nσv
=

F̃∗a
ωvα̂

e−nra e−in(σv+σa) = C̃∗a e−nra e−in(σv+σa) (23)

C̃v =
F̃v

α̂

In other words, the influence coefficient as derived from AIC simulations auto-186

matically incorporates the phase-lag and decay. It is normally obtained using CFD187

simulations without any knowledge of the physical mechanisms causing the aerody-188

namic coupling between blades. (Note that, in the typical AIC analysis, the vibration189

inter-blade phase angle σv would not feature in the aerodynamic influence from Blade190

n to Blade 0 (as only one blade is vibrating). Instead, the complex blade-individual191

influence coefficient is transferred into the travelling wave space by a Fourier transform.)192

The comparison to the classical AIC approach clearly shows that, in a locked-in193

state and for a sufficiently high decay of the disturbance around the circumference,194

the problem is equivalent to flutter and can be analysed using aerodynamic influence195

coefficients. The problem in the case of NSV is how these influence coefficients are196

defined. Without sufficient decay, the aerodynamic disturbance would traverse the197

entire circumference and the coefficients would be time dependent (on the number of198

revolutions of the disturbance). In this case, they are impossible to obtain using CFD199

simulations because the AIC paradigm is that the influence decays to zero with distance200

from the oscillating blade. This is illustrated with examples in the following section.201

4. Rotor Stability Analysis202

To illustrate the use of the model, it is here applied to a transonic rotor exhibit-203

ing non-synchronous vibrations near stall in the first torsional mode. The case and204

experimental procedure is described in detail in [13] but is briefly reviewed here.205
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4.1. Test Case206

The test case is a 1.5 stage research compressor representative of modern high-207

pressure compressor front stages. The rotor operating map is shown in Figure 3. In the208

experiments, high vibration amplitudes in the 1T/8ND mode were measured when the209

compressor was throttled from the last point shown on the map. The CFD simulations210

used to calibrate the model were performed using the in-house Reynolds-averaged211

Navier–Stokes solver AU3D. Details about the calibration process are given in the next212

section. Steady state simulations were performed on single-passage mixing plane models,213

while unsteady simulations were performed on a five-passage model of the rotor only,214

with the centre blade vibrating as illustrated in Figure 1. Details regarding the CFD215

simulations can be found in [17].216

As seen in Figure 3, the steady state CFD simulations of the 1.5 stages did not reach217

the near-stall operating point but with simulations of the isolated rotor at increased218

back-pressure the stall mass flow was reached. On this rotor-only characteristic, two219

operating points are labelled. OP1 presents the point of maximum pressure rise in the220

rotor and OP2 presents the last point for which convergence in the steady simulation221

could be reached. Using unsteady simulations, the operating point shifts as indicated in222

the picture.223
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OP2 unsteady converged, rotor only, t, rotor

Figure 3. Constant-speed characteristic and flow field at 92% span.

A validation of the CFD is shown in Figure 3, where the flow field measured at224

the near stall operating point is compared to CFD simulations at OP1 and OP2. The225

flow field at OP2 matches that of the experiment well. As a result of the tip leakage226

flow, the passage is almost completely blocked by low velocity fluid downstream of the227

shock. At this operating point, a vortical disturbance is transported predominantly in228

the circumferential direction. It was previously shown that this is the main contributor229

to forcing on the blades during NSV. In the formulation above, this corresponds to a low230

decay coefficient ra. At the higher mass flow operating point (OP1), the majority of the231

vorticity is convected axially out of the passage and ra takes a high value.232

Validation of Frequency Model233

The frequency domain model is now applied to the transonic rotor for the two234

operating points of interest. The coefficients, listed in Table 1, were previously calibrated235

using reduced-domain CFD simulations at OP1 and OP2, where a central blade (Blade 0)236

was oscillated in the torsional mode and the resulting forces on the other blades were237

recorded (see Figure 1). The force coefficients F̃∗a and F̃v are determined from the time238

histories of modal forces on Blade 1 and the oscillating Blade 0, respectively, while the239

decay rate was found by comparing forcing amplitudes on all five blades in the domain.240
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Table 1. Coefficients and parameters used to represent OP1 and OP2.

OP1 OP2

Decay rate, ra 1.0 0.075
Propagation speed, ΩR

aN = ΩR
a /ΩR

r −0.44 −0.44
Force coefficient F̃∗a = C̃∗a α̂ 12ei(−0.50π) 12ei(−0.375π)

Force coefficient F̃v = C̃vα̂ 50ei(0.25π) 50ei(0.25π)

Number of blades NB 21 21
Vibration frequency ωR

v /Ωr 5.81 5.81

Due to the low decay rate of the aerodynamic disturbance, a periodic solution does241

not exist at the NSV operating point (OP2), and the force coefficients are time dependent.242

The present analysis uses rounded values following calibration during the first few243

cycles of blade vibration.244

Figure 4a shows the aerodynamic damping curves at the two operating points.245

While OP1 is stable, OP2 shows significant negative aerodynamic damping in nodal246

diameter Nv = 8. The associated shift in frequency of the aeroelastic system relative to247

the in-vacuo frequency ωv is shown in Figure 4b. This shift in frequency shows how248

the fluid–structure coupling modifies the phase-speed of the aerodynamic disturbance.249

At the unstable nodal diameter, the aerodynamic disturbance and structural vibration250

are close to resonance and the shift in frequency is minimal. For Nv = 7, on the other251

hand, the frequency shifts by 3%. This lock-in effect was also seen in the experiment and252

numerical simulations [13,17]. The results at OP1 (stable) and OP2 (instability at Nv =253

8) are in agreement with the experimental measurements and validate the frequency254

domain model.255

a) b)

Figure 4. Aerodynamic damping (a) and aeroelastic frequency ratio (b) versus nodal diameter for
the experimentally tested operating points.

4.2. Application to Cases from Literature256

To test the general applicability of the model and these results, we applied it to a257

number of cases from the literature, as listed in Table 2. The forcing coefficients F̃v and F̃∗a258

were not changed from the calibrated values (Table 1), but the non-dimensional vibration259

frequency ωv/Ωr and propagation speed ΩR
a /Ωr were adjusted for each case, based on260

information from the literature. Using these settings, the model was able to correctly261

predict the unstable nodal diameter for all the cases in Table 2. This indicates that the262

critical (unstable) nodal diameter for a case can be correctly predicted knowing only263

the number of blades, frequency of vibration and propagation velocity. The former two264

are known, while the latter can be approximated from the swirl velocity in the leading265

edge plane. The model predicts the resonance condition, and as such the critical nodal266

diameter can also be identified using simple algebra. The interesting outcome of this267

experiment is that the same set of values for the coefficients F̃∗a and F̃v gives good results268

for all cases. This implies that either all cases and their force coefficients are comparable269

or the amplitude and phase of the coefficients plays a minor role. The latter would imply270

that it is not necessary to recalibrate coefficients to assess the stability of a compressor at271
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different operating points. The sensitivity to the coefficients is therefore studied in the272

following section.273

Table 2. Cases from the literature successfully captured by the model, listing model inputs (number
of blades, propagation speed and vibration frequency), experimentally measured nodal diameter
Nv,exp and nodal diameter predicted by the reduced order model Nv,model .

NB ΩR
a /Ωr ωv/Ωr σv,exp Nv,exp Nv,model

Baumgartner et al. [9] 27 −0.36 7.56 80◦ 6 6
Kameier and Neise [20] 24 −0.6 22.2 165◦ 11 11
Brandstetter et al. [13] 21 −0.44 5.8 137◦ 8 8
Rodrigues et al. [21] 16 −0.42 5.46 67.5◦ 3 3

5. Parametric Investigation274

The influence of the decay rate, rotational speed and force coefficients on the stability275

of the system is now analysed. The baseline parameters are listed in Table 1, where the276

values are representative of those determined at OP1 and OP2.277

5.1. Influence of Decay Rate278

The effect of the decay rate ra on aerodynamic damping is shown above in Figure279

4. The only difference between OP1 an OP2 in this analysis is the decay rate, which is280

another indicator that the key difference between NSV and flutter lies in the propagation281

behaviour of the aerodynamic disturbance. Further sensitivity studies are not shown282

here because a variation in ra is equivalent to including more blades in the influence283

coefficient sum, which is known to change the shape of the aerodynamic damping curve284

(Figure 4a) by adding higher harmonics as the number of blades in increased.285

5.2. Influence of Propagation Speed286

We continue by studying the influence of propagation speed of the aerodynamic287

disturbance ΩR
a /Ωr = ΩR

aN on aerodynamic damping. The speed was varied between288

0.2 and 0.8ΩR because this range of speeds is associated with NSV in the literature.289

Figure 5 plots the least damped nodal diameter against propagation speed. It290

therefore shows which nodal diameter would be responding when the swirl velocity is291

changed, reproducing the familiar ‘stair case’ plots seen during acceleration manoeuvres292

or re-scheduling of inlet guide vanes (e.g. [22,23]). The size of the markers in Figure293

5 corresponds to the magnitude of aerodynamic damping. To explain the trends seen294

here, the aerodynamic damping curves for four selected values close to the measured295

propagation speed are plotted in Figure 5b. At the operating speed corresponding to296

OP2 (ΩR
aN = −0.44), we see large negative aerodamping at Nv = 8, indicating that the297

aerodynamic disturbance is in resonance with the vibration mode. When the relative298

speed is increased sightly to ΩR
aN = −0.42, Nv = 8 is marginally unstable. A slightly299

lower speed (ΩR
aN = −0.46) still shows instability at Nv = 8 but a reduced magnitude300

compared to the OP2 operating point.301

a) b)

NSV experiment

Figure 5. (a) Critical (unstable) nodal diameter as function of propagation speed. Symbol size
proportional to amplitude of ζ. (b) Damping coefficient for variation of propagation speed.
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From the results in Figures 4 and 5, it is clear that fluid–structure lock-in is possible302

because the aerodynamic wave number and (to a smaller extent) the phase speed of the303

disturbance are parameters that are determined by the coupled system, such that the304

phase-speed of the disturbances matches that of the structure.305

5.3. Influence of Amplitude and Phase of Aerodynamic Coefficients306

The two aerodynamic force coefficients, F̃v and F̃∗a , are taken as constants in the307

model. However, their magnitude and phase in reality depend on not only the geometry308

and operating point but also the reduced frequency. To test the sensitivity of the sys-309

tem’s stability on these coefficients, the phase and amplitude are varied independently.310

Figure 6 shows the effect of the magnitude of the force coefficients on aerodynamic311

damping. A change in the blade influence on itself, F̃v, simply shifts the damping312

curve, with a larger amplitude resulting in a higher mean aerodynamic damping. This313

is consistent with flutter in turbomachinery and shows that the blade’s influence on314

itself is stabilising. A change in the amplitude of the aerodynamic disturbance alters315

the shape of the curve, showing a larger variation between nodal diameters, Nv. This316

is also consistent with flutter. This behaviour is much more noticeable at OP1 than at317

OP2. While at OP1 the mean damping is comparable to its variation, damping at OP2 is318

dominated by the contribution from the aerodynamic disturbance and damping values319

are an order of magnitude larger than at OP1.320

a) b)

Figure 6. (a) OP1 and (b) OP2, variation of amplitude F̃∗a and F̃v.

The phase of the vibration-associated coefficientF̃v has a similar effect as its ampli-321

tude and influences the mean aerodynamic damping as expected (see Figure 7). The322

phase of the force induced by the aerodynamic disturbance F̃∗a has a significant effect at323

OP1. A small shift in the response of the blade results in a shift of minimum aerodynamic324

damping to another nodal diameter. At OP2, the shift in phase reduces the magnitude of325

negative damping but does not change the nodal diameter of the instability.326

a) b)

Figure 7. (a) Variation of phase of F̃v and (b) variation of phase of F̃∗a .

6. Discussion327

The analysis and application showed that the linear model developed for convective328

NSV can predict the correct vibration mode, and that the results depend significantly on329

the disturbance attenuation over the circumference, which is determined by the blockage330

in the tip region and therefore depends on the operating point. The model as developed331

above relies on a number of assumptions, namely:332
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1. The forcing due to multiple disturbances can be linearly superposed.333

2. The amplitude of the aerodynamic disturbance and therefore the forcing coefficient,334

F̃a,0, depend linearly on vibration amplitude.335

3. The forcing coefficient F̃a,0 does not change with blade oscillation phase.336

4. All blades are aerodynamically and structurally identical.337

While the last one is valid for a tuned bladed disk or blisk, the first three need to338

be improved to allow quantitative predictions of the vibration amplitudes. Parameter339

studies [17] have shown that the forcing coefficient behaves non-linearly at high vibration340

amplitudes and varies with phase. Similarly, the disturbance becomes saturated, which341

makes it possible for the compressor to operate aerodynamically stable at the NSV342

operating point.343

7. Conclusions344

This paper derives aerodynamic influence coefficients for compressor non-synchronous345

vibrations near the stall boundary, which are caused by the circumferential propagation of346

a vorticity disturbance. The influence coefficients are used in a linear frequency-domain347

model to predict the stability of the aeroelastic system. Unlike classical AICs, the present348

influence coefficients are derived from physical principles and are functions of the349

system’s structural and aerodynamic properties. This makes it possible to study the350

sensitivity of NSV to parameters such as propagation speed and circumferential decay351

rate of the disturbance. It is shown that the model correctly predicts the experimentally352

measured unstable nodal diameters when calibrated with unsteady CFD simulations.353

The results and comparison of the AIC formulation to that for flutter demonstrate354

that the phenomenon described is distinct from flutter. In the case of convective NSV, the355

system becomes unstable because an aerodynamic disturbance propagates circumferen-356

tially with little attenuation. The result is an instability which locks-in with the structural357

vibration frequency. In reality, the aerodynamic and aeroelastic behaviour becomes358

non-linear at large amplitudes, limiting aerodynamic disturbance and blade oscillation359

amplitudes. The modifications necessary to model this non-linearity are identified in360

this paper.361
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