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Abstract. This paper addresses a variant of the vehicle routing problem with
time windows where service and travel times are modeled within the framework
of belief function theory. This theory is general as it offers to model several facets
of information imperfection, including uncertainty and imprecision. An extension
of stochastic programming with recourse is used to tackle the problem. This ap-
proach aims to regain the feasibility of the routes that missed one or more of the
customer time windows due to the uncertain nature of the problem. A memetic
algorithm is devised to solve the problem on an adaptation of literature instances.

Keywords: Vehicle routing · Time windows · Recourse · Belief function · Memetic
algorithm.

1 Introduction

The Vehicle Routing Problem with Time Windows (VRPTW) [9] is one of the most
studied variants of vehicle routing problems (VRP). VRPTW routes are subject to time
and capacity restrictions. Customers must be served within their time windows, vehicles
have to return to the depot before its closure and their capacity must be respected. The
main objective is to optimize the operating costs including the cost of vehicles and the
overall traversed distances. The VRPTW is NP-hard. Indeed, even finding a feasible
solution for the problem is itself NP-complete in the strong sense [15].

Usually, external factors like weather condition or unexpected road accidents af-
fect one or more of the input parameters such as service and travel times, thus, the
planned routes must account for the possible variations of those parameters. Accord-
ingly, most of the research papers handled this issue using probability theory giving rise
to the Stochastic VRPTW (SVRPTW) [11, 18]. SVRPTW models are either tackled in
a Chance-Constrained Programming (CCP) fashion [11, 4, 3], where the probabilities
(chances) of time windows violations are below a given threshold, or in a Stochas-
tic Programming with Recourse (SPR) one [11, 20, 5]. In SPR models, routes are first
planned, then, when actual service and travel times are revealed, corrections (so-called
recourse actions) are performed on routes that are subject to time windows violations in
order to regain their feasibility. For instance, when a vehicle arrives late at a customer’s
location, the service is dropped and a new visit will be rescheduled to serve him. Each
correction induces a penalty cost that must be added to the routing costs. Both of the
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CCP and SPR approaches have their advantages and drawbacks, they can either be
combined as in [6], or applied separately depending on the needs of the decision maker.

Set theory has also been used to handle the uncertainty in time parameters, yielding
the Robust VRPTW (RVRPTW) [1, 8, 12]. This model assumes that uncertain parame-
ters belong to a predefined set, i.e., parameters are known imprecisely, and provides so-
lutions that are immunized against imprecision. This is commonly done by optimizing
the routing costs considering extreme scenarios for service and travel times. Neverthe-
less, solutions tend to be overly conservative.

Recently, more general uncertainty reasoning frameworks have emerged in the VRP’s
literature to serve as complementary tools to the existent set/probabilistic approaches,
among others the theory of belief function also known as evidence theory [16]. Be-
yond imprecision or (probabilistic) uncertainty, this theory offers to represent problem
parameters that are affected by more subtle forms of information imperfection arising
from partial lack of knowledge. In the context of VRPs, belief function theory was
used, for the first time, to model the uncertainty on customers demands in the Capac-
itated VRP (CVRP) variant [7]. Extensions of the CCP and the SPR approaches were
proposed yielding the Belief-Constrained Programming and the Belief Programming
with Recourse approaches. In this paper, we follow this line of work by tackling the
VRPTW with uncertain service and travel times represented within the belief func-
tion framework. A Belief-Constrained Programming version for the same problem was
already proposed in [19]. Herein, a belief programming with recourse approach is de-
vised. We assume that time windows are hard, i.e., no early or late services are allowed.
The recourse policy is based on skipping service at the failures locations to regain routes
feasibility. This problem is very challenging from a computational perspective, to our
knowledge, even in the case of stochastic programming, few papers handled the SPR
version of VRPTW with stochastic service and/or travel times and hard time windows
[20, 5, 6]. Most of the works focused either on total or partial soft time windows due
the difficulty of the problem. We also design a memetic algorithm [13] to solve an
adaptation of literature instances.

The paper is organized as follows. Section 2 defines the VRPTW and recalls the
fundamentals of belief function theory. In section 3 we describe the proposed recourse
approach as well as some particular cases of the model. Section 4 is dedicated to the
experimental results. Section 5 concludes the paper.

2 Definitions and notations

This section provides a brief background on the necessary tools required for our devel-
opments.

2.1 Problem formulation

Given a fleet of K vehicles of the same capacity Q and cost M (M is a large value),
the VRPTW is defined on a graph G = (V,E), where V = {0, 1, . . . , n} is the node
set and E = {(i, j) : i 6= j, i, j ∈ V } is the arc set. The depot is denoted by 0 and
Vc = {1, . . . , n} is the set of customers. Each node i has a demand qi ≤ Q, a service
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time si and a time interval (window) [ei, li] in which service can start, q0 = s0 = 0
and [e0, l0] = [0, l0] is the time horizon for the depot. Time windows are considered to
be hard, that is if a vehicle k arrives at node j earlier than ej , the service is postponed
until the opening of the time window, and arrivals after lj are forbidden. A non negative
distance dij and travel time tij are associated with every arc (i, j) ∈ E. We assume
that distances satisfy the triangle inequalities. A solution of VRPTW is composed of
multiple routes, each one must respect the following constraints: 1) Each customer is
only served once; 2) A vehicle k leaves each visited customer and travels toward the
next one on the route and each route starts and ends at the depot; 3) The total demand on
any route does not exceed Q; 4) Finally, the service at each customer must start within
his time window and vehicles must return to the depot before l0. A formal description of
those constraints can be found in [9]. The objective (1) minimizes the overall operating
costs:

min
[
M.

∑
k∈K

∑
j∈Vc

x0jk +
∑
k∈K

∑
(i,j)∈E

dijxijk

]
(1)

where xijk is the decision variable. It is equal to 1 if vehicle k traverses arc (i, j) and 0
otherwise. In (1), due to M being large, the cost of vehicles is first minimized then the
overall traversed distance is reduced. This means that a solution with fewer routes but
higher distance is preferred over another one with more routes but lower distance.

2.2 Belief function theory

Belief function theory was first introduced by Shafer [16]. In this theory, the available
knowledge about a variable x defined on a finite set X , known as the frame of discern-
ment, is represented by a mass function mX : 2X 7→ [0, 1] s.t.

∑
A⊆X m

X (A) = 1 and
mX (∅) = 0. mX (A) quantifies the part of our belief that x ∈ A without providing any
further information about x ∈ A′ ⊂ A. Each subset A ⊆ X such that mX (A) > 0
is called focal element of mX . If all the focal elements A ⊆ X of mX are singletons
(|A| = 1) then mX is called Bayesian and it is equivalent to a probability measure. If
mX has a unique focal element A ⊆ X , i.e., mX (A) = 1, mX is said to be categori-
cal and it corresponds to a set. In the remainder of this paper, a variable x whose true
value is known in the form of a mass function will be referred to as evidential variable.
The notion of expected value, in probability theory, of a function f : X 7→ R related
to a probability mass function pX is extended, in belief function theory, to the notions
of lower (E(f,mX )) and upper (E(f,mX )) expected values of f related to a mass
function mX as follows [2]:

E(f,mX ) =
∑
A⊆X

mX (A)min
x∈A

f(x), (2)

E(f,mX ) =
∑
A⊆X

mX (A)max
x∈A

f(x). (3)

3 A recourse model for the VRPTW with evidential times

In this section, we present the VRPTW with evidential service and travel times under
the recourse programming approach. Our model is inspired from the work in [7] and



4 T. Tedjini et al.

adapted to account for uncertainty in both service and travel times, the time windows
requirements as well as a different recourse policy. We will start by formalizing the
problem and by showing how to incorporate and compute the expected cost of recourse
actions. Then, we will present an efficient method to compute these costs in presence of
particular evidential information about service and travel times. Finally, we will discuss
some special cases of the problem.

3.1 Formalization

Consider a solution to the VRPTW where time windows constraints are relaxed. Let
R = {1, . . . , i, . . . , n, n+1 = 0} be a route from this solution. For the sake of simplic-
ity we suppose, without loss of generality, that the ith visit on R corresponds to cus-
tomer i of the problem. To account for the time windows constraints, one must check
the feasibility ofR at each of its visits: If the time needed for a vehicle to arrive at visit i
(customer or depot) meets its corresponding time window [ei, li] then the time window
constraint is verified for i. In case where the vehicle arrives later than li, a failure occurs
and i can not be served, so the vehicle skips the service of i and travels directly toward
visit i + 1 the immediate successor of i on R. An exclusive visit will be rescheduled
later to serve i. We adopt this policy since the actual values of service and travel times
are only revealed once the vehicle arrives at the visit’s location, thus failures can not be
predicted. This is equivalent to the strategy used in [6] for the stochastic case. Formally,
let fi be a binary variable describing the failure situation at visit i. fi equals 1 if the
vehicle arrives later than li otherwise it is equal to 0. Arrival times are computed re-
cursively by cumulating service and travel times up to visit i with possible truncations
induced by waiting times. Formally, let ai, i = 1, . . . , n + 1 be the arrival time at visit
i. ai is a function of the set T01×S1× . . .×Si−1×Ti−1i of all service and travel times
up to i, where Si (resp. Ti−1i) is the set on which the service time si (resp. travel time
ti−1i) is defined:

ai =

{
vi−1 + ti−1i if i ∈ {2, . . . , n+ 1},
t01 if i = 1.

(4)

where vi is the departure time from visit i which is expressed by:

vi =

{
max{ei, ai}+ si if ai ≤ li,
ai if ai > li.

(5)

The failure situation alongR is represented by a unique vector f = (f1, . . . , fn+1) ∈
F = {0, 1}n+1 in presence of a certain and precise (deterministic) knowledge about
service and travel times. This vector is a function of all service and travel times on R:

g : T01 × S1 × . . .× Sn × Tnn+1 7→ F
(t01, s1, . . . , sn, tnn+1) 7→ f = (f1, . . . , fn+1).

(6)

Each rescheduled visit induces a penalty that must be added to the routing cost of
R. A penalty is an extra cost that measures, for instance, customers dissatisfaction or
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simply the cost of dedicating exclusive vehicles to serve them. Note that it is possible
to define more complex recourse policies, nonetheless, we chose this simple policy to
somehow manage the tractability of the problem given the complexity of belief func-
tions. Let f = (f1, . . . , fn+1) ∈ F be a failure vector and let p be the function defined
from F to R+, representing the penalty induced by f . This penalty is composed of the
cost of using an extra vehicle to serve visit i, whose service has been skipped, plus the
total distance of a round trip from i to the depot:

p(f) =

n+1∑
i=1

fi × (M + 2d0i). (7)

The cost C(R) of a route R in presence of a deterministic failure vector f is composed
of the routing cost C(R) plus the penalty p(f) induced by f :

C(R) = C(R) + p(f)

=M +
∑

(i,j)∈E(R)

dij +

n+1∑
i=1

fi × (M + 2d0i).
(8)

When service and travel times are evidential, i.e., knowledge about these variables
is represented by mass functions, the failure situation is no longer deterministic but
evidential and it is represented by a mass function mF as will be detailed in Section
3.2. In this case, the cost C(R) of a route R consists of the routing cost part C(R) to
which is added the (lower or upper) expected value of p related to mF as recalled in
Section 2.2. In this work, we assume a pessimistic attitude toward the possible failures
that may occur on route R, and therefore choose to use the upper expectation (3). We
denote this upper expected value by E(p,mF ):

E(p,mF ) =
∑
F⊆F

mF (F )×max
f∈F

p(f). (9)

The cost C(R) of a route R is then expressed as:

C(R) = C(R) + E(p,mF )

=M +
∑

(i,j)∈E(R)

dij + E(p,mF ). (10)

Consequently, the overall cost C(S) of a solution S = {R1, . . . , RK} of the VRPTW
with evidential service and travel times under the recourse approach, is nothing but the
sum of all the expected costs of its K routes.

C(S) =
∑
k∈K

C(Rk). (11)

3.2 Evidential failures

In this section, we start by describing how evidential knowledge about service and
travel times induces evidential failures that are represented by a mass function. Then,
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we present an efficient method to compute this mass function under some particular
assumptions.

Let us first consider the route R defined in Section 3.1 and suppose that service si
and travel tij times are evidential and represented, respectively, by mass functions mSisi
and mTijtij defined on the sets Si and Tij , such that |Si| ≤ S ∈ N∗+ and |Tij | ≤ T ∈ N∗+.
Assume that service and travel time variables are independent (this assumption is not
required but only stated here to simplify the explanation of our method), hence, the
joint mass function mT01×S1×...×Sn×Tnn+1 of service and travel times on R is equal
to the product of independent mass functions mSisi and mTijtij , for all i ∈ Vc(R) and
(i, j) ∈ E(R). When mT01×S1×...×Sn×Tnn+1 has a unique focal set T ⊆ T01 × S1 ×
. . . × Sn × Tnn+1 such that mT01×S1×...×Sn×Tnn+1(T ) = 1, knowledge about the
failure situation is imprecise, i.e., all we know is that it belongs to a set of possible
failures denoted by F , which is the image of the set T by function g defined in (6). F
can be described as:

F = g(T ) =
⋃

(t01,s1,...,sn,tnn+1)∈T

g(t01, s1, . . . , sn, tnn+1). (12)

In general, when mT01×S1×...×Sn×Tnn+1 has at most c ∈ N∗+ focal sets, knowledge
about the failure situation is both imprecise and uncertain, and can be represented by
the mass function mF defined as:

mF (F ) =
∑

g(T )=F

mT01×S1×...×Sn×Tnn+1(T ),∀F ∈ F . (13)

To compute mF defined in (13), g(T ) is evaluated for each focal set T ⊆ T01 ×
S1× . . .×Sn×Tnn+1 of the mass function mT01×S1×...×Sn×Tnn+1 . In the worst case,
T can have up to Sn × T n+1 element (|T | = |Si||V (R)| × |Tij ||E(R)| ≤ S |V (R)| ×
T |E(R)| ≤ Sn × T n+1), thus evaluating (13) requires a worst case time complexity
of O([Sn × T n+1] × c) which is intractable. However, following a similar tree-based
approach to that of [7, Section 3.2.3] described in the next paragraph, if service and
travel time variables are modeled by intervals, i.e., si ∈ JσiK = [σi, σi] ⊆ Si and
tij ∈ JθijK = [θij , θij ] ⊆ Tij and T = Jθ01K×Jσ1K . . .×JσnK×Jθnn+1K is the Cartesian
product of interval service and travel times along R, one can demonstrate that only the
bounds of the intervals JσiK, i ∈ V (R) and JθijK, (i, j) ∈ E(R) has to be evaluated
rather than each element of Si and Tij . Subsequently, the complexity of evaluating
(13) drops to O(22n+1 × c). Furthermore, this complexity can also be decreased to
O(2n × c) if travel times tij are considered as singletons rather than intervals, that is
the marginalization of mT01×S1×...×Sn×Tnn+1 onto Tij , for any travel time variable tij
is a Bayesian mass function where JθijK = {θ̃ij}. As a consequence T = {θ̃01} ×
Jσ1K . . . × JσnK × {θ̃nn+1}. A similar result holds when service times are singletons,
that is JσiK = {σ̃i} and T = Jθ01K × {σ̃1} . . . × {σ̃n} × Jθnn+1K, in which case the
overall complexity becomes O(2n+1 × c).

Consider, in the following, a categorical mass functionmT01×S1×...×Sn×Tnn+1 hav-
ing a unique focal set T = Jθ01K×Jσ1K . . .×JσnK×Jθnn+1K, that is, si ∈ JσiK,∀i ∈ Vc
and tij ∈ JθijK,∀(i, j) ∈ E. Note that arrival times (resp. departure times) are impre-
cise in this case: ai ∈ JαiK = [αi, αi] (resp. vi ∈ JυiK = [υi, υi]), where bounds αi and
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αi (resp. υi and υi) are obtained by applying the recursive reasoning described below.
As mentioned before, in this case, the failure situation that can be encountered by a
vehicle is described by a set F defined by (12). In the following, we adapt the evalua-
tion procedure in [7, Section 3.2.3] to our problem in order to efficiently compute F .
Suppose that the vehicle operating on R travels from visit i − 1 to visit i. The arrival
time ai at visit i induces the following three cases:

1. If αi ≤ li: there will be no failure at visit i, hence fi = 0 and vi ∈ [max{ei, αi}+
σi,max{ei, αi}+ σi].

2. If αi > li: the failure situation is ”precise” and service at visit i is skipped i.e.,
fi = 1 and vi ∈ [αi, αi].

3. if αi ≤ li < αi: the failure situation at visit i is ”imprecise”, so we account for
both possibilities:
(a) When the true arrival time belongs to [αi, li], there will be no failure at visit i,

i.e., fi = 0 and vi ∈ [max{ei, αi}+ σi, li + σi].
(b) When the true arrival time belongs to ]li, αi], service at visit i is skipped, i.e.,

fi = 1 and vi ∈]li, αi].

This reasoning is applied for all the visits of R, starting from the first customer up to
the depot, to get all the failure situations related to the focal set T . This latter procedure
is sketched in Algorithm 1 and its execution induces a tree of n+ 1 levels. Each level i
represents the potential failure situations that a vehicle encounters when reaching visit
i. Each node of a level i contains information about the failure component fi as well
as the arrival and departure time intervals. The evaluation is extended from a level to
another one, and stops after evaluating level n + 1 which corresponds to the depot. To
guarantee the feasibility of single customer routes, we assume that there is no particular
reason for a vehicle to arrive late at the first visit of any route R, thus f1 = 0. Consider
a branch from the tree induced by Algorithm 1. The concatenation of the binary failure
variables fi from the root up to level n+1 induces a failure vector f = (f1, . . . , fn+1)
describing one possible failure situation on R. The set of all the vectors f obtained
from all the branches of the recourse tree, denoted by F , expresses all the failures that
can occur on R. Using a similar proof to that of [7, Proposition 6], we can show that
the set F verifies F = g(Jθ01K × Jσ1K × . . . × JσnK × Jθnn+1K). Note that in case
mT01×S1×...×Sn×Tnn+1 has multiple focal sets, then given (13) the previous reasoning
is applied for each one of them as demonstrated in the following example:

Example 1. Let us illustrate Algorithm 1 by considering a routeR = {1, 2, 3, 0}, where
time windows are [e0, l0] = [0, 200], [e1, l1] = [5, 30], [e2, l2] = [40, 95], [e3, l3] =
[80, 120]. The available information about service and travel times is represented by the
joint mass function: mT01×S1×T12×S2×T23×S3×T30 denoted by m for simplification:

m([15, 20]× [20, 25]× [40, 50]× [30, 35]× [10, 20]× [15, 20]× [10, 15]) = 0.6,
m([15, 20]× [20, 25]× [25, 30]× [20, 30]× [10, 15]× [15, 20]× [10, 15]) = 0.4.

(14)
F = {(0, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0 , 1), (0, 0, 1, 1),
(0, 1, 1, 1)} is the set of all possible failure situations on R, such that f1 = 0.

The first focal set induces the tree illustrated in Fig. 1 and the second one induces
the tree depicted in Fig. 2. Take for instance the tree in Fig. 1, it has two branches
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Algorithm 1 Failures tree-based Evaluation (FE)
Require: Visit i ∈ {1, . . . , n + 1}, service time [σi, σi], travel time [θij , θij ].
Ensure: A tree describing all failures onR.

1: i = 1;
2: [α1, α1] = [θ01, θ01];

3: f1 = 0;

4: [υ1, υ1] = [max{e1, α1} + σ1,max{e1, α1} + σ1];

5: Create the root node of T ([α1, α1], [υ1, υ1], f1); i + +;

6: while (i > 1 and i ≤ n + 1) do
7: [αi, αi] = [υi−1 + θi−1i, υi−1 + θi−1i];

8: ifαi ≤ li then

9: f left
i = 0;

10: [υleft
i , υleft

i ] = [max{ei, αi} + σi,max{ei, αi} + σi];

11: T left = FE([αi, αi], [υ
left
i , υleft

i ], f left
i , i + +);

12: Attach T left as a left branch of T ;
13: else ifαi > li then

14: f
right
i

= 1;

15: [υ
right
i

, υ
right
i

] = [αi, αi];

16: T right = FE([αi, αi], [υ
right
i

, υ
right
i

], f
right
i

, i + +);

17: Attach T right as a right branch of T ;

18: else
19: [αi, αi] = [υi−1 + θi−1i, li];

20: f left
i = 0;

21: [υleft
i , υleft

i ] = [max{ei, αi} + σi, li + σi];

22: T left = FE([αi, αi], [υ
left
i , υleft

i ], f left
i , i + +);

23: Attach T left as a left branch of T ;
24: [αi, αi] =]li, υi−1 + θi−1i];

25: f
right
i

= 1;

26: [υ
right
i

, υ
right
i

] =]li, αi];

27: T right = FE([αi, αi], [υ
right
i

, υ
right
i

], f
right
i

, i + +);

28: Attach T right as a right branch of T ;

29: end if
30: end while

representing two possible failure situations on R when information about service and
travel times is given by the first focal set of m. The concatenation of the binary vari-
ables fi from the root to the leaves starting from the left branch yields the subset
F1 = {(f1, f2, f13 , f10 ), (f1, f2, f23 , f20 )} = {(0, 0, 0, 0), (0, 0, 1, 0)}, which means that
either all the customers of R will be successfully served or that a failure will occur at
customer 3 and the latter can not be served. Similarly, the tree in Fig. 2 yields the subset
F2 = {(f1, f2, f3, f0)} = {(0, 0, 0, 0)}with respect to the second focal set ofm, which
means that no failure will occur on R. Formally, using equation (13) with g being the
function given in (12) and mT01×S1×...×Sn×Tnn+1 defined such as in (14), our knowl-
edge about the entire failure situation on R can be expressed via the mass function mF

defined by:

mF (F1) = mF ({(0, 0, 0, 0), (0, 0, 1, 0)}) = 0.6,
mF (F2) = mF ({(0, 0, 0, 0)}) = 0.4.

(15)
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a1 ∈ [15, 20], v1 ∈ [35, 45],f1 = 0

a2 ∈ [75, 95], v2 ∈ [105, 130],f2 = 0

a1
3 ∈ [115, 120], v13 ∈ [130, 140],f1

3 = 0 a2
3 ∈]120, 150], v23 ∈]120, 150],f2

3 = 1

a1
0 ∈ [140, 155], v10 ∈ [140, 155],f1

0 = 0 a2
0 ∈]130, 155], v20 ∈]130, 155],f2

0 = 0

level 1

level 2

level 3

level 4

Fig. 1: The failure tree related to the first focal set
of m.

a1 ∈ [15, 20], v1 ∈ [35, 45],f1 = 0

a2 ∈ [60, 75], v2 ∈ [80, 105],f2 = 0

a3 ∈ [90, 120], v3 ∈ [105, 140],f3 = 0

a1
0 ∈ [115, 155], v0 ∈ [115, 155],f0 = 0

level 1

level 2

level 3

level 4

Fig. 2: The failure tree related to the second focal
set of m.

3.3 Particular cases

The recourse model degenerates into well known problems when the mass function
mS

n×T |E| representing knowledge about all service and travel time variables of the
problem has a special form. Specifically, if mS

n×T |E| has a unique focal set, mini-
mizing the upper expected cost function (10) is equivalent to minimizing the recourse
cost under the worst case scenario. Thus, our model reduces to a robust approach. Note
that it is also possible to replace the upper expected penalty (9) by the lower expected
one using equation (2) in case the decision maker is more interested in optimistic solu-
tions. Another interesting particular case of the proposed model is when mS

n×T |E| is
Bayesian, i.e., its focal sets are no longer sets but singletons. In this case, the lower and
the upper expected costs of the optimal solution reduce to the classical expectation in
probability theory. As a consequence, our model is equivalent to a SVRPTW with re-
courses. It is important to mention that the two aforementioned models (i.e., the robust
and stochastic ones) are conceptually different and it is not possible, at least trivially, to
convert one into another. The following example illustrates this remark.

Example 2. Consider a VRPTW instance where time windows are: [e0, l0] = [0, 250],
[e1, l1] = [5, 20], [e2, l2] = [40, 95], [e3, l3] = [80, 130] and Q = ∞, vehicles unit
cost is M = 1000 and distances are given by: d01 = d10 = 10, d02 = d20 = 10,
d03 = d30 = 15, d12 = d21 = 20, d13 = d31 = 15 and d23 = d32 = 20. Service and
travel times are imprecise and represented by the following categorical mass function:

mT (
{
{60}×{20}×{20}×{10}×{20}×{15}×{25}×{30}×{15, 20}

}
) = 1 (16)
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with T = S1 × S2 × S3 × T01 × T02 × T03 × T12 × T13 × T23.
We denote by S?

m the optimal solution to this instance and by C
∗
m its cost. The set

of feasible solutions related to this instance is given in Table 1. The solution S5 is
composed of a unique route serving customers 1, 2 and 3 with a possible failure at
customer 3 (highlighted in bold). From Table 1, we can deduce that the optimal solution
(highlighted with ?) is S?

m = S3 with a corresponding cost C
?

m = 2060.
Consider now another representation where service and travel times are random and
expressed by a probability distribution that is compatible with mT . Denote by S?

p its
related optimal solution and by C?

p its cost.

pT (60, 20, 20, 10, 20, 15, 25, 30, 15) = pT (60, 20, 20, 10, 20, 15, 25, 30, 20) = 1/2.
(17)

The set of feasible solutions related to pT is given in Table 2. The optimal solution is
S?
p = S5 with a cost of C

?

p = 1580. We clearly have S?
m 6= S?

p and C
?

m 6= C
?

p.

Solution R1 R2 R3 Cost
S1 {0, 1, 0} {0, 2, 0} {0, 3, 0} 3070

S2 {0, 1, 2, 0} {0, 3, 0} - 2070

S?3 {0, 1, 3, 0} {0, 2, 0} - 2060

S4 {0, 2, 3, 0} {0, 1, 0} - 2065

S5 {0, 1, 2, 3, 0} - - 2095
Table 1: The set of feasible solutions related to the mass
function mT .

Solution R1 R2 R3 Cost
S1 {0, 1, 0} {0, 2, 0} {0, 3, 0} 3070

S2 {0, 1, 2, 0} {0, 3, 0} - 2070

S3 {0, 1, 3, 0} {0, 2, 0} - 2060

S4 {0, 2, 3, 0} {0, 1, 0} - 2065

S?5 {0, 1, 2, 3, 0} - - 1580
Table 2: The set of feasible solutions related to the prob-
ability pT .

Note that this remark also holds with respect to our evidential model. Indeed, one can
build similar examples showing that it is not possible, at least trivially, to convert the
evidential service and travel times into imprecise or probabilistic ones while preserving
the same solutions.

4 Experimental results

To solve the VRPTW with evidential service and travel times under the recourse ap-
proach, we propose to use a Memetic Algorithm (MA) [13]. This choice is motivated
by MA’s attractive results for VRPs and their variants [14, 10, 6]. Specifically, the MA
operates on an initial set (population) of individuals or solutions that evolves by under-
going a series of modifications using some recombination and mutation tools, to create
a new population, similarly as in the natural evolution process of individuals. The new
population is then enhanced by exploring the neighborhoods of its individuals using the
so-called local search (LS) procedures. This hybridization between population evolu-
tion and local search helps to escape local optima and provide good-quality solutions.
Formally, the MA runs with a population POP of m solutions. POP is first initialized
and sorted increasingly according to the cost of its solutions. At each iteration, two se-
lected parents P1 and P2 are crossed. The resulting offspring child has a probability
pm to be mutated and a probability pls to be enhanced by a LS procedure. child will
join POP only if he improves it. The process is repeated until a stopping condition is
met, such as the number of iterations without improvement of POP . Note that POP ’s
size must be constant over the iterations. We refer the reader to [14, 10, 6] for further
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information about selection, crossover and mutation tools. The pseudo-code of the MA
is presented in Algorithm 2.

Algorithm 2 MA structure
Require: POP a population of sizem.
Ensure: SPOP [0] , the best solution to the problem.

1: InitializePOP ;
2: Evaluate each individual inPOP and keepPOP sorted;

3: while (! stopping condition) do

4: select two parentsP1 andP2 ;

5: child ← cross(P1, P2);

6: if (p ∼ U(0, 1) ≤ pm ) then

7: child ← mutate(child);

8: else if (p ∼ U(0, 1) ≤ pls ) then

9: child ← LS(child);

10: end if
11: if (C(Schild) ≤ C(SPOP [m−1])) then

12: if (@i |C(SPOP [i]) = C(Schild)) then

13: removePOP [m − 1] fromPOP ;

14: update stopping condition;

15: else
16: update stopping condition;

17: end if
18: insert or replace child inPOP ;

19: else
20: update stopping condition;

21: end if
22: end while

We have adapted Solomon’s instances [17] to account for the evidential nature of
service and travel times. These instances are composed of three sets: 25, 50 and 100 in-
dicating the number of customers. Each set has 56 instances divided into six categories
C1, R1, RC1, C2, R2 and RC2. Customers’ positions in categories R1 and R2 are
randomly generated meanwhile in C1 and C2, positions are clustered. Categories RC1
and RC2 gather both random and clustered positions. Another classification can be es-
tablished according to the time windows nature. Categories C1, R1 and RC1 (type 1)
have tight time windows while categories C2, R2 and RC2 (type 2) have larger time
windows. We kept the same data as in the original instances, except for service and
travel times which are adapted to the belief function framework as follows:

mSi([sdeti , sdeti ]) = 0.8,mSi([sdeti , sdeti + σi]) = 0.2 (18)

where sdeti is the (deterministic) value of si in Solomon’s instances and σi a random
parameter generated from the interval [1, 10], and:

mTij ([tdetij , t
det
ij ]) = 0.8,mTij ([tdetij , t

det
ij + θij ]) = 0.2 (19)

with tdetij the deterministic value of tij and θij a random parameter generated from the
interval [1, 20]. The vehicle cost M is set to 1000 as in [6]. This large value priori-
tizes the optimization of the number of vehicles followed by the total distance and the
penalties. The MA performs 15 tests for each instance of the problem and stops after
n2 iterations without improvement, with n being the number of customers per instance.
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The population size is set to n. The LS procedure runs for n iterations with a proba-
bility of 0.2 whereas, the probability of mutation is fixed to 0.01. Explicit details about
the initialization algorithm, the LS procedure as well as the parameters setting are not
provided here because of the space limit. Table 3 displays average results per category
for both instances of 50 and 100 customers. We recorded, for each category, the average
number of vehicles #V , the average traversed distanceDist, the average total penalties
Pen as well as the average execution time (CPU(s)) in seconds. The conducted ex-

Table 3: Average results per category

Category 50 customers 100 customers

#V Dist Pen CPU(s) #V Dist Pen CPU(s)

C1 6.16 490.16 9.49 6.11 12.04 1128.81 5.06 134.10
C2 2.78 436.78 1.79 16.99 4.67 759.42 0.00 326.26
R1 11.88 1164.98 751.71 15.13 22.31 2054.62 1578.82 252.28
R2 3.24 784.21 66.96 78.88 5.80 1246.85 165.32 2000.22
RC1 10.41 1080.51 601.26 13.21 21.55 2216.88 1063.47 233.30
RC2 3.70 770.51 91.90 112.40 6.58 1449.87 188.59 1431.39

periments show that the overall costs are quite acceptable given the execution time. We
notice that instances of type 1 have higher costs, either in terms of #V , Dist or Pen,
than those of type 2 (we clearly see that in classesR1 andRC1). This increase is natural
and justified by the fact that these particular instances have tighter time windows, hence
solutions tend to require many vehicles and they are also subject to many failures. An-
other remark can be established regarding the execution time. We note that CPU time
is quite pronounced in type 2 instances, specifically, when the number of customers is
large, this is related to the fact that this class has larger time windows, consequently, the
search space is larger and requires further exploration than its counterpart of type 1.

5 Conclusions

We proposed a recourse approach for the VRPTW with evidential service and travel
times. The model is inspired from [7] and adapted to take account of the uncertainty on
both service and travel times as well as the additional hard requirements on time win-
dows. A skipping-based policy was used to recover the feasibility of routes. Our model
reduces to robust and stochastic cases when the mass functions of service and travel
times are, respectively, categorical and Bayesian and allows, beyond sole imprecision
or probabilistic uncertainty, to model more complex information that are affected by
other forms of imperfections. We devised a memetic algorithm to solve an adaptation
of literature instances. Combining both the Belief-Constrained Programming and the
recourse approaches in one model as in SVRPTW [6] is an interesting and challenging
perspective.
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