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Abstract In robust incremental elicitation, it is quite common to make
recommendations and to select queries by using a minimax regret criterion,
which corresponds to a pessimistic attitude. In this paper, we explore
its optimistic counterpart, showing this new approach enjoys the same
convergence properties. While this optimistic approach does not offer the
same kind of guarantees than minimax approaches, it still offers some
other interesting properties. Finally, we illustrate with some experiments
that the best approach amongst the two approaches heavily depends on
the underlying setting.

Keywords: preferences elicitation, incremental, minimax regret, max-
imax utility

1 Introduction

Preference elicitation by interacting with an agent or a user is a crucial step to
identify and formalise her preferences. While there are different ways to interact
with a user, incremental elicitation [2] is a very interesting approach since each
new question takes into account the preferential information provided previously.
In the literature, one of the main approaches of incremental elicitation is the
robust approach, based on a Minimax regret optimisation [4,3]. Provided their
underlying hypotheses1 are satisfied, the interest of using such approaches is that,
due to their pessimistic stance (minimising the regret in the worst situation),
they come with strong guarantees about the recommended alternative. They also
converge in a reasonable number of steps to a good recommendation, as the space
of possible models is guaranteed to shrink after each question. In this paper,
we will work under the same hypotheses as the robust approaches to simplify
our exposure, as we could easily adapt our proposal to extensions of the robust
approach [10] which are able to deal with errors.

Minimax regret approach [14] is a popular choice for making decisions under
uncertainty, as it minimises the worst-case regret. Such a decision rule provides

1 The user is an oracle, and the chosen family of preference model includes the right
model.
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rather safe recommendations, corresponding to a situation where the agent is
rather pessimistic on the outcomes of a decision, fearing a possibly rare but
disastrous worst-case scenario. However, Minimax regret is only one amongst
many other decision rules under uncertainty (see, e.g., [16] for an account of
those), and as all other rules, it has drawbacks one may not appreciate. For
instance, it is sensitive to the addition of irrelevant alternatives, and does not
guarantee potentially optimal recommendations, i.e. recommendations that are
the best for at least one particular model within the set of possible models.

In this paper, we consider a somewhat opposed view, using a Maximax
optimist approach to make recommendations. There are multiple reasons to
investigate such an alternative: one is that such optimistic approaches in presence
of uncertainty are often used in learning under uncertainty, for example to deal
with missing data [6] or to identify optimal models [13], hence adopting such
an optimistic view in preference elicitation that shares many similarities with
the aforementioned learning setting seems relevant; another is that optimistic
recommendations do not suffer the same drawbacks we have mentioned for the
Minimax regret2, hence may be acceptable in situations where the Minimax
regret is not. Last but not least, such an approach can be computationally more
efficient than regret based ones, since regret typically involves comparing pairs
of alternatives, whereas Maximax decision typically involves alternative-wise
computations.

We introduce in Section 2 all the necessary elements in preference elicitation
to understand our work. We then present in Section 3 an optimist approach that
we call Maximax gain, adapting the Current Solution Strategy (CSS) heuristic.
We also discuss some of its interesting properties. Lastly, Section 4 shows some
simulated experiments whose goal are to investigate whether there are situations
in which an optimist approach also increases recommendation performances.

2 Preliminaries

In this section, we introduce the various elements necessary to understand the
rest of our work. We also introduce a running example that we will repeatedly
use to illustrate the introduced notions.

2.1 Notations

Alternatives We define X as the finite set of available alternatives. Alternatives
within X are denoted x1, x2, ..., xk. We assume that alternatives are summarised
by q real values, the criteria, such that x ∈ Rq. The ith criterion value of an
alternative x ∈ X is denoted xi. Given two alternatives x, y ∈ X, we denote:

– x �p y if and only if x is strictly preferred to y,
– x �p y if and only if x is preferred or equally preferred to y.

2 It does not, however, offer the same robust guarantees.
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Example 1 (Choosing the best sandwich (running example)) We ima-
gine that a user wants to choose the best possible sandwich among multiple ones
(the alternatives). Each sandwich is characterised by two criteria: flavour and
price. Each criterion is valued between 0 (worst) and 10 (best). Table 1 lists the
available sandwiches. We can see for instance that cheese sandwich is very cheap
but with a mediocre flavour, while duck sandwich is full of flavour yet overpriced.

Table 1. Grades of sandwiches

Flavour 1/price

Cheese 5 9

Duck 10 0

Fish 8 4

Ham 7 7

Aggregation models We consider that each alternative x is valuated by its utility,
and that the utility depends on the preferences of the agent. We also suppose
that such an utility is modelled by a function fω(x), parameterised by ω ∈ Ω,
aggregating the different criteria. ω is also known as the preferential model. Given
this evaluation function fω, it is possible to compare two alternatives x, y ∈ X:

x �ω y ⇐⇒ fω(x) ≥ fω(y). (1)

A first model we consider is the weighted sum (WS) model. This is a very simple
model, which can be considered as the basic building block of decision theory and
is still widely used in multi-criteria decision-making. Given a vector of weights
ω = {ω1, ..., ωq} ∈ Rq, we have:

fω(x) =

q∑
i=1

ωixi, (2)

with ωi ≥ 0 and
∑
i ω

i = 1.
We also consider the Ordered weighted averaging (OWA) model [17]. This

model generalises aggregation operators such as the arithmetic mean, median,
min or max. With an OWA model, criteria values are ordered increasingly. Given
a vector of weights ω ∈ Rq and the ordered criteria values x(1) ≤ ... ≤ x(q), we
have:

gω(x) =

q∑
i=1

ωix(i), (3)

with ωi ≥ 0 and
∑
i ω

i = 1.
These two models are simple and can be used in most situations. More

complex models like Choquet integrals [7,9] exist that can be used, e.g., to model
interactions between criteria. Provided the models are linear in ωonce x is fixed,
Equation (1) is equivalent to a linear constraint, meaning that we can use them
within a linear program [2]. All mentioned models so far are linear in ω.
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Example 2 (Application of models) Given the sandwiches we presented in
Table 1, we assume the user evaluates each sandwich with a WS model such that
ω = (0.8, 0.2). This means she values the flavour over the price. She then prefers
the duck sandwich, as it scores 8, over the fish sandwich, with a score of 7.2.

If she evaluates with an OWA model such that ω = (0.8, 0.2), meaning she
penalises a sandwich that is bad on at least one criterion, she will prefer the
more balanced fish sandwich: fω(fish) = 4× 0.8 + 8× 0.2 = 4.8 while fω(duck) =
0× 0.8 + 10× 0.2 = 2.

2.2 Robust elicitation with Minmax regret

Motivation Finding a unique model ω from pairwise comparisons is difficult.
However, it is often possible to draw reasonable inferences without complete
information. Robust recommendation approaches aim at identifying a subset
Ω′ of possible models ω from preferential information. We then identify the
preferences that hold for every model ω ∈ Ω′. This results in a partial preorder
over X where:

x �Ω
′
y ⇐⇒ ∀ω ∈ Ω′ fω(x) ≥ fω(y). (4)

A good elicitation strategy needs to reduce Ω′ as quickly as possible to make good
recommendations without exhausting the budget of questions. Such a strategy
should also make good recommendations even if �Ω′ does not have a single
maximal element, as in practice information collection may end before that.

Regret based elicitation Minmax regret is a well-known notion for decision prob-
lems under uncertainty and set-valued information [14]. It still provides strong
guarantees on the recommendation quality, while being less conservative than
standard Minmax.

We are now introducing the different measures to compute the Minmax regret.
The regret of choosing an alternative x over the alternative y given a model ω is
defined by:

Rω(x, y) = fω(y)− fω(x). (5)

Given a set Ω′ of models, the pairwise max regret is:

PMR(x, y,Ω′) = max
ω∈Ω′

Rω(x, y), (6)

which is the maximum regret of choosing x over y given any model ω ∈ Ω′.
The max regret of choosing x is:

MR(x,Ω′) = max
y∈X

PMR(x, y,Ω′), (7)

which is the regret of choosing x in the worst case scenario, i.e., considering the
worst model for its strongest opponent.
Finally, the min max regret of a set X of alternatives given a set Ω′ of possible
models is:

mMR(Ω′) = min
x∈X

MR(x,Ω′), (8)
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In this approach x∗ = arg mMR(Ω′) is the alternative giving the minimal regret in
a worst-case scenario, and is the current recommendation if no further information
can be collected.

Example 3 (Initial choice with a Minmax regret) We want to pick the al-
ternative which minimises the maximum regret in the worst-case scenario, the
preferences being evaluated with a WS model. The evolution of the score of
each alternative depending on the parameter ω1/price is depicted on Figure 1.
The alternative which minimises the maximum regret is the ham sandwich, with
MR(ham) = 3 when we pick it instead of the duck sandwich for ω1/price = 0
(meaning only the flavour is considered).

score

ω1/price1

10

0

duck

cheese

fish

ham

mMR(Ω′)

Figure 1. Choice of the best alternative given a Minmax approach

2.3 Elicitation sequence and regret CSS

Preferential information is often collected through pairwise comparison: we present
a pair (x, y) to the user, and she tells which one she prefers. We will denote by

ωx�y = {ω ∈ Ω : fω(x) ≥ fω(y)}, (9)

the subset of models consistent with the assessment x � y, and ωy�x the subset
for y � x. In an elicitation sequence, we alternatively present a pair to the user,
and update the information with the answer. In the robust approach, if Ωk is the
possible subset of models at the kth step, the next step is to present a couple
(x, y) to the user, and then compute Ωk+1 = Ωk ∩ ωx�y if the user prefers x,
Ωk+1 = Ωk ∩ ωx�y otherwise.

Choosing a good pair (x, y) is therefore a critical step. We consider for our
work the well-known CSS strategy [5], where given a subset Ω′, the user compares
the current regret-based recommendation x∗ = arg mMR(Ω′) (so our best option
w.r.t this criterion) to its worst opponent:

y∗ = arg max
y∈X

PMR(x∗, y, Ω′). (10)



6 L. Adam, S. Destercke

This heuristic strategy provides good results in general, and guarantees that the
updated set will be non-empty.

Example 4 (Updating the model space) We assume the user decides with
a WS model, where ω∗ = (0.8, 0.2). In a first question q1, she has to choose her
favourite sandwich among the pair (xD, xF ). We have already shown in Example
2 that she prefers xD (fω(xD) = 8, fω(xF ) = 7.2). We assume she answers
correctly that xD � xF . We then have Ω′ the set of models consistent with her
known preferences, such that Ω′ = ωxD�xF = {ω ∈ Ω :

∑2
i=1 ω

i.(xiD − xiF ) ≥
0} = {ω ∈ Ω : ω1 ≥ 2ω2}, where ω1 corresponds to the flavour, and ω2 to 1/price.
The updated model space Ω1 is shown on Figure 2.

ω1/price0 1
q1

Ω′

ω∗

Figure 2. Update of the model space Ω

With more questions, it is possible to further update the subset of possible
models Ω′ consistent with the preferences of the user.

An important property of robust approaches combined with CSS is that, by
construction, they guarantee that the elicitation sequence will converge , as we
remind here:

Proposition 1 [1,5]Given Ωk+1 ⊆ Ωk, the sets of possible model at steps k and
k + 1, we have that:

PMR(x, y,Ωk) ≥ PMR(x, y,Ωk+1), (11)

MR(x,Ωk) ≥ MR(x,Ωk+1), (12)

mMR(Ωk) ≥ mMR(Ωk+1). (13)

Proof. PMR. Suppose we have a function f and two sets Ω, Ω′ such that Ω′ ⊆ Ω.
We have maxx∈Ω f(x) ≥ maxx∈Ω′ f(x), the maximum of Ω being either in Ω′

or in Ω \ Ω′. We can replace f by the PMR, Ω by Ωk and Ω′ by Ωk+1 since
Ωk+1 ⊆ Ωk. (11) is then proved. Proof for MR and mMR directly follows, as
they are maximum and minimum taken over decreasing values.

3 Optimist approach

Minmax regret is based on a pessimist decision rule: the user wants the alternative
that minimises the maximum loss, i.e., in the worst-case scenario. The user is
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risk-averse and does not mind if the gain is lower on average. However, it is unclear
in a preference framework that the user will always be risk-averse, rather than
opportunity-seeking. This is why we now consider the Maximax gain approach
and its direct CSS adaptation, that considers recommendations based on another
decision rule, where the user wants to maximise their gain in the best-case
scenario. The choice of the Maximax gain approach can be justified in various
ways: we show later in this section that an alternative suggested by a Maximax
gain approach is the best possible for at least one situation (one model ω). This
is not necessary the case with a Minmax regret, meaning that a risk-adverse user
may actually select an option known to be necessarily sub-optimal. It does not
mean that one strategy is better than the other, just that they have different
properties, as the choice can depend on the willingness of the user for taking
risks to maximise their possible gain. In this section, we discuss why such an
approach may be an interesting alternative to Minmax regret approaches.

3.1 Robust elicitation with Maximax gain

Given an alternative x, the maximal gain over a set Ω′ of possible models is:

MG(x,Ω′) = max
ω∈Ω′

fω(x), (14)

which corresponds to the gain in the best-case scenario. Given a set of alternatives
X and the set Ω′, the max maximal gain is:

MMG(Ω′) = max
x∈X

MG(x,Ω′), (15)

x∗ = arg MMG(Ω′) is the alternative giving the maximal possible gain in the
corresponding best-case scenario. As with Minmax regret, x∗ is the current
recommendation if no additional information can be collected. When it comes to
choosing the question, we still retain the CSS heuristic approach that chooses
y∗ = arg maxy∈X PMR(x∗, y, Ω′) as an adversary. For convenience, we will refer
to the corresponding elicitation as gain CSS.

Example 5 (Initial choice with an optimist approach) In example 3 we
have shown how to pick the best alternative based on a Minmax regret, when
we have no information on the preferences of a user. We will now find the best
alternative based on a Maximax gain, and show it can be different from the one
proposed with the Minmax regret, and the preferences are still evaluated with a
WS model.

As shown on figure 3, the maximum gain obtainable for the duck sandwich
is 10 when ω = (1, 0). We also deduce that MG(xF , Ω) = 8 for ω = (1, 0), and
MG(xC , Ω) = 9 for ω = (0, 1). The maximum gain of the ham sandwich is a
particular case, since MG(xH , Ω) = 7 ∀ω ∈ Ω.

We then conclude that MMG(Ω) = 10 and that x∗ = xD. Pessimist and
optimist approaches give different current solutions. The duck sandwich is a great
candidate for maximising the gain in the best case scenario ω = (0, 1), but this
alternative is the worst if ωprice ' 0.36.
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score

ωprice1

10

0

cheese

ham

fish

MMG(Ω′)

duck

Figure 3. Choice of the best alternative given a Maximax approach

3.2 Optimality

We first introduce the notion of possibly Ω′–optimal solutions [3]. Given the set
X and a subset Ω′ ⊆ Ω of possible models, the set POΩ′ is defined by:

POΩ′ = {x : ∃ω ∈ Ω′, x ∈ arg max
X

fw(y)}. (16)

In other words, an alternative x ∈ X is possibly Ω′–optimal if x is the best
alternative for at least one model ω ∈ Ω′. An optimist robust elicitation, based
on a Maximax gain, is interesting for the following property, that shows that the
recommended item could be the best (not guaranteed by a Minmax approach):

Proposition 2 The Maximax gain alternative x∗ = arg MMG(Ω′) is possibly
Ω′–optimal.

Proof. Consider the model ω for which is obtained x∗ = maxx∈X [maxω∈Ω′ fω(x)].
It is clear that for this model which is within Ω′, x∗ is the best alternative, hence
it is possibly Ω′–optimal.

In Figure 4, xD, xC , and a modified version of xH equals to (0.6, 0.6) noted
xH∗ are displayed; xH∗ being the Minmax regret recommendation. As we can
see, such approaches cannot be expected to satisfy Proposition 2. On the other
side, one can see in Figure 4 that the Maximax gain recommendation can be
a very bad choice in some situations, meaning that checking whether we are in
such situations may be of importance.

3.3 Convergence

In the case of regret CSS, the elicitation provably converges to the optimal
model as long as no errors are made. It is guaranteed that after the kth update,
Ωk ⊆ Ωk−1 will never be empty, and that the inclusion will be strict under mild
assumptions. In the case of gain CSS, we have the same property:
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ωprice1

10

0

xD

xC

XH∗

mMR(Ω′)

x y

Figure 4. Visualisation of optimality of 3 alternatives

Proposition 3 Consider the pair xk = arg MMG(Ωk), yk = arg maxX PMR(xk,
y, Ωk) chosen at the kth step of gain CSS. Then we have:

Ωk ∩ ωx
k�yk 6= ∅,

Ωk ∩ ωx
k�yk 6= ∅.

Guaranteeing that Ωk ⊆ Ωk−1.

Proof. We prove that whatever the answer, the intersection with Ωk is non-empty:

– Ωk ∩ ωxk�yk 6= ∅: immediate since xk ∈ POΩk , by Proposition 2, indicating
that there is a model ω ∈ Ωk such that fω(xk) � fω(yk).

– Ωk ∩ ωxk�yk 6= ∅: since we picked yk in accordance with the CSS, Equation
(10) tells us that yk = arg maxy∈X PMR(xk, y, Ωk). Since PMR(xk, yk, Ωk) =
maxω∈Ωk

[
fω(yk)− fω(xk)

]
≥ 0, if follows that there is a ω ∈ Ωk (e.g., the

one for which the PMR is reached) with fω(yk) ≥ fω(xk), ending the proof.

This proposition tells us that our space of possible models will shrink after
each question in a non-degenerate way, guaranteeing us to converge to the true
model. Note that we have a strict inclusion, i.e., Ωk ⊂ Ωk−1 relation if the
argMMG is unique, and if the corresponding PMR is strictly positive.

3.4 Computation complexity

Another advantage of an optimist approach based on a Maximax gain is its lower
computational complexity. With a pessimist approach based on a Minmax regret,
computing the PMR for all the possible pairs (x, y) such that x, y ∈ X and x 6= y
is equivalent to solving n2 − n linear optimisation problems, where n = |X|.

With an optimist approach, computing the MG for all the alternatives x ∈ X
is equivalent to only solving 2n − 1 linear optimisation problems (n for the
MMG and n− 1 for the PMR between x and the other alternatives). The linear
optimisation problems in both approaches are similar. This lower complexity cost
is very interesting for decision problems with a large set of alternatives.
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4 Experiments

While Section 3 did present some interesting properties of adopting a gain CSS
approach rather than a regret one, we need to check if this alternative heuristic
can provide reasonable, if not better, performances.

This section brings some elements of answer, by comparing regret and gain
CSS strategies in different situations.

4.1 Experimental protocol

We performed numerical simulations to compare the performances of regret and
gain CSS approaches in different contexts, in which we change the kinds of
alternatives we consider, as well as the kind of models.

The first element of comparison we consider is the choice of the alternatives:

– In a first setting, we generated randomly multiple alternatives xi with 8
criteria from a uniform distribution, such that xi ∈ [0, 1]8, until we obtained a
Pareto front of 100 alternatives. In this case, most alternatives have quite high
values on the different criteria, and we consider them to be good alternatives

– In a second setting, we generated randomly 100 alternatives xi with 8 criteria
from a Dirichlet distribution, such that xi ∈ [0, 1]8 and

∑8
j=1 x

j
i = 1. We then

have alternatives whose average utility is the same, and on which trade-offs
have to be made. Since such alternatives are poorly noted (average utility of
1 when 8 is the best), we consider them to be bad alternatives

The second element of comparison is the choice of a function fω to estimate
the utility of an alternative. We compared both approaches with 4 different
functions, all generated randomly from different Dirichlet distributions:

– WSB: a “balanced” weighed sum (WS), where all criteria values are close.
Parameters: α = 1000.(1/8, 1/8, ..., 1/8).

– WSU: an “unbalanced” weighed sum (WS), where some criteria can have
significantly higher values than the others. Parameters: α = (1/8, 1/8, ..., 1/8).

– OWAU: an “unfair” OWA, which favours the criteria with the higher values.
Parameters: α = 50.(1/36, 2/36, ..., 8/36).

– OWAR: a “redistributive” OWA, which favours the criteria with the lowest
values. Parameters: α = 50.(8/36, 7/36, ..., 1/36).

We propose two measures for evaluating the prediction quality of each ap-
proach. A first measure is the real score of the current recommendation, computed
from the hypothetical true preference model of the user. A second measure is
the position of the current recommendation compared to the other alternatives,
given the real score of each alternative. 0 means we have the best alternative and
99 the worst one.

We also reduce the variability of the two measures by averaging them on 200
simulations, and by computing a confidence interval of 95%.
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4.2 Results

This section discusses the results of our experiments. Since displaying all graphs
renders the reading difficult, we only display some of them, picturing different
behaviours. Some synthetic statistics on all cases are given in Tables 2 and 3.

5.a: score 5.b: position

Figure 5. Score and position with poor alternatives on a balanced WS model

6.a: score 6.b: position

Figure 6. Score and position with good alternatives on a balanced WS model

On one extreme of the spectrum, we can see on Figures 5 and 6 the score and
position for the balanced WS. In this case, the superiority of a method highly
depends on the kind of available alternatives. On the other end of the spectrum,
we can see on Figures 7 and 8 the results for the fair OWA model. While there is
a slight advantage for the regret CSS strategy, it is not remarkable, and even not
significant in the case of poor alternatives.

Tables 2 and 3 provide synthetic information about the different settings.
Regarding the case of poor alternatives, the Gain CSS approach seems to give
overall either significantly better or similar performances across the different
scenarios. However, as indicated on Figures 5 to 8, both methods tend to quickly
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7.a: score 7.b: position

Figure 7. Score and position with poor alternatives on a fair OWA model

8.a: score 8.b: position

Figure 8. Score and position with good alternatives on a fair OWA model

converge to the same result, and provide essentially the same quality after 15
questions. If we go into more details about the case of poor alternatives:

– On balanced and unbalanced models (WSB and WSU), gain CSS is signific-
antly more interesting than regret CSS.

– On unfair models (OWAU), gain CSS finds the best alternative only after one
or two questions, which is very interesting. However, the regret CSS finds it
after around 5 questions, and the score difference is non-significant whatever
the number of questions is.

– On redistributive models (OWAR), gain CSS is usually a bit less effective
than regret CSS. However, the differences are very small.

Regarding the case of good alternatives, the gain CSS appears overall less
effective than regret CSS. On all the experiments but one, our optimist approach
is slower to find a good solution. Again, both approaches converge to the best
alternative after some questions. Let us now give a bit more details about the
two approaches in the case of good alternatives:

– On balanced models, gain CSS is significantly worse than regret CSS.
– On unbalanced models, gain CSS is slightly worse than regret CSS, but they

quickly converge to the same recommendation (after 7 or 8 questions).
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Table 2. Current solution score after 5 questions on different contexts

Poor alternatives Good alternatives
Method WSB WSU OWAU OWAR WSB WSU OWAU OWAR

Optimist/Gain 0.140 0.607 0.231 0.068 0.693 0.881 0.846 0.643
Pessimist/Regret 0.135 0.451 0.231 0.071 0.740 0.887 0.853 0.659

Table 3. Current solution position after 5 questions on different contexts

Poor alternatives Good alternatives
Method WSB WSU OWAU OWAR WSB WSU OWAU OWAR

Optimist/Gain 1.075 2.165 0.81 1.86 5.27 2.91 0.475 0.675
Pessimist/Regret 10.91 7.505 1.335 0.34 0.795 2.065 0 0

– On unfair and redistributive models, gain CSS is slightly slower to find the
best solution. The difference in score and position is small, yet significant.

4.3 Summary

The performances of gain CSS compared to the performances of regret CSS are
qualitatively summarised on Table 4.

The main conclusion to draw from this table is that both the nature of the
true underlying model, and the values of the alternatives, may have a huge impact
on the results.

Table 4. Performance interest of gain CSS compared to regret CSS (++: quite inter-
esting, −−: quite uninteresting)

Poor alternatives Good alternatives

Balanced ++ −−
Unbalanced ++ −

Unfair ∼ −
Redistributive ∼ −

In our opinion, this observation has two important impacts: the first is that
how simulations are carried out in the validation of preference elicitation methods
can have a huge impact on the results of these simulations, calling both for deeper
theoretical studies about the situations in which a given heuristic has chances to
work better, and for simulations considering large spectrum of situations.

Those results also show that in absence of strong inductive bias or refined
knowledge about the alternatives, choosing one elicitation technique can hardly
be based on performance requirements, and should therefore focus on which
axioms should be satisfied in a given problem.
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5 Conclusion

We studied the use of an optimist approach using a Maximax gain criterion
for recommending an alternative in a robust preference elicitation, instead of
a pessimist approach using a Minimax regret. We demonstrated that such an
optimist approach possesses the same convergence properties as the classical
regret-based one, and has interesting optimality and computational properties.
Experiments on simulated data have shown that an optimist approach can be
more effective in some contexts.

Our work has shown that the choice of the alternatives has some impacts on
the performances of both approaches. We believe that it could be interesting
to study more precisely the influence of the alternatives on the computation
of the regret. This could be useful for determining the best strategy to choose
alternatives in future works.

We cannot therefore give a definite answer to the question we asked in the
title. Section 3 gives some pros and cons in terms of properties and axioms that
are similar to the pros and cons of optimist and pessimist approaches one can
find in other settings [12]. However, selecting the strategy using a performance
requirement clearly calls for more theoretical studies regarding the situations
in which different heuristics will perform better. A more empirical way to solve
this issue could be to characterise elicitation problems through various quality
measures (see, e.g., [8]), and see if we can predict the optimal/winning strategy
from that, taking inspiration from machine learning methods [15]. Finally, let us
note that while we looked at the problem with a greedy approach, whose interest
is its efficiency and its agnosticity w.r.t. to the remaining number of questions, it
may also be interesting (but also far more difficult) to consider the sequential
version of our decision problem (see, e.g., [11]).
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