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Abstract

Reverse Supply Chains (RSC) have been increasingly implemented in the
last years to answer the new regulations aiming to manage the growing flow
of solid waste generated by End-Of-Life products (EOL), as well as minimize
their environmental impact. Furthermore, recent research has shown that the
implementation of RSC also benefits to job creation, allows savings in raw
materials, and creates income from the sales of re-manufactured products.
On the other hand, designing RSC requires to deal with many sources of
uncertainty, as the reverse flow of EOL products is often hard to predict. To
model these uncertainties, we assume that a set of equally possible scenarios
can be built by the decision maker. In previous models for scenario sets, the
decision has been often influenced by the negative scenarios while neglecting
existing opportunities. We propose a new risk/opportunity approach based
on the R∗ criterion to give more weight to positive scenarios in the decision
making process. This criterion is used in order to distinguish zones of risk
and opportunity and guide the decision making process accordingly to the
existing zones. In this study, we develop a lexicographic approach for the
consideration of existing scenarios and we propose two methods to compute
the optimal solution for lexicographic R∗ criterion: the first method is in the
form of an algorithm, the second one is in the form of a Mixed-Integer Pro-
gram (MIP). The performance of the developed approaches is demonstrated
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on a case study for a reverse facility location problem.

Keywords: Supply chain, Uncertainty, Reverse logistics

1. Introduction

Reverse Logistics (RL) manages the flows from consumers towards man-
ufacturing facilities (in some cases to the point of origin) with the aim to
recapture value of the used products [Rogers and Tibben-Lembke, 1998]. A
Reverse Supply Chain (RSC) includes all facilities concerned by these reverse
flows of End-Of-Life (EOL) products (i.e. collection centers, dismantling cen-
ters, recycling centers...).

In the actual context of awareness about the climate change and growing
pollution, the implementation of RSC is actively encouraged by institutional
actors in order to decrease the accumulation of solid waste all over the world.
The abundant examples of recent initiatives include: G7 Declaration made
in June 2015: “The G7 Alliance on Resource Efficiency promotes circular
economy, refurbishment and recycling strategic actions to limit consumption
of natural resources and reduce waste ”, documents “Roadmap on the circular
economy” (April 2015) and “Towards a circular economy: zero waste program
for Europe ”(July 2014) written by the European Commission, as well as the
public consultation on the circular economy carried out by the European
Union (EU) in August 2015.

Furthermore, the benefits of RSC have been demonstrated not only for
environment but also for businesses. The McKinsey Center for Business
and Environment particularly showed that developing circular economy may
reduce the cost of primal resources in Europe by 25% in the next 10 years. In
addition, [Toffel, 2004] highlighted the possibilities of new economic benefits
arising from reusing materials or components, [de Brito and Dekker, 2003]
and [Duman et al., 2016] pointed out due to the rising awareness of the
consumers regarding environmental concerns, reprocessing EOL products has
a positive effect on the public image of industries, which is indirectly another
source of economic benefits. The study of [Perey et al., 2018] illustrates the
positive economic effects of RL by reviewing several cases of organisations
which changed their business models to integrate waste as a resource and
took advantage of this change.

However, RSC design is a strategic and not straightforward decision. Gen-
erally, at the moment when the RSC is designed, precise information about
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future amount of EOL products cannot be available [Govindan et al., 2017]
and this lack of information should be integrated in the decision making
process about RSC [Bing et al., 2016]. The assumptions made have a signif-
icant impact on the efficiency of RSC put in place. New models are needed
in order to take into account the uncertain context of RSC related to the
quantity but also quality of returned products, as well as a greater variety
in flow sources, more complex cost functions, and new market opportunities
[Almaktoom et al., 2016, Aras et al., 2015, Hanafi et al., 2007].

For this purpose, many approaches have been proposed in the literature.
The most common ones are stochastic and robust optimization. Their ad-
vantages and drawbacks are discussed in details in Section 2.

The motivation for this research comes from the observation that none
method in the literature was able to guide the decision maker in accordance to
the psychological evidence that the choice of a solution is different regarding
if the decision maker believes to be in a opportunistic zone or a risky zone
of solutions [Grabisch, 2006].

In order to provide such a solution approach, we develop a new criterion
which selects solutions differently regarding the zone of risks or opportunities.
Such zones of solutions are defined in regard to the optimism of the decision
maker and her/his risk aversion. The objective of this new approach is to
make it possible for the decision maker to explore the opportunities while
controlling the level of taken risks 1.

This paper is organized as follows. An overview of the literature regard-
ing existing methods to take into account uncertainty in RSC design and
their drawbacks is given in Section 2. The proposed solution approach in
order to overcome these drawbacks is developed in Section 3. It includes
the formulation of the bipolar R∗ criterion as well as the Lexicographic R∗
algorithm and the lexicographic R∗ MIP. In Section 4, both methods are
applied to a generic facility location problem for a RSC in order to illustrate
their behaviour and provide managerial insights for the decision makers. The
conclusions of the study are presented in Section 5.

1This paper is a extended version of a conference paper [Krug et al., 2019], including a
new formulation of the lexicographic R∗ criterion in the form of a Mixed Integer Program
(MIP) as well as a deeper analysis of the results
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2. Related literature

As aforementioned, it is well recognized that uncertainty is one of the
most challenging factors to take into account when designing RSC [Govindan
et al., 2017]. To deal with uncertainty, several approaches have been proposed
in the literature on RSC design. The most commonly used approaches are
stochastic and robust optimization.

With stochastic optimization, the decision maker needs to consider a
probability distribution for the uncertain parameters and then apply a stochas-
tic solution method [Amin et al., 2017, Ayvaz and Bolat, 2014, Ayvaz et al.,
2015, Habibi et al., 2017, Zhang and Unnikrishnan, 2016, Soleimani and
Govindan, 2014]. While providing the best expected value for the objective
in average, this method offers no guarantee for the worst cases as the objec-
tive value can be very high in the best cases and compensates for very bad
values in the worst cases. Furthermore, stochastic models have two main
disadvantages: first, stochastic programs are often hard to solve computa-
tionally [Shapiro and Nemirovski, 2005]. Second, it can often be difficult to
know the exact distribution of probability of the uncertain parameters, and,
a too broad estimation can lead to inaccuracies in the solutions. Moreover,
the most of RSC have not ever existed before, the data about the uncertain
parameters is not always either available or reliable. As a result, stochastic
optimization methods often suffer from the impossibility to get statistical
data of product returns if the RCS has not existed at all before.

In order to overcome the absence of reliable historical data, it is common
to define a discrete set of equally possible scenarios corresponding to expected
realizations of the uncertain parameters. In order to take a decision over this
set of scenarios, the commonly used approach is the robust optimization.

Robust approach needs no distribution of probability: the DM expects
that one scenario s ∈ S will occur, but does not know which one. The solution
has to be taken without knowing which one will occur in reality later on. To
avoid the consequences of the worst scenario, usually, in the literature, the
Maxmin criterion is used [Ahuja, 1985, Bertsimas et al., 2011, Gorissen et al.,
2015]. This criterion will try to find the most satisfying solution when the
worst case happens [Pishvaee et al., 2011, Ramezani et al., 2013, De Rosa
et al., 2013]. As this approach gives a lot of importance to the worst case, it
is very pessimistic and often neglects the opportunities potentially occurring
in better cases [Dubey et al., 2015].

In order to take into account the optimism of the decision maker, in
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decision science, more sophisticated criteria has been discussed such as the
Ordered Weighted Average (OWA) [Yager, 2004] and the Hurwicz criterion
[Hurwicz, 1951]. These two criteria allow taking into account better case
scenarios, but they are compensatory. The OWA criterion is applied by
ranking all the costs of the scenarios from the best one to the worst one, and
then calculating a weighted average on the ranked costs where the weights
are based on the position of ranking. The Hurwicz criterion is a particular
case of the OWA when the weight for the best case scenario is α, the weight
for the worst case scenario is 1 − α and all the weights for other scenarios
are 0. As a consequence, a good case scenario mitigates the impact of a bad
case one and reciprocally, i.e. it is possible that such a criterion selects as
the best one a solution which will be very good for one scenario and very bad
for another one. According to their definition, such a compensation remains
always possible and the decision maker cannot make a compromise between
the level of risk taken and the corresponding opportunities found [Krug et al.,
2020]. As a result, it is impossible to control the level of risk and search for
opportunities at the same time.

We propose in Table 1 a recap of the criteria presented above, their ad-
vantages and their drawbacks:

Method Advantages Drawbacks

Stochastic Best expected value in average Need for historical data
optimization Often hard to solve computationally

Maxmin No need for historical data No search for opportunities
Risk-resistant

OWA No need for historical data Compensatory
Takes into account the DM’s optimism No risk control

Hurwicz No need for historical data Compensatory
Takes into account the DM’s optimism No risk control

Our proposal No need for historical data
Takes into account the DM’s optimism
Possibility to control taken risks

Table 1: Comparison of existing criteria

We can conclude that the models found in the literature to take uncer-
tainty into account in a context of complete ignorance of the DM are risk-
oriented and never distinguish hazard from opportunity. In order to offer
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to the decision makers an approach that suits better their natural behavior,
in this paper, we introduce R∗ criterion and LexiR∗ criterion for the RSC
design problem. This criterion reflects the following behaviour: the DM is
pessimistic in an hazardous zone and optimistic in an opportunity zone. The
definition of such zone depends on the level of optimism of the decision maker
and her/his risk aversion. The mathematical modelling of such a criterion is
proposed in the next section.

3. Solution approach

The criterion R∗ we propose to use belongs to the class of bipolar opera-
tors [Grabisch, 2006]. Such operators include a neutral value (here denoted
as e). All the values above the e are considered as ”good” scores and all
the values below as ”bad” scores. We can thus consider that the interval
] − +∞, e] is an interval of hazard while the interval ]e,+∞[ is an interval
of opportunity. The neutral value e corresponds to the minimum profit ex-
pected by the DM in the considered uncertain context, in our case, the design
of RSC. The criterion R∗ uses the minimum operator in the risky area and
the maximum operator in the opportunity area. The formal definition of this
criterion is given below:

Let F (x, s) be the evaluation of the objective function for solution x over
a scenario s ∈ S,

R∗((F (x, s))s∈S, e) =

{
mins∈S F (x, s) if ∃ F (x, s) ≤ e
maxs∈S F (x, s) otherwise

(1)

It should be noted that by its definition this criterion can be seen as a
generalization of the robust one, since if e is equal to the value of the worst
case or above, the robust solution will be selected. To provide a better un-
derstanding of how this operator aggregates possible solutions, an illustrative
example is given here below.

Example 1. Let s1, s2 ∈ S be two possible return amount scenarios. Let F
be the function of profit that we aim to maximize. We denote F (x, s1) (resp
F (x, s2)) the profit gained with solution x when s1 (resp s2) occurs. The
solution space of the problem is shown in Fig.1.
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Figure 1: R∗ criterion solution space

Two solutions x1 and x2 are presented in this example, their coordinates
give the profit obtained for scenario s1 and s2 respectively, e defines the profit
expected by the decision maker from the created RSC. Based on this value,
the risky area is colored in red oppositely to the opportunistic area kept in
white. In the fist case (left figure), both solutions are in the risky area. The
R∗ operator therefore selects the solution with the highest minimum profit
regarding the two scenarios (or robust solution). Here, we have F (x1, s1) <
F (x2, s2), thus, solution x2 is selected. In the second case (right figure),
both solutions are in the opportunistic area. Hence, the R∗ operator selects
the highest maximum profit over the two scenarios (or optimistic solution).
Here, we have F (x1, s1) > F (x2, s2): solution x1 is selected.

Through its characteristics, R∗ brings to the DM the possibility to choose
a threshold of robustness while still searching for opportunities in opportunis-
tic areas. In order to make this search even more exhaustive, we develop a
lexicographic R∗ approach denoted in this paper as LexiR∗.

Originally, R∗ only pays attention to the best and worst cases profits and
oversees all cases in between: two solutions with the same best case profit
and the same worst case profit are considered equivalent even if they give
different profits for other scenarios. This comparison scenario by scenario
can be realized with LexiR∗ criterion which uses a lexicographic minimum
(leximin) in the risky area and a lexicographic maximum (leximax) in the
opportunistic area. Leximin operator selects a solution by maximizing the
one with the highest minimum profit overall scenarios. If multiple solutions
exist with the same minimum profit, the criterion is applied to maximize the
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second minimum profit, then the third, etc... until one solution dominates
the others. Leximax operator works in the same manner but maximizing the
highest profit, then the second highest profit, then the third, etc...([Ogryczak,
1997, Ogryczak and Śliwiński, 2003]).

The formal definitions of leximax and leximin are given below ([Yager,
1997]):

Definition 1: Let N = 1, .., n be the number of possible scenarios. Let
x = (F (x, 1), ..., F (x, n)) and y = (F (y, 1), ..., F (y, n)) be two possible solu-
tions. The Leximax order (noted <leximax) is defined as:

x <leximax y ⇐⇒ ∃k ≥ 1 such as ∀i < k, xi = yi and xk < yk

x =leximax y if xi = yi ∀i = 1, .., n

In the same way, the Leximin order (noted <leximin) is defined as:

x <leximin y ⇐⇒ ∃k ≥ 1 such as ∀i < k, xi = yi and xk > yk

x =leximin y if xi = yi ∀i = 1, .., n

The LexiR∗ criterion can be written formally as:
Be S− = {s ∈ S|F (x, s) ≤ e} and S+ = S \ S−:

LexiR∗((F (x, s))s∈S, e) =
Leximins∈S−F (x, s)
Then
Leximaxs∈S+F (x, s)

(2)

An example of resolution with LexiR∗ criterion is presented in Example
2.

Example 2. Let S = {s1, s2, s3, s4} be a discrete set of scenarios and F
represent the profit obtained for each scenario. Let us consider two solutions
x and y which provide the following profits for 4 considered scenarios: F x

s =
(2, 3, 8, 10) and F y

s = (2, 5, 7, 10). We can observe that solutions x and y
are considered equal by the R∗ criterion since they offer the same best case
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profit and worst case profit. However, they are distinguished with LexiR∗
criterion. We consider 3 different cases of the DM optimism reflected by the
risk threshold e.

Profit
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(a) Case 1: e = 12 (b) Case 2: e = 1 (c) Case 3: e = 6

Figure 2: Resolution with LexiR∗ criterion

1. Case 1: The DM expects the profit e = 12 (see Fig.2 (a)). All possi-
ble profit values for considered scenarios are in the risky area for both
solutions. Based on this observation and in accordance with the def-
inition of LexiR∗ approach, leximin criterion is applied to select the
best solution. First, the worst case scenario (here s1) is considered.
We have F x

s1 = F y
s2, therefore x and y are not differentiated. Then the

second worst case scenario is considered (here s2). We have F y
s2 > F x

s2,
therefore solution y is preferred to x by leximin.

2. Case 2: The DM expects the profit equal to e = 1 (see Fig.2 (b)). All
possible profit values for considered scenarios are in the opportunistic
area for both solutions. Based on this observation and in accordance
with the definition of LexiR∗ approach, leximax criterion is thus ap-
plied to select the final solution. For the best case scenario (here s4), we
have F x

s4 = F y
s4, therefore x and y are not differentiated. For the second

best case scenario (here s3), we have F x
s3 > F y

s3, therefore solution x is
preferred to y.

3. Case 3: The DM expects the profit e = 6 (see Fig.2 (c)). Two profit
values are in the opportunistic area and two in the risky area for both
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solutions. Based on this observation and in accordance with the defi-
nition of LexiR∗ approach, firstly, the risky values are compared with
leximin criterion, as in Case 1. Therefore, solution y is selected.

3.1. Lexicographic R∗ Algorithm

In this section, we present the formal mathematical formulation for LexiR∗
approach for RSC design according to its definition in the previous section.

First, LexiR∗ criterion is applied taking into account all possible scenar-
ios. The obtained values of profit found at this step for all scenarios are
compared to the threshold e. If all of them are above the threshold, then
the algorithm continues with the application of leximax criterion to select
the final solution. Otherwise, if for some scenarios, the objective value found
is below e, the worst case scenario is expressed as a constraint for further
resolution. The R∗ criterion is then re-applied on the reduced set of scenar-
ios taking into account a new constraint for the worst case. It means that
among all solutions having this value of the profit in the worst case, we are
looking for solutions providing the best opportunities in all other cases. As
before, if the objective value found is above e, a leximax criterion is applied
to select the final solution and on the contrary if it is below e, it is recorded
and then the second worst case scenario is expressed as a constraint. This
process continues until all scenarios have been treated.

Notation Description Notation Description

Rk Linearization of min Ys Binary variable
rk Linearization of max δks Binary variable
k Number of iteration γks Binary variable
e Risk threshold M Big value

Table 2: Notations used in Algorithm 1.

Algorithm 1.

• Step 0 :
k ← 0, k′ ← 0, N ← {s1, ..., sn}.

• Step 1 :
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Solve Model (3)

maxRk + rk (3)

S.t

(a) Rk ≤ F ((x, y), s) ∀s ∈ N,

(b) Rk ≤ e

(c) F ((x, y), s) ≥ −M ∗ Ys + e(1− Ys) ∀s ∈ N

(d) F ((x, y), s) ≤ e ∗ Ys + (1− Ys)M ∀s ∈ N

(e) rk ≤ (1− Ys)M ∀s ∈ N

(f)
∑S

s=1 δ
k
s = 1

(g) rk ≤ F ((x, y), s) + (1− δks )M ∀s ∈ N

• Step 2:
If Rk + rk ≤ e
then Rk = R∗

k, k = k + 1 and go to Step 3.
Otherwise,
define Rk = e, r1 = r∗k, k′ = 2 and go to Step 5.

• Step 3:
Solve Model (4)

maxRk + rk (4)

S.t

(a) Ri ≤ F ((x, y), s) +M(1− γis) ∀s ∈ N, i ∈ 1..k

(b)
∑S

s=1 γ
i
s = S − i ∀i ∈ 1..k

(c) Rk ≤ e

(d) F ((x, y), s) ≥ −M ∗ Ys + e(1− Ys) ∀s ∈ N

(e) F ((x, y), s) ≤ e ∗ Ys + (1− Ys)M ∀s ∈ N

(f) rk ≤ (1− Ys)M ∀s ∈ N

(g)
∑S

s=1 δ
k
s = 1

(h) rk ≤ F ((x, y), s) + (1− δks ) ∗M ∀s ∈ N

• Step 4:
If S − k = 0 then go to Step 7.
Otherwise:
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If Rk ≤ e, then Rk = R∗
k, k = k + 1 and return to Step 3.

If Rk + rk > e, then Rk = e, r1 = r∗k define k′ = 2 and go to Step 5.

• Step 5:
Solve Model (5)

max rk′ (5)

S.t

(a) Ri ≤ F ((x, y), s) +M(1− γis) ∀s ∈ N, ∀i ∈ 1..k

(b)
∑S

s=1 γ
i
s = S − i, ∀i ∈ 1..k

(c) ri ≤ F ((x, y), s) +M(1− δis) ∀s ∈ N, ∀i ∈ 1..k′

(d)
∑S

s=1 δ
k′
s = k′

• Step 6:
If S − k − k′ − 1 = 0 then go to Step 7.
Otherwise rk′ = r∗k′ , k

′ = k′ + 1, and go to Step 5.

• Step.7:
Stop.

The steps of Algorithm 1 can be detailed in the following manner:
Step 0: We define k as the number of iterations performed in the risky

area, k′ as the number of iterations performed in the opportunistic area and
N = s1, ..., sn is the discrete set of scenarios considered. At the start of the
algorithm, k and k′ are initialized by 0.

Step 1: The decision problem is solved using R∗ criterion through the
resolution of Model 3 (only the best and worst case scenario are taken into
account). This model is a MIP. Constraints (b) to (e) differentiate the case
where the robust solution is selected (i.e there exist no possible solution
for which all objective values are above e overall scenarios) and the case
where the opportunistic solution is selected (otherwise). In the former case,
constraints (a) help to maximize the minimum objective value. In the latter
case, constraints (f) and (g) help to maximize the maximum objective value.

Step 2: The objective value found at Step 1 is analysed if it lower than
e, then k is implemented and the process goes to Step 3. If it is higher than
e, then k′ is implemented and the process goes to Step 5.
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Step 3: Model 4 is used in order to maximize the second worst profit,
then the third and so on depending of the number k of iterations previously
solved.

Step 4: This step checks if the value of the objective found through
Model 4 is lower or higher than e. If this objective value is lower, and if the
number k of iteration is lower than the number of scenario (namely S), then
k is implemented and Model 4 is solved one more time. If S = k, then all
scenarios have been treated and Algorithm proceeds to Step 7. Otherwise, if
the objective value is higher than e, k′ is implemented and Algorithm goes
to Step 5.

Step 5: Model 5 is used to maximize the maximum profit, then the second
one and so on depending on the number of iterations k′ previously performed.

Step 6: This Step checks if all scenarios have been treated, if not, Step 5
is repeated. Otherwise, the algorithm goes to Step 7.

Step 7: The algorithm stops.

3.2. Lexicographic R∗ MIP: approximated method

Algorithm 1 offers an exact resolution for the application of LexiR∗ ap-
proach. However, it includes the resolution of 3 different MIP that can require
relatively long solution time. If the solution time is relatively limited, the
following approximate compact method in the form of a single MIP can be
used instead to implement LexiR∗ approach. We denote it as MIP-LexiR∗.
Its resolution provides an approximated solution and cannot guarantee the
optimum, but the solution time is reduced significantly.

Notation Description Notation Description

Rk Linearization of min Ys Binary variable
rk Linearization of max δs,s′ Binary variable
k Number of iteration γks Binary variable
Ak Binary variable µk Binary variable
Cs,k Binary variable Ds,k Binary variable
e Risk threshold M Big value

Table 3: Notations used in MIP-LexiR∗

All notations needed for the description of MIP-LexiR∗ are given in Table
3.

13



Let ωk = (ω1, ..., ωn) be a vector of weights with ω1 > ω2 > .... > ωn. We
denote s,s′ two indexes representing scenarios ∈ N with s ̸= s′. K is a vector
of the same size of N and k ∈ K is an index helping to browse all scenarios,
S is the number of scenarios.

The proposed MIP is detailed in Model 6.

max
∑

k(ωk ∗ (Rk + rk)) (6)

S.t

(a) Rk ≤ F ((x, y), s) +M ∗ (1− γks ) ∀s ∈ N, k ∈ K

(b) Rk ≤ e ∀k ∈ K

(c)
∑S

s=1 γ
k
s = S − k + 1 ∀k ∈ K

(d) F ((x, y), s) ≥ −M ∗ (1− Ys) + e ∗ Ys ∀s ∈ N

(e) F ((x, y), s) ≤ e ∗ (1− Ys) + Ys ∗M ∀s ∈ N

(f) F ((x, y), s) ≤ F ((x, y), s′) +M ∗ δs,s′ ∀s, s′ ∈ N

(g) F ((x, y), s′)−M ∗ (1− δs,s′) ≤ F ((x, y), s) ∀s, s′ ∈ N

(h) rk ≤ Ak ∗M ∀k ∈ K

(i)
∑S

s′=1 δs,s′ ≤ k + (1− Cs,k) ∗M ∀s ∈ N, k ∈ K

(j)
∑S

s′=1 δs,s′ ≥ k − (1− Cs,k) ∗M ∀s ∈ N, k ∈ K

(k) Ds,k ≤ Ys ∀s ∈ N, k ∈ K

(l) Ds,k ≤ Cs,k ∀s ∈ N, k ∈ K

(m) Ak ≤
∑S

s=1Ds,k ∀k ∈ K

(n)
∑

s µs,k =
∑k

i=1Ai ∀k ∈ K

(o) rk ≤ F ((x, y), s) + (1− µs,k) ∗M ∀s ∈ N, k ∈ K

Constraints (a), complementary with constraint (c) are the linearization
of the minimum profit, then second minimum profit, then third and so on as
long as the minimum profit is lower than e. Otherwise, the value for Rk is
set to e in constraint (b).

Constraints (d) and (e) define the following:

Ys =

{
0 if F (x, s) ≤ e
1 if F (x, s) > e
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Constraints (f) and (g) define the following:

δs,s′ =

{
0 if F (x, s) ≤ F (x, s′)
1 Otherwise

The sum on s of variable δs,s′ represents the number of scenarios above
and below F (x, s) for each k. This helps us to define constraints (i) and (j)
in order to give the following information:

Cs,k =

{
1 if

∑
s δs,s′ = k

0 Otherwise

Constraint (k) and (l) are then used to define:

Ds,k =

{
1 if Ys = 1 and Cs,k = 1
0 Otherwise

It should be noted that Ds,k is only activated if k−st profit F (x, s) is higher
than e.

Constraint (m) defines

Ak =

{
1 if

∑
sDs,k = 1

0 Otherwise

It should be noted that Ak is only activated is k− st profit F (x, s) is higher
than e. This is used to set the value of rk to 0 if profit F (x, s) is lower than
e in constraint (h).

Then constraint (n) is used to count how many times variable Ak has
been activated: the number of times where profit F (x, s) has been higher
than e using variable µs,k.

Constraint (o) is the linearization of the maximum profit, then second
maximum profit and so on as long as it is higher than e due to variable µs,k

4. Case Study

In this section, we present a case study in order to illustrate the appli-
cation of the developed LexiR∗ approach to a design problem of RSC. The
framework of case study is very generic in order to represent a situation
that can occur in different industrial contexts. In order to facilitate the un-
derstanding of the solution approaches, the structure of the RSC has been
simplified. Therefore, the attention is given to the decision making process
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and not to the organizational details of the RSC. This simplification is only
made for seek of illustration, the proposed approach can be applied to the
design problem of any RSC independently of the industrial context and its
complexity. The only mandatory condition is to be able to collect enough
information about the RSC in order to define the corresponding optimization
problem. Another limitation is the centralized decision making process: all
decisions about all facilities are taken by a centralized decision maker who
is a single person or a group of persons capable of reaching a consensus and
acting for the common objective of maximizing the total profit.

The context of the study is the following. A third party logistic company
is willing to design a new RSC. The goal is to decide which new facilities
(collection centers, re-manufacturing centers and disposal centers) have to
be installed and where as well as the organization of the transportation flows
between them in order to maximize the total profit gained from the RSC.
Figure 3 shows the structure of the RSC under design. Three parameters
are considered uncertain, namely the quantity of returned EOL products by
the customers, the quantity of demand for re-manufactured products and the
reprocessing time of EOL products.

Figure 3: Reverse Supply Chain under design

4.1. Mathematical model

This optimization problem is formulated through the following mathe-
matical model. The indexes, parameters and variables of the problem are
defined as follows:
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Indexes
k = 1..K Index of customers
m = 1..M Index of spare markets
c = 1..C Index of collection centers
r = 1..R Index of re-manufacturing centers
d = 1..D Index of disposal sites
s = 1..S Index of scenarios

Demand
Dm,s of spare market m for scenario s

Capacity
CapCc of collection center c
CapRr of re-manufacturing center r

Distance between...
DKCk,c customer k and collection center c
DCRc,r collection center c and re-manufacturing center r
DCDc,d collection center c and disposal d
DRDr,d re-manufacturing center r and disposal d
DRMr,m re-manufacturing center r and spare market m

Time parameters
Tremanus Unit dismantling time

Unit operational cost
Cophc at collection center c
Cdisp at re-manufacturing center p
Ceco tax for non-reprocessed products
TC transportation cost for 1 kilometer

Rate parameters
Rs Quantity of return for scenario s
Rr Re-manufacturing rate after collection
Rd Disposal rate after re-manufacturing

Unit selling price parameters
RSPm of product at spare market m

Fixed opening cost parameters
CFCc for collection center c
CFRr for re-manufacturing center r
CFDd for disposal d

Positives variables (Flow from . to . for s)
XKCk,c,s customer k to collection center c
XCRc,r,s collection center c to re-manufacturing center r
XCDc,d,s collection center c to disposal d
XRDr,d,s re-manufacturing center r to disposal d
XRMr,m,s re-manufacturing center r to spare market m

Binary variables
Y Cc collection center c is opened or not
Y Rr re-manufacturing center r is opened or not
Y Dd Disposal d is opened or not

17



To make the model more readable, some expressions are defined below.
The total income: it includes all sales revenues. It is scenario dependent

and can be formulated as:

Incomes =
∑M

m=1(
∑R

r=1(RSPm ∗XRMr,m,s))) (7)

The total operational cost : it includes all production costs, assembling
costs, buying costs, dismantling costs or distribution costs from/to all centers
of the chain. It is scenario dependent and can be defined as follows:

OpCosts =
∑K

k=1(
∑C

c=1(Cophc ∗XKCk,c,s))

+
∑C

c=1(
∑R

r=1(Cdisr ∗XCRc,r,s))

+
∑F

f=1(
∑C

c=1(Ceco ∗ (XRDr,d,s +XCDc,d,s))))

(8)

The total fixed cost : it is the sum of the set-up costs of facilities:

FixedCost =
∑C

c=1(CFCc ∗ Y Cc)

+
∑P

p=1(CFRr ∗ Y Rr)

+
∑D

d=1(CFDd ∗ Y Dd)

(9)

The total transportation costs : it is the sum of travel costs between con-
nected points of the Supply Chain. It is scenario dependent and can be
written as:

TrtCosts =
∑K

k=1(
∑C

c=1(TC ∗DKCk,c ∗XKCk,c,s))

+
∑R

r=1(
∑C

c=1(TC ∗DCRc,r ∗XCRc,r,s))

+
∑D

d=1(
∑C

c=1(TC ∗DCDc,d ∗XCDc,d,s))

+
∑R

r=1(
∑D

d=1(TC ∗DRDr,d ∗XRDr,d,s))

+
∑R

r=1(
∑D

d=1(TC ∗DRSMr,m ∗XRMr,m,s))

(10)

4.1.1. Objective
The objective is to maximize the total profit calculated as:

TotalProfits = Incomes −OpCosts − FixedCost− TrtCosts (11)
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4.1.2. Constraints

(1)
∑K

k=1XKCk,c,s ≤ CapCc ∗ Y Cc ∀c ∈ C, s ∈ S

(2)
∑C

c=1XCRc,r,s ∗ Tremanus ≤ CapRr ∗ Y Rr ∀r ∈ R, s ∈ S

(3)
∑C

c=1XCDc,d,s +
∑R

r=1XRDr,d,s ≤ B ∗ Y Ff ∀d ∈ D, s ∈ S

(4)
∑R

r=1XRMr,m,s ≤ Dm,s ∀m ∈M, s ∈ S

(5)
∑C

c=1XKCk,c,s ≤ Rs ∀k ∈ K, s ∈ S

(6)
∑K

k=1XKCk,c,s ∗Rr =
∑R

r=1XCRc,r,s ∀c ∈ C, s ∈ S

(7)
∑C

c=1XCRc,r,s ∗Rd =
∑D

d=1XRDr,d,t,s ∀r ∈ R, s ∈ S

(8)
∑K

k=1XKCk,c,s =
∑R

r=1XCRc,r,s +
∑D

d=1XCDc,d,s ∀c ∈ C, s ∈ S

(9)
∑C

c=1XCRc,r,s =
∑D

d=1XRDr,d,s +
∑M

m=1XRMr,m,s ∀r ∈ R, s ∈ S

Constraints (1) to (3) are capacity constraints on the number of products
each center is able to process at each period. Constraint (4) certifies that the
production does not exceed the demand. Unsatisfied demand is considered
lost. Constraint (5) assures that the quantity of collected EOL products
cannot be superior to the quantity of returned products from the consumer.
Constraints (6) and (7) calculate the quantity of dismantled, repaired and
recycled products according to the predefined rates Rr and Rd. Constraints
(8) and (9) check the balance of the flows between centers.

For our numerical experiments, this model has been initiated with the
following data. We consider 10 possible locations for each type of center
(collection, re-manufacturing and disposal), 10 first market consumers and
10 spare market consumers. The distances between centers are comprised
between 1 and 500 kilometers. The related parameters are defined in Table
4. Other parameters used: Ceco=1, TC=1, Rd=80%, Rr=80%.

Parameter Value
CapC [55000, 107000, 190000, 58000, 100000, 200000, 90000, 150000, 170000, 121200]
CapR [56100, 50500, 47060, 28000, 29100, 53500, 31000, 56100, 38000, 42100]
Coph [3, 2, 5, 2, 1, 4, 5, 6, 1, 3]
Cdis [2, 2, 6, 8, 7, 4, 5, 3, 1, 2]
RSP [100, 150, 200, 320, 140, 210, 220, 110, 100, 150]
CFC [10000, 20000, 60000, 90000, 70000, 80000, 15000, 12000, 17000, 18000]
CFR [40000, 60000, 50000, 45000, 55000, 47000, 57000, 42000, 52000, 40000]
CFD [42000, 52000, 40000, 50500, 40000, 60000, 50000, 40000, 55000, 40000]

Table 4: Deterministic Parameters
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Three parameters are considered uncertain, namely the quantity of re-
turned EOL products by the customers, the quantity of demand for re-
manufactured products and the reprocessing time of EOL products. Their
values are not known at the moment of the decision making and are esti-
mated by experts. Each parameter has its ”high” and ”low” estimation. For
example, the quantity of returned EOL products by each of 10 customers is
within the interval of ([12000,17500]) if the level of return is low and this
returned quantity is considered within the interval ([22000, 27500]) if the re-
turn is high. The same is for the demand for re-manufactured products R for
second market actors: it is within the interval ([12000,17500]) if the demand
is low or within the interval ([22000, 27500]) if the demand is high, finally
the remanufacturing time depends on the quality of the returned products,
it is long if the quality is low, i.e. Tremanu is within the interval ([7,8]) and
short if the quality is high, i.e. within the interval ([1,2]). According to those
levels, four scenarios are defined and presented in Table 5.

Parameter s1 s2 s3 s4
D high low high high
R low low high high
Tremanu short long long short

Table 5: Scenarios

Then, one value for each parameter is randomly selected from the intervals
presented above. The final values considered for the resolution are presented
in Table 6.

4.2. Analysis of results and discussion

The analysis of the results is presented in three parts. First, we solve the
problem with a simple R∗ criterion and we compare its performances with
the models the most frequently used in the literature on RSC: stochastic
average approach and robust optimization.

The resolution was conducted with IBM-ILOG CPLEX 12.6.3 on an Intel
Core 2.60 gigahertz machine with 15 gigabyte RAM.

4.2.1. Comparison with R∗ criteria

Table 7 presents the results for the stochastic average, robust and R∗
models. In this Section, we compare the results obtained with robust and
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Scenario Parameter Value

s1

D [24967, 25401, 25073, 23365, 26290, 23216, 26261, 26850, 23033, 26346]
R 12038
Tremanu 2

s2

D [13726, 12222, 12072, 13870, 16114, 15414, 15311, 17264, 14782, 12971]
R 12993
Tremanu 7

s3

D [26557, 23532, 25311, 23601, 24251, 23588, 22349, 26758, 25860, 23204]
R 23879
Tremanu 7

s4

D [23450, 24732, 22067, 24776, 26893, 26328, 25329, 24128, 22458, 26663]
R 23588
Tremanu 1

Table 6: Final values of Uncertain Parameters

Stochastic average approaches versus R∗ criterion, never used before in RSC
design. We show the advantages of the latter, particularly regarding the
control of the level of risk taken by the DM and found opportunities.

The first column of Table 7 indicates the model used, the second column
provides the value of e for R∗ criterion. From a practical point of view, the
value of e is set up as a percentage of the solution provided by the robust
method. This method allows us to analyze which percentage of the profit the
DM must accept to loose in order to access some opportunities. The results
of the profit for each scenario are presented in Columns 3 to 6. They are
colored in green when R∗ criterion brings an improvement compared to the
robust model and in red when it brings a deterioration.

The results presented in Table 7 show that the stochastic average model
gives very good results in the two best cases, but at the same time, the profit
made in the worst case is the lowest compared to the other solutions. We
can conclude that using this method, the DM is unable to control the level
of taken risks.

Table 7 shows that R∗ criterion returns the robust solution if the value
e is equal to the ”MinMax” solution or above. It illustrates that R∗ is a
generalization of the robust criterion and is able to protect the DM from
high risks. The more the value of e decreases, i.e. the more the DM is willing
to take risks, the more the profit in the worst case scenario declines, but
the profit in the best case scenario shows a considerable improvement and
the payoff is much more important than the losses. The two middle case
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Model e s1(e) s2(e) s3(e) s4(e)
Average - 3786470 1829385 7276791 7180619
Robust - 2133440 2133395 2133381 2230306
R∗ -0% 2133440 2133395 2133381 2230306
R∗ -1% 2845669 2132842 6553907 3690808
R∗ -2% 2678834 2112049 6553922 5115179
R∗ -3% 2888210 2069437 6553922 2090713
R∗ -4% 2083069 2048049 6553948 4515563
R∗ -5% 2069412 2026713 6553994 2026719
R∗ -6% 2005422 2005398 6553994 2026712
R∗ -7% 2005372 1984142 6554003 4313810
R∗ -10% 2984174 1984057 6554003 2663382

Table 7: Comparison of the profits obtained with robust and stochastic average approaches
versus R∗ criterion for the case of 4 scenarios

scenarios can either be improved or degraded depending on the case.
These results show that with the choice of value for e, the DM can control

the robustness of the solution while exploring the zone of opportunities. In
the case of the design of RSC, the readiness for opportunities follows to
opening more collection and recycling centers, i.e. more returned products
can be treated if the return level is high and remanufacturing is profitable.
If the decision is made with the use of a robust approach, the RSC can be
under-sized inducing a loss of opportunities. Thus, the robust approach may
slow down the development of RSCs.

4.2.2. Comparison with LexiR∗

In Table 8, we compare the results found with Average, Leximax, Leximin
and LexiR∗ models. The table is built in the same way as Table 7. Here
again the profits made in each scenario are colored in green when LexiR∗
criterion brings an improvement compared to the robust model and in red
when it brings a deterioration.

The following observations are made:

- The results obtained with the Average criterion are close to the ones
found with LexiR∗ criterion when e is set to -50% of the maxmin
solution. Nevertheless in this case, the LexiR∗ criterion allows a better
control on the level of risk taken in the worst case scenario.

- The higher the value of e (i.e. the more pessimistic the DM), the closer
the results obtained with LexiR∗ to the results obtained with Leximin.
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Model e s1(e) s2(e) s3(e) s4(e)
Average - 3786470 1829385 7276791 7180619
Leximin - 3880421 2133395 6542653 6519706
LexiR∗ +20% 3409469 2133395 6553907 6519830
LexiR∗ 0% 3409469 2133395 6553907 6519830
LexiR∗ -5% 2672418 2026856 6553994 6519900
LexiR∗ -10% 2133544 1984173 6554003 6519900
LexiR∗ -50% 2048230 1829419 7276812 7180453
Leximax - 0 6 7276860 7180744

Table 8: Compared Profit between Robust and LexiR∗ approach for the case of 4 scenarios

- If e decreases, but is still equal to or above the robust ”MinMax” so-
lution, the LexiR∗ model improves the three best case scenarios com-
pared to the robust solution and the two best case scenarios compared
to Leximin criterion. In this case, applying the LexiR∗ allows the DM
to find new opportunities without taking any risks compared to the
robust method. It also allows to find new opportunities in comparison
to Leximin criterion, but in this case, some risks must be taken on the
third best case scenario.

- The more e decreases in comparison to the ”MinMax” solution, the
worse are the results for the worst case scenarios, however, more op-
portunities are revealed in the two best case scenarios. The results
reveal more opportunities found with LexiR∗ criterion than with R∗
criterion in every case.

- When the value of e is very low (close to 0), i.e. the DM is very
optimistic, the results obtained with LexiR∗ criterion are very close to
the results obtained with Leximax criterion.

- The LexiR∗ model gives better results for the two worst case scenarios
compared to the R∗ model. Therefore, the risks taken by the DM are
better controlled.

To give a better view of the amplitude of the solutions, we present in
Fig 4 the values of the profit for each scenario depending on the value of e.
Each color represents a scenario: the worst case scenario (s2) is colored in
red while the best case scenario (s3) is colored in yellow.
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Figure 4: Amplitude of profits for 4 scenarios depending on e

We can see from this graph that Leximin criterion has the smallest am-
plitude between the scenarios contrary to Leximax criterion which has the
highest one. LexiR∗ criterion’s amplitude depends on the value of e: the
higher the value of e the less important the amplitude between the scenarios.
Some jumps can be visible in the amplitudes of the solutions: for instance
when e = −10%, the profit for scenario s1 is significantly reduced, or when
e = −50% the profit for scenarios s3 and s4 are significantly increased. These
jumps correspond to a change in the strategy of the DM regarding the design
of the RSC. Indeed, Table 9 shows that the number of opened centers has
increased every time a jump has been visible. Thus, we can assume that
when the DM takes more risks he increases her/his investments and opens
more centers. Therefore, he is able to reprocess more EOL products. Such
a strategy will benefit the RSC when a good case scenario happens (higher
return and demand rates).

According to these results, we propose here that:

Proposition 1. If a company implements a RSC with the use of a LexiR∗
approach (with e the value guaranteeing the sustainability of the RSC), it
allows to take advantage of all context-related opportunities, while avoiding
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Model e Collection centers Recycling centers Disposal
LexiR∗ -10% 5 4 5
LexiR∗ -50% 6 5 5
LexiR∗ -80% 6 5 6
LexiR∗ -90% 6 6 6

Table 9: Number of opened centers

as much as possible difficult financial situations.

4.3. Comparison and discussion on the proposed method: LexiR∗ algorithm
and LexiR∗ MIP

In this section, the technical choice between the two proposed method are
discussed. First, we compare the computation time and the quality of the
approximation. Then, we advise on the choice between the two approaches
depending on the DM’s priorities.

Number of scenarios LexiR∗ Algorithm LexiR∗ MIP

4 5.28 4.54
8 547.29 35.35
16 2222.19 300.40
32 17000.28 1454.73
64 85271.36 12839.46

Table 10: Comparison of LexiR∗ medthods’ solving times (in seconds)

Table 10 shows the solution times for both LexiR∗ algorithm and LexiR∗
MIP for different numbers of scenarios. The scenarios have been randomly
generated for the purpose of the experiment. Each instance has been solved
with both methods for 10 different values of e (also randomly generated).
When four scenarios are considered, the two methods are able to solve the
problem quite fast and in comparable amount of time (see Table 10). Then,
the more the number of scenarios increases, the more the solution time ex-
tends. The solution time of the LexiR∗ MIP increases significantly slower
than the one of the LexiR∗ algorithm. On the other hand, the LexiR∗
MIP being an approximate solution method, it does not always allow to find
the exact optimum. Furthermore, the LexiR∗ algorithm is solved by itera-
tions, and the number of iterations is the same than the number of scenarios

25



considered. Each iteration takes approximately the same time to solve. For
instance, when 32 scenario are solved, the total solution time of the algorithm
is 17000.28 seconds. Therefore, it is approximately 17000.26÷ 32 ≈ 531 sec-
onds for each iteration. The DM can choose to stop the resolution at any
iteration. In this case, the found solution will be optimized for the firsts
considered scenarios and approximate the other ones.

To illustrate this point, we compared the results found for the optimal
solution when 32 scenarios are considered with the results obtained when the
Algorithm is stopped at the 4th, 8th, 16th and 24th iterations. We analyzed
the deviation from the optimal solution depending on the number of iteration
solved. We also compared with the results found with the LexiR∗ MIP. The
table presenting the results is available in Appendix A.

The results show that the MIP gives a very good approximation of the
optimal solution: only 2 scenarios deviates slightly from the optimum. When
the model is solved with the algorithm stopped at the 24th, 16th, 8th, or 4th
iterations, the following observations can be made:

• The more the number of iterations solved is high, the more the found
solution is close to the optimal

• As previously explained in Section 3.1, the LexiR∗ algorithm first op-
timizes the worst cases scenarios with a Leximin before moving on to
the best cases scenarios with a Leximax. Thus, as long as the value
of e is higher than the profit of the scenario considered, the DM is
risk adverse and opportunities are not revealed. As so, if the number
of iterations solved is lower than the number of scenarios in the risky
area, opportunities cannot be found. This effect is visible in our case
when the algorithm is stopped at 4 or 8 iterations: only the worst cases
scenarios are optimized and the better cases scenarios can deviate up
to 27% from the optimum.

• If the number of iterations solved is high enough for scenarios in the
opportunity area to be considered, then opportunities are revealed on
the best cases.

Therefore, we propose that:

Proposition 2. If the DM is willing to solve the problem with an exact
method and if the duration of the computational time is not an issue, he/she
should use the LexiR∗ algorithm to solve it.
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Proposition 3. If the DM would prefer a more rapid solution, even if this
one is not optimal, he/she can either use the LexiR∗ MIP or the LexiR∗
Algorithm and interrupt it at a satisfying number of iterations.

Remark 1. When using the LexiR∗ Algorithm and interrupting it at a cho-
sen number of iterations, the DM must be careful that either the number of
iterations solved is high enough for opportunities to be revealed, or that the
value of e is low enough for the number of scenarios in the risky area to be
lower than the number of iteration solved, in order to disclose new opportu-
nities.

5. Conclusion

In order to help the decision makers to design a successful RSC under
uncertainty, we suggest a new bipolar criterion, namely LexiR∗, able to dif-
ferentiate risks from opportunities depending on the optimism of the DM.
We compare this criterion with classic criteria from the literature to show
its advantages and propose a comparison of each criteria in terms of practi-
cal results. We particularly show that the LexiR∗ criterion better explores
opportunities compared to a classic robust solution approach, while still al-
lowing the DM to control the level of risk he is willing to take.

We develop two solution methods to apply this criterion. The first one is
in the form of an algorithm and another is in the form of a MIP. We show that
the use of LexiR∗ criterion helps to better explore opportunities compared
to a robust model without loosing control over robustness. We compare the
results obtained with LexiR∗, Leximin and Leximax criteria. We analyse
the solution time for both LexiR∗ algotithm and LexiR∗ MIP and show that
the LexiR∗ algotithm takes a significantly longer time, but allows to find
an exact solution, contrary to LexiR∗ MIP that offers only an approximate
solution but obtained in shorter time.

From the methodological point of view, the further research will be ori-
ented to the generalization of LexiR∗ criterion to a continuous set of sce-
narios. Furthermore, a generalized study including both forward and reverse
supply chains will be performed for the case of creating a Closed-Loop Sup-
ply Chain. In addition to the economic performance of such supply chains,
their environmental and social performances should be evaluated as well, in
order to be more in line with the reality of industrial concerns.
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Appendix A. LexiR∗ Algorithm versus MIP

Table A.11 is constituted as follows: Column 1 is the scenario considered (the scenarios
are ranked from the worst case to the best case). Column 2 is the optimal solution, i.e.
the solution found when the LexiR∗ algorithm is used to solve the problem without being
stopped at any iteration. Column 3 to 6 are respectively the deviation from the optimum
solution when the model is solved using the LexiR∗ algorithm interrupted at 24, 16, 8,
and 4 iterations. The last Column is the deviation from the optimal solution when the
LexiR∗ MIP is used to solve the problem.

Model LexiR∗ Algorithm LexiR∗ MIP

Number of iterations 32 24 16 8 4 -

Scenario Profit(e) Deviation Deviation Deviation Deviation Deviation
s1 2427710 0, 00% 0, 00% 0, 00% 0, 00% 0, 00%
s2 2610029 0, 00% 0, 00% 0, 00% 0, 00% 0, 00%
s3 2651913 0, 00% 0, 00% 0, 00% 0, 00% 0, 00%
s4 2683295 0, 00% 0, 00% 0, 00% 0, 00% 0, 00%
s5 2700265 0, 00% 0, 00% 0, 00% −0, 01% 0, 00%
s6 2782584 0, 00% 0, 00% 0, 00% −2, 96% 0, 00%
s7 2787666 0, 00% 0, 00% 0, 00% −3, 14% 0, 00%
s8 2845463 0, 00% 0, 00% 0, 00% −5, 11% 0, 00%
s9 2948545 0, 00% 0, 00% 0, 00% −8, 42% 0, 00%
s10 2950168 0, 00% 0, 00% −0, 05% −8, 47% −0, 05%
s11 2950906 0, 00% 0, 00% −0, 08% −8, 50% 0, 00%
s12 3013577 0, 00% 0, 00% −2, 16% −10, 40% 0, 00%
s13 3077298 0, 00% 0, 00% −4, 18% −9, 58% −0, 63%
s14 3120285 0, 00% 0, 00% −5, 50% −10, 66% 0, 00%
s15 3175696 0, 00% 0, 00% −7, 15% −10, 40% 0, 00%
s16 3265788 0, 00% 0, 00% −9, 71% −10, 12% 0, 00%
s17 3297803 0, 00% 0, 00% −10, 59% −10, 69% 0, 00%
s18 3395708 0, 00% 0, 00% −13, 16% −13, 10% 0, 00%
s19 3398593 0, 00% 0, 00% −13, 17% −11, 33% 0, 00%
s20 3519252 0, 00% 0, 00% −14, 51% −14, 06% 0, 00%
s21 3533295 0, 00% 0, 00% −13, 12% −12, 66% 0, 00%
s22 3582553 0, 00% 0, 00% −12, 90% −13, 50% 0, 00%
s23 3764976 0, 00% 0, 00% −16, 46% −17, 12% 0, 00%
s24 4080441 0, 00% −4, 70% −22, 17% −23, 44% 0, 00%
s25 4335246 0, 00% −5, 88% −23, 93% −27, 77% 0, 00%
s26 4427709 −0, 12% −1, 87% −25, 49% −26, 32% 0, 00%
s27 4427710 −0, 10% −0, 21% −24, 65% −25, 52% 0, 00%
s28 4427710 −0, 09% −0, 21% −24, 50% −25, 12% 0, 00%
s29 4427714 −0, 08% −0, 01% −23, 49% −20, 66% 0, 00%
s30 4472278 0, 00% 0, 00% −22, 59% −21, 16% 0, 00%
s31 4487614 0, 00% 0, 00% −20, 93% −14, 11% 0, 00%
s32 4518240 0, 00% 0, 00% −14, 32% −12, 66% 0, 00%

Table A.11: Comparison of results LexiR∗ Algorithm versus MIP for 32 scenarios
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