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RIGIDITY OF THE BALL FOR AN ISOPERIMETRIC PROBLEM WITH

STRONG CAPACITARY REPULSION

MICHAEL GOLDMAN, MATTEO NOVAGA, AND BERARDO RUFFINI

Abstract. We consider a variational problem involving competition between surface tension

and charge repulsion. We show that, as opposed to the case of weak (short-range) interactions
where we proved ill-posedness of the problem in a previous paper, when the repulsion is stronger

the perimeter dominates the capacitary term at small scales. In particular we prove existence

of minimizers for small charges as well as their regularity. Combining this with the stability of
the ball under small C1,γ perturbations, this ultimately leads to the minimality of the ball for

small charges. We cover in particular the borderline case of the 1−capacity where both terms

in the energy are of the same order.
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1. Introduction

In this paper, we consider a geometric variational problem motivated by models for charged
liquid drops recently studied in a series of papers [7,19,20,30–32]. One of the main features of these
problems is the strong competition between surface tension and charge repulsion. In particular,
as opposed to the much studied Gamow liquid drop model (see [5,22]), the non-local effects often
dominate the cohesive forces leading to singular behaviors. The aim of the paper is to consider
the case of very strong short-range repulsion between the charges, thus completing the program
started in [19].

We now introduce the model. Given α ∈ (0, N) and a measurable set E ⊂ RN , we define the
Riesz interaction energy

Iα(E) = inf
µ(E)=1

∫
RN×RN

dµ(x) dµ(y)

|x− y|N−α
. (1.1)

This energy coincides with the inverse of the α−capacity, see (2.9). Letting P (E) denotes the
perimeter of E (see [27]), we consider for every charge Q > 0 the functional

Fα,Q(E) = P (E) +Q2Iα(E).
1
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While postponing the discussion about the precise class in which we are minimizing, the aim of
the paper is to study for m > 0 the problem

min
|E|=m

Fα,Q(E).

By a scaling argument, up to renaming the constant Q, it is enough to consider the case m = ωN ,
where ωN is the volume of the unit ball B1.

This question is motivated by the model for an electrically charged liquid drop in absence of
gravity, introduced by Lord Rayleigh [34] in the physically relevant case N = 3 and α = 2, and
later investigated by many authors (see for instance [12, 19, 21, 30, 31, 38, 40]). We proved in [19]
that, quite surprisingly, for every N ≥ 2 and α ∈ (1, N) (in particular in the Coulombic case
α = 2), the problem is ill-posed. Indeed, in that case, we can show that

inf
|E|=ωN ,E smooth

Fα,Q(E) = P (B1).

In words, starting from smooth sets the lower semicontinuous envelope of the energy Fα,Q in
L1(RN ) reduces to the perimeter. To restore well-posedness of the problem one needs to impose
some extra regularity conditions such as bounds on the curvature [19], entropic terms [30] or the
convexity of competitors [20].

Later on, it was shown in [31] that at least if N = 2 and α = 1, the problem admits the ball
as unique minimizer as long as Q lies below an explicit threshold, and that no-existence occurs
otherwise.

The aim of this paper is to complement the picture in the case α ∈ (0, 1] for N ≥ 2.

1.1. Main results. As already mentioned above, the first difficulty with this model is to properly
define the class of competitors. Indeed, while both the perimeter and Iα are well-defined in
the class of smooth compact sets, this class does not enjoy good compactness properties. For
variational problems involving the perimeter, the usual setup is the one of sets of finite perimeter
(see [27]) where we identify two sets E and F if they are equal up to a Lebesgue-negligible set.
However, it is not hard to see that Iα is not well-behaved under such identification (we have
Iα(E) = Iα(F ) if E = F outside a set of zero α−capacity), see [19]. As advocated in [31, 32] for
N = 2 and α = 1, we will consider here the class

S =
{
E ⊂ RN : E is compact and P (E) = HN−1(∂E) < +∞

}
.

We will always identify sets in S which differ only on a set of Lebesgue measure zero (and thus
actually agree HN−1 a.e.), see Remark 2.1. The variational problem we consider is thus

min
|E|=ωN ,E∈S

Fα,Q(E). (1.2)

The main result of this paper is the following.

Theorem 1.1. For every N ≥ 2 and α ∈ (0, 1], there exists Q0 = Q0(N,α) > 0 such that for
every Q ≤ Q0, balls are the only minimizers of (1.2).

We recall that by [19], if α ∈ (1, N), problem (1.2) does not admit minimizers for any value of
Q > 0. The proof of Theorem 1.1 follows the same general scheme as in [22] (see also [1,3,4,11,29]
where similar strategies have been used). Inspired by the proof [6] of the quantitative isoperimetric
inequality, the idea is to prove first existence of (generalized) minimizers for the problem. Then,
the challenge is to prove regularity estimates for minimizers which are uniform in Q. This allows
by compactness to reduce the problem to a second order Taylor expansion of the energy close to
the ball (this is the so-called Fuglede type argument). As we will now see, in our case all three
steps present serious difficulties. Let us point out that when N = 2 and α = 1, the proof in [31] is
of totally different nature. Indeed, it uses a combination of convexification and Brunn-Minkowski
inequalities.
While it could be interesting to see if this argument could be extended to the case α ∈ (0, 1), it is
intrinsically limited to N = 2. We start with existence of minimizers:
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Theorem 1.2. For every N ≥ 2 and α ∈ (0, 1], there exists Q1 = Q1(N,α) > 0 such that for
every Q ≤ Q1 minimizers of (1.2) exist.

This result is proven in Theorem 3.11 where we prove actually a bit more. Indeed, we show
that if α < 1, minimizers exist for every Q > 0, at least in a generalized sense (see Definition 2.2).
As in [3,10,17,20], a classical first step is to transform the volume constraint into a penalization,
see Lemma 3.1. Following for example [3, 14, 17, 23, 33] we would then like to prove Theorem 1.2
through a concentration-compactness argument. However, since the class S is not closed under
L1 convergence and because of the issues related to the lower semi-continuity of Iα raised above,
it is not clear how to argue directly for Fα,Q. The idea is thus to first regularize the functional by
penalizing concentration of the charge. While we believe that the precise choice of regularization
is not essential, in line with [30], for ε > 0, we replace Iα by

Iα,ε(E) = min
µ(E)=1

{∫
RN×RN

dµ(x) dµ(y)

|x− y|N−α
+ ε

∫
RN

µ2

}
.

In particular, this functional is well defined in L1 i.e. Iα,ε(E) = Iα,ε(F ) if E = F a.e. and we can
prove in Proposition 3.7 the existence of (generalized) minimizers.
In order to conclude the proof of Theorem 1.2 and send ε to zero, we show in Proposition 3.10
that minimizers enjoy density estimates which are uniform in ε. This is a consequence of a first
almost-minimality property of minimizers proven in Proposition 3.8. Indeed, using a relatively
simple lower bound from [31] on the Riesz interaction energy of the union of two disjoint sets, we
show that there exists a constant C > 0 such that if E is a minimizer for the regularized functional
and F is such that E∆F ⊂ Br, then

P (E) ≤ P (F ) + C(Q2 + rα)rN−α. (1.3)

The desired density bounds then follow from [18], see also [27,37] when α < 1.

We then turn to regularity:

Theorem 1.3. For every N ≥ 2 and α ∈ (0, 1], there exist Q2 = Q2(N,α) > 0 and γ = γ(N,α) ∈
(0, 1/2) such that for Q ≤ Q2 minimizers of (1.2) are uniformly (in Q) C1,γ .

This result is contained in Proposition 3.12 for α < 1 (see also Remark 3.15) and Proposition
3.21 for α = 1. On the one hand, we see from (1.3) that when α < 1, we may directly appeal
to the classical regularity theory for almost-minimizers of the perimeter, see [27, 37], and there is
nothing to prove. On the other hand, when α = 1 the situation is much more delicate. In fact,
Proposition 3.21 may be seen as one of the main achievements of this paper. When α = 1, while
(1.3) is in general too weak to obtain C1,γ regularity, it is still strong enough to yield Reifenberg
flatness of E (see Definition 3.13) when Q� 1 as recently shown in1 [18]. In order to improve it to
the full C1,γ regularity we rely on a second almost-minimality property. We show in Proposition
3.16 that if µE is the optimal charge distribution for E i.e. µE is the minimizer in (1.1), and if
E∆F ⊂ Br, then

P (E) ≤ P (F ) + C

(
Q2

(∫
Br

µ
2N
N+1

E

)N+1
N

+ rN

)
. (1.4)

The proof is inspired by [7, Proposition 4.5]. Notice however that we have to deal with difficulties
which are quite different from the ones in [7]. Indeed, on the one hand our operator is smooth
(here it is just the half Laplacian, see (2.5)) as opposed to [7] where the heart of the problem is
the presence of irregular coefficients. On the other hand in our case the charge distribution µE
is, a priori, just a measure while in [7] it is known to be a function in L∞. In fact, in light of
(1.4), the main point here is to prove good integrability properties of the charge distribution µE .
This is done in Lemma 3.17 and Lemma 3.18 where we prove that for any γ ∈ (0, 1/2), if E is a

1as a matter of fact, the present paper served as motivation for [18].
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sufficiently flat Reifenberg sets E,(∫
Br

µ
2N
N+1

E

)N+1
N

≤ CrN−1+2γ . (1.5)

By comparing this result with the case of the ball, we can see that this estimate is optimal. It
may be seen as an extension to irregular domains of the boundary regularity for the fractional
Laplacian developed in [35]. As in the case of the Laplacian considered in [25], the main ingredient
for the proof is the monotonicity formula of Alt-Caffarelli-Friedman. Combining (1.4) and (1.5)
we find that also for α = 1, minimizers of (1.2) are actually classical almost-minimizers of the
perimeter and thus Theorem 1.3 follows.

Let us point out that our proof actually applies to a more general class of functionals. Indeed,
for Λ ≥ 0 we say that E is a Λ−minimizer of Fα,Q if for every set F ,

Fα,Q(E) ≤ Fα,Q(F ) + Λ|E∆F |.

Arguing as in Theorem 1.3 we can prove the following result (we state it only for α = 1 since
α ∈ (0, 1) is simpler):

Theorem 1.4. For every γ ∈ (0, 1/2), there is Q̄ = Q̄(N, γ) > 0 such that for every Q ≤ Q̄ and
Λ ≥ 0, every Λ−minimizer E of F1,Q is C1,γ regular outside a singular set Σ with Σ = ∅ if N ≤ 7,
Σ is locally finite if N = 8 and satisfies Hs(Σ) = 0 is s > N − 8 and N ≥ 9.

In particular, this answers a question left open in [32].

Thanks to Theorem 1.3 and the quantitative isoperimetric inequality, if Q is small enough then
up to translation any minimizer of (1.2) is nearly spherical. By this we mean that fixing γ ∈ (0, 1)
(which remains implicit), |E| = ωN , the barycenter of E is in zero and there is φ : ∂B1 7→ R with
‖φ‖C1,γ(∂B1) ≤ 1 such that

∂E = {(1 + φ(x))x : x ∈ ∂B1}.
The proof of Theorem 1.1 is thus concluded once we show the minimality of the ball among nearly
spherical sets:

Theorem 1.5. Let α ∈ (0, 2). There exist Q3 = Q3(N,α, γ) > 0 and ε = ε(N,α, γ) > 0 such that
for every nearly spherical set E with ‖φ‖W 1,∞(∂B1) ≤ ε, and every Q ≤ Q3,

Fα,Q(B1) ≤ Fα,Q(E).

Moreover, equality is attained only if E = B1.

This shows in particular the stability of the ball under small C1,γ perturbations if Q is small
enough. The counterpart of Theorem 1.5 for the Coulomb case α = 2 has been obtained in [19,
Theorem 1.7]. The main point of the proof is to show in Proposition 4.5 that

Iα(B1)− Iα(E) ≤ C
(

[φ]2
H
α
2 (∂B1)

+ [φ]2
H

2−α
2 (∂B1)

)
.

The proof of this quantitative estimate for Iα follows the same general strategy as in [19]. As
in [19], the difficulty comes from the fact that the optimal measure µE is not explicitly given in
terms of E. There are however some important differences between the Coulomb case α = 2 and
the non-local case α ∈ (0, 2). In the Coulomb case, the charges are concentrated on the boundary.
This makes it easier to express the Riesz interaction energy in terms of φ with respect to the case
α ∈ (0, 2) where the optimal measure µE has support equal to E. Another difficulty here comes
from the blow-up of µE near ∂E.

The last result of this paper is a nonexistence result in dimension 2.

Theorem 1.6. Let N = 2 and α ∈ (0, 1]. Then, there exists Q4 = Q4(N,α) > 0 such that for
Q ≥ Q4, there are no minimizers of (1.2).



ISOPERIMETRIC PROBLEM WITH STRONG CAPACITARY REPULSION 5

The paper is divided into four parts. In Section 2 we collect the precise notation and definitions
used in the paper. In Section 3, we prove Theorem 1.2 and Theorem 1.3 about existence and
regularity of minimizers for (1.2). We then prove Theorem 1.5 in Section 4. A last short section
is dedicated to the proof of the nonexistence Theorem 1.6.

2. Notation

We will use the notation A . B to indicate that there exists a constant C > 0, typically de-
pending on the dimension N and on α such that A ≤ CB (we will specify when C depends on
other quantities). We write A ∼ B if A . B . A. We use in hypotheses the notation A � B to
indicate that there exists a (typically small) universal constant ε > 0 depending only on N and α
such that if A ≤ εB then the conclusion of the statement holds.

For a measurable set E ⊂ RN and an open set Ω ⊂ RN , we denote by |E| the Lebesgue measure
of E and P (E,Ω) its relative perimeter in Ω. When Ω = RN we simply write P (E,Ω) = P (E)
(see [27]). We use ∂E to indicate the topological boundary of a set E, ∂ME the measure-theoretic
boundary and ∂∗E for the reduced boundary.

2.1. Fractional Sobolev spaces, Laplacians and capacities. We collect here some standard
notation and basic properties about fractional Sobolev spaces, Laplacians and capacities. We refer
for instance to [9,24,26] for more information on this topic. For the Fourier transform we use the
convention

û(ξ) =

∫
RN

e−2iπξ·xu(x)dx.

For s ∈ R we then define the (homogeneous) Hs semi-norm as

[u]2Hs(RN ) =

∫
RN
|ξ|2s|û|2dξ.

When there is no risk of confusion we simply write [u]Hs for [u]Hs(RN ). We define the s−fractional
Laplacian by its Fourier transform:

̂(−∆)su = |ξ|2sû
so that by Parseval identity

[u]2Hs(RN ) =

∫
RN

u(−∆)su.

For s ∈ (0, 1), there exists C(N, s) > 0 such that

(−∆)su(x) = C(N, s)

∫
RN

u(x)− u(y)

|x− y|N+2s
dy, (2.1)

where the integral is intended in the principal value sense. We then have the alternative formula
for the Hs semi-norm

[u]2Hs(RN ) =
C(n, s)

2

∫
RN×RN

(u(x)− u(y))2

|x− y|N+2s
dxdy. (2.2)

We will also use fractional Sobolev spaces defined on the unit sphere ∂B. For these we take (2.2)
as starting point and define for φ : ∂B → R and s ∈ (0, 1),

[φ]2Hs(∂B) =

∫
∂B×∂B

(φ(x)− φ(y))2

|x− y|N−1+2s
dxdy. (2.3)

Let us point out that we use here a slight abuse of notation and do not distinguish between the
volume measure on RN and the one on the sphere. We recall that for 0 < s < s′ < 1, if we denote
φ̄ = 1

P (B)

∫
∂B

φ we have∫
∂B

(φ− φ̄)2 . [φ]2Hs(∂B) ≤ 22(s′−s)[φ]2
Hs′ (∂B)

.
∫
∂B

|∇φ|2, (2.4)
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where we write ∇φ for the tangential gradient and where the implicit constants depend on N , s
and s′. Indeed, the first inequality follows from Cauchy-Schwarz as∫

∂B

(φ− φ̄)2 ≤ 1

P 2(B)

∫
∂B

(∫
∂B

|φ(x)− φ(y)|dy
)2

dx

≤ 1

P 2(B)

∫
∂B

(∫
∂B

(φ(x)− φ(y))2

|x− y|N−1+2s
dy

)(∫
∂B

|x− y|N−1+2sdy

)
dx

.
∫
∂B×∂B

(φ(x)− φ(y))2

|x− y|N−1+2s
dxdy.

The second inequality in (2.4) is immediate while the third can be deduced by [8, Proposition 2.4
and Remark 2.8].

For α ∈ (0, N) and µ a Radon measure, we define the Riesz interaction energy as

Iα(µ) =

∫
RN×RN

dµ(x) dµ(y)

|x− y|N−α
.

With this notation, definition (1.1) becomes

Iα(E) = min
µ(E)=1

Iα(µ).

Remark 2.1. Recalling the definition (1.1) of S, we see that for α ∈ (0, 1], Iα is well defined
in S in the sense that if E,F ∈ S with |E∆F | = 0 then actually HN−1(E∆F ) = 0 and thus
Iα(E) = Iα(F ) (since Iα(E∆F ) =∞, see e.g. [28, Theorem 8.7]).

For every α ∈ (0, N), there exists a constant C ′(N,α) > 0 such that for any radon measure µ,
the associated potential

u(x) =

∫
RN

dµ(y)

|x− y|N−α
,

satisfies (see [26])

(−∆)
α
2 u = C ′(N,α)µ in RN . (2.5)

In particular, using that

Iα(µ) =

∫
RN

udµ =

∫
RN

(−∆)
α
2 u(−∆)−

α
2 µ = C ′(N,α)

∫
RN

µ(−∆)−
α
2 µ,

we have
Iα(µ) = C ′(N,α)[µ]2

H−
α
2 (RN )

. (2.6)

Similarly,

Iα(µ) =
1

C ′(N,α)
[u]2

H
α
2 (RN )

. (2.7)

Moreover, if E is compact and µE is the equilibrium measure of E i.e. Iα(E) = Iα(µE), then the
corresponding potential uE satisfies

uE ≡ Iα(E) on E, (2.8)

see [19,24] for a precise justification. We finally point out that if we define the fractional capacity
as

Cα(E) =
1

Iα(E)
,

then it is not hard to check that at least for smooth enough sets E, uE/Iα(E) is the minimizer of

min
v≥χE ,v→0 at ∞

[v]2
H
α
2 (RN )

so that by (2.7) and (2.2)

Cα(E) =
C(N,α/2)

C ′(N,α)
inf

u∈C∞c (RN ),u≥χE

∫
RN×RN

(u(x)− u(y))2

|x− y|N+2s
dxdy. (2.9)

We refer to [24,28] for further information on fractional capacities.
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2.2. Generalized sets and minimizers. For a (possibly finite) sequence of sets Ẽ = (Ei)i≥1

and measures µ̃ = (µi)i≥1, we define

Iα(µ̃) =
∑
i

Iα(µi), (2.10)

Iα(Ẽ) = inf
µ̃

{
Iα(µ̃) :

∑
i

µi(Ei) = 1

}
and P (Ẽ) =

∑
i

P (Ei). (2.11)

Notice that since Iα(µ̃ + µ̃′) ≥ Iα(µ̃), when minimizing over µ̃, we may assume without loss of
generality that µi is concentrated on Ei.

Definition 2.2. We call generalized set a collection of sets Ẽ = (Ei)i≥1 as above, and we set

|Ẽ| =
∑
i

|Ei|. (2.12)

For Q > 0, we define the energy of a generalized set as

Fα,Q(Ẽ) = P (Ẽ) +Q2Iα(Ẽ).

We say that Ẽ ∈ SN is a (volume constrained) generalized minimizer for Fα,Q if, for any collection

of sets F̃ ∈ SN with |F̃ | = |Ẽ|, we have

Fα,Q(Ẽ) ≤ Fα,Q(F̃ ).

3. Existence and regularity of minimizers

3.1. Relaxation of the volume constraint. For Λ > 0, we relax the volume constraint by
considering

Fα,Q,Λ(Ẽ) = Fα,Q(Ẽ) + Λ
∣∣∣|Ẽ| − ωN ∣∣∣ . (3.1)

Our first result is that for Λ large enough the relaxed problem coincides with the constrained one.

Lemma 3.1. For every α ∈ (0, N), Q > 0 and every Λ� 1 +Q2, we have

inf
Ẽ∈SN

{
Fα,Q(Ẽ) : |Ẽ| = ωN

}
= inf
Ẽ∈SN

Fα,Q,Λ(Ẽ). (3.2)

Moreover, for such Λ, if Ẽ is a minimizer of the right-hand side of (3.2), then |Ẽ| = ωN .

Proof. Since the fact that the left-hand side of (3.2) is larger than the right-hand side, it is enough

to prove the remaining inequality. Let Λ� 1 +Q2 and assume that there exists Ẽ with |Ẽ| 6= ωN
and

Fα,Q,Λ(Ẽ) ≤ inf
Ẽ∈SN

{
Fα,Q(Ẽ) : |Ẽ| = ωN

}
.

Using B1 as competitor we find

P (Ẽ) +Q2Iα(Ẽ) + Λ
∣∣∣|Ẽ| − ωN ∣∣∣ . 1 +Q2. (3.3)

In particular if t = ω
1
N

N |Ẽ|−
1
N , then we can write t = 1 + δ with |δ| . Λ−1(1 +Q2)� 1. We now

use tẼ = (tEi)i≥1, which satisfies |tẼ| = ωN , as competitor and obtain using Taylor expansion,
(3.3) and Λ� 1 +Q2 that

Λ|δ| . δ
(

(N − 1)P (Ẽ)− (N − α)Q2Iα(Ẽ)
)
. (3.4)

Now if δ ≥ 0, this implies

Λδ . δP (Ẽ)
(3.3)

. δ(1 +Q2)

and thus Λ . 1 +Q2 which is a contradiction with the hypothesis Λ� 1 +Q2. In the case δ ≤ 0
we reach the same contradiction since (3.4) yields this time

Λ|δ| . |δ|Q2Iα(Ẽ)
(3.3)

. |δ|(1 +Q2).
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�

3.2. The regularized functional. As mentioned in the introduction, since the capacitary term
Iα is not well defined in L1, which is the natural setting to minimize the perimeter, we will first
show existence of (generalized) minimizers for a regularized energy. For ε > 0 and a positive
measure µ we define

Iα,ε(µ) = Iα(µ) + ε

∫
RN

µ2 =

∫
RN×RN

dµ(x)dµ(y)

|x− y|N−α
+ ε

∫
RN

µ2

with the understanding that Iα,ε(µ) = ∞ if µ /∈ L2(RN ). We then define for µ̃ = (µi)i≥1 and

Ẽ = (Ei)i≥1, in analogy with (2.10) and (2.11),

Iα,ε(µ̃) =
∑
i

Iα,ε(µ
i) and Iα,ε(Ẽ) = inf

µ̃

{
Iα,ε(µ̃) :

∑
i

µi(Ei) = 1

}
. (3.5)

Remark 3.2. If E and F are two measurable sets with |E∆F | = 0 then Iα,ε(E) = Iα,ε(F ).
Indeed, every measure µ with Iα,ε(µ) < ∞ is in L2 and thus satisfies µ(E) = µ(F ). When
considering Iα,ε instead of Iα we can therefore identify sets which agree Lebesgue a.e.

Lemma 3.3. Let Ẽ = (Ei)i≥1 be a generalized set with |Ẽ| ∈ (0,∞), then (recall definition (2.12))

ε

|Ẽ|
≤ Iα,ε(Ẽ) ≤ c(N,α)

|Ẽ|N−αN
+

ε

|Ẽ|
, (3.6)

where

c(N,α) =

∫
B1×B1

1

|x− y|N−α
dxdy.

Proof. We start with the upper bound. Let m = |Ẽ|. and for every i ≥ 1 let Bi be a ball

such that |Bi| = |Ei|. Choosing µi = χEi/m in the definition of Iα,ε(Ẽ) and recalling the Riesz
rearrangement inequality, we get

Iα,ε(Ẽ) ≤ 1

m2

∑
i

∫
Ei×Ei

dxdy

|x− y|N−α
+

ε

m

≤ 1

m2

∑
i

∫
Bi×Bi

dxdy

|x− y|N−α
+

ε

m

=
c(N,α)

m2

∑
i

|Ei|1+ α
N +

ε

m

≤ c(N,α)

m
N−α
N

+
ε

m
.

To obtain the lower bound we simply observe that for every µ̃ = (µi)i≥1 with
∑
i µ

i(Ei) = 1, we
have by Cauchy-Schwarz

ε
1
2 = ε

1
2

∑
i

µi(Ei) ≤

(∑
i

|Ei|

) 1
2
(
ε
∑
i

∫
Ei

(µi)2

) 1
2

≤ m 1
2 I

1
2
α,ε(µ̃). (3.7)

The desired bound follows by minimizing in µ̃. �

As a consequence, of Lemma 3.3, we can prove the existence of an optimal measure for Iα,ε(Ẽ).

Corollary 3.4. For every ε > 0 and every generalized set Ẽ = (Ei)i≥1 with |Ẽ| < ∞ and

Iα,ε(Ẽ) <∞, there exists a unique optimal measure µ̃ for Iα,ε(Ẽ).

Proof. Uniqueness follows from strict convexity of the energy so we only focus on the existence
part of the statement. We first notice that from the definition (3.5) of Iα,ε we have

Iα,ε(Ẽ) = inf

{∑
i

q2
i Iα,ε(Ei) :

∑
i

qi = 1

}
. (3.8)
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Hence, the existence of an optimal µ̃ follows if we can prove that on the one hand, for every fixed
set E of finite volume, there exists an optimal measure for Iα,ε(E) and on the other hand that
there exists an optimal distribution of charges (qi)i≥1 for (3.8).
We thus start by considering a fixed set E with |E|+ Iα,ε(E) <∞ and prove the existence of an
optimal charge µ. If µn is a minimizing sequence, arguing as in (3.7) we find that for every R > 0,

µn(BcR) ≤ ε− 1
2 |E ∩BcR|

1
2 I

1
2
α,ε(µn).

Therefore µn is tight and we can extract a sequence converging weakly in L2(RN ) to a measure µ
with µ(E) = 1. By lower semi-continuity of Iα,ε (see [24, (1.4.5)]), µ is a minimizer for Iα,ε(E).
We now turn to the existence of an optimal charge distribution (qi)i≥1. For this we first observe
that from the first inequality in (3.6),∑

i

I−1
α,ε(E

i) ≤ 1

ε

∑
i

|Ei| <∞

and thus in particular limI→∞
∑
i≥I I−1

α,ε(E
i) = 0. Now for every (qi)i≥1 and every I ∈ N, by

Cauchy-Schwarz ∑
i≥I

qi ≤

∑
i≥I

q2
i Iα,ε(Ei)

 1
2
∑
i≥I

I−1
α,ε(E

i)

 1
2

so that tightness of minimizing sequences follows leading to the existence of an optimal distribution
(qi)i≥1. �

In order to prove that generalized minimizers are almost minimizers of the perimeter, we will
need the following lemma which is adapted from [31, Lemma 2] (see also [32, Lemma 13]).

Lemma 3.5. For every generalized set Ẽ = (E ∪ F ) × (Ei)i≥2 with E and F sets of positive

measure such that |E ∩ F | = 0, if we define F̃ = F × (Ei)i≥2 we have

Iα,ε(Ẽ) ≥ Iα,ε(F̃ )− Iα,ε(F̃ )2

Iα,ε(E)
. (3.9)

Proof. We first show that

Iα,ε(Ẽ) ≥ min
θ∈[0,1]

θ2Iα,ε(E) + (1− θ)2Iα,ε(F̃ ). (3.10)

Let µ̃ = (µi)i≥1 be optimal for Iα,ε(Ẽ). We may assume without loss of generality that µ1(E) 6= 0

and µ1(F ) +
∑
i≥2 µ

i(Ei) 6= 0 since in the first case we would have Iα,ε(Ẽ) = Iα,ε(F̃ ) and in the

second case Iα,ε(Ẽ) = Iα,ε(E) which both imply (3.9). We now define

µ =
µ1|E
µ1(E)

, ν1 =
µ1|F

1− µ1(E)
, and νi =

µi

1− µ1(E)
, ∀i ≥ 2.

With this definition, µ is admissible for Iα,ε(E) and ν̃ = (νi)i≥1 is admissible for Iα,ε(F̃ ) and we
have

Iα,ε(µ1) ≥ (µ1(E))2

(∫
E×E

dµ(x)dµ(y)

|x− y|N−α
+ ε

∫
E

µ2

)
+ (1− µ1(E))2

(∫
F×F

dν1(x)dν1(y)

|x− y|N−α
+ ε

∫
F

(ν1)2

)
= (µ1(E))2Iα,ε(µ) + (1− µ1(E))2Iα,ε(ν1)

so that by definition (3.5) of Iα,ε(ν̃),

Iα,ε(Ẽ) ≥ (µ1(E))2Iα,ε(µ) + (1− µ1(E))2Iα,ε(ν̃) ≥ (µ1(E))2Iα,ε(E) + (1− µ1(E))2Iα,ε(F̃ ).

This proves (3.10). Optimizing in θ together with the inequality (1 + t)−1 ≥ 1− t for t ≥ 0 yields
(3.9). �
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3.3. Existence of generalized minimizers for the regularized energy. In line with (3.1),
we introduce the regularized energy

Fα,Q,Λ,ε(Ẽ) = P (Ẽ) +Q2Iα,ε(Ẽ) + Λ
∣∣∣|Ẽ| − ωN ∣∣∣ .

The aim of this section is to prove the existence of minimizers for this functional. We start with
the simple observation that for Fα,Q,Λ,ε, minimizing among classical or generalized sets gives the
same infimum energy.

Lemma 3.6. For every α ∈ (0, N), Q, Λ, ε > 0, we have

inf {Fα,Q,Λ,ε(E)} = inf
{
Fα,Q,Λ,ε(Ẽ)

}
. (3.11)

Proof. Since the left-hand side of (3.11) is larger than the right-hand side, it is enough to prove

that for every δ > 0 and every generalized set Ẽ = (Ei)i≥1, we can construct a set E with

Fα,Q,Λ,ε(E) ≤ Fα,Q,Λ,ε(Ẽ) + δ. For I ∈ N and R > 0, let F i = Ei ∩BR if i ≤ I, F i = ∅ otherwise

and set F̃ = (F i)i≥1. We first observe that for each fixed i, limR→∞ |Ei ∩BR| = |Ei|. Combining
this with the fact that

∑
i |Ei| <∞ we see that we can choose I and R large enough so that

Λ

∣∣∣∣∣
I∑
i=1

|F i| − ωN

∣∣∣∣∣ ≤ Λ
∣∣∣|Ẽ| − ωN ∣∣∣+ δ. (3.12)

Moreover, thanks to the co-area formula we may further assume that

I∑
i=1

P (F i) ≤ P (Ẽ) + δ. (3.13)

We now turn to the last term in the energy. Let µ̃ = (µi)i≥1 be the optimal measure for Iα,ε(Ẽ)

given by Corollary 3.4. We then set for i ≤ I, νi =
µi|Fi∑I
i=1 µ

i(F i)
and νi = 0 otherwise so that

ν̃ = (νi)i≥1 is admissible for Iα,ε(F̃ ). Using that
∑I
i=1 µ

i(F i) converges to 1 as I → ∞ and
R → ∞, we can also assume that I and R are chosen such that in addition to (3.12) and (3.13)
we have

Q2Iα,ε(ν̃) =
Q2

(
∑I
i=1 µ

i(F i))2

(
I∑
i=1

∫
F i×F i

dµi(x)dµi(y)

|x− y|N−α
+ ε

∫
F i

(µi)2

)
≤ Q2Iα,ε(Ẽ) + δ. (3.14)

We finally choose for every i ≤ I a point xi ∈ RN such that mini6=j |xi − xj | � R and define

E = ∪Ii=1(F i + xi) and ν(x) =

I∑
i=1

νi(x− xi).

Since F i ⊂ BR by construction, the sets F i + xi are pairwise disjoint and from (3.12) and (3.13)
we have

P (E) + Λ
∣∣|E| − ωN ∣∣ =

I∑
i=1

P (Ei) + Λ

∣∣∣∣∣
I∑
i=1

|F i| − ωN

∣∣∣∣∣ ≤ P (Ẽ) + Λ
∣∣∣|Ẽ| − ωN ∣∣∣+ 2δ.

Finally we observe that ν is admissible for Iα,ε(E) with

Q2Iα,ε(ν) = Q2Iα,ε(ν̃) +Q2
∑
i6=j

∫
F i×F j

dνi(x)dνj(y)

|x− y|N−α

≤ Q2Iα,ε(ν̃) +
Q2

mini 6=j |xi − xj |N−α
(3.14)

≤ Q2Iα,ε(ν̃) + 2δ

provided mini6=j |xi − xj | is large enough. Since Iα,ε(E) ≤ Iα,ε(ν), we find as anticipated that

Fα,Q,Λ,ε(E) ≤ Fα,Q,Λ,ε(Ẽ) + 4δ.

�



ISOPERIMETRIC PROBLEM WITH STRONG CAPACITARY REPULSION 11

We can now prove the existence of generalized minimizers for Fα,Q,Λ,ε. This will be proven by a
concentration-compactness argument which relies on isoperimetric effects to avoid the loss of mass
together with the semi-continuity of Iα,ε with respect to L1

loc convergence. This type of arguments
is relatively standard by now (see for instance [3] which we closely follow or [14,17,23,33]). However,
we face here the additional difficulty that we need to avoid not only loss of volume but also loss
of charge in the limit.

Proposition 3.7. For every α ∈ (0, 1], Q > 0, ε > 0 and Λ� 1 +Q2, generalized minimizers of
Fα,Q,Λ,ε exist.

Proof. Let (En)n≥1 be a (classical) minimizing sequence for Fα,Q,Λ,ε. By Lemma 3.6 it is also a
minimizing sequence in the class of generalized sets. Using for instance the ball B1 as competi-
tor we have supn Fα,Q,Λ,ε(En) . 1 + Q2. In particular, if we let mn = |En|, up to extraction

mn → m ∈ (0,∞). Fix L � m
1
N and consider a partition of RN into cubes (Qi,n)i≥1 where

Qi,n = [0, L]N + zi, with zi,n ∈ (LZ)N . We let mi,n = |En ∩ Qi,n| and assume without loss of
generality that for every n, mi,n is decreasing in i. Moreover we tacitly consider from now on
only the indices i such that mi,n > 0. We let µn be the optimal measure for Iα,ε(En) and set
qi,n = µn(Qi,n).

We start by proving tightness of (mi,n)i≥1 and (qi,n)i≥1. For mi,n, we argue as usual that thanks
to the relative isoperimetric inequality (recall that with our choice of L, |Qi,n ∩ En| ≤ |Qi,n|/2)∑

i

m
N−1
N

i,n .
∑
i

P (En, Qi,n) = P (En) . 1 +Q2.

Using that mi,n ≤ m
i we conclude that for every I ∈ N,∑

i≥I

mi,n ≤
(m
I

) 1
N
∑
i≥I

m
N−1
N

i,n . (1 +Q2)
(m
I

) 1
N

. (3.15)

For qi,n we argue as in (3.7) and obtain invoking twice Cauchy-Schwarz,

∑
i≥I

qi,n ≤
∑
i≥I

m
1
2
i,n

(∫
En∩Qi,n

µ2
n

) 1
2

≤

∑
i≥I

mi,n

 1
2 (∫

RN
µ2
n

) 1
2 (3.15)

. ε−
1
2 (1 +Q2)

(m
I

) 1
2N

.

Therefore, up to extraction we have limn→∞mi,n = mi with
∑
imi = m and limn→∞ qi,n = qi

with
∑
i qi = 1.

We now construct a generalized set Ẽ which will be our generalized minimizer. By the perimeter
bound, up to extraction we have for every i, En − zi,n → Ei in L1

loc for some sets Ei. Moreover
µin = µn(· + zi,n) converges weakly in L2 to some µi. We can further assume that for every i, j,
|zi,n − zj,n| → aij ∈ [0,∞]. We now say that i ∼ j if aij < ∞ and denote by [i] the equivalence
class of i. Notice that if i ∼ j then Ei and Ej are translated of each other. For each class of
equivalence we denote

m[i] =
∑
j∼i

mj and q[i] =
∑
j∼i

qj

so that we have
∑

[i]m[i] = m and
∑

[i] q[i] = 1. For every i, using the convergence of En − zi,n to

Ei and of µin to µi, and the definition of the equivalence relation, we have

|Ei| = m[i] and µi(Ei) = q[i].

Up to relabeling, we may now assume that each class of equivalence [i] is made of a single element.

If we set Ẽ = (Ei)i≥1 and µ̃ = (µi)i≥1 we have just shown that µ̃ is admissible for Iα,ε(Ẽ). Let
us finally prove that

P (Ẽ) +Q2Iα,ε(µ̃) + Λ
∣∣∣|Ẽ| − ωN ∣∣∣ ≤ lim inf

n→∞
P (En) +Q2Iα,ε(µn) + Λ ||En| − ωN | .
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We consider separately each term of the energy. Since |Ẽ| = m = limn→∞ |En|, the volume term
is not a problem. For the first term, we fix I ∈ N and R > 0. If n is large enough, we can assume
that for i, j ≤ I with i 6= j, |zi,n − zj,n| � R. By the co-area formula we can find for every i ≤ I
a radius Rn ∈ (R, 2R) such that∑

i≤I

HN−1(∂BRn(zi,n) ∩ En) .
1

R
.

If Ei,Rn = (En − zi,n) ∩BRn , we thus have∑
i≤I

P (Ei,Rn) ≤ P (En) +
C

R
.

From this bound we see that Ei,Rn converges in L1
loc to a set Ei,R which itself converges to Ei as

R→∞. We thus have∑
i≤I

P (Ei) ≤
∑
i≤I

lim inf
R→∞

P (Ei,R) ≤
∑
i≤I

lim inf
R→∞

lim inf
n→∞

P (Ei,Rn) ≤ lim inf
n→∞

P (En).

For the last term, we use similarly that for every fixed I ∈ N and R > 0,

∑
i≤I

Iα,ε(µi|BR) ≤ lim inf
n→∞

∑
i≤I

Iα,ε(µin|BR) ≤ lim inf
n→∞

Iα,ε

∑
i≤I

µn|BR(zi,n)

 ≤ lim inf
n→∞

Iα,ε(µn).

�

3.4. First almost minimality property and existence of minimizers for the original
problem. In this section we use Lemma 3.5 to prove a first almost minimality property for
generalized minimizers of Fα,Q,Λ,ε. In order to pass to the limit ε → 0 it is crucial that the
estimates are uniform in ε.

Proposition 3.8. There exists C > 0 depending only on N and α ∈ (0, N) with the following
property. For every Q > 0, ε ∈ (0, 1) and Λ ∼ 1 + Q2 for which Lemma 3.1 applies, every

generalized minimizer Ẽ = (Ei)i≥1 of Fα,Q,Λ,ε is an almost minimizer of the perimeter in the
sense that for every i ≥ 1, x ∈ RN and r � 1,

P (Ei) ≤ P (F ) + C
(
Q2 + rα

)
rN−α ∀F∆Ei ⊂ Br(x). (3.16)

Proof. Without loss of generality we may assume that i = 1 and x = 0. To simplify a bit notation

we denote E = E1. Using F̃ = F × (Ei)i≥2 as competitor and the minimality of Ẽ we have after
simplifications

P (E) ≤ P (F ) +Q2
(
Iα,ε(F̃ )− Iα,ε(Ẽ)

)
+ Λ|E∆F |. (3.17)

Since P (E ∩ F ) + P (E ∪ F ) ≤ P (E) + P (F ), it is enough to prove (3.16) under the additional

condition E ⊂ F or F ⊂ E. If E ⊂ F then Iα,ε(Ẽ) ≥ Iα,ε(F̃ ) and thus (3.16) follows from
|E∆F | . rN .
We are left with the case F ⊂ E. Writing E = F ∪ (E\F ) and appealing to (3.9) from Lemma
3.5, we have

Iα,ε(F̃ )− Iα,ε(Ẽ) ≤
I2
α,ε(F̃ )

Iα,ε(E\F )
. (3.18)

Now on the one hand, since by Lemma 3.1, |E|+
∑
i≥2 |Ei| = ωN , |F |+

∑
i≥2 |Ei| = ωN−|E\F | & 1

(recall that r � 1) and thus by (3.6) of Lemma 3.3,

Iα,ε(F̃ ) . 1.

On the other hand, since E\F ⊂ Br we have

Iα,ε(E\F ) ≥ Iα,ε(Br) + ε inf
µ(Br)=1

∫
Br

µ2 & r−(N−α) + εr−N ≥ r−(N−α). (3.19)
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Putting these two things together, (3.18) yields

Iα,ε(F̃ )− Iα,ε(Ẽ) . rN−α.

Plugging this in combination with |E∆F | . rN in (3.17) concludes the proof of (3.16). �

Remark 3.9. From (3.19) we see that we can improve (3.16) to

P (Ei) ≤ P (F ) + C
(
Q2 min(r−α, ε−1) + 1

)
rN ∀F∆Ei ⊂ Br(x).

This means that for every α ∈ (0, N), if r ≤ ε1/α then the classical regularity theory for perimeter
almost-minimizers applies (see [27]). In particular, for α = 2, this gives a very elementary proof
of the regularity of minimizers for the functional considered in [7, 30] if the permittivity of the
droplet is assumed to coincide with the permittivity of the vacuum (see however [7, Remark 4.6]
where it is observed that this assumption would also simplify their proof).

At this point we see the difference between the case α > 1 and α ≤ 1. Indeed, in the latter case,
thanks to (3.16), we may appeal to the regularity theory for almost-minimizers of the perimeter
(since N − α ≥ N − 1). We start with the simpler part which consists of the density estimates.
Since the cases α < 1 and α = 1 are treated differently, we introduce the notation 1α=1 = 1 if
α = 1 and 1α=1 =∞ if α ∈ (0, 1).

Proposition 3.10. For every α ∈ (0, 1] and Q > 0 let Λ ∼ 1 + Q2 be such that Proposition 3.8

applies. Then, for every ε ∈ (0, 1], and every generalized minimizer Ẽ = (Ei)i≥1 of Fα,Q,Λ,ε, if
max(Q2r1−α, r)� 1 and x ∈ ∂MEi (recall that ∂M is the measure-theoretical boundary),

min(|Ei ∩Br(x)|, |Br(x)\Ei|) & rN (3.20)

and
P (Ei, Br(x)) ∼ rN−1. (3.21)

As a consequence, there exists Q1 > 0 such that for Q ≤ Q̄ ≤ Q11α=1, up to the choice of a
representative, every generalized minimizer is made of finitely many Ei, each of which is connected
with Ei ∈ S and for which ∂Ei = ∂MEi. Moreover, the number of such components as well as
their diameter depends only on Q̄.

Proof. Estimates (3.20) and (3.21) follow directly from [18, Proposition 3.1]. For α < 1 they can
also be obtained (under slightly stronger hypothesis on r) from the more classical theory, see for
instance [27].
The regularity of the minimizers as well as the bound on the number and diameter of the connected
components is classical (see e.g. [22]) once we observe that for every Q ≤ Q̄ ≤ Q11α=1 there is
r̄ depending only on Q̄ such that max(Q2r̄1−α, r̄) � 1 for every Q ≤ Q̄. The fact that we

may assume that each component Ei of Ẽ is made of a single connected component follows from
Iα,ε(E ∪ F ) ≥ Iα,ε(E × F ) for every sets E, F with E ∩ F = ∅. �

Before stating the full conclusions of the regularity theory for perimeter almost minimizers, let
us conclude the proof of the existence of generalized volume-constrained minimizers of Fα,Q.

Theorem 3.11. Let Q1 be given by Proposition 3.10. Then for every 0 < Q ≤ Q̄ ≤ Q11α=1 there

exist generalized minimizers Ẽ = (Ei)Ii=1 ∈ SN of

min
Ẽ∈SN

{
Fα,Q(Ẽ) : |Ẽ| = ωN

}
.

Moreover, for each i ≤ I, Ei is a perimeter almost minimizer in the sense of (3.16) and both I
and diam(Ei) are bounded by a constant depending only on Q̄.

Proof. Let Λ ∼ 1 + Q̄2 be such that both Lemma 3.1 and Proposition 3.7 apply. By the latter,

for every ε ∈ (0, 1] and Q ≤ Q̄, there exists a generalized minimizer Ẽε of Fα,Q,Λ,ε. Moreover,

by Proposition (3.10), Ẽε = (Eiε)
I
i=1 for some connected sets Ei ∈ S, where both I and their

diameters depend only on Q̄. Thanks to the uniform density bounds (3.20) and (3.21) we can
extract a subsequence for which Eiε converges both in L1 and in the Kuratowski sense to some
Ei ∈ S. By compactness of perimeter almost minimizers, see [18], Ei satisfies (3.16). We set
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Ẽ = (Ei)i≤I . Using that Iα,ε(Ẽε) ≥ Iα(Ẽε) and the fact that Iα is lower semi-continuous under
this convergence (see e.g. [19, Theorem 4.2]), we obtain

lim inf
ε→0

Fα,Q,Λ,ε(Ẽε) ≥ Fα,Q,Λ(Ẽ).

We now prove that

inf
F̃∈SN

{
Fα,Q,Λ(F̃ )

}
≥ lim sup

ε→0
inf
F̃∈SN

{
Fα,Q,Λ,ε(F̃ )

}
,

which combined with the previous inequality would show that Ẽ is a generalized minimizer of
Fα,Q,Λ as

Fα,Q,Λ(Ẽ) ≥ inf
F̃∈SN

{
Fα,Q,Λ(F̃ )

}
.

Arguing exactly as in Lemma 3.6, we see that it is enough to prove that for every F ∈ S, there
exists a sequence Fε such that

lim sup
ε→0

Fα,Q,Λ,ε(Fε) ≤ Fα,Q,Λ(F ). (3.22)

By [36] applied to F c, we can find smooth compact sets Fδ with F ⊂ Fδ, P (F δ) ≤ P (F ) + δ and
||F | − |F δ|| ≤ δ. Since Iα(F ) ≥ Iα(F δ) as F ⊂ F δ we have (actually there is equality)

lim sup
δ→0

Fα,Q,Λ(F δ) ≤ Fα,Q,Λ(F )

and we can thus further assume that F is smooth in the proof of (3.22). For smooth sets, by [19,
Proposition 2.16]2, we can find for every δ > 0 a function fδ ∈ L∞(F ) with

∫
F
fδ = 1 and such

that

Iα(fδ) ≤ Iα(F ) + δ.

Since for every δ > 0, limε→0 Iα,ε(fδ) = Iα(fδ), a diagonal argument shows that Iα(F ) =
limε→0 Iα,ε(F ). Using Fε = F we conclude the proof of (3.22).

As Ẽ is a generalized minimizer of Fα,Q,Λ, Lemma 3.1 implies that |Ẽ| = ωN and thus Ẽ is
also a volume-constrained generalized minimizer of Fα,Q. �

We end this section by recalling the regularity properties of generalized minimizers and show in
particular that for small charge Q they are actually classical minimizers. We start with the case
α < 1.

Proposition 3.12. For α ∈ (0, 1) and Q > 0 let Ẽ = (Ei)Ii=1 be a volume-constrained generalized

minimizer of Fα,Q. Then, ∂∗Ei (recall that ∂∗ denotes the reduced boundary) are C1, 12 (1−α)

regular. Moreover, denoting by Σi = ∂Ei\∂∗Ei, we have that for every i, Σi is empty if N ≤ 7 is
at most finite if N = 8 and satisfies Hs(Σi) = 0 if s > N − 8 and N ≥ 9.

In addition, for Q� 1, Ẽ = EQ is a classical volume-constrained minimizer of Fα,Q, Σ(EQ) = ∅
and for every β < 1

2 (1− α), EQ converges in C1,β to B1 as Q→ 0.

Proof. The conclusion follows from the classical regularity theory for perimeter almost minimizers,
see [27, 37] and the fact that by the quantitative isoperimetric inequality, up to translation and
relabeling, |E1∆B1|+

∑
i≥2

|Ei|

2

. P (Ẽ)− P (B1) ≤ Q2Iα(B1),

which implies in conjunction with (3.20) that for Q small enough, Ei = ∅ for i ≥ 2 (so that Ẽ = E1

is a classical minimizer) together with the convergence to B1. �

2The statement of [19, Proposition 2.16] requires F to be connected but the proof works for disconnected sets
as well.
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For α = 1 it is well-known that in general (3.16) does not even imply C1 regularity. In order to
state the counterpart of Proposition 3.12 in this case, let us first recall the definition of Reifenberg
flat sets.

Definition 3.13. Let δ, r0 > 0 and x ∈ RN . We say that E is (δ, r0)−Reifenberg flat in Br0(x)
if for every Br(y) ⊂ Br0(x), there exists an hyperplane Hy,r containing y and such that

• we have
1

r
d(∂E ∩Br(y), Hy,r ∩Br(y)) ≤ δ,

where d denotes the Hausdorff distance;
• one of the connected components of

{d(·, Hy,r) ≥ 2δr} ∩Br(y)

is included in E and the other in Ec.

We say that E is uniformly (δ, r0)−Reifenberg flat if the above conditions hold for every x ∈ ∂E.

Proposition 3.14. Let α = 1. There exists Q2 > 0 such that for every Q ≤ Q2, every volume-
constrained generalized minimizer of Fα,Q is a classical minimizer. Moreover, for every δ > 0,
there exist Qδ, rδ > 0 such that for every Q ≤ Qδ, every volume-constrained minimizer EQ of
Fα,Q is uniformly (δ, rδ)−Reifenberg flat and up to translation,

|EQ∆B1|2 . Q2.

Proof. The proof is exactly as for Proposition 3.12, replacing the classical regularity theory by [18,
Corollary 1.4]. �

3.5. Second almost minimality property and regularity of minimizers. The aim of this
section is to prove that in the case α = 1, we can pass from the Reifenberg flatness of volume-
constrained minimizers of Fα,Q stated in Proposition 3.14 to almost C1, 12 regularity. This will be
obtained by proving a second almost minimality property for minimizers together with a higher
integrability result for the optimal measure µ.

Remark 3.15. Let us point out that using a similar proof for α ∈ (0, 1), it would be possible to

improve the C1, 12 (1−α) regularity from Proposition 3.12 to almost C1, 12 . However, in this case, the
proof of the integrability of µ can be greatly simplified by appealing directly to [35] (see also (4.5)
below). Moreover, we expect that any C1,β regularity may be improved to higher regularity through
the Euler-Lagrange equation, see [32].

We start with the quasi-minimality property.

Proposition 3.16. There exists C > 0 depending only on N with the following property. If
Q ≤ 1 and E is a volume-constrained minimizer of F1,Q with µE the corresponding 1/2-harmonic
measure i.e. I1(E) = I1(µE), then for every x ∈ RN and 0 < r � 1,

P (E) ≤ P (F ) + C

Q2

(∫
Br(x)

µ
2N
N+1

E

)N+1
N

+ rN

 ∀E∆F ⊂ Br(x).

Proof. Without loss of generality we may assume that x = 0 and µE ∈ L
2N
N+1 (Br) since otherwise

there is nothing to prove. By Lemma 3.1, there exists a universal constant Λ > 0 (recall that
Q ≤ 1) such that E is a minimizer of

F1,Q(E) + Λ||E| − ωN |.
Arguing as in the proof of Proposition 3.8, we see that it is enough to prove that for every F ⊂ E
with E\F ⊂ Br,

I1(F ) ≤ I1(E) + C

(∫
E\F

µ
2N
N+1

E

)N+1
N

. (3.23)
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In order to prove (3.23) we follow the general strategy of [7, Proposition 4.5] and use

µ =

(
µE +

µE(E\F )

|F |

)
χF

as a competitor for I1(F ). We define

uE(x) =

∫
E

dµE(y)

|x− y|N−1
and u(x) =

∫
E

dµ(y)

|x− y|N−1

the potentials associated to µE and µ. We recall from (2.5) that u solves on RN the equation

(−∆)
1
2u = C ′(N, 1)µ,

and that by (2.7),
1

C ′(N, 1)
[u]2

H
1
2

=

∫
E

u dµ = I1(µ).

Let us notice that since uE = I1(E) on E, recall (2.8), and since µE(E) = µ(E) = 1,∫
E

uEd(µ− µE) = 0. (3.24)

Since I1(F ) ≤ I1(µ) and I1(E) = I1(µE) we have

I1(F )− I1(E) ≤
∫
E

udµ−
∫
E

uEdµE =

∫
E

(u− uE)d(µ− µE) +

∫
E

udµE −
∫
E

uEdµE .

Using Fubini we have ∫
E

udµE =

∫
E

uEdµ
(3.24)

=

∫
E

uEdµE

and we get

I1(F )− I1(E) ≤
∫
E

(u− uE)d(µ− µE) =
1

C ′(N, 1)
[u− uE ]2

H
1
2
.

We now estimate [u− uE ]2
H

1
2

. For this, using Hölder inequality and Sobolev embedding we write

[u− uE ]2
H

1
2

=

∫
E

(u− uE)d(µ− µE)

≤ ‖u− uE‖
L

2N
N−1
‖µ− µE‖

L
2N
N+1

. [u− uE ]
H

1
2
‖µ− µE‖

L
2N
N+1

.

Using Young inequality, this leads to

I1(F )− I1(E) . [u− uE ]2
H

1
2
. ‖µ− µE‖2

L
2N
N+1

.

We are left with estimating ‖µ − µE‖
L

2N
N+1

. By definition of µ, we have µ − µE = µE(E\F )
|F | χF −

µEχE\F and thus

‖µ− µE‖2
L

2N
N+1

=

(∫
E

∣∣∣∣µE(E \ F )

|F |
χF − µEχE\F

∣∣∣∣ 2N
N+1

)N+1
N

=

(∫
F

(
µE(E \ F )

|F |

) 2N
N+1

+

∫
E\F

µ
2N
N+1

E

)N+1
N

.
µE(E\F )2

|F |N−1
N

+

(∫
E\F

µ
2N
N+1

E

)N+1
N

|F |&1

. µE(E\F )2 +

(∫
E\F

µ
2N
N+1

E

)N+1
N

.
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Finally, by Hölder inequality,

µE(E\F )2 ≤

(∫
E\F

µ
2N
N+1

E

)N+1
N

|E\F |
N−1
N .

(∫
E\F

µ
2N
N+1

E

)N+1
N

.

This concludes the proof of (3.23). �

From Proposition 3.16, we see that in order to prove that E is a perimeter almost-minimizer in
the classical sense, it is enough to show decay estimates for ‖µE‖L2N/(N+1)(Br(x)) for x ∈ ∂E. We
start by proving the following Hölder estimate for the potentials.

Lemma 3.17. For every δ > 0, there exists γ ∈ (0, 1
2 ) with γ → 1

2 as δ → 0 such that if E is a
bounded (δ, r0)−Reifenberg flat domain then

|1− I−1
1 (E)uE | .

dγ(·, ∂E)

rγ0
, (3.25)

where uE(x) =
∫
E

dµE(y)
|x−y|N−1 and µE is such that I1(E) = I1(µE).

Proof. By scaling we may assume that r0 = 1. We follow ideas from the proofs of [25, 39] and
use the Alt-Caffarelli-Friedman monotonicity formula to show (3.25). Let u = 1− I−1

1 (E)uE and

v be the harmonic extension of u to RN+1
+ . Since u ∈ [0, 1], also v ∈ [0, 1]. Notice that since

u ≤ 1 it is enough to prove (3.25) in {d(·, ∂E)� 1}. For every x ∈ RN+1
+ and every r > 0, we let

B+
r (x) = Br(x) ∩ RN+1

+ and ∂+Br(x) = ∂Br(x) ∩ RN+1
+ . We claim that

1

rN−1

∫
B+
r (x)

|∇v|2 . r2γ

∫
B+

1 (x)

|∇v|2

|x− y|N−1
∀0 < r � 1 (3.26)

for some exponent γ > 0 with γ → 1
2 as δ → 0 and

sup
RN+1

+

∫
B+

1 (x)

|∇v|2

|x− y|N−1
. 1. (3.27)

Provided (3.26) and (3.27) hold, we can conclude the proof of (3.25) using Poincaré inequality,
Campanato’s criterion and v = 0 in E × {0}. Eventually we show that γ → 1/2 as δ → 0. We
devote a step for each of these three claims
Step 1: Proof of (3.26). To show that (3.26) holds, we first observe that it is enough to consider
x ∈ ∂E×{0}. Indeed, assume the statement is proven in that case. Then for x /∈ ∂E×{0}, using
either an odd reflection or an even reflection with respect to xN+1 = 0 we may assume that v is
harmonic in Br(x) for every r ≤ r̄ = min(1, d(x, ∂E × {0})). It is then a classical fact that

r 7→ 1

rN+1

∫
Br(x)

|∇v|2

is increasing (this follows for instance from sub-harmonicity of |∇v|2 which is itself a consequence
of Bochner formula). Therefore for any 0 ≤ γ ≤ 1,

1

rN−1

∫
B+
r (x)

|∇v|2 ≤
(r
r̄

)2 1

r̄N−1

∫
B+
r̄ (x)

|∇v|2 ≤
(r
r̄

)2γ 1

r̄N−1

∫
B+
r̄ (x)

|∇v|2.

If r̄ � 1 then (3.26) follows from the case x ∈ ∂E × {0}. If instead r̄ & 1,(r
r̄

)2γ 1

r̄N−1

∫
B+
r̄ (x)

|∇v|2 . r2γ

∫
B+
r̄ (x)

|∇v|2

|x− y|N−1
≤ r2γ

∫
B+

1 (x)

|∇v|2

|x− y|N−1
,

which proves (3.26) also in this case.
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Let now x ∈ ∂E ×{0}. Without loss of generality we may assume that x = 0. For every r > 0,
let3

λ(r) = min

{∫
∂+Br

|∇τv|2∫
∂+Br

v2
: v = 0 on E × {0} ∩ ∂B+

r

}
be the first eigenvalue of the Laplacian on the half-sphere with Dirichlet boundary conditions on
E. Define then the function

γ(λ) =

√(
N − 1

2

)2

+ λ− N − 1

2

and then

γ = min
r≤1

[γ(r2λ(r))].

We claim that for r ∈ (0, 1], the function

Φ(r) =
1

r2γ

∫
B+
r

|∇v|2

|x|N−1

is increasing. For this we follow almost verbatim the proof of [39, Theorem 2.6] (see also [39, Lemma
2.10 & Lemma 2.11]). In particular, a regularization argument is required to make rigorous all
the computations below but we refer the reader to [39] for the details. Computing the logarithmic
derivative of Φ, we have

Φ′

Φ
= −2

γ

r
+

(∫
∂+Br

|∇v|2

|x|N−1

)(∫
B+
r

|∇v|2

|x|N−1

)−1

and it is therefore enough to prove that(∫
∂+Br

|∇v|2

|x|N−1

)(∫
B+
r

|∇v|2

|x|N−1

)−1

≥ 2
γ

r
. (3.28)

We first claim that ∫
B+
r

|∇v|2

|x|N−1
dx ≤ 1

rN−1

∫
∂+Br

v∂νv +
N − 1

2rN

∫
∂+Br

v2. (3.29)

For this we notice that since Γ = |x|1−N is the Green function of the Laplacian on RN+1, we have
∆Γ ≤ 0 and moreover, since it is radially symmetric, we have ∂N+1Γ = 0 if xN+1 = 0. Using
integration by parts we have (using that on ∂B+

r ∩ {xN+1 = 0}, v∂νv = 0)∫
B+
r

|∇v|2Γ =

∫
∂B+

r

vΓ∂νv −
∫
B+
r

1

2
∇(v2) · ∇Γ

=

∫
∂+Br

Γv∂νv −
∫
∂B+

r

1

2
v2∂νΓ +

1

2

∫
B+

+

v2∆Γ

≤
∫
∂+Br

Γv∂νv −
∫
∂+Br

1

2
v2∂νΓ

=
1

rN−1

∫
∂+Br

v∂νv +
N − 1

2rN

∫
∂+Br

v2.

3we denote by ∇τ the tangential gradient on the sphere and ∂ν the normal derivative
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This proves (3.29). We thus have(∫
∂+Br

|∇v|2

|x|N−1

)(∫
B+
r

|∇v|2

|x|N−1

)−1

=

(
r1−N

∫
∂+Br

|∇v|2
)(∫

B+
r

|∇v|2Γ

)−1

(3.29)

≥
(
r1−N

∫
∂+Br

|∇v|2
)(

r1−N
(∫

∂+Br

v∂νv +
N − 1

2r

∫
∂+Br

v2

))−1

≥
(∫

∂+Br

|∇τv|2 +

∫
∂+Br

|∂νv|2
)((∫

∂+Br

v2

) 1
2
(∫

∂+Br

(∂νv)2

) 1
2

+
N − 1

2r

∫
∂+Br

v2

)−1

=

(∫
∂+Br

|∇τv|2∫
∂+Br

v2
+

∫
∂+Br

|∂νv|2∫
∂+Br

v2

)(∫∂+Br
|∂νv|2∫

∂+Br
v2

) 1
2

+
N − 1

2r

−1

≥ min
t>0

λ(r) + t2

t+ N−1
2r

.

A direct computation shows that the above minimum is attained for tmin = 1
rγ(r2λ(r)) and that

mint>0
λ(r)+t2

t+N−1
2r

= 2tmin = 2
rγ(r2λ(r)) so that eventually(∫

∂+Br

|∇v|2

|x|N−1

)(∫
B+
r

|∇v|2

|x|N−1

)
≥ 2

r
γ(r2λ(r)) ≥ 2

r
γ.

This concludes the proof of (3.28). By monotonicity of Φ we have

1

r2γ+N−1

∫
B+
r

|∇v|2 ≤ Φ(r) ≤ Φ(1) =

∫
B+

1

|∇v|2

|x|N−1

and the proof of (3.26) with γ = γ is completed.

Step 2: Proof of (3.27). For R� 1 we have∫
B+

1 (x)

|∇v|2

|x− y|N−1
≤
∫
B+
R(x)

|∇v|2

|x− y|N−1

(3.29)

.
1

RN−1

∫
∂+BR(x)

|v||∂νv|+
1

RN

∫
∂+BR(x)

v2

|v|≤1

.
1

RN−1

∫
∂+BR(x)

|∂νv|+ 1.

Since v(z) = 1−I−1
1 (E)

∫
E

dµ(y)
|z−y|N−1 and since E is bounded, if R is large enough and z ∈ ∂+BR(x),

|∇v(z)| . I
−1
1 (E)

|z|N

and thus
1

RN−1

∫
∂+BR(x)

|∂νv| .
I−1

1 (E)

RN−1
.

Sending R→∞, we conclude the proof of (3.27).

Step 3: Asymptotic on γ̄ and conclusion. We finally show that γ → 1/2 as δ → 0. Since γ(λ)
is an increasing function of λ and since for every r > 0, λ(r) is monotone under inclusion (i.e. if
we make the dependence in E explicit, then F ⊂ E implies λF (r) ≤ λE(r)), it is enough to prove
that γHδ(r)→

1
2 where

Hδ = {x1 ≤ −δ}.
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If δ = 0, then γH0
(r) = 1

2 , see [39, Proposition 2.12]. Since γHδ(r) does not depend on r, it is
enough to consider r = 1 and drop the dependence in r.
The proof is then concluded observing that δ → λHδ is continuous as δ → 0. Indeed, this
can be proven by an easy Γ−convergence argument. If uδ is a minimizer for λHδ , then up to
normalization we may assume that

∫
∂+B1

u2
δ = 1 so that uδ is bounded in H1(∂+B1) and its trace

on Hδ is bounded in H1/2. Therefore, up to extraction it converges weakly in H1(∂+B1) to a
function u0 which vanishes on H0 (by compact embedding of H1/2 in L2 for instance). Therefore
u0 is admissible for λH0 and we have

λH0
≥ lim inf

δ→0
λHδ ≥ lim inf

δ→0

∫
∂+B1

|∇τuδ|2 ≥
∫
∂+B1

|∇τu0|2 ≥ λH0
.

�

We now convert estimate (3.25) on the potential into the desired statement on µE .

Lemma 3.18. For every γ ∈ (0, 1
2 ), there exists δ0 > 0 such that for every r0 > 0 and every

(δ, r0)−Reifenberg flat domain E with δ ≤ δ0, µE ∈ L
2N
N+1

loc (RN ) and for every x ∈ RN and
r < r0/2 there holds (∫

Br(x)

µ
2N
N+1

E

)N+1
N

. rN−1+2γ , (3.30)

where the implicit constant depends on N , γ, r0 and |E|.

Proof. Let γ = γ(δ) be given by Lemma 3.17. We first derive from (3.25) the following estimate
on µE :

µE . d
−(1−γ)(·, ∂E). (3.31)

If uE denotes the associated potential,

C ′(N, 1)µE(x)
(2.5)
= (−∆)

1
2uE(x)

(2.1)
= C(N, 1/2)

∫
Ec

I1(E)− uE(y)

|x− y|N+1
dy

(3.25)

.
I1(E)

rγ0

∫
Ec

dγ(y, ∂E)

|x− y|N+1
dy .

I1(E)

rγ0

∫
Bc
d(x,∂E)

(x)

dz

|z|N+1−γ

.
I1(E)

rγ0
d−(1−γ)(x, ∂E) . d−(1−γ)(x, ∂E),

where in the last line we used that if B is a ball of measure |E| then I1(E) ≤ I1(B). This follows
for instance from the fractional Polya-Szëgo inequality [15] and the capacitary definition (2.9) of
I1 (see also [2]).

We now prove (3.30). We may assume without loss of generality that x = 0 and |γ − 1
2 | � 1.

For P > 0, we set µP = min{µE , P}. Clearly µP is an integrable function and µP → µ a.e. in
E. Moreover, since 0 ≤ µP ≤ µ, it satisfies inequality (3.31). We first claim that there exist
C0, C1 > 0 such that for every x ∈ ∂E and every r ≤ r0/2, there exists a set A(x) ⊂ ∂E such that

]A(x) ≤ C1δ
1−N (3.32)

and ∫
Br(x)

µ
2N
N+1

P ≤ C0r
N− 2N

N+1 (1−γ) +
∑

y∈A(x)

∫
B5δr(y)

µ
2N
N+1

P . (3.33)

Again, there is no loss of generality by restricting ourselves to x = 0. Recall that by Definition
3.13, since E is (δ, r0)−Reifenberg flat, for every r ≤ r0/2, there exists an hyperplane Hr such
that

d(∂E ∩Br, Hr ∩Br) ≤ δr.
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In particular, if Nr = {y ∈ Br : d(y,Hr) > 2δr} we have for y ∈ Nr, d(y, ∂E) ∼ d(y,Hr) so that∫
Br

µ
2N
N+1

P ≤
∫
Nr

µ
2N
N+1

P +

∫
Br∩Ncr

µ
2N
N+1

P

(3.31)

≤ CrN−1

∫ r

2δr

dt

t
2N
N+1 (1−γ)

+

∫
Br∩Ncr

µ
2N
N+1

P

≤ C0r
N− 2N

N+1 (1−γ) +

∫
Br∩Ncr

µ
2N
N+1

P .

We now estimate the last term on the right-hand side. By triangle inequality, for every x ∈
N c
r ∩Br, d(x, ∂E∩Br) ≤ 3δr and thus setting r1 = 5δr we have that {Br1(y)}y∈∂E∩Br is a covering

of N c
r ∩Br. By Vitali covering Lemma we can extract a finite subset of points A ⊂ ∂E ∩Br such

that

•
{
Br1/5(y)

}
y∈A is made up of pairwise disjoint balls, and

• {Br1(y)}y∈A is still a covering of N c
r ∩Br.

Since for y ∈ A, Br1/5(y) = Bδr(y) ⊂ N c
r ∩B(1+δ)r, the first condition gives

rN1 ]A . |N c
r ∩B(1+δ)r| ∼ (δr)rN−1

which, by definition of r1 yields (3.32). The second condition gives∫
Br∩Ncr

µ
2N
N+1

P ≤
∑
y∈A

∫
Br1 (y)

µ
2N
N+1

P ,

concluding the proof of (3.33).

For k ≥ 0, we set rk = (5δ)kr and define recursively A0 = {0} and,

Ak = ∪x∈Ak−1
A(x).

From (3.32) we have

]Ak ≤ (C1δ
1−N )k (3.34)

and thus applying recursively (3.33), we find for K ≥ 0,∫
Br

µ
2N
N+1

P ≤ C0

K∑
k=0

(]Ak)r
N− 2N

N+1 (1−γ)

k +
∑

y∈AK+1

∫
BrK+1

(y)

µ
2N
N+1

P .

By definition of µP we have∑
y∈AK+1

∫
BrK+1

(y)

µ
2N
N+1

P ≤ (]AK+1)|BrK+1
|P

2N
N+1 . (C1δ

1−N )K(5δ)KNrNP
2N
N+1

= (5NC1δ)
KrNP

2N
N+1 .

Thus, if 5NC1δ < 1 we can send K →∞ to obtain from the definition of rk and (3.34),∫
Br

µ
2N
N+1

P ≤ C0

∑
k≥0

(C2δ
1− 2N

N+1 (1−γ))k

 rN−
2N
N+1 (1−γ),

where C2 = C15N−
2N
N+1 (1−γ). Finally if |γ − 1

2 | � 1, 2N
N+1 (1− γ) < 1 and thus provided δ is small

enough, the sum converges and we have (notice that all the constants involved are independent of
P ) (∫

Br

µ
2N
N+1

P

)N+1
N

. rN−1+2γ .

Sending P →∞ concludes the proof of (3.30).
�
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Remark 3.19. We point out that this estimate is essentially optimal as can be seen from the case
E = B1, see [24, Chapter II.13] and Section 4 below.

Remark 3.20. A quick inspection of the proof shows that for every q < 2, µE ∈ Lqloc(RN ) if E
is δ−Reifenberg flat with δ small enough. This is again optimal in light of the boundary behavior
of the 1/2−harmonic measure of the ball see [24, Chapter II.13] and Section 4 below. This higher

integrability (with respect to L
2N
N+1 ) would however by itself not be sufficient to obtain the regularity

of volume-constrained minimizers of Fα,Q so that we need the more precise estimate (3.30).

Combining Proposition 3.14 together with Proposition 3.16 and Lemma 3.18 we obtain that for
small chargeQ every volume constrained minimizer of F1,Q is also a perimeter almost-minimizer for
which the classical regularity theory applies, see [27] so that we have the counterpart of Proposition
3.12.

Proposition 3.21. Let α = 1. For every γ ∈ (0, 1/2) there exists Q(γ,N) > 0 such that for every
Q ≤ Q(γ,N), every volume-constrained minimizer EQ of F1,Q is C1,γ with uniformly bounded
C1,γ norm. As a consequence, for every β < γ, up to translation, EQ converges in C1,β to B1 as
Q→ 0.

4. Rigidity of the ball for small charges

In this section we prove Theorem 1.5 i.e. we show that for every α ∈ (0, 2) and small enough
charge Q, the ball is the unique minimizer of Fα,Q under volume constraints in the class of nearly
spherical sets.

Before embarking in the proofs let us set some notation and make a few preliminary remarks.
First, recall that fixing an arbitrary γ ∈ (0, 1), we say that E is nearly spherical if |E| = |B| (where
B = B1 is the unit ball), E has barycenter in 0 and there exists φ : ∂B 7→ R with ‖φ‖C1,γ(∂B) ≤ 1
such that

∂E = {(1 + φ(x))x : x ∈ ∂B}.
With a slight abuse of notation we still denote by φ its 0−homogeneous extension outside ∂B that
is, the function RN 3 x 7→ φ(x/|x|). We recall from [16] that if E is nearly spherical, we have∣∣∣∣∫

∂B

φ

∣∣∣∣ . ∫
∂B

φ2. (4.1)

In particular, if ‖φ‖W 1,∞(∂B) � 1, recalling the notation φ̄ = 1
P (B)

∫
∂B

φ, we have for s ∈ (0, 1),∫
∂B

φ2 .
∫
∂B

(φ− φ̄)2
(2.4)

. [φ]2Hs(∂B). (4.2)

For µ and ν two Radon measures on RN , we define the positive bilinear operator (see [24])

Iα(µ, ν) =

∫
RN×RN

dµ(x) dν(y)

|x− y|N−α
.

In particular we have Iα(µ) = Iα(µ, µ). We let µE be the optimal measure of E and then

uE(x) =
∫
E

dµE
|x−y|N−α be its associated potential. When there is no risk of confusion we drop the

index E from both. In the specific case of the unit ball B we have by [24, Chapter II.13]

µB(x) =
Cα

(1− |x|2)
α
2
∼ 1

d(x, ∂B)
α
2
.

We sometimes use the notation φx = φ(x). In particular, if E is nearly spherical and φ is the
corresponding parametrization, we set for x ∈ B, T (x) = (1 + φx)x so that E = T (B). We then
define g = T−1#µE (which is a probability measure on B) so that

Iα(E) =

∫
B×B

dgx dgy
|T (x)− T (y)|N−α

. (4.3)

We can now begin the proofs. We first prove that g has the same behavior as µB close to ∂B.
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Lemma 4.1. Let α ∈ (0, 2) and E be a nearly spherical set. Then its optimal measure satisfies
for x ∈ ∂B

g(x) .
1

d(x, ∂B)
α
2
∼ µB(x). (4.4)

Proof. The proof resemble the proof of Lemma 3.18 taking advantage of the regularity of E to
obtain a sharp estimate. We first show that µ = µE satisfies

µ(x) .
1

d(x, ∂E)
α
2
. (4.5)

Recall that by (2.5) and (2.8), {
(−∆)

α
2 u(x) = 0 x ∈ Ec

u(x)− Iα(E) = 0 x ∈ E.

Thus, by the boundary regularity theory for the fractional Laplacian developed in [35],

u(x)− Iα(E) . d
α
2 (x, ∂E).

Hence, arguing as in the proof of Lemma 3.18 we compute for x ∈ E,

C ′(N,α)µ(x)
(2.5)
= (−∆)

α
2 u(x)

(2.1)
= C(N,α/2)

∫
Ec

Iα(E)− u(y)

|x− y|N+α
2
dy

.
∫
Ec

d
α
2 (y, ∂E)

|x− y|N+α
dy .

∫
Bc
d(x,∂E)

(x)

dz

|z|N+α−α2

. d(x, ∂E)−
α
2 .

Since g(x) = (1 + φx)Nµ((1 + φx)x) with |φ| ≤ 1/4, up to chose δ small enough, we obtain

g(x) . µ((1 + φx)x) .
1

d
α
2 ((1 + φx)x, ∂E)

.

Thus (4.4) follows provided

d((1 + φx)x, ∂E) ∼ |1− |x||. (4.6)

Let us prove (4.6). Since

d((1 + φx)x, ∂E) = min
y∈∂B

|(1 + φx)x− (1 + φy)y|,

testing with y = x
|x| we obtain the upper bound

d((1 + φx)x, ∂E) ≤ (1 + φx)|1− |x|| . |1− |x||.

To ge the lower bound we may assume that |1− |x|| � 1. Squaring we get

d2((1 + φx)x, ∂E)

= min
y∈∂B

|(1 + φx)x− (1 + φy)y|2

= min
y∈∂B

{
(1 + φx)2|x|2 − 2(1 + φx)(1 + φy)x · y + |1 + φy|2

}
= min
y∈∂B

{
(1 + φx)2|x|2 − 2(1 + φx)(1 + φy)|x|+ |1 + φy|2 + 2(1 + φx)(1 + φy)x ·

(
x

|x|
− y
)}

= min
y∈∂B

{
(1 + φx)2

∣∣∣∣|x| − 1 + φy
1 + φx

∣∣∣∣2 + 2(1 + φx)(1 + φy)(|x| − y · x)

}

& min
y∈∂B

{∣∣∣∣|x| − 1 +
φx − φy
1 + φx

∣∣∣∣2 + (|x| − y · x)

}
.

Now for every y, either (|x| − y · x) & ||x| − 1|2 or (|x| − y · x)� ||x| − 1|2. The first case directly
leads to the conclusion of the proof of (4.6). In the second case, writing that x = rσ with σ ∈ ∂B,
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this means that |σ− y|2 = 1
2r (|x| − x · y)� ||x| − 1|2 and thus |φx−φy| . |σ− y| � ||x| − 1| from

which we find that for every y ∈ ∂B,∣∣∣∣|x| − 1 +
φx − φy
1 + φx

∣∣∣∣2 + (|x| − y · x) & ||x| − 1|2

and the claim follows as well. �

Next we state and prove two lemmas giving the Taylor expansion of the term |T (x)−T (y)|−(N−α)

appearing in (4.3).

Lemma 4.2. For x, y ∈ B, we have

|T (x)− T (y)|2 = |x− y|2 (1 + φx + φy + φxφy + ψ(x, y)) (4.7)

where

ψ(x, y) =
1

2
(|x|2 + |y|2)

(
φx − φy
|x− y|

)2

+ (|x|+ |y|)
(

1− 1

2
(φx + φy)

)
φx − φy
|x− y|

. (4.8)

Proof. Expanding the squares we get

|T (x)− T (y)|2 = |(x− y) +
1

2
((x+ y)(φx − φy) + (x− y)(φx + φy))|2

= |x− y|2 + (|x|2 − |y|2)(φx − φy) + |x− y|2(φx + φy)

+
1

4
|x+ y|2|φx − φy|2 +

1

4
|x− y|2|φx + φy|2

+
1

2
(|x|2 − |y|2)(φ2

x − φ2
y).

Comparing with (4.7) we are left with the proof of

1

4
|x+ y|2|φx − φy|2 +

1

4
|x− y|2|φx + φy|2 =

1

2
(|x|2 + |y|2)(φx − φy)2 + |x− y|2φxφy.

For this we write that (φx + φy)2 = (φx − φy)2 + 4φxφy to get

1

4
|x+ y|2|φx − φy|2 +

1

4
|x− y|2|φx + φy|2 =

1

4
|φx − φy|2(|x+ y|2 + |x− y|2) + |x− y|2φxφy

=
1

2
(|x|2 + |y|2)(φx − φy)2 + |x− y|2φxφy.

�

As a consequence we get the following Taylor expansion of |T (x)− T (y)|−(N−α).

Lemma 4.3. Set α̂ = N − α. If ‖φ‖W 1,∞(∂B) � 1 then for x, y ∈ B,

|T (x)− T (y)|−(N−α) = |x− y|−(N−α)

(
(1− α̂

2
φx)(1− α̂

2
φy)− α̂

2
ψ(x, y) + ζ(x, y)

)
(4.9)

where

|ζ(x, y)| . φ2
x + φ2

y + ψ2(x, y), (4.10)

and where ψ is the function defined in (4.8).

Proof. Let us first point out that under our hypothesis we have ‖ψ‖L∞ � 1. Indeed, this follows
from ‖φ‖W 1,∞(∂B) � 1 and

|x|+ |y|
|x− y|

.
1

| x|x| −
y
|y| |

+ 1. (4.11)
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This inequality may be easily seen using for instance polar coordinates. That is if x = rσ and
y = sv then(

|x|+ |y|
|x− y|

)2

=
r2 + s2

|r − s|2 + rs|σ − v|2
=

|r − s|2

|r − s|2 + rs|σ − v|2
+

2rs

|r − s|2 + rs|σ − v|2

≤ 1 +
2

|σ − v|2
.

We then obtain the result by (4.7) and Taylor expansion. �

The next result contains one of the key linearization estimates we need to obtain our rigidity
result.

Lemma 4.4. Let E be a nearly spherical set with ‖φ‖W 1,∞(∂B) � 1. Then for every α ∈ (0, 2)∣∣∣∣Iα(E)− Iα
(

(1− α̂

2
φ)g

)∣∣∣∣ . [φ]2
H

2−α
2 (∂B)

, (4.12)

where (1− α̂
2 φ)g is seen as a measure on B (recall that φ is extended by 0−homogeneity on RN )

and α̂ = N − α.

Proof. In view of (4.9) and (4.3), it is enough to prove that∣∣∣∣∫
B×B

ψ(x, y)

|x− y|N−α
dgxdgy

∣∣∣∣+

∣∣∣∣∫
B×B

ζ(x, y)

|x− y|N−α
dgxdgy

∣∣∣∣ . [φ]2
H

2−α
2 (∂B)

.

Recall that from the proof of Lemma 4.3, ‖φ‖L∞(∂B) � 1 implies ‖ψ‖L∞ � 1. Moreover, by the
radial symmetry of µB and the 0−homogeneity of φ we have∫

B×B

φ2
x

|x− y|N−α
dgxdgy

(4.4)

.
∫
B×B

φ2
x

dµB(x)dµB(y)

|x− y|N−α
=

Iα(B)

HN−1(∂B)

∫
∂B

φ2
(4.2)

. [φ]2
H

2−α
2 (∂B)

.

(4.13)
Hence, by (4.10) we are left with the proof of∣∣∣∣∫

B×B

ψ(x, y)

|x− y|N−α
dgxdgy

∣∣∣∣ . [φ]2
H

2−α
2 (∂B)

.

By symmetry in x and y we have∫
B×B

(φx − φy)
|x|+ |y|
|x− y|N−α

dgxdgy = 0.

Moreover, Young inequality yields

(|x|+ |y|)|φx + φy|
|φx − φy|
|x− y|

. (|x|2 + |y|2)

(
φx − φy
|x− y|

)2

+ φ2
x + φ2

y

so that by (4.13) and the definition (4.8) of ψ, we just need to prove∫
B×B

(|x|2 + |y|2)

(
φx − φy
|x− y|

)2
1

|x− y|N−α
dgxdgy . [φ]2

H
2−α

2 (∂B)
.

Using (4.11) and (4.4) we have∫
B×B

(|x|2 + |y|2)

(
φx − φy
|x− y|

)2
1

|x− y|N−α
dgxdgy

.
∫
B×B

( φx − φy
| x|x| −

y
|y| |

)2

+ (φx − φy)2

 dµB(x)dµB(y)

|x− y|N−α

.
∫
B×B

(
φx − φy
| x|x| −

y
|y| |

)2
dµB(x)dµB(y)

|x− y|N−α
+

∫
∂B

φ2,
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where we used Young inequality and formula (4.13) to estimate the second term in the last in-
equality. Thanks to (4.2), we may further reduce the proof of (4.12) to

∫
B×B

(
φx − φy
| x|x| −

y
|y| |

)2
dµB(x)dµB(y)

|x− y|N−α
. [φ]2

H
2−α

2 (∂B)
. (4.14)

Recalling that µB(x) . (1− |x|)−α2 and writing x and y in polar coordinates x = rσ and y = sv,
with r, s ∈ R and σ, v ∈ ∂B, we get

∫
B×B

(
φx − φy
| x|x| −

y
|y| |

)2
dµB(x)dµB(y)

|x− y|N−α

.
∫
∂B×∂B

(
φ(σ)− φ(v)

|σ − v|

)2
[∫ 1

0

∫ 1

0

rN−1sN−1

|1− r|α2 |1− s|α2
drds

(|r − s|2 + rs|σ − v|2)
N−α

2

]
dσdv

=

∫
∂B×∂B

(
φ(σ)− φ(v)

|σ − v|

)2

F (|σ − v|)dσdv

where

F (θ) =

∫ 1

0

∫ 1

0

rN−1sN−1

|1− r|α2 |1− s|α2
drds

(|r − s|2 + rsθ2)
N−α

2

.

We claim that for 0 < θ ≤ 2,

F (θ) .
1

θN−α−1
. (4.15)

It is enough to prove this estimate for θ � 1. To this aim we first estimate∫ 1
2

0

∫ 1

0

rN−1sN−1

|1− r|α2 |1− s|α2
drds

(|r − s|2 + rsθ2)
N−α

2

.
∫ 1

2

0

rN−1

[∫ 1

0

1

|1− s|α2
ds

(|r − s|2 + rsθ2)
N−α

2

]
dr

.
∫ 1

2

0

rN−1

[∫ 3
4

0

ds

(|r − s|2 + rsθ2)
N−α

2

]
dr

+

∫ 1
2

0

[∫ 1

3
4

ds

|1− s|α2

]
dr

.
∫ 1

2

0

rN−1

[∫
R

dt

(t2 + r2θ2 + rtθ2)
N−α

2

]
dr + 1,

where in the last line we did the change of variables s = r + t. We now write that by the change
of variables t = rθs,∫

R

dt

(t2 + r2θ2 + rtθ2)
N−α

2

=
1

(rθ)N−α−1

∫
R

ds

(s2 + 1 + θs)
N−α

2

.
1

(rθ)N−α−1

∫
R

ds

((s+ 1)2 + |s|)N−α2

.
1

(rθ)N−α−1
,

where we used that since θ ≤ 1, s2 + 1 + θs & (s+ 1)2 + |s|. We thus conclude that∫ 1
2

0

∫ 1

0

rN−1sN−1

|1− r|α2 |1− s|α2
drds

(|r − s|2 + rsθ2)
N−α

2

. 1 +
1

θN−α−1

∫ 1
2

0

rαdr .
1

θN−α−1
. (4.16)
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We now focus on the integral between 1/2 and 1 which we split as∫ 1

1
2

∫ 1

0

rN−1sN−1

|1− r|α2 |1− s|α2
drds

(|r − s|2 + rsθ2)
N−α

2

.
∫ 1

1
2

∫ 1
4

0

1

|1− r|α2
drds

+

∫ 1

1
2

∫ 1

1
4

1

|1− r|α2 |1− s|α2
drds

(|r − s|2 + θ2)
N−α

2

. 1 +

∫ 1
2

0

∫ 1

−1

1

t
α
2 |t− w|α2

dtdw

(w2 + θ2)
N−α

2

,

where in the last line we made the change of variables r = 1− t and s = 1− t+w. Now for every
w ∈ (−1, 1), ∫ 1

2

0

dt

t
α
2 |t− w|α2

≤
∫ 1

2

0

dt

tα
+

∫ 1
2

0

dt

|t− w|α
. 1

and thus ∫ 1
2

0

∫ 1

−1

1

t
α
2 |t− w|α2

dtdw

(w2 + θ2)
N−α

2

.
∫ 1

−1

dw

(w + θ)N−α
.

1

θN−α−1
.

This proves ∫ 1

1
2

∫ 1

0

rN−1sN−1

|1− r|α2 |1− s|α2
drds

(|r − s|2 + rsθ2)
N−α

2

.
1

θN−α−1
,

which together with (4.16) concludes the proof of (4.15). We thus find∫
B×B

(
φx − φy
| x|x| −

y
|y| |

)2
dµB(x)dµB(y)

|x− y|N−α
.
∫
∂B×∂B

(φ(σ)− φ(v))2

|σ − v|N−α+1
dσdv

(2.3)
= [φ]2

H
2−α

2 (∂B)
,

which is (4.14). �

We may now conclude the proof of the stability inequality for nearly spherical sets.

Proposition 4.5. If E is a nearly spherical set with ‖φ‖W 1,∞(∂B) � 1, then for α ∈ (0, 2),

Iα(B)− Iα(E) . [φ]2
H
α
2 (∂B)

+ [φ]2
H

2−α
2 (∂B)

. (4.17)

As a consequence,

Iα(B)− Iα(E) . P (E)− P (B). (4.18)

Proof. Using the same notation as above and using that Iα(g) = Iα(g − µB) + 2Iα(g − µB , µB) +
Iα(µB), we have

Iα(B)− Iα(E) = Iα(µB)− Iα(E)

= Iα(µB)− Iα(g) + Iα(g)− Iα(E)

= −Iα(g − µB)− 2Iα(g − µB , µB) + Iα(g)− Iα(E).

We now notice that by optimality of µB we have that uB is constant in B (recall (2.8)) and thus,
since

∫
B
µB =

∫
B
g = 1,

Iα(g − µB , µB) =

∫
B

uB(g − µB) = uB(0)

∫
B

(g − µB) = 0.

Using (4.12) we can compute

Iα(B)− Iα(E) + Iα(g − µB) ≤ Iα(g)− Iα((1− α̂

2
φ)g) + C[φ]2

H
2−α

2 (∂B)

= − α̂
2

4
Iα(φg) + α̂Iα(g, φg) + C[φ]2

H
2−α

2 (∂B)

. Iα(g, φg) + [φ]2
H

2−α
2 (∂B)

.
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We further decompose the term Iα(g, φg) as follows:

Iα(g, φg) = Iα(µB , φg) + Iα(g − µB , φg)

= Iα(µB , φµB) + Iα(µB , φ(g − µB)) + Iα(g − µB , φg).

We now observe that since µB is radially symmetric and since φ is 0−homogeneous,

Iα(µB , φµB) = C

∫
∂B

φ
(4.1)

.
∫
∂B

φ2.

By (4.2), we therefore have

Iα(B)− Iα(E) + Iα(g − µB) . Iα(µB , φ(g − µB)) + Iα(g − µB , φg) + [φ]2
H

2−α
2 (∂B)

. (4.19)

We first estimate Iα(g − µB , φg). We notice that

Iα(φg) ≤
(∫

B×B

φ2
xgxgy

|x− y|N−α

) 1
2

(∫
B×B

φ2
ygxgy

|x− y|N−α

) 1
2 (4.13)

.
∫
∂B

φ2
(4.2)

. [φ]2
H
α
2 (∂B)

.

Thus, Cauchy-Schwarz inequality for Iα (recall that it is a positive bilinear operator) gives

Iα(g − µB , φg) ≤ I
1
2
α (g − µB)I

1
2
α (φg) . I

1
2
α (g − µB)[φ]

H
α
2 (∂B)

. (4.20)

We now turn to Iα(µB , φ(g − µB)). For this we use that uB is constant on B to write

Iα(µB , φ(g − µB)) = uB(0)

∫
B

φ(g − µB).

Let ρ be a smooth, positive cut-off function with ρ = 1 on B and ρ = 0 on Bc2. We then set
Φ = φρ so that ∫

B

φ(g − µB) =

∫
RN

Φ(g − µB)

≤ [Φ]
H
α
2 (RN )

[g − µB ]
H−

α
2 (RN )

(2.6)

. [Φ]
H
α
2 (RN )

I
1
2
α (g − µB).

We finally show that

[Φ]2
H
α
2 (RN )

. [φ]2
H
α
2 (∂B)

+

∫
∂B

φ2. (4.21)

For every x, y,

(Φx − Φy)2 = (φxρx − φyρy)2 . (φx − φy)2ρ2
x + ρ2

y(ρx − ρy)2 . (φx − φy)2 + φ2
y(x − y)2,

so that

[Φ]2
H
α
2 (RN )

(2.2)

.
∫
B2×B2

(Φx − Φy)2

|x− y|N+α
.
∫
B2×B2

(φx − φy)2

|x− y|N+α
+

∫
B2×B2

φ2
y

|x− y|N+α−2

.
∫
B2×B2

(φx − φy)2

|x− y|N+α
+

∫
∂B

φ2.

Using polar coordinates we now write∫
B2×B2

(φx − φy)2

|x− y|N+α
=

∫
∂B×∂B

(φ(σ)−φ(v))2

[∫ 2

0

∫ 2

0

rN−1sN−1 drds

((r − s)2 + rs|σ − v|2)
N+α

2

]
dσdv.

Arguing as for (4.15) we have∫ 2

0

∫ 2

0

rN−1sN−1 drds

((r − s)2 + rs|σ − v|2)
N+α

2

.
1

|σ − v|N−1+α
,

which concludes the proof of (4.21). Recalling (4.2) we find

Iα(µB , φ(g − µB)) . I
1
2
α (g − µB)[φ]

H
α
2 (∂B)

. (4.22)
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Plugging (4.20) and (4.22) into (4.19) we get

Iα(B)− Iα(E) + Iα(g − µB) . I
1
2
α (g − µB)[φ]

H
α
2 (∂B)

+ [φ]2
H

2−α
2 (∂B)

.

Using Young inequality we conclude the proof of (4.17).

Since E is nearly spherical we have4 (see [16])∫
∂B

|∇φ|2 . P (E)− P (B)

so that (4.18) follows using (2.4). �

We can now conclude the proof of Theorem 1.5.

Proof of Theorem 1.5. Let E be a nearly spherical set with ‖φ‖W 1,∞(∂B) � 1. If Fα,Q(E) ≤
Fα,Q(B), then rearranging terms we find

P (E)− P (B) ≤ Q2 (Iα(B)− Iα(E))
(4.18)

. Q2 (P (E)− P (B)) .

This implies that either P (E) = P (B) and thus E = B by the isoperimetric inequality or 1 . Q2

which proves the claim. �

5. Non existence in dimension 2

We show here a nonexistence result in dimension 2. Namely, that in N = 2 minimizers in S
(and hence classical minimizers) cannot exist for large Q.

Theorem 5.1. Let N = 2 and α ∈ (0, 1]. Then, for Q� 1 there are no minimizers of

min {Fα,Q(E) : |E| = ωN , E ∈ S} . (5.1)

Proof. Let us point out that although the case α = 1 is already covered by [31] (with an explicit
threshold between existence and non-existence) we will still include it in the proof. We follow the
ideas of [22, Theorem 3.3] in the streamlined version of [13]. For ν ∈ ∂B1 and t ∈ R, we let

H+
ν,t = {x · ν ≥ t}, H−ν,t = {x · ν < t} and Hν,t = {x · ν = t}.

We then define for any measure µ and set E,

µ±ν,t = µ|H±ν,t and E±ν,t = E ∩H±ν,t.

Assume that E is a minimizer of (5.1). Comparing the energy of E with the one of two infinitely
far apart copies of E±ν,t with measures µ±ν,t, we have

Fα,Q(E) ≤ P (E+
ν,t) + P (E−ν,t) +Q2Iα(µ+

ν,t) +Q2Iα(µ−ν,t).

Using that P (E) = P (E+
ν,t) + P (E−ν,t) − 2H1(E ∩ Hν,t) and Iα(E) = Iα(µ+

ν,t) + Iα(µ−ν,t) +

2Iα(µ+
ν,t, µ

−
ν,t), this simplifies to

Q2Iα(µ+
ν,t, µ

−
ν,t) ≤ H1(E ∩Hν,t).

We now integrate this inequality in t and ν to get

|E| &
∫
∂B1

∫
R
H1(E ∩Hν,t) dν

≥ Q2

∫
∂B1

∫
R
Iα(µ+

ν,t, µ
−
ν,t) dν

= Q2

∫
∂B1

∫
R

∫
H+
ν,t×H

−
ν,t

dµ(x) dµ(y)

|x− y|2−α
dν

& Q2

∫
R2×R2

dµ(x) dµ(y)

|x− y|1−α
,

4this is the only place where we use that the barycenter of E is in 0.
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where we used that for every (x, y),∫
∂B1

∫
R
χH+

ν,t×H
−
ν,t

(x, y)dt dν ∼ |x− y|.

Since |E| = ωN , this yields the estimate

1 &
Q2

d1−α

where d = diam(E). If α = 1 this already gives the conclusion so that we are left with the case
α < 1. Since for N = 2, P (E) & d, we get the lower bound

Fα,Q(E) & Q
2

1−α .

For a generalized set Ẽr made of n copies of the ball of radius r = n−1/2, we have

Fα,Q(Ẽr) . nr +
Q2

nr2−α = r−1 +Q2rα.

Optimizing in r by choosing r = Q−
2

1+α , we find by minimality of E,

Q
2

1−α . Fα,Q(E) ≤ Fα,Q(Ẽr) . Q
2

1+α ,

which is absurd if Q� 1. �

Remark 5.2. While we believe that the same result holds for N ≥ 3, it is well-known that this
kind of arguments gives useful information only when α > N − 2, which is compatible with α ≤ 1
only if N = 2.
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