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Abstract

Identifying the preferences of a given user through
elicitation is a central part of multi-criteria decision
aid (MCDA) or preference learning tasks. Two
classical ways to perform this elicitation is to use
either a robust or a Bayesian approach. However,
both have their shortcoming: the robust approach
has strong guarantees through very strong hypo-
theses, but cannot integrate uncertain information.
While the Bayesian approach can integrate uncer-
tainties, but sacrifices the previous guarantees and
asks for stronger model assumptions. In this paper,
we propose and test a method based on possibility
theory, which keeps the guarantees of the robust
approach without needing its strong hypotheses.
Among other things, we show that it can detect
user errors as well as model misspecification.

1 INTRODUCTION

Interacting with an agent through an elicitation process is
an essential task to identify her preferences. Among the
possible ways to interact, incremental elicitation [Benabbou
et al., 2017] is particularly interesting, as each new question
can account for the preferential information provided so far.
In such settings, there are two main approaches:

• The robust approach, based on (regret) minimax optim-
isation [Boutilier, 2013, Bourdache and Perny, 2017]
and provides strong performance guarantees, provided
that two hypotheses are satisfied: (1) that the user is an
oracle (never commits mistakes) and (2) that we are
searching in the right family of preference models.

• The Bayesian approach, based on the use of probab-
ilities [Bourdache et al., 2019], that can include user
noise in the elicitation process through relatively com-
plex models and approximate updating procedures

(e.g., MCMC, Gradient descent [Vendrov et al., 2020]).
They also only offer guarantees in terms of expecta-
tion, rather than the strong certain ones provided by
the robust approaches.

Our goal is to use a possibilistic approach rather than a
probabilistic one to handle uncertainty in the elicitation. As
we will argue, such an approach has two main advantages:

• It formally extends the robust approach, in the sense
that we retrieve this latter one as a specific instance of
our framework. We keep the same guarantees as the ro-
bust approach, without needing its strong assumption.

• It comes with a natural way to encode and meas-
ure inconsistency resulting from inconsistent assess-
ments [Dubois and Prade, 1994]. This way we can
detect inconsistencies between the user answers and
the postulated model, offering an interesting tool to
detect user mistakes or model misspecifications.

This contrasts with the Bayesian approaches [Bourdache
et al., 2019], which do not have these two properties.
Moreover, exact computations with our proposal remain
tractable as long as the number of questions remains limited
(which is typically the case in incremental elicitation).

In order to perform the incremental elicitation and choose
the preferential information to ask the user, we adapt the
commonly used Current Solution Strategy (CSS) method in
robust approaches.

We introduce the necessary elements to present our method
and its interest in Section 2. We then discuss our possibilistic
extension of the robust approach and its interest in Section 3.
Lastly, Section 4 shows some simulated experiments that
confirm the potential interest of our approach.

2 SETTING UP THE STAGE

In this section, we recall both the necessary basics of stand-
ard robust approaches, as well as how we propose to use
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possibility theory to model preferential information.

2.1 NOTATIONS

We consider preference problems where we assume that
alternatives are evaluated by value functions. The ground-
truth order for preferences is assumed to be complete. We
also consider the choice problem of providing a recommend-
ation, and not to retrieve the complete ranking.

Alternatives We denote by X a finite set of available
alternatives. Alternatives within X are denoted X =
{x1, x2, ..., xk}. We assume that alternatives are summar-
ised by q real values, the criteria, such that x ∈ Rq . The ith
criterion of an alternative x ∈ X is denoted xi.

Given two alternatives x, y ∈ X, we denote:

• x �p y if and only if x is strictly preferred to y,

• x �p y if and only if x is preferred or equally preferred
to y.

Example 1 (Choosing the best sandwich (running example)).
Imagine a user that wants to choose the best sandwich pos-
sible among multiple ones (the alternatives). Each sandwich
is characterised by two criteria: flavour and price. Each
criterion has a value between 0 (worst) and 10 (best). For
example, 0 in price means an overpriced sandwich, and 10
a very cheap one. Table 1 lists some sandwiches: for ex-
ample duck sandwich may have a lot of flavour, but is more
expensive than the other sandwiches.

Flavour Price
Cheese 5 9
Duck 10 0
Fish 8 4
Ham 7 7

Table 1: Grades of sandwiches

Aggregation models We assume that an alternative x is
valued by its utility, measured by a function fω(x) paramet-
erised by ω ∈ Ω. We will speak of the model ω in the rest
of the paper. Two alternatives x, y ∈ X can be compared
given the evaluation function:

x �ω y ⇐⇒ fω(x) ≥ fω(y). (1)

A first widely used model that we will consider here is
the weighted sum (WS) model. Given a vector of weights
ω = {ω1, ..., ωq} ∈ Rq:

fω(x) =

q∑
i=1

ωixi, (2)

with ωi ≥ 0 and
∑
i ω

i = 1.

Ordered weighted averaging (OWA) model is another fam-
ous model [Yager, 1988] we will investigate further on.
OWA is different from WS, since the criteria values are
ordered in increasing order. Given a vector of weights
ω ∈ Rq and the ordered criteria values x(1) ≤ ... ≤ x(q),
we have:

fω(x) =

q∑
i=1

ωix(i), (3)

with ωi ≥ 0,
∑
i ω

i = 1.

More complex models can be considered within the frame-
work presented here, like Choquet integrals. As long as the
models we pick are linear in ω, Equation (1) is equivalent
to a linear constraint and we can use linear programming
techniques at our advantage, as in [Benabbou et al., 2017].

Example 2 (Application of models). Given the sandwiches
of Table 1, first suppose the user uses a WS model such
that ω = (0.9, 0.1). This means she really values the flavour
over the price. Between a duck and a fish sandwich, the user
choose the duck, as it scores 9 against 7.6 for fish.

If we suppose the user evaluates each sandwich with an
OWA model such that ω = (0.7, 0.3), meaning she penal-
ises a sandwich with a low score in any category, she will
prefer the fish sandwich: fω(fish) = 4×0.7+8×0.3 = 5.2
while fω(duck) = 0× 0.7 + 10× 0.3 = 3.

Example 2 assumes we know the model ω. In reality, we
do not know such parameters, and directly asking the agent
about them makes little sense. To find these parameters, we
need a preference elicitation method, that we now present.

2.2 ROBUST ELICITATION

Motivation Finding a unique model ω from pairwise com-
parisons is a difficult task. However, it is often possible to
draw inferences without complete information. In robust ap-
proaches, a subset Ω′ of possible models ω is identified from
preferential information, from which are inferred those pref-
erences that hold for every model. This results in a partial
preorder over X where:

x �Ω′ y ⇐⇒ ∀ω ∈ Ω′ fω(x) ≥ fω(y). (4)

In order to make recommendations, an elicitation strategy
that reduces Ω′ as quickly as possible in needed. Such a
strategy should also aim at making good recommendations
even if �Ω′ does not have a single maximal element, as in
practice one may stop collecting information before that.

Regret based elicitation Minmax regret is a well-known
notion when considering decision problems under uncer-
tainty and set-valued information [Savage, 1951]. It still
provides strong guarantees on the recommendation quality,
while being less conservative than standard minmax.
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We now introduce the elements of regret-based elicitation
strategies, that we will extend in Section 3. The regret of
choosing an alternative x over the alternative y according to
a model ω is defined by:

Rω(x, y) = fω(y)− fω(x). (5)

Given a set Ω′ of models, the pairwise max regret is:

PMR(x, y,Ω′) = max
ω∈Ω′

Rω(x, y), (6)

corresponding to the maximum regret of choosing x over y
for any model ω ∈ Ω′. The max regret of choosing x is:

MR(x,Ω′) = max
y∈X

PMR(x, y,Ω′), (7)

corresponding to the regret of choosing x in the worst case
scenario. Lastly, the min max regret of a set X of alternatives
given a set Ω′ of possible models is:

mMR(Ω′) = min
x∈X

MR(x,Ω′), (8)

and x∗ = arg mMR(Ω′) is the alternative that gives the
minimal regret in a worst-case scenario, which would cor-
respond to the current recommendation if no further inform-
ation can be collected.

Example 3 (Initial choice). Supposing the user evaluates
each sandwich with a WS model, we need to compute
maxω∈ΩRω(xi, yj) ∀i, j ∈ {Cheese,Duck,Fish,Ham}.
We can compute the maximal regrets by optimising
maxω∈Ω (ω.(x− y)). Since we optimise a linear function
over a convex polytope Ω, the optimisation problem is
solved easily and exactly using linear programming (LP).

We then obtain the PMR, as shown in Table 2:

x/y yC yD yF yH

xC 0 5 3 2
xD 9 0 4 7
xF 5 2 0 3
xH 2 3 1 0

Table 2: Initial PMR

For example, if a user chooses the duck sandwich over the
fish sandwich, her maximal regret is PMR(xD, yF ) = 4; for
the model ω = (0, 1), we have fω(xD) = 0 and fω(xF ) =
4.

x xC xD xF xH

MR 5 9 5 3

Table 3: Initial MR

The corresponding MR is given in Table 3. We obtain
mMR = 3 and the best initial choice is x∗ = xH , which is
the least regretted in the worst case scenario, when having
no information on the DM preferences.

Elicitation sequence In our setting, we consider the quite
common case where preferential information is collected
through pairwise comparison: we present a pair (x, y) to the
user, and she tells which one she prefers. We will denote by

Ωx�y = {ω ∈ Ω : fω(x) ≥ fω(y)}, (9)

the subset of models consistent with the assessment x � y,
and Ωy�x the subset for y � x.

An elicitation sequence corresponds to alternatively present-
ing a pair to the user, and updating the information with the
answer. In the robust approach, if Ωk is the possible subset
of models at the kth step, the next step is to present a couple
(x, y) to the user, and then compute Ωk+1 = Ωk ∩ Ωx�y if
the user prefers x, Ωk+1 = Ωk ∩ Ωx�y otherwise.

Choosing a good pair (x, y) is therefore a critical step,
and in this paper we consider the well-known CSS
strategy [Boutilier et al., 2006], where given a subset Ω′,
the user compares the current regret-based recommendation
x∗ = arg mMR(Ω′) (so our best option w.r.t this criterion)
to its worst opponent y∗ = arg maxy∈X PMR(x∗, y,Ω′).
This heuristic strategy provides good results in general, and
guarantees that the updated set will be non-empty.

Example 4 (Worst opponent of ham). In example 3, we
already found that x∗ = xH . Given Table 2 and the CSS
heuristic, y∗ = arg maxy∈X PMR(xH , y,Ω

′) = yD. We
create the query (xH , yD) and if the user does not commit
mistakes, she will answer that she prefers duck to ham.

Decrease of regret A notable advantage of robust ap-
proaches combined with CSS is that, by construction, they
guarantee that the elicitation sequence will converge, as we
recall here.

Proposition 1. Given Ωk+1 ⊆ Ωk, the sets of possible
model at steps k and k + 1, we have that:

PMR(x, y,Ωk) ≥ PMR(x, y,Ωk+1), (10)

MR(x,Ωk) ≥ MR(x,Ωk+1), (11)

mMR(Ωk) ≥ mMR(Ωk+1). (12)

Proof. PMR. Suppose we have a function f and two sets
Ω, Ω′ such that Ω′ ⊆ Ω. We have maxx∈Ω f(x) ≥
maxx∈Ω′ f(x), the maximum of Ω being either in Ω′ or
in Ω \ Ω′. We can replace f by the PMR, Ω by Ωk and Ω′

by Ωk+1 since Ωk+1 ⊆ Ωk. (10) is then proved.

Proof for MR and mMR directly follows, as they are max-
imum and minimum taken over decreasing values.
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2.3 ELICITATION WITH UNCERTAINTY

Motivation The robust approach works quite well,
provided two strong hypotheses are satisfied: the first one
is that the user is an oracle (never makes mistakes), and the
second one is that the chosen model family can perfectly
describe the user preferences. However, such hypotheses
are unrealistic in many applications, and it is desirable to
account for possible mistakes through refined uncertainty
modelling. As the next example shows, failure in those hy-
potheses can lead to unwarranted situations.

Example 5 (A single error to ruin everything). Assume the
user preferences are modelled by a WS with ω = (0.9, 0.1).
If the agent must choose between xD and xF , we have
already shown in example 2 that the duck should have been
taken (fω(xD) = 9, fω(xF ) = 7.6). Let us imagine the
user is unfocused, unsure, or that the WS is not the good
model, and assess xF � xD. Then we have Ω′ the set of
models consistent with her known preferences, such that
Ω′ = ΩxF�xD = {ω ∈ Ω :

∑2
i=1 ω

i.(xiF − xiD) ≥ 0} =
{ω ∈ Ω : 2ω2 ≥ ω1}.

ω10 1

ω = (0.9, 0.1)

2ω2 = ω1
Ω′

Figure 1: Wrong answer leading to a wrong model

As shown on Figure 1, where we only give the ω1 value
(since ω1 + ω2 = 1), the true model is definitely left out of
Ω′. Whatever the next answers are, we cannot get to ω.

Probabilistic approaches by Bourdache et al. [2019] are
one solution to this issue, yet they do not provide the same
guarantees as the ones of Proposition 1. Also, they typic-
ally do not question the model family, as all probabilities
are renormalised after updating: renormalisation prevents
from identifying the presence of inconsistency, whatever
its source is. One of our main motivation in this work is
to let go strong hypotheses of the robust approach, while
preserving its strong guarantees. For this, we will adopt a
possibilistic approach.

Possibility theory basics Possibility theory [Denœux
et al., 2020] is an uncertainty modelling theory that adds
degree to classical, binary set-valued information. As such,
it formally extends set-theory, a feature absent from prob-
ability theory that we will use at our advantage. It is also
arguably the simplest uncertainty theory to do so, therefore
being computationally easier to handle than, e.g., evidence
theory, that has also been proposed as a way to extend robust
incremental elicitation [Guillot and Destercke, 2019].

Possibility distributions π : Ω→ [0, 1] are the basic tools of
possibility theory, which are said to be consistent if ∃ω ∈ Ω

such that π(ω) = 1. Such a distribution induces two dual
measures, the possibility and the necessity, over events U ⊆
Ω defined as:

Π(U) = sup
ω∈U

π(ω), (13)

N(U) = 1−Π(U c) = inf
ω∈Uc

(1− π(ω)). (14)

There are two important notions issued from the theory that
we will use. The first one is the α-cut of π that is defined as:

Eαπ = {ω ∈ Ω : π(ω) ≥ α}, (15)

which is just the set of values having a possibility higher
than α. The second one is the degree of inconsistency of π,
defined as:

K = 1−max
ω∈Ω

π(ω), (16)

which measures how far π is from being consistent.

Possibility theory extends set theory, in the sense that a
standard set Ω′ is modelled by the distribution πΩ′(ω) =
IΩ′(ω) where IA is the indicator function of A. The notion
of inclusion also has a straightforward extension, as two
distributions π, π′ will be denoted π ⊆ π′ iff π ≤ π′. This
is equivalent to have all α-cuts included in each others, as:

π ⊆ π′ ⇐⇒ Eαπ ⊆ Eαπ′ ∀α ∈ [0, 1]. (17)

Possibilistic preferential information We will use spe-
cific distributions to model the uncertain preferential inform-
ation provided by a user. More specifically, we will link to
any assessment of the kind x � y a degree α ∈ [0, 1] of
certainty or necessity (in the sense of Eq. 14) that the as-
sessment holds. Such assessments will be denoted x �α y,
and we will link it with the largest (in the sense of inclu-
sion) distribution such thatN(Ωx�y) = α. This distribution,
denoted as πx�αy , is such that:

πx�αy(ω) =

{
1 if ω ∈ Ωx�y,

1− α if ω ∈ Ωx≺y.
(18)

The degree α can either be provided directly by the user
(possibly using a linguistic finite scale to transform into
numbers), or be directly specified by the analyst, allowing
uncertainty in the process without requiring additional cog-
nitive efforts from the user. In practice, such an alpha would
just be used as an artefact, possibly with a fixed value and
a simple T-norm like Tmin, allowing contradiction between
questions, making the detection of inconsistencies possible.

Example 6 (An error no longer ruins everything). Let us
continue example 5, but this time the user says she is not
totally certain that she prefers fish to duck. We suppose
this corresponds to a confidence level α = 0.7. We then
have Π(Ω′) = 1 and Π(Ω \ Ω′) = 0.3: there is still a small
possibility that the correct model belongs to Ω\Ω′, making it
possible to find ω. Figure 2 pictures distribution πxF�0.7xD .
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π
1

0.3

πxF�0.7xD

ω10 1

ω = (0.9, 0.1)

2ω2 = ω1

Ω′

Figure 2: Possibilistic preferential information

Note that the two extreme values α = 1 and α = 0 for
x �α y respectively correspond to specify a subset as in
the robust approach (hence formally extending it), and to
provide no information at all.

Combining possibilistic information An important as-
pect of the elicitation procedure is how to combine two
preferential information. If we consider this as an informa-
tion fusion problem, there are literally an infinity of ways to
do that [Dubois et al., 2016]. In our case, since we want to
extend the robust approach that use set intersection, we will
adopt the possibilistic tools that extend such an operation:
T-norms.

A T-norm is a function T : [0, 1] × [0, 1] → [0, 1] that is
commutative, associative, increasing, and has 1 as an iden-
tity element. It is upper bounded by the minimum operation.
Three T-norms of particular interest are the following:

• Minimum T-norm: Tmin(a, b) = min(a, b),

• Product T-norm: Tprod(a, b) = a.b,

• Łukasiewicz t-norm: TLuk(a, b) = max(0, a+ b− 1),

where Tmin ≥ Tprod ≥ TLuk, with Tmin and TLuk corres-
ponding to the Frechet-Hoeffding bounds. Tmin or TLuk
each can be linked to an extreme dependence assumption
within probability theory, and working within them through
a sensitivity analysis then amounts to making no assumption
at all. Tprod, on its side can be linked to an independence
assumption. Since they are associative and commutative,
their extension to n dimensions is straightforward.

Remark 1. Tmin being idempotent and applicable to ordinal
scales results in some advantages and drawbacks. Purely or-
dinal, linguistic information can be used, which is attractive.
Moreover, the distribution πmin = Tmin(π, π′) will take
the same values as π, π′, therefore not creating new levels.
Keeping the same levels has some computational advant-
age, but that may lead to a reduced expressiveness and to
drowning effects [Benferhat et al., 1993].

T-norms have two important features in our framework:

• If all combined distributions π1, . . . , πn are such that
∃ω with πi(ω) = 1, then T(π1(ω), . . . , πn(ω)) = 1.
In particular, if all pieces of preferential information
are consistent with at least one model of Ω, then the res-
ulting distribution is normalised. Again, this contrasts
with a probabilistic treatment.

• An observed sub-normalised result, i.e.
maxω∈Ω T(π1(ω), . . . , πn(ω)) < 1 is a reliable
indication that there are some inconsistencies between
the delivered preferential information and the model
family. The inconsistencies can come either from a
bad model choice or from mistakes in the user answers.
The measure K given by Eq (16) can then be used to
assess how significant this inconsistency is.

Example 7 (Inconsistency illustrated). Let us pursue Ex-
ample 6, and consider that when comparing xH to xD, the
user now answers with a strong conviction that xH �0.9 xD,
with ΩxH�xD = {ω : ω1 ≥ 0.7}. Applying the minimum
T-norm Tmin, we get the distribution pictured in Figure 3.
We see that the inconsistency K = 0.7 is quite severe, but
that the true model ω = (0.9, 0.1) is now among the most
plausible.

π
1

0.3

πxF�0.7xD πxH�0.9xD

Tmin(πxF�0.7xD , πxH�0.9xD )

ω10 1

ω = (0.9, 0.1)

0.7 = ω1

Ω′

Figure 3: Inconsistency after merging information

3 EXTENSION

3.1 EXTENDING REGRET NOTIONS

We are now ready to extend the notions used in regret-based
elicitation to our possibilistic framework. Since here Ω is
a convex space, and preferential assessments of Eq. (1)
induce linear constraints on Ω, those constraints will induce
a partition P1, . . . , PL of Ω, over which elements π will be
constant, i.e., π(ω) = π(ω′) for any ω, ω′ ∈ Pi. In Figure 3,
the partition would be P1 = [0, 2/3], P2 = [2/3, 0.7] and
P3 = [0.7, 1] with π being constant on P1 ∪ P2 due to the
use of the minimum T-norm.

The elicitation framework remains the same: at a step k, we
propose a pair (x, y) to the user who provides a possibilistic
answer of the form x �α y resulting in a distribution πx�αy .
We then combine the distribution (using a T-norm) with πk,
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the possibility function over Ω obtained at the step k of the
elicitation process with π0 = IΩ being equivalent to the
set Ω of all possible models. We denote P1, . . . , PLk the
corresponding partition.

Extending PMR Our extension of PMR, named EPMR,
averages the PMR over the different α-cuts:

EPMR(x, y, πk) =

n∑
i=1

(αi−αi+1)PMR(x, y, Eαi
πk

), (19)

where 1 = α1 > . . . > αn > αn+1 = 0 are the distinct val-
ues of πk. If πk = IΩk , we retrieve the standard PMR of Eq.
(6). Note that such an averaging is standard in possibilistic
approaches (see, e.g., [Hüllermeier, 2014]).

If Eα1

πk
= ∅, we need to define PMR(x, y, ∅). There are dif-

ferent options to do so [Guillot and Destercke, 2019]. Here
we will consider PMR(x, y, ∅) = 0, to ensure convergence.

Extending MR We propose an extension of the MR, the
EMR, averaging the MR on each focal set:

EMR(x, πk) =

n∑
i=1

(αi − αi+1) max
y∈X

PMR(x, y, Eαi
πk

),

(20)
corresponding to the average over cuts of the maximal pair-
wise regret. Again, if πk = IΩk , we retrieve the standard
MR of Eq. (7).

Extending mMR We propose to extend the mMR with
the mEMR:

mEMR(πk) = min
x∈X

EMR(x, πk), (21)

which, since EMR(x, πk) reduces to Eq. (7) when πk =
IΩk , also reduces to (8) in the same case.

When π is normalised and in the absence of inconsist-
ency, the necessity (N) and possibility (Π) measures can
be viewed as lower and upper bounds of unknown prob-
abilities, respectively. This means that EPMR, EMR and
mEMR can be interpreted as upper expectations over a set of
probabilities. In absence of inconsistencies, mEMR remains
an upper bound of the real regret. This connection is lost
once errors happen.

3.2 EXTENDING CSS

PCSS We now propose the Possibility Current Solution
Strategy (PCSS) in order to select questions, which extends
the CSS one. The strategy is summarised in Algorithm 1.
We assume that the user provides a unique choice when
being presented with a pair, that is translated as a non-strict
preference. Moreover, with polytopes and linear programs,
whether including borders or not will have no consequences
on the practical computations and numerical results.

Algorithm 1: PCSS algorithm
Data: Max Inconsistency MaxI , Threshold τ , Max

number of queries Maxq , T-norm T
Result: x∗ = arg mEMR(πk)
k = 0, π0 = IΩ;
while maxπk ≥ 1−MaxI , k ≤Maxq and
mEMR ≥ τ do

Compute x∗ = arg mEMR(πk);
Compute y∗ = arg maxy∈X EPMR(x∗, y, πk);
User provide answer x∗ �α y∗ or x∗ �α y∗ ;
if User answer is x∗ �α y∗ then

πk+1 = T(πk, πx∗�αy∗)
else πk+1 = T(πk, πx∗�αy∗);
k = k + 1;

end

Given that EPMR, EMR and mEMR all reduce to their
robust counter-parts when α = 1 for all answers, we do
have that PCSS extend standard CSS.

As we said in the introduction, our goal is to retain the nice
properties of the robust and CSS approaches when their
assumptions hold (right model choice and correct answers),
that is converging towards the right recommendation with
high guarantees, while allowing for mistakes. We will now
show that the first requirement is satisfied, while further
experiments in Section 4 will demonstrate that we do detect
inconsistencies and mistakes when those exist.

Firstly, we demonstrate that we retrieve convergence when
no inconsistencies in the answers are observed.

Proposition 2 (Monotonicity). Given πk and πk−1 two suc-
cessive possibility distributions issued from PCSS. Assuming
both are normalised, then:

1. EPMR(x, y, πk) ≤ EPMR(x, y, πk−1),

2. EMR(x, πk) ≤ EMR(x, πk−1),

3. mEMR(πk) ≤ mEMR(πk−1).

Proof. Denote by Ak = {α1, ..., αm} the ordered distinct
values of πk, andAk−1 = {α1, ..., αn} those of πk−1. Con-
sider the ordered set B = Ak ∪ Ak−1 = {β1, . . . , β`}:

EPMR(x, y, πk) =
∑̀
i=1

(βi − βi+1)PMR(x, y, Eβi
πk

),

EPMR(x, y, πk−1) =
∑̀
i=1

(βi − βi+1)PMR(x, y, Eβi
πk−1),

πk ⊆ πk−1 with Eq. (17) implies Eβi
πk
⊆ Eβi

πk−1 , thus
PMR(x, y, Eβi

πk
) ≤ PMR(x, y, Eβi

πk−1), ending the proof.

Similar arguments can be used to prove the inequalities for
EMR and mEMR.
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We show that our proposal preserves the strong guarantees
of the robust CSS, and is even more cautious in case of un-
certain answers, as the corresponding regrets will be higher.

Proposition 3 (Strong guarantees). Let πk and Ωk be the
distribution and subset obtained through the same sequence
of alternative pairs and answers, respectively with α < 1
for all answers and with α = 1 for all answers. Then:

1. PMR(x, y,Ωk) ≤ EPMR(x, y, πk),

2. MR(x,Ωk) ≤ EMR(x, πk),

3. mMR(Ωk) ≤ mEMR(πk).

Proof. We observe that πx�αy ⊆ πx�βy whenever α ≥ β.
This means that all answers with α = 1 are included in the
answers with α < 1.

We therefore have that πΩk = IΩk ⊆ πk. From this, we can
simply reproduce the proof of Proposition 2.

On computational complexity While our approach is
computationally more costly than the robust one, as it has
to do with partition P1, . . . , PL of polytopes, the increase
of computational cost is limited through several factors:

• Computing the PMR for a given α-cut or sub-
set Ω can be done by using PMR(x, y,Ω) =
maxPi∈Ω PMR(x, y, Pi), possibly using computations
done for Pi at previous steps.

• For any query, the constraint (1) will only cut in half a
limited number of elements Pi. In fact, it can be shown
that the number of new elements will be bounded above
by a polynomial number [Schläfli and Wild, 2013, P
39]. We can readily see that in Figure 3, where a new
constraint can only cut one of the interval.

• The fact that α-cuts are nested (i.e., Eαπ ⊆ Eβπ if α >
β) means that computation done for one cut can be
partially re-used for other cuts.

This means that we must perform the same computations
than for the robust approach on a partition of polytopes,
but whose size increases polynomially after each question.
Exact computations are possible as long as q and the number
of queries remain small. In other cases, using approximated
computations is doable (e.g., ignoring α-cuts having very
small weights).

Compared to the previously proposed evidential approach
Guillot and Destercke [2019], our approach based on pos-
sibility theory is more efficient thanks to two factors:

• As we already said, α-cuts and thus focal sets are nes-
ted, reducing the computational complexity. In eviden-
tial theory, focal sets are not necessary nested.

• The merging rules in our possibilist approach, based
on T-norms, create less focal sets over which the PMR
must be computed, in opposition to the evidential ap-
proach. This is especially true when using Tmin, where
the final number of focal sets is equivalent to the num-
ber of different α used.

4 EXPERIMENTS

We perform several experiments on synthetic data to study
the behaviour of our method and to demonstrate its ad-
vantages with respect to a standard robust approach. In the
experiments presented in our paper, we conducted 200 sim-
ulations. For each simulation, we generated randomly 30
alternatives xi with 4 criteria according to an uniform distri-
bution such that xi ∈ [0, 1]4. Moreover, the simulated error
rate is always the same, which may be different from the
used error rate in the method, as in practice one does not
have access to the "true" error rate.

Influence of T and of α The first experiment illustrates
the influence of the T-norm and of the confidence level on
the convergence of our method. During this experiment, we
first used a specific T-norm, and then a fixed confidence
level α. For each simulation, a WS model with 4 criteria
was generated randomly according to a Dirichlet distribu-
tion αdirich = (1/4, ..., 1/4), and we computed the EMR
at each step, and divided it by the initial mEMR. The ra-
tios were then averaged for each degree and T-norm. In this
experiment, the user always delivers the right answer. Re-
member that α = 1 is equivalent to robust CSS, and α = 0
means no information is provided at all.

Figure 4: Decrease of computed mEMR with Tmin

On Figure 4 in which are given the results for Tmin, we see
that high confidence leads to faster convergence, as expected.
Results for other T-norms are similar. Figure 5 shows the
results when the T-norm varies. As expected, the smaller
the T-norm is, the faster πk converges to low values for ω 6∈
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E1
πk , and the faster the method converges. A bit surprising

is the small gap between Tprod and TLuk, suggesting that
taking Tprod is sufficient, but that Tmin could be overcautious.
However, the quicker the convergence to small distribution
values is, the lower the chances are to query models ω 6∈
E1
πk and to investigate potential inconsistencies.

Figure 5: Decrease of computed mEMR with α = 0.6

Handling of the inconsistency The second experiment
highlights how our method is effective for managing incon-
sistency. In this experiment, when inconsistency is detec-
ted, the elicitation is stopped. The idea is to prove that our
method is able to detect inconsistency and thus stops before
it diverges too much from the optimal model. We did not
try different ways to handle observed inconsistency, but it is
topic of further research.

For each simulation, we generated a WS model, again with 4
criteria, according to a Dirichlet distribution with αdirich =
(1/4, ..., 1/4), we picked the product T-norm and a fixed
confidence level. We model the inconsistency of the user by
supposing she answers correctly 70% of the time, and gives
a random answer 30% of the time, meaning a true α = 0.7.
Each simulation ends when an inconsistency is detected,
when 15 questions were answered, or when mEMR = 0.
We determine x∗ = arg mEMR and compute the regret of
choosing it over the best alternative yω given the true model
ω. The real regret and the inconsistency are then averaged
for each degree, and we compute a confidence interval of
95% for the real regret.

Figure 6 shows that inconsistency in answers is quickly
detected (sometimes as early as the third question), confirm-
ing that our framework is practically relevant to investigate
potential user mistakes, without the need to change the
elicitation strategy to actively look for mistakes. Without
surprises, higher values of α tend to create higher inconsist-
encies when they appear.

We observe on Figure 7 and on table 4 that, with respect to
real regret, the classic robust elicitation (α = 1) performed
the worst. This behaviour was expected, as there are no
ways for detecting inconsistency, as shown on Figure 6. At
each step the computed mEMR decreases, but the real regret

Figure 6: Detection of the inconsistency with different α

can increase, as we are getting further away from the true
model. We also observe the lower the level of confidence is,
the lower the real regret is, as the more cautious the PCSS
is. In any case, Figure 7 shows that when we have uncertain
answers, our approach will outperform the robust one.

Figure 7: Real regret for different α

Lower Mean Upper
α = 0.5 .032 .043 .055
α = 0.7 .030 .044 .058
α = 0.9 .063 .081 .100
α = 1 .082 .105 .127

Table 4: Real regret given a confidence level α

Detection of wrong models The third experiment stresses
that we can detect a wrong preference model, especially if
it is very distant from the true model. For each simulation,
the wrong preference model is assumed to be a WS model
with 4 criteria. We also used the product T-norm and a fixed
confidence level α = 0.7. We model the inconsistency of
the agent by supposing she answers correctly 70% of the
time, and gives a random answer 30% of the time. Each
simulation ends when 15 questions were answered, or when
mEMR = 0. The inconsistency is averaged over the different
simulations. We tested three types of model, and incorrectly
searched the true model in WS family:
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• Random models: the user always answers randomly.

• Fairness-orientated OWA models: weights were gener-
ated randomly by a Dirichlet distribution with hyper-
parameter αdirich = (0.85, 0.05, 0.05, 0.05).

• Random OWA models: weights were generated ran-
domly by a Dirichlet distribution with hyper-parameter
αdirich = (0.25, 0.25, 0.25, 0.25). Such models are
close to WS models, as they will most of the time be
close to arithmetic average.

Figure 8: Detection of wrong models with α = 0.7

Figure 8 shows that when the true model is very far from the
postulated one (random and Fairness-orientated OWA), we
can effectively detect it. When the models behave similarly
(random OWA), such a detection can take longer.

5 CONCLUSION

We have introduced a possibilistic extension of robust incre-
mental elicitation of preferences, demonstrating that such
a tool can effectively solve existing issues of the robust ap-
proach, while remaining consistent with it. Experiments on
simulated data sets show that we have better performances
when user assessments can be wrong.

Our future works will focus on two issues:

• Providing means to repair the observed inconsistency,
either by removing provided information or by select-
ing different model spaces.

• Extending the current approach to other models that
have very different structures, such as lexicographic
ones [Booth et al., 2010] that are not even based on
numerical evaluation (thus requiring to adapt the notion
of regret, or to use a different one to pick the query and
recommendation).
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