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Abstract

Vehicle localisation is an important and challenging task in achieving autonomous

driving. This work presents a box particle filter framework for vehicle self-

localisation in the presence of sensor and map uncertainties. The proposed

feature-refined box particle filter incorporates line features extracted from a

multi-layer Light Detection And Ranging (LiDAR) sensor and information from

OpenStreetMap to estimate the vehicle state. A particle weight balance strategy

is incorporated to account for the OpenStreetMap inaccuracy, which is assessed

by comparing it to a high definition road map. The performance of the proposed

framework is evaluated on a LiDAR dataset and compared with box particle fil-

ter variants. Experimental results show that the proposed framework achieves

respectively 10% and 53% localisation accuracy improvement with reduced box

volumes of 25% and 41%, when compared with the state-of-the-art interval

analysis based box regularisation particle filter and the box particle filter.
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1. Introduction

The development of reliable autonomous driving solutions is an active re-

search area (Pendleton et al., 2017, Reid et al., 2019). Localisation plays a key

role of autonomous systems since it provides the vehicle with self-awareness of its

state xk = (xk, yk, θk)
T , which encodes its position (xk, yk) and its orientation

θk relative to a map (Kuutti et al., 2018) at time k.

There are mainly two main types of maps used for localising a vehicle:

(1) maps that are incrementally built and maintained along with localisation;

(2) accurate commercial digital maps that are built and maintained by compa-

nies. Feature maps (Holỳ, 2018) and point-cloud maps (Javanmardi et al., 2019,

Tamas and Goron, 2014) belong to the first group. In general, feature maps

represent the environment with geometrical features at various levels; whereas

point-cloud maps are usually built by registering point clouds to a geographic

information system (Zhang and Singh, 2014). The former is known for its se-

mantic interpretability and low complexity, while the latter is computational

resources dependant and holds the promise of high accuracy. These two types

of maps are generally components of simultaneous localisation and mapping

(SLAM) solutions (Gil et al., 2015, Li et al., 2019). Therefore, they inherit the

challenges faced by SLAM approaches, such as localisation accuracy degrada-

tion when the uncertainty of sensor measurements increases. In such cases, loop

closure and subsequent optimisation techniques are widely adopted to respec-

tively improve the mapping accuracy (Wang et al., 2016) and the localisation

results. However, a unified SLAM framework for mapping and maintaining high

accuracy is still difficult, causing the inaccuracy of the obtained maps.

The second group of accurate digital maps comes with service charges and

often limited access to metadata. The crowdsourced OpenStreetMap (OSM)

could be a cheaper replacement for expensive digital maps and can provide flex-

ible solutions since almost all the metadata can be accessed and customised

by end-users. OSM has already been applied in urban navigation (Suger and
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Burgard, 2017). However, the accuracy of OSM remains a challenge (Vargas-

Munoz et al., 2021). It could vary from centimeters to meters from city to

city, thus bringing in additional uncertainties apart from those caused by sen-

sors (Brovelli et al., 2016, Senaratne et al., 2017). Hence, it is beneficial to

develop robust localisation frameworks when using inaccurate SLAM maps or

OSM for autonomous systems.

In this paper, a feature-refined BPF (FRBPF) that stems from the box

particle filtering (BPF) approach (Abdallah et al., 2008, Gning et al., 2013)

is proposed to achieve accurate and robust localisation results based on an

inaccurate yet free OSM. In our case, the OSM serves as a reference map for

localising a vehicle. A real-time kinematic (RTK) sensor suite provides the

ground truth information. The vehicle is equipped with an Inertial Measurement

Unit (IMU) and a LiDAR sensor to fulfill localisation.

In the proposed approach, line features are firstly extracted from raw LiDAR

data obtained by the vehicle at time k. The distances and angles of the line fea-

tures with respect to the vehicle are adopted as measurements and are denoted

as [yk]. The line features are next associated with line features correspond-

ing to building footprints on the OSM. The accuracy of the OSM is assessed

with respect to a high-definition map (HDM) maintained by the Université de

Technologie de Compiègne (UTC) so that map uncertainties are also considered

during localisation. Measurements of the matched line features are fed to the

proposed FRBPF for vehicle state updating. With N box particles representing

the vehicle states [xik], i = 1, · · · , N and upon the arrival of measurements [yk],

the filter propagates state estimates through the box contraction and update

steps as time evolves. In contrast of performing contraction per measurement,

a feature-refined contraction merges line features before the contraction step.

This is also a way of coping with OSM and sensor data uncertainties, hence-

forth reduces boxes. As interval analysis based methods do not provide point

estimates by nature, this paper takes box centers to achieve point estimates by

statistical metrics such as expectation and covariance to evaluate the proposed

FRBPF and compares it with the BPF and the box regularised particle filter
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(BRPF) (Merlinge et al., 2019).

The main contributions of this paper can be summarised as follows: (1) A

LiDAR features-refined box particle filter is proposed that is able to deal effec-

tively with OSM and sensor data uncertainties; (2) A contraction algorithm is

developed that incorporates the abundant line features from structured urban

environments to reduce the volume of box particles; (3) Theoretical proofs about

the features-refined contractions are derived; (4) A box particle weight balance

strategy is designed to cope with OSM uncertainties and further improves the

localisation performance.

The rest of this paper is organised as follows. Section 2 presents an overview

of related works. Section 3 gives the necessary theoretical background knowl-

edge. Section 4 elaborates the proposed approach. Section 5 includes valida-

tion and discussions of the proposed approach. Finally, conclusions and future

works are given in Section 6. Appendix A and Appendix B prove that the

feature-refined contraction reduces the particle box volume compared with the

traditional contraction.

2. Related Works

2.1. OpenStreetMap based Localisation

OSM is the most well-known crowdsourced map whose metadata is struc-

tured by entities such as nodes, ways, and relations (Zheng and Izzat, 2018).

Nodes represent points of interest. Ways are a collection of nodes that corre-

spond to buildings and roads, and relations indicate the relationships between

nodes and ways. Generally, the exterior surface of buildings can be projected

into a two dimensional (2D) plane as line segments or can be approximated by

line segments. Hence, the OSM is equivalent to a feature map represented by a

set of linear equations.

Compared with highly precise maps, maintained by local authorities, the

OSM accuracy needs to be further improved. For instance, building footprints

of Milan on OSM show a systematic translation of 0.4 m on the defined X
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and Y directions in (Brovelli et al., 2016). Furthermore, applications of OSM

still suffer from the incompleteness of buildings, roads and other environmental

factors (Senaratne et al., 2017).

Nevertheless, OSM has been widely used in vehicle/robot localisation. Suger

and Burgard (Suger and Burgard, 2017) present a Markov Chain Monte Carlo

approach for autonomous robot navigation, by associating track information

from OSM with trails detected by the robot based on three dimensional (3D)

LiDAR data. The robustness of the approach is demonstrated with experimental

results, which shows the potential of using inaccurate OSM in urban environ-

ments. Zheng and Izzat (Zheng and Izzat, 2018) show that by taking OSM as

a prior map, one can benefit from road perception by first rendering a virtual

street view, and further refining it to provide prior road masks. The road mask

can be augmented into drivable space by integrating images or LiDAR point

clouds. By taking the road mask as image inputs to a fully convolutional neural

network, the authors also discuss the promise of deep learning methods com-

bined with OSM for road perception. Joshi and James (Joshi and James, 2015)

propose to combine coarse, inaccurate prior maps from OSM with local sensor

information from 3D LiDAR to localise a vehicle. Lane locations are estimated

by particle filter variants and then integrated within a map to further improve

the localisation accuracy.

2.2. Box Particle Filtering based Localisation

Recently, interval analysis based localisation has shown its potential in deal-

ing with non-Gaussian and biased noise perturbed measurements. The combina-

tion of the set-membership framework with particle filtering techniques known

as BPF is first introduced by Abdallah et al (Abdallah et al., 2008) to localise

a ground vehicle. The application of the BPF to global localisation shows that

with only 10 box particles, BPF reaches almost the same accuracy as particle

filter with 3,000 particles.

Ever since then, BPF has been applied to different scenarios. Gning et

al. (Gning et al., 2012) introduced the Bernoulli BPF and applied it to tracking
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a single target. It shows that the Bernoulli BPF can track the target accurately

and is computationally more efficient compared with the Bernoulli particle filter.

A multiple extended object tracking method based on BPF is further proposed

by Freitas et al. (Freitas et al., 2018), which benefits from the fact that BPF

can well tackle ambiguous observations, which often happens in LiDAR and

GPS data. Merlinge et al. (Merlinge et al., 2019) propose the BRPF that

outperforms the BPF in terms of Root Mean Square Errors (RMSEs). The

BRPF achieves up to 42% improvement in geographical position estimation

compared with BPF. The authors also demonstrate that both BRPF and BPF

produce lower divergence rate (≤ 1%) than methods such as particle filters.

Luo et al. (Luo and Qin, 2018) propose the ball particle filter to deal with

issues caused by box subdivision and forward-backward contraction. In the

ball particle filter, boxes in BPF are replaced by balls, and a ball contractor is

proposed to contract the balls. Applications of the ball particle filter in SLAM

show that with 20 particles, the ball particle filter achieves 34.5% and 34.6%

position and orientation improvement, respectively. However, the results show

that the ball particle filter is about 7% less efficient than the BPF. Nevertheless,

all the methods perform contraction when a measurement is obtained, without

further integration or refinement. Furthermore, the BPF has not been applied

to OSM based localisation.

3. Theoretical Background

3.1. Boxes and Inclusion Functions

In interval analysis, intervals or boxes are used as basic operands for mod-

eling and calculation, etc. An interval or box is defined as

[x] =
(
[x1], · · · , [xi], · · · , [xd]

)T ∈ IRd,

where [xi] = [xi, xi] with xi, xi ∈ R, and ∀xi ∈ [xi], xi ≤ xi ≤ xi stands.

IRd and R are respectively the d ∈ N+ dimensional real interval space and the

real number space (Alefeld and Mayer, 2000). When [x] is one dimensional,
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it is usually called an interval, and it is called a box when the dimension is

two or above. This paper adopts ‘box’ to refer to both intervals and boxes

hereafter for brevity. The volume of a box is defined as |[x]| =
∏d
i=1 |[xi]|,

where |[xi]| = xi − xi (Ilog, 1999). Note when d = 1, ‘volume’ refers to the size

of the one dimensional interval, and when d = 2, it refers to the area of the two

dimensional box. For brevity and generality, this paper uses ‘volume’ to refer

to all the scenarios, unless otherwise specified.

Given boxes [x], [y], and an operator ♢ ∈ {+,−, · · · , /}, [x]♢[y] is defined as

the smallest box in terms of volume that contains all feasible values of x♢y. For

a given box [x], its center is defined as cx =
(
(x1 + x1)/2, · · · , (xd + xd)/2

)T
(Drev-

elle and Bonnifait, 2013).

In general, when applying a function f : Rd1 → Rd2 (d1, d2 ∈ N+) that is

defined in the real number space directly to manipulate a box [x], one cannot

guarantee that f([x]) is still a box. In interval analysis, the inclusion function

[f ] is taken as a counterpart of f to ensure that [f ]([x]) is still a box. The

inclusion function is normally defined as f([x]) ⊂ [f ]([x]), ∀[x] ⊂ IRd (Jaulin

and Desrochers, 2014, Jaulin et al., 2001).

3.2. Constraint Satisfaction Problems

When a box propagates through an inclusion function, its volume could

increase dramatically. This reveals the ‘conservative’ nature of interval analy-

sis based methods, i.e. expanding box volumes to guarantee that no feasible

solutions are excluded. This, however, can cause overestimation problems as

non-feasible solutions could be included as well when a box is expanded. The

Constraint Satisfaction Problem (CSP) is exploited to help reducing box vol-

umes. The CSP aims at finding a subset X of the feasible domain [x], which

satisfies

X = {x ∈ [x]|h(x) = 0}, (1)

where h(x) = 0 indicates the constraint. FindingX is computationally demand-

ing. In interval analysis, instead of finding X, one can apply a contractor C to
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reduce the volume of [x] and get [xc] = C([x]), such that X ⊂ [xc] ⊆ [x] (Drev-

elle and Bonnifait, 2013).

The forward-backward contractor is broadly accepted in literature due to its

efficiency and effectiveness. Given a set of constraints in the form of h(x) =

y, with x and y measurable quantities, the contraction is achieved (Jaulin,

2009a) by propagating from x to y in the first step (forward propagation). The

constraints are next propagated inversely from y to x (backward propagation).

The process is repeated until no more significant box volume reduction can be

observed. Jaulin gives some examples to make the process easy to understand

in (Jaulin, 2009a).

3.3. The q-satisfied Intersection

For a given set of Q ∈ N+ boxes {[x]i, i = 1, · · · , Q}, the computation of

their intersection

[x] =

Q⋂
i=1

[x]i (2)

is frequently required. However, outliers cause empty intersections, which can

lead to early termination or even divergence of algorithms.

The q-satisfied intersection (Wang et al., 2015, 2018) along with the q-relaxed

intersection proposed in (Jaulin, 2009b) are used to find a subset of {[x]i, i =

1, · · · , Q}, such that their intersection is not empty. The difference between

the two is that the q-satisfied method searches for the maximum number q of

boxes with non-empty intersection, where q is not determined at the beginning.

While in the q-relaxed intersection, q is normally determined according to the

application. In the q-satisfied intersection, q is defined as

q = max

card(A)

∣∣∣∣∣∣A ⊆ {1, . . . , Q} ,
⋂
j∈A

[x]j ̸= ∅

 , (3)

with card(A) indicates the cardinality of set A. Subsequently a q-satisfied in-

tersection is defined as
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[Ai] =
⋂{q}

[x]1,...,Q =
⋂
j∈A

[xj ], card(A) = q. (4)

Usually, one can get K ∈ N+ q-satisfied intersections [A1], . . . , [AK ]. An

approximation to (2) is then denoted as

[x] =

Q⋂
i=1

[xi] = B({[A1], . . . , [AK ]}), (5)

where B(·) indicates the minimum box that encloses {[A1], . . . , [AK ]}.

In this paper, q is found by decreasing Q by 1 each step and check whether

(3) is satisfied. In scenarios where real-time performance is critical, one can

decreasing Q by a greater than 1 step to accelerate the process.

4. Feature Refined Box Particle Filter for Localisation

4.1. Problem Description

The motion of a vehicle is usually described by an evolution model f and an

observation model g. The former represents dynamics of the vehicle, and the

latter reveals what measurements the vehicle can incorporate to locate itself.

They are separately represented as xk = f(xk−1,uk) + µk,

yk = g(xk,m) + νk,
(6)

where xk−1 and xk are vehicle states at k−1 and k, yk denotes the measurement,

m is the reference map, uk = [vk, ωk]
T is the input with vk the vehicle speed and

ωk = θ̇k the yaw rate, and µk and νk are separately the system and observation

noises.

In the Bayesian framework, the objective of localising a vehicle is to estimate

the posterior distribution over the current vehicle pose xk denoted as

p(xk | y1:k,u1:k,m)

= 1
χk
p(yk | xk,m)p(xk | y1:k−1,u1:k,m),

(7)
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where

χk =
∫
p(yk | xk,m)p(xk | y1:k−1,u1:k,m)dxk

is the evidence distribution. Equation (7) can be decomposed into two compo-

nents besides 1
χk

. The predictive distribution is defined as

p(xk | y1:k−1,u1:k,m)

=
∫
p(xk | xk−1,uk)p(xk−1 | y1:k−1,u1:k−1,m)dxk−1,

(8)

where p(xk | xk−1,uk) indicates the state transitional density, and the prior

distribution p(xk−1 | y1:k−1,u1:k−1,m) at time k− 1 is essentially the posterior

distribution of xk−1. The second component p(yk | xk,m) is the measurement

density given the state xk and the reference map m. It is also known as the

likelihood of observing yk at state xk.

The BPF falls into the same Bayesian localisation framework. One of the

major differences is that variables become boxes. This paper uses [m] to indi-

cate an inaccurate OSM. The evolution and observation models are, therefore,

rewritten as  [xk] = [f ]
(
[xk−1],uk

)
+ [µk],

[yk] = [g]
(
[xk], [m]

)
+ [νk],

(9)

where [f ] and [g] are the corresponding inclusion functions.

This paper develops a BPF based localisation framework with evolution and

observation models given in (9) within the Bayesian framework.

4.2. Bayesian Paradigm of Box Particle Filter for Localisation

The BPF employs a set of N weighted boxes
{
(wik, [x

i
k])

}N
i=1

to approximate

the point-wise state estimation. For clarity, this paper decomposes the BPF

based localisation into the following four steps.

4.2.1. The Predictive Distribution

The equivalent prior distribution at time k − 1 as in (8) is defined as

p(xk−1 | y1:k−1,u1:k−1, [m]) ≈
N∑
i=1

wik−1U[xi
k−1]

(xk−1), (10)
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where U[x](·) denotes the multivariate uniform probability density function (pdf)

with the interval [x] as support. The predictive distribution is now given as

p(xk | y1:k−1,u1:k, [m])

≈
∫
p(xk | xk−1,uk)

∑N
i=1 w

i
k−1U[xi

k−1]
(xk−1)dxk−1

=
∑N
i=1 w

i
k−1

∫
[xi

k−1]
p(xk | xk−1,uk)U[xi

k−1]
(xk−1)dxk−1,

(11)

The integral in (11) indicates the distribution of the predicted state after

propagating the i-th box [xik−1] through [f ]. This leads to

p(xk | xk−1,uk)U[xi
k−1]

(xk−1) = 0, (12)

∀xk /∈ [f ]
(
[xik−1],uk

)
+ [µk]. This limits the distribution of the predicted state

xk to ∫
[xi

k−1]
p(xk | xk−1,uk)U[xi

k−1]
(xk−1)dxk−1

≈ U
[f ]
(
[xi

k−1],uk

)
+[µk]

(xk) = U[xi
k|k−1

](xk).
(13)

By substituting (13) into (11), the predictive distribution becomes

p(xk | y1:k−1,u1:k, [m]) ≈
N∑
i=1

wik−1U[xi
k|k−1

](xk). (14)

4.2.2. The Posterior Distribution

The likelihood component p(yk | xk, [m]) is critical in getting the posterior

distribution p(xk | y1:k,u1:k, [m]). In BPF, the likelihood is defined as

p(yk | xk, [m]) = U[yk]

(
g(xk, [m])

)
. (15)

The definition indicates how predicted measurement g(xk, [m]) is distributed

within the support determined by [yk], where the observation noise [νk] is con-

sidered.

The posterior distribution is now given as

p(xk | y1:k,u1:k, [m])

= 1
χk
p(yk | xk, [m])p(xk | y1:k−1,u1:k, [m])

= 1
χk

U[yk]

(
g(xk, [m])

)∑N
i=1 w

i
k−1U[xi

k|k−1
](xk)

= 1
χk

∑N
i=1 w

i
k−1U[xi

k|k−1
](xk)U[yk]

(
g(xk, [m])

)
,

(16)
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in which, the last two terms imply a CSP problem

Xi
k ⊆ [xik] =

{
xik ∈ [xik|k−1] | g(x

i
k, [m]) ∈ [yk]

}
, (17)

i.e. Xi
k is a subset of the predicted state [xik|k−1] that satisfies the measurement

constraint (also refer to (1) for understanding). When a contractor is applied,

the updated state [xik] that satisfies Xi
k ⊆ [xik] can be obtained. Hence, the

following relationship holds according to (Gning et al., 2013)

U[xi
k]
(xk) = U[xi

k|k−1
](xk)U[yk]

(
g(xk, [m])

)
= 1

|[xi
k|k−1

]| |[x
i
k]|U[xi

k]
(xk)

1
|[yk]| ,

(18)

and the posterior distribution in (16) can be simplified as

p(xk | y1:k,u1:k, [m])

= 1
χk

∑N
i=1 w

i
k−1

1
|[yk]|

1
|[xi

k|k−1
]| |[x

i
k]|U[xi

k]
(xk)

∝
∑N
i=1 w

i
k−1

|[xi
k]|

|[xi
k|k−1

]|U[xi
k]
(xk).

(19)

4.2.3. Weight Update and Re-sampling

In BPF, particle weights are updated via

wik ∝ wik−1 ∗ Lik, (20)

with Lik =
|[xi

k]|
|[xi

k|k−1
]| , and 0 ≤ Lik ≤ 1.

When relation (17) is absolutely or strongly violated (measurements are not

compatible with the prediction), |[xik]| becomes zero or negligible. This leads

the updated weight wik to be zero or negligible as well. It will cause the particle

degeneracy phenomenon where only a few particles are with prominent weights.

The re-sampling procedure is then triggered when the following N effective

criterion meets
1∑N
i w

i
k
2 < ηeffN. (21)

Re-sampling is done by subdividing boxes of high weights from randomly se-

lected dimensions (Gning et al., 2013), or from the most pessimistic state di-

mensions (the longest box edge corresponded dimension) (Merlinge et al., 2019).
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4.2.4. Point State Estimate and Covariance

By nature, interval analysis based methods do not provide point estimates.

To provide statistical metrics such as expectation and covariance, in accordance

with (Merlinge et al., 2019), this paper defines the point expectation as

x̂k ≜ E
[
xk ∼ p(xk | y1:k,u1:k, [m])

]
≈

N∑
i

wikc
i
k, (22)

which is used as point state estimate at time instant k, with cik indicates the

center of [xik], and E[·] is the statistical expectation.

4.3. Features-refined Box Particle Filter

4.3.1. Features-refined Contraction

As shown in (1) and (17), contraction accounts for merging innovations into

predicted states to make them accurate and reliable. For a given state [x]

and measurements {[yi] ∈ IRd, i = 1, · · · , n} of a feature, there are two ways

to accomplish contraction. The first follows a step-wise paradigm, i.e. doing

contraction upon the arrival of each measurement. The step-wise contraction

is widely accepted and has been applied in (Abdallah et al., 2008) and (Gning

et al., 2013). Alternatively, one can integrate if not all but several measurements

before contraction. It is, therefore, named features-refined contraction in this

paper. Note that this paper omits the time stamp k for the purpose of a general

description. This paper also denotes {[yik], i = 1, · · · , n} as {[yi], i = 1, · · · , n}

for brevity.

Jaulin (Jaulin, 2009a) has proved that the order of variables being contracted

does not affect the convergent boxes. However, there lacks research works in

literature demonstrating that the features-refined contraction is equivalent to

the step-wise counterpart. The problem will be formulated and their equivalence

will be proved as follows.

Step-wise contraction: Given a state [x] and measurements {[yi] ∈ IRd, i =

1, · · · , n} of a feature, the step-wise contraction result is obtained by solving a
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CSP problem

[sxi] =
{
sxi ∈ [xi] | h(sxi) = 0}, (23)

where

h(sxi) = sxi − g−1([yi]), (24)

[sxi−1] = [xi] holds for i ∈ {2, · · · , n}, and [x1] = [x].

For localisation, (23) reduces to

[sxn] = [sxn−1]
⋂

g−1
(
[yn]

)
= [sxn−2]

⋂
g−1

(
[yn−1]

)⋂
g−1

(
[yn]

)
...

= [sx1]
⋂n

i=2
g−1

(
[yi]

)
= [x]

⋂n

i=1
g−1

(
[yi]

)
,

(25)

where g−1 is an arbitrary function that is piece-wisely monotonic (Rohou et al.,

2018). The final result [sxn] can be abbreviated as [sx] without causing confu-

sions.

Features-refined contraction: Given [x] and measurements {[yi] ∈ IRd, i =

1, · · · , n} of a feature, the features-refined contraction result [bx] can be obtained

through

[bx] =
{
bx ∈ [x] | h(bx) = 0}, (26)

where

h(bx) = bx− g−1
(⋂

[yi]
)
. (27)

Similarly, for localisation, (26) reduces to

[bx] = [x]
⋂

g−1
(⋂n

i=1
[yi]

)
. (28)

Corollary 1: Given a state [x] and measurements {[yi] ∈ IRd, i = 1, · · · , n}

of a feature, [sx] = [bx] stands, i.e.⋂n

i=1
g−1

(
[yi]

)
∩ [x] = g−1

(⋂n

i=1
[yi]

)
∩ [x]. (29)
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The proof of the corollary is given in Appendix A. When g−1 is nonlinear,

the inclusion function [g−1] is usually used instead to deal with the contraction

problem. The disadvantage is that it degeneratesCorollary 1 because inclusion

functions usually overly enlarge (or shrink) box volumes. This paper proposes

Corollary 2 to show results when it comes to inclusion function cases.

Corollary 2: Given a state [x] and measurements {[yi] ∈ IRd, i = 1, · · · , n},

and a piece-wisely monotonic function g−1 with the corresponding inclusion

function [g−1], the following equation stands.

[g−1]
(⋂n

i=1
[yi]

)
∩ [x] ⊆

⋂n

i=1
[g−1]

(
[yi]

)
∩ [x]. (30)

This implies when inclusion functions are used, results from a features-refined

contraction are finer than those from the step-wise contraction, which means

more non-feasible solutions are excluded by the features-refined contraction.

The proof of Corollary 2 is given in Appendix B. Combining Corollary

1 and Corollary 2, one can conclude that the features-refined contraction pro-

duces finer results than step-wise contraction despite incorporating the same

measurements. This helps in mitigating the ‘conservative’ aspect of interval

analysis based methods that involve contraction to refine results.

Example 1: Fig. 1 gives an example where n = 3 to show the difference

between the step-wise and features-refined contractions, in scenarios where g−1

and its inclusion function counterpart [g−1] are used, respectively. Each step in

Fig. 1 is explained separately as follows.

The first step: The upper sub-column shows that given three measure-

ments [y1], [y2], and [y3], one can get their intersection [y] =
⋂3
i=1[yi] as shown

in the lower sub-column.

The second and third step: Given g−1 (rather than [g−1]) and [y1], [y2],

[y3], it is intuitive to begin with calculating g−1([y1]), g
−1([y2]), and g−1([y3])

for refining [x] to get X ∈ [x]. This is usually achieved by following either (25)

or (28). Step 2 shows the step-wise contraction achieved by following (25).

Note that the line width is varied to show that the contraction is done by using

g−1([y1] to g−1([y3] step by step. Step 3, on the other hand, demonstrating

15
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Figure 1: An example illustrating the difference between the step-wise and features-refined

contractions. Step 1 gives the intersection of three measurements [y] =
⋂3

i=1[yi]. Step 2 and

3 together demonstrate Corollary 1. Note that the line width varies in Step 2 to show the

contraction is done step-wisely. Step 4 demonstrates Corollary 2.

that g−1
(⋂3

i=1[yi] is calculated first, which is next used to refine x to get X.

Step 2 and 3 together constitute Corollary 1.

Note that when g−1 is used, X is not necessarily a box. It can be of any shape

as shown by the shaded area in the second and third step. The disadvantage is

the computation of X is usually complex. Furthermore, if one gets another X̃

through other measurements, the calculation of the intersection between X and

X̃ is complex as well.

The fourth step: To simplify the computation, the inclusion function [g−1]

of g−1 is introduced. It converts g−1([y1]), g
−1([y2]), and g−1([y3]) into three

boxes denoted by [g−1]([y1]), [g
−1]([y2]), and [g−1]([y3]). It is intuitive that

the operation on the latter three boxes is simplified comparing to the operation

on g−1([y1]), g
−1([y2]), and g−1([y3]).

One can now either follow the step-wise contraction to refine [x] to get [sx],

or use the features-refined contraction to refine [x], resulting in [bx]. They
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are separately shown in Step 4 in Fig. 1, with [sx] depicted by the yellow

rectangle and [bx] in cyan rectangle in the lower sub-column. One can see that

[bx] ⊆ [sx] stands. This demonstrates the feature-refined contraction yields

‘finer’ results compared with step-wise contraction, which would help to mitigate

the ‘conservative’ aspect of interval analysis based methods.

In real applications,
⋂n
i=1[yi] could result in an empty intersection despite

a subset with non-empty intersection of the measurements {[yi] ∈ IRd, i =

1, · · · , n} can still help in contraction. Therefore, (5) is exploited to find a

q-satisfied intersection to approximate
⋂n
i=1[yi]. As q ⩽ n holds, for a given

predicted state [x], the following equation stands,

[qx] =
{
qx ∈ [x] | h(qx) = 0}, (31)

where

h(qx) = qx− [g−1]
( ⋂
j∈A

[yj ]
)
, (32)

and [qx] is the result obtained by applying contraction to [x] with measurement

achieved through q-satisfied intersection. One can directly see the following

condition stands.

[g−1]
(⋂n

i=1
[yi]

)
∩ [x] ⊆ [g−1]

( ⋂
j∈A

[yj ]
)
∩ [x], (33)

where
⋂
j∈A[yj ] =

⋂{q}
[y]1,...,n with A ⊆ {1, · · · , n} as defined in (5).

4.3.2. Weight Balance

In BPF, particle weights are updated through (20), which indicates that

given wik−1, the weight wik at time k is proportional to the likelihood Lik. One

can generalise (20) by writing

wik = wik−1 ∗ exp(Lik − Lmax), (34)

where Lmax = max{Lik | i = 1, · · · , N}, and exp(Lik − Lmax) is a factor ac-

counting for weight updating. This is because when 0 ≤ Lik ≤ 1 stands,

exp(Lik − Lmax) can be approximated by (Lik − Lmax), which still matches the

proportional relationship given by (20).
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This paper proposes to balance the weight updating formula (34) by

wik = wik−1 ∗
(
exp(Lik − Lmax) ∗ α+ exp(Lmed − Lik) ∗ (1− α)

)
, (35)

where Lmed is the median value of {Lik | i = 1, · · · , N}, α is the balance param-

eter, and exp(Lik −Lmax) ∗α+ exp(Lmed −Lik) ∗ (1−α) is the weight updating

factor (WUF).

By comparing (34) with (35), one can see that the latter keeps exp(Lik −

Lmax), meaning that a high likelihood box particle will maintain a high weight

after it is updated through (35). Meanwhile, the term exp(Lmed −Lik) ∗ (1−α)

is added to account for low likelihood box particles that are consistent with the

real vehicle state but unlikely due to map errors. This helps also to mitigate the

negative effects where the high likelihood is caused by inaccurate OSM features.

Fig. 2 shows how WUF changes when α decreases from 1.0 to 0. When one

investigates the curves along the left vertical axis, the blue curve is generated

by setting α = 1.0. The subsequent nine light blue curves from bottom to top

are separately generated by setting α = {0.9, 0.8, · · · , 0.2, 0.1}. The magenta

curve is generated by setting α = 0. When α is set to 1.0, one can see that (35)

becomes equivalent to (34). When it keeps decreasing, WUF tends to balance

between high and low likelihood box particles. When α reaches 0, WUF is solely

determined by exp(Lmed − Lik), which tends to put trust on low likelihood box

particles. The values for generating Fig. 2 are Lmed = 0.3 and Lmax = 1.0.

4.4. OpenStreetMap Accuracy Evaluation

4.4.1. Definition of Coordinate Systems

Entities on OSM are encoded by geodetic coordinates, i.e. latitude and

longitude. This paper chooses the local East, North, and Up (ENU) coor-

dinate system to achieve localisation, which makes transforming the geodetic

coordinates into the local coordinate system necessary. Compared with other

Cartesian coordinate systems such as the Earth-Centered, Earth-Fixed (ECEF)

coordinate system, the ENU system provides simple 2D planar projections of
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Figure 2: The relationship between likelihood and WUF, with α decreasing from 1.0 to 0.

When one focuses on the curves along the left vertical axis, the blue curve is generated by

setting α = 1.0. The nine light blue curves from bottom to top are separately generated by

setting α = {0.9, 0.8, · · · , 0.2, 0.1}. The curve with α = 0.7 is highlighted in bold, which is

used in this paper. The magenta curve is generated by setting α = 0.

geodetic coordinates of interest. Also, the transformation from 3D geodetic co-

ordinates to the ENU coordinate system is invertible, which makes it easy for

transforming localisation results to the geodetic coordinate system if needed.

The transformation between different coordinate systems is shown in Fig. 3.

In this paper, as the campus is roughly flat, the ‘Up’ dimension is omitted for

brevity. Fig. 4 shows how one line feature extracted from LiDAR perception

is represented in the OSM and vehicle coordinate systems. The OG xGyG indi-

cates the OSM (and the HDM) coordinate system. The OR xRyR is the vehicle

coordinate system. pj and αj are separately the distance and angle of the line

feature with respect to OG xGyG. ri and ψi are the distance and angle of the

line feature with respect to OR xRyR, respectively.

4.4.2. Accuracy Evaluation of OpenStreetMap

A customised HDM serves as the local ENU coordinate system in this paper

and the OSM is aligned to it for OSM evaluation, as shown in Fig. 4. Aligning
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Figure 3: The ENU coordinate system used and the transformation with other systems, λ

indicates the longitude, φ indicates the latitude, and h is the ellipsoidal height.
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Figure 4: Coordinate systems used for line feature representation.
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OSM to the HDM coordinate system can lead to negative coordinates of OSM

data, which is caused by projecting geodetic coordinates of OSM into the local

HDM coordinate system. The HDM provides accurate ENU coordinates of

points along the road. There are points along centers of the roads, and points

that mark the boundaries of the roads, as shown in Fig. 5(a). This paper

considers only OSM features within the UTC campus are considered as shown

in Fig. 5(b).

This paper adopts the distance from HDM points to the corresponding OSM

roads as a measure of the OSM accuracy. A whole accuracy evaluation of OSM

is out the scope of this paper. Instead, three places that are roughly in the

center of the UTC campus have been chosen for evaluation. These three places

are marked as Road set 1, Road set 2, and Road set 3, which are shown in Fig.

5(a).

A total number of 153 samples from the three places shown in Fig. 5(a) are

used for OSM accuracy evaluation, and the results are summarised in Table I.

It shows that the average distances and the standard deviations from each Road

set. Column Road set all shows results by aggregating distances from all three

places. One can conclude that the OSM accuracy varies even within the UTC

campus. For generality, the results from Road set all are taken as evaluation

results. This provides an accuracy of around 0.726 m, with a standard deviation

of 0.778 m.

Table 1: The mean and standard deviation of OSM accuracy evaluation

Road set 1 Road set 2 Road set 3 Road set all

Mean (m) 1.866 0.536 0.556 0.726

Std (m) 1.0870 0.297 0.573 0.778

4.5. Measurement and Uncertainty Representation

While a vehicle is navigating in an urban environment, various features can

be captured by exteroceptive sensors. This paper only focuses on line features
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Figure 5: The HDM and building footprints from OSM used for OSM accuracy evaluation.

The vehicle trajectory is also given: (a) The HDM and the three sets of data used for OSM

accuracy evaluation; (b) The building footprints from OSM of UTC with vehicle trajectory.
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extracted from LiDAR data, given the fact that they are not only abundant in

structured urban environments but also the fundamental components of OSM.

4.5.1. Measurement and Innovation

The line feature in Fig. 4 in the OG xGyG is represented as

xG cosβj + yG sinβj = pj , (36)

where j indicates the line feature is associated with the j-th OSM line feature,

βj is the angle between the xG-axis and the line normal vector, and pj is the

orthogonal distance between OG and the line.

In the vehicle coordinate system OR xRyR, the line feature is represented as

xR cosψi + yR sinψi = ri, (37)

with i marking the i-th line feature in the vehicle coordinate system, ψj is the

angle between the OR-axis and the line normal vector, and ri is the orthogonal

distance between OR and the line. Note that (36) and (37) represent the same

line feature in the two different coordinate systems.

Distances and angles are taken as feature measurements. By concatenat-

ing the nR measurements in OR xRyR at time k, the measurement vector is

formulated as

yk =
(
r1, ψ1, r2, ψ2, · · · , rnR

, ψnR

)T
. (38)

The method proposed in (Teslić et al., 2011) is exploited to associate the

measurements with OSM features. Without loss of generality, one can assume

that a feature denoted by (ri, ψi) in OR xRyR is associated with a feature de-

noted by (pj , βj) in OG xGyG. Now, given the predicted vehicle state at time k

as

xk|k−1 = (xk|k−1, yk|k−1, θk|k−1)
T ,

the feature denoted by (pj , βj) in the OSM is transformed into OR xRyR by r̃i
ψ̃i

 =

 |Cj |

βj − (θk|k−1 − π
2 + (−0.5 · sign(Cj) + 0.5)π)

 , (39)
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with

Cj = pj − xk|k−1 cosβj − yk|k−1 sinβj . (40)

By aggregating all the nR results in (39), the measurement prediction cor-

responding to (38) is denoted as

ỹk =
(
r̃1, ψ̃1, r̃2, ψ̃2, · · · , r̃nR

, ψ̃nR

)T
, (41)

and the measurement innovation, which is usually defined as the difference be-

tween the measurement in (38) and the measurement prediction given in (41),

is denoted as

Ik =
(
∆r1,∆ψ1,∆r2,∆ψ2, · · · ,∆rnR

,∆ψnR

)T
, (42)

with ∆ri = ri − r̃i, and ∆ψi = ψi − ψ̃i. The innovation Ik is used to update

the state estimate in filtering techniques such as Kalman filter and particle

filter (Wang et al., 2018).

4.6. Measurement and Innovation within Interval Analysis

While uncertainties of the line parameters are often taken into account sta-

tistically (Teslić et al., 2011), boxes are used here to represent uncertainties to

the line feature parameters. According to Section 4.4.2, building footprints in

OSMs are shifted (or biased). An interval is added to each endpoint of the line

features in the map to account for the inaccuracy of the OSM. This leads to an

intervalised OSM, which is denoted as [m].

When the OSM is intervalised as [m], line features in both coordinate sys-

tems are intervalised consequently as

[xG] cos[βj ] + [yG] sin[βj ] = [pj ], (43)

and

[xR] cos[ψi] + [yR] sin[ψi] = [ri]. (44)

This equals to adding an box to each measurement (ri, ψi), turning the mea-

surement in (38) into

[yk] =
(
[r1], [ψ1], [r2], [ψ2], · · · , [rnR

], [rnR
]
)T
, (45)
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and the measurement prediction into

[ỹk] =
(
[r̃1], [ψ̃1], [r̃2], [ψ̃2], · · · , [r̃nR

], [ψ̃nR
]
)T
. (46)

The innovation then becomes

[Ik] =
(
[∆r1], [∆ψ1], · · · , [∆rnR

], [∆ψnR
]
)T
, (47)

with [∆ri] = [ri]
⋂
[r̃i], and [∆ψi] = [ψi]

⋂
[ψ̃i]. [Ik] is used to perform the

contraction. Please note that, as innovations and measurements are directly

related, measurements (and not innovations) are used in formulating and solving

CSPs, in accordance with the literature.

4.7. The Features-refined Box Particle Filter based Localisation Algorithm

The proposed FRBPF follows a Bayesian approach similar to the BPF de-

scribed in Section 4.2, and the new contraction and weight balance method are

incorporated in FRBPF as Algorithm 1. Fig. 6 gives a graphical representation

of the FRBPF.

u 

LiDAR input Line features 
OpenStreetMap

line features

Match 
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Featured-refined Box 
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Time  ! update
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Figure 6: Flowchart of the proposed approach, where k and k+1 are time stamps, [xi
k] is the

state maintained by the i-th particle, cik is the center of [xi
k], w

i
k is the weight of [xi

k], and N

is the number of particles.
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Algorithm 1 The Features-refined Box Particle Filter

Input: N box particles {[xi0]}i∈{1,··· ,N} of empty intersection, whose weights

are initiated as wi0 = 1/N , and an OSM [m].

Output: Point-wise state estimates and box volumes.

1: for each time-step k do

2: Propagate box particles using (9).

3: Calculate innovation using (46, 47).

4: Contract box particles using (31), when an innovation is available.

5: Calculate likelihood and update weights using (35).

6: Weight normalisation.

7: Estimate point state x̂k and box volumes.

8: if (21) is satisfied then

9: Re-sampling: choose a set of particles with the highest weights and

determine the new box number ni per existing box particle.

10: Subdivide each chosen box into ni new boxes along the most pes-

simistic dimension and do regularisation by randomly moving the box par-

ticles suggested in (Merlinge et al., 2019)

11: Reset all weights to wik = 1/N .

For a line feature from OSM, suppose a set of measurements denoted as

{[yi] ∈ IRd, i = 1, · · · , n} are obtained. The corresponding predicted measure-

ments and innovations are next calculated following equations (46, 47). When

the feature-refined contraction and q-satisfied intersection are adopted, (17)

becomes (31) to represent the feature-refined contraction problem. As seen ear-

lier, the weight updating strategy uses (35) instead of (20), to balance between

low and high likelihood box particles to mitigate the localisation uncertainties

caused by OSM and measurement uncertainties. Please note that for Step 10,

one can either follow the approach in (Merlinge et al., 2019) to subdivide a

box along the most pessimistic dimension for re-sampling, or follow the random

subdivision approach used in (Abdallah et al., 2008, Gning et al., 2012). Both

approaches are studied and their comparison is given in the next section.
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5. Performance Evaluation

5.1. Models and Experiment Settings

The evolution model [f ] uses the measured speed vk and yaw rate ωk and is

given as 
[xk+1] = [xk] + T · vk · cos([θk] + T · ωk

2
) + [µxk],

[yk+1] = [yk] + T · vk · sin([θk] + T · ωk
2
) + [µyk],

[θk+1] = [θk] + T · ωk + [µθk],

(48)

where ([xk], [yk], [θk])
T ≜ [xk] is the interval vehicle state, and ([µxk], [µ

y
k], [µ

θ
k])

T ≜

[µk] is the interval evolution noise.

The measurement model [g] is defined as [rk] =
√
([xk]− [xR])2 + ([yk]− [yR])2 + [νrk],

[ψk] = atan2([yk]− [yR], [xk]− [xR])− [θk] + [νψk ],
(49)

where [rk] and [ψk] are separately the interval distance and angle of a line feature

indicated by ([xR], [yR]) with respect to the vehicle, ([νrk], [ν
ψ
k ])

T ≜ [νk] is the

interval measurement noise.

LiDAR data collected by a Velodyne® VLP-16 sensor mounted on the roof of

a vehicle are processed. Sixteen layers of point clouds are obtained. This paper

extracts line segments from these layers directly and they are next associated

with OSM line features. Please note that it is possible that one can extract line

features from point clouds reflected by trees, but they will be filtered out by

data association (no line features corresponding to the tree exist on the OSM)

and q-satisfied intersection (line features corresponding to the same footprint

on the OSM tend to be ‘closer’ to each other than the features from the trees,

hence features extracted from the trees will be filtered out).

An abundant number of line segments can be extracted from LiDAR point-

clouds that correspond to a single line feature in OSM. The abundance en-

ables feature-refined contraction and makes the framework proposed meaning-

ful. Ground truth locations are obtained through a RTK sensor suite. Building

footprints of the UTC campus are extracted from OpenStreetMap as shown in

27

https://www.openstreetmap.org/search?query=compiegne#map=13/49.4006/2.8547


Fig. 5(b). The FRBPF, BRPF, and BPF are implemented in Matlab® 2018a

programs. The PC configuration includes an Intel® Core(TM) i7-7800X CPU

and 16.0GB RAM. The box particles do not mutually intersect, and are scat-

tered around the initial state of the vehicle provided by the real-time kinematic

sensor suite. ηeff is set to 0.7 for FRBPF, BRPF, and BPF, which is a common

choice (Merlinge et al., 2019). The weight balance parameter α is set to 0.7

here. The OSM inaccuracy is incorporated by adding a box [−0.73 m, 0.73 m]

(the bounds correspond to the average evaluation error given in Section 4.4)

to the distance measurement r, and a box [−0.5 rad, 0.5 rad] to the angle

measurement ψ.

5.2. Localisation Performance

For general and reliable performance evaluation, NMC = 100 times Monte

Carlo runs have been carried out for FRBPF, BRPF, and BPF. The point-

wise estimation errors and average box volumes are both calculated for per-

formance evaluation. The estimation errors are calculated by RMSEX (k) =√
1

NMC

∑NMC

run=1 ||X̂k,run −Xk,run||2, with X̂k,run stands for the estimate at time

k and Xk,run is the ground truth. The terms ‘area’ and ‘size’ will be sepa-

rately used for position and orientation estimation instead of ‘volume’ to avoid

ambiguities. ‘Volume’ will be kept for generic descriptions.

Fig. 7 and Fig. 8 show the position and orientation estimation results of

FRBPF, BRPF, and BPF, respectively. Both the average box volumes and

point-wise estimation errors are given. One can see that FRBPF and BRPF

show prominent advantages in terms of both average box volumes and point-

wise estimation errors. When compare FRBPF with BRPF, one can see that

the former still shows better performance in general, i.e. smaller average box

volumes and smaller point-wise estimation errors. It is worth mentioning that

there are cases where BRPF slightly outperforms FRBPF. This is due to the

reason that when q in q-satisfied intersection is small or around 1, FRBPF

degenerates to BRPF, hence leading to similar performance to BRPF.
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Table 2: Experimental results of FRBPF, BRPF, and BPF. The first two columns are sepa-

rately the position and orientation errors, and the last two columns are the position box area

and orientation box size, respectively.

Position (m) Orientation (rad) Position Area (m2) Orientation Size (rad)

FRBPF 0.368 0.010 1.050 0.387

BRPF 0.409 0.012 1.400 0.439

BPF 0.783 0.034 1.781 0.518
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Figure 7: Average position box areas and point-wise position estimation errors.
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Figure 8: Average orientation box size and point-wise orientation estimation errors.
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The overall localisation trajectories of FRBPF, BRPF, and BPF are also

compared with the ground truth, which is given in Fig. 9. One can see that

FRBPF on average achieves the best point-wise localisation results. Fig. 10

zooms in the three areas indicated by rectangles to make Fig. 9 easier to read.

When compared with BRPF and BPF, FRBPF also performs the best in box

volumes reduction. This can be further observed from Table II, which also shows

the average point-wise estimation along the full trajectory.

The efficiency of FRBPF, BRPF and BPF are at the same level. In par-

ticular, FRBPF takes 673 ms in average per step, BRPF takes around 667 ms

per step, and BPF takes 647 ms per step on average. FRBPF takes longer

partially because of the q-satisfied intersection. This is intuitive as finding the

q-satisfied intersection needs extra computational efforts. One can accelerate

the q-satisfied intersection by decreasing the box number by a greater step than

1. In addition, this paper uses Matlab for FRBPF implementation, which is

generally slower than implementations by languages such as C++. It is also

worth mentioning that compared with Merlinge et al. (2019), Abdallah et al.

(2008), this paper counts time consumed by extracting line features from Li-

DAR data and associating them with OSM, etc., which would also contribute

to the total execution time.

5.3. Discussions

5.3.1. Box Area Reduction

Figs. 7 and 8 show that the proposed FRBPF has a reduced average box

volumes compared with BRPF and BPF. To make it easier to understand, the

box hull is adopted as an additional indicator for visualisation and comparison.

Fig. 11 shows boxes and the corresponding box hulls from one iteration of

FRBPF, BRPF, and BPF, respectively. To be precise, the box-hull area of

FRBPF as given in Fig. 11(a) is 43.75 m2, which implies an average box area

of 0.68 m2. In contrast, the box-hull areas of BRPF and BPF are separately

46.46 m2 and 56.94 m2, as shown in Fig. 11(b) and Fig. 11(c). The corresponding

average box areas are 0.73 m2 and 0.89 m2, respectively. One can therefore
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Figure 10: Zoomed figures indicated by rectangles in Fig. 9.
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Figure 11: Boxes and box hulls of FRBPF, BRPF, and BPF from one iteration. The dashed

rectangles represent box hulls, and rectangles within the box hulls are boxes from each algo-

rithm.

conclude that FRBPF helps in box areas reduction, which holds when q in the q-

satisfied intersection equals or slightly smaller than the number of line features.

In the worst case, i.e. q = 1 and one randomly selects one measurement for

contraction, it could lead to the increase of the box-hull area. Alternatively, if all

the measurements are used for contraction one by one, then FRBPR degenerates

to BRPF, hence the box-hull area would be similar to BRPF. This can be

observed from Figs. 7 and 8.

5.3.2. The Impacts of Weight Balance

Let consider the case shown in Fig. 12, where the footprint of a building

on OSM does not align with the real surface due to the inaccuracy of the map-
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ping. Let’s suppose there are only two predicted boxes denoted by [xik|k−1] and

[xjk|k−1], with areas |[xik|k−1]| and |[xjk|k−1]|, respectively. Without loss of gener-

ality, let’s also assume that |[xjk|k−1]| = |[xik|k−1]| with the same weights. In this

example, the vehicle is located within [xik|k−1]. When the vehicle gets a LiDAR

point cloud reflected by the real surface, a set of measurements yk = ([r1], [ψ1])
T

is obtained from the extracted line feature. In the meantime, a corresponding

set of predicted measurements can be calculated based on the state prediction

and the OSM feature for each particle. The predicted measurements for the

two particles in Fig. 12 are denoted as ỹik = ([r̃i1], [ψ̃
i
1])

T and ỹjk = ([r̃j1], [ψ̃
j
1])

T .

Innovations ([∆ri1], [∆ψ
i
1])

T and ([∆rj1], [∆ψ
j
1])

T are next calculated following

(47) for contraction.

Without loss of generality, let assume that [∆ψi1] = [∆ψj1], which makes the

contraction solely depending on [∆ri1] and [∆rj1]. When |[∆rj1]| > |[∆ri1]|, it

means that the measurement ([r1], [ψ1])
T is more compatible with ([r̃j1], [ψ̃

j
1])

T

than with ([r̃i1], [ψ̃
i
1])

T . This leads to higher likelihood for particle [xjk] than

for [xik] according to (20). Given that both ([r1], [ψ1])
T and OSM are identical

to each particle, the only reason lies in the difference of the predicted states.

As |[xjk|k−1]| is assumed to be equal to |[xik|k−1]|, one can image the center of

[xjk|k−1] is further away from the real surface than [xik|k−1], hence further away

from the real location of the vehicle. This contradicts with the likelihood of [xjk]

is higher than [xik]. Hence, the weight balance is incorporated in the FRBPF to

mitigate such problems.

The importance of weight balance when an OSM is studied further with four

settings of α (0.0, 0.5, 0.7, and 1.0). The estimation errors are given in Fig. 13.

One can see that when α is used to balance the weight, the point-wise estimation

performance of FRBPF is improved as given in Fig. 13(a) and 13(b). It is worth

mentioning that when using the weight balance, one should still emphasise on

the high likelihood particles by setting α above 0.5. Indeed, when α is set to

be small (such as 0 or 0.5), the estimation errors remain high. Based on these

results, the value of α=0.7 in the best choice with the used OSM.
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Figure 12: An example demonstrating the necessity of weight balance because of a map error.
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Figure 13: The effect of α on the performance of FRBPF: (a) Average position errors; (b)

Average orientation errors.
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6. Conclusions

A features-refined box particle filter framework has been proposed. The the-

oretical proofs are derived first - about the contraction step which is a key for the

reduction of the size of the box particles. Next, the effectiveness of the features-

refined box particle filter for vehicle localisation based on OpenStreetMap has

been demonstrated. Line features extracted from LiDAR point-clouds are as-

sociated with OSM line features to enable features-refined contraction and so

improve localisation accuracy. A weight balance strategy has been proposed

to improve the performance of the proposed features-refined box particle filter

when dealing with the uncertainty present in the map.

The proposed framework successfully localises a vehicle using LiDAR and

OSM, with better point-wise state estimation accuracy and smaller box volumes

compared with the generic box particle filter and the state-of-the-art interval

analysis based box regularisation particle filter. The future work will continue

in two directions: 1) Fusion of multiple types of sensor data within the box

particle filtering approach; 2) Evaluation of the accuracy of OSM in large scale

environments, hence focusing on expanding the scalability of the approach.

Appendix A. Proof of Corollary 1

Proof: Suppose there exists an x, such that

x ∈
⋂n

i=1
g−1

(
[yi]

)
.

which is equivalent to

g(x) ∈
⋂n

i=1
[yi].

It can be further rewritten as

g(x) ∈ [yi], i = 1, · · · , n.

Hence, the following equation holds,
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x ∈ g−1
(
[yi]

)
, i = 1, · · · , n,

which indicates

x ∈ g−1
(⋂n

i=1
[yi]

)
Therefore, Corollary 1 is proved.

Appendix B. Proof of Corollary 2

Proof : For brevity, let us denote

[g−1]
(⋂n

i=1
[yi]

)
≜

[
z
]
, (B.1)

where z = ([z1, z1], [z2, z2], · · · , [zd, zd])T is a box.

According to Corollary 1, the following equation holds,

g−1
(⋂n

i=1
[yi]

)
=

⋂n

i=1
g−1

(
[yi]

)
⊆ [g−1]

(⋂n

i=1
[yi]

)
.

(B.2)

In addition, the following equation stands,⋂n

i=1
g−1

(
[yi]

)
⊆

⋂n

i=1
[g−1]

(
[yi]

)
, (B.3)

which is in accordance with inclusion function attributes.

Now proving Corollary 2 equals to prove ∀z, if

z ∈ [g−1]
(⋂n

i=1
[yi]

)
\
⋂n

i=1
g−1

(
[yi]

)
(B.4)

holds, then the following equation stands,

z ∈
⋂n

i=1
[g−1]

(
[yi]

)
. (B.5)

Suppose that ∃zi = ([z1i , x
1
i ], [x

2
i , x

2
i ], · · · , [xdi , xdi ])T with i ∈ N+, equa-

tion (B.4) holds but (B.5) does not, which means that there exist at least one

dimension j ∈ {1, · · · , d}, such that
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xji ⩾ xi or xji ⩽ xi. (B.6)

Without loss of generality, let’s suppose that xji ⩾ xi stands. Then a new box

o = ([o1, o1], [o2, o2], · · · , [oN , oN ])

= x \ xi
(B.7)

can be obtained, which satisfies

o
⋂

g−1
(⋂n

i=1
[yi]

)
̸= ∅. (B.8)

This contradicts (B.3). Therefore, Corollary 2 stands.
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