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Abstract 
Natural Language Processing (NLP) of textual data is usually broken down into a sequence of several subtasks, where the output of 
one the subtasks becomes the input to the following one, which constitutes an NLP pipeline. Many third-party NLP tools are 
currently available, each performing distinct NLP subtasks. However, it is difficult to integrate several NLP toolkits into a pipeline 
due to many problems, including different input/output representations or formats, distinct programming languages, and tokenization 
issues. This paper presents DeepNLPF, a framework that enables easy integration of third-party NLP tools, allowing the user to 
preprocess natural language texts at lexical, syntactic, and semantic levels. The proposed framework also provides an API for 
complete pipeline customization including the definition of input/output formats, integration plugin management, transparent 
multiprocessing execution strategies, corpus-level statistics, and database persistence. Furthermore, the DeepNLPF user-friendly GUI 
allows its use even by a non-expert NLP user. We conducted runtime performance analysis showing that DeepNLPF not only easily 
integrates existent NLP toolkits but also reduces significant runtime processing compared to executing the same NLP pipeline in a 
sequential manner. 

Keywords: Natural Language Processing, NLP tools integration, Framework 

 

1. Introduction 

The automatic processing of natural language texts has 
been increasingly employed in many text mining 
applications, such as information extraction, automatic 
summarization, sentiment analysis, etc. Usually this 
processing is broken down into subtasks where the output 
of one the subtasks becomes the input to the following 
one, which constitutes a pipeline.  Many freely available 
Natural Language Processing (NLP) tools for many 
languages have already been proposed in the literature. 
Such tools usually provide distinct and even 
complementary subtasks that would be of great interest if 
the user could easily integrate them first. However, the 
use of these tools, their integration according to a specific 
pipeline may raise many issues including different input 
and output representation formats, programming 
languages, tokenization conflicts, to name a few. 
Moreover, most of the NLP subtasks at a higher level 
(semantic parsing) usually require a lot of computation 
resources, thus it is essential to optimize their execution 
taking advantage of modern CPU-based architectures 
allowing multiprocessing or parallelism.  

In this paper we present DeepNLPF, a framework that 
promotes an easy integration of third-party NLP tools 
allowing the preprocessing of natural language texts at 
lexical, syntactic, and semantic levels.  

The proposed framework also provides an API for 
complete pipeline customization including the definition 
of input/output formats, integration plugin management, 
transparent multiprocessing execution strategies, corpus-
level statistics, and database persistence. Furthermore, the 
friendly user interface of DeepNLPF allows its 
deployment and use even by a non-expert user.  

A preliminary evaluation of DeepNLPF has been 
performed on a reference corpus which showed that 
DeepNLPF can not only easily integrate existent NLP 
toolkits, but also reduce a significant amount of runtime 
processing compared to executing the same NLP pipeline 
in a sequential manner. 

DeepNLPF is freely available and a dedicated wiki 
(https://deepnlpf.github.io/site) provides all the 
documentation on how to install, to use, and to customize 
NLP pipelines. 

This paper is structured as follows. Section 2 presents and 
compares several NLP toolkits. In Section 3 the general 
architecture of DeepNLPF, as well as its main 
components are presented. Section 4 discusses strategies 
for deploying and running DeepNLPF on multiprocessor 
architectures, while Section 5 reports experiments that 
evaluate these strategies. Finally, we conclude by 
presenting some perspectives for future development. 

2. Related Work 

2.1 GeoTxt  

Karimzadeh et al (2019) propose GeoTxt, an NLP toolkit 

for recognizing and geolocating place names (toponyms) 

in natural texts. GeoTxt provides six Named Entity 

Recognition (NER) algorithms and a search engine to 

index, classify, and retrieve toponyms. It was developed 

in Java using the Play Framework which enables not only 

its use as endpoints, but also via an interactive GUI. User 

applications can query GeoTxt services using HTTP GET 

or POST requests and receive the answer as a GeoJSON 

FeatureCollection object, created to facilitate data 

storage, analysis, and visualization. However, Geotxt 

does not cover other types of typical NLP analysis 

required by downstream text mining applications, neither 

mailto:sebastien.fournier%7d@lis-lab.fr
https://deepnlpf.github.io/site
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provides a way to integrate other tools into its pipeline. In 

addition, it seems that GeoTxt does not provide a means 

to control parallel or multiprocessing tasks. 

2.2 CLAMP  

Soysal et al (2017) propose the CLAMP
1
 (Clinical 

Language Annotation Modeling and Processing),  a Java 
desktop application specialized in NLP-based analysis of 
text from the biomedical domain. According to the 
authors, with existing biomedical NLP systems, such as 
MetaMap, end users often need to adapt existing systems 
to their selected tasks, which may require significant NLP 
skills. That's the reason why CLAMP offers a user-
friendly GUI that helps users to quickly build customized 
NLP pipelines.  
On the other hand, CLAMP does not provide direct 
support for integrating external tools developed in other 
programming languages than Java. 

2.3 Jigg  

Noji and Miyao (2016) propose the Jigg Framework, an 
NLP framework for integrating distinct NLP tools. It 
allows the user to build a pipeline by choosing the tools at 
each step via a command-line interface. Annotations are 
made by a Scala XML object. According to the authors, 
Jigg is a set of NLP components developed by several 
contributing groups. Jigg is an open NLP system allowing 
the user to add a new tool to the pipeline by writing a 
wrapper according to its API. However, Jigg does not 
allow multiprocessing execution since it only executes 
one document at a time on a single machine. 

2.4 xTAS  

De Rooij et al. (2012) offer a set of open source web 
services called xTAS

2
, developed at the University of 

Amsterdam. The main goal of xTas is to allow users to 
perform a variety of NLP tasks as quickly as possible, 
without having to worry about the database, storage or 
caching the results. It is designed to integrate existing 
open source and/or proprietary analysis algorithms using 
a scalable distributed architecture. To use xTAS, the user 
must communicate with the tool using the web service 
that can be included in his application as a library written 
in Python language. xTAS uses MongoDB

3
 to store 

documents and results, and the Celery
4
 Framework to 

distribute analyses to processing nodes, allowing on-
demand document processing. xTAS is a robust NLP tool 
for corpus processing, but it does provide a more 
advanced semantic-based analysis of the input texts. 

2.5 GATE  

GATE
5
 (General Architecture for Text Engineering) 

(Cunningham, 2002) is a Java suite of NLP tools 
developed at the University of Sheffield and used by 
several communities in NLP. GATE is both a framework 
and a graphical development environment that allows 
users to develop and deploy language engineering 
components and resources. GATE is also considered an 

                                                 
1
 https://clamp.uth.edu 

2
 http://xtas.net 

3
 https://www.mongodb.com 

4
  http://www.celeryproject.org 

5
  https//gate.ac.uk/ 

ecosystem, because the architecture defines the 
organization of a language engineering system, the 
assignment of responsibilities to the various components, 
and ensures that component integrations meet the system 
requirements. As a development environment, GATE 
helps to minimize the time spent for creating or 
modifying existing systems, providing a development 
mechanism for new modules. GATE has been employed 
in many NLP-based downstream applications. However, 
due to its complexity, and specialized output format based 
on inline annotations representations, it is difficult for 
non-NLP expert users. 

2.6 FreeLing  

FreeLing
6
 (Padro and Stanilovsky, 2012) is an open- 

source language analysis toolbox and was built in C++. It 
provides APIs in Python and Java for text processing and 
annotation capabilities to NLP application developers. Its 
architecture consists of a simple two-layer client-server 
approach: a linguistic service layer that provides analysis 
services (morphological analysis, tagging, parsing, among 
others), and an application layer which, acting as a client, 
requests the desired services from the analyzers. A major 
advantage of Freeling is its speed, also providing API 
library services in Java, Perl, and Python languages. The 
internal architecture of the system is based on two kinds 
of objects: linguistic data objects and processing objects. 
Freeling does not support the integration of other third-
party NLP tools in its pipeline. 

2.7 Analysis of Related Work 

In what follows, we provide a qualitative comparative 
evaluation of the different systems previously presented 
according to the following criteria: (i) dependence and 
independence on the domain covered, (ii) the main NLP 
tasks supported, (ii) the external NLP tools integrated into 
the system, (ii) whether the NLP pipeline can be 
customized by the user, (iv) whether the system has a 
RESTFul API, (v) whether  it provides a GUI, (vi) 
whether it allows optimized processing strategies 
(parallelism in a cluster environment), (vii) whether the 
system has a database, (viii) whether it provides  corpus-
level statistics,  and finally,  (ix) the type of system 
architecture. 

According to Table 1, regarding domain-dependency, 
only the CLAMP system (Soyal et al., 2017) is domain 
dependent, other systems are domain-independent. 
Concerning the linguistic analyses supported, few 
systems support semantic-level analysis.   

Regarding the customization of an analysis pipeline, 
except for GeoTxt and FreeLing systems, the other 
systems do not allow the integration of new components 
to its analysis pipeline. For the RESTFul API, CLAMP, 
Jigg and FreeLing systems, do not provide it, which 
hinders the development of Web client applications. 

The Jigg, xTAS and Freeling systems do not provide a 
GUI, which makes their use more difficult for some kind 
of users. Regarding processing strategies, GeoTxt and 
Jigg systems allow some level of optimization by using 
the parallel computing strategy required to process large 
collections of texts. 

                                                 
6
  http://nlp.lsi.upc.edu/freeling/ 

https://clamp.uth.edu/
http://xtas.net/
https://www.mongodb.com/
http://www.celeryproject.org/
https://gate.ac.uk/
http://nlp.lsi.upc.edu/freeling/
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Regarding the use of databases, CLAMP, Jigg, and 
FreeLing systems do not have secondary storage 
strategies using the database, which hinders performance. 

Finally, concerning the information about corpus 
statistics, none of the systems selected has such 
functionality.  

Table 1 summarizes the main characteristics of each 
studied system and the proposed framework DeepNLPF, 
according to aforementioned criteria. Besides these 
comparison criteria, we can also add the criteria of the 
data output format. Few NLP systems support multiple 
data output formats. Most of them offer the user with only 
one alternative. Therefore, when another format is 
required, the developer must create a parser to convert it 
into the desired format. 

 

Table 1: NLP toolkits comparison. 
 

DeepNLPF has some advantages compared to majority of 
related work selected in Tab. 1 including: (i) a richer set 
of default NLP tools and, consequently, more NLP tasks 
already available to the user; (ii) a very friendly user GUI 
allowing non-NLP expert to used it in downstream 
applications; (iii) it provides corpus statistics and 
customizable API in Python, an easy to learn and 
powerful programming language. 

 

 

3. DeepNLPF Framework 

In this section, we present DeepNLPF, a framework for 
enabling an easy integration of third-party NLP tools. Our 
main contribution consists in providing both simple API-
based and GUI-based natural language processing 
services concerning several levels of linguistic 
annotations, including lexical, syntactic, and semantic 
metadata produced by integrated NLP third-party tools. 
Furthermore, in its default setting, DeepNLPF already 
integrates many existing NLP tools including CoreNLP, 
CogComp, spaCy, SEMAFOR, and PySWD. Another 
distinguishing DeepNLPF feature is that it provides an 
easy API for integrating new third-party tools even when 
such tools are in different programming languages and 
input and output formats. Finally, DeepNLPF was 
designed to take profit of the full capacity of user's 
resources (memory and mainly multi-core CPU 
architectures) in order to speed up the processing of 
textual datasets written in English. In the rest of this 
section, we present the general architecture of 
DeepNLPF, as well as its main components. 

3.1 DeepNLPF Functional Architecture  

DeepNLPF is a grey box (Jorgensen and Hangos, 1995) 
type framework, which means that the user does not need 
to know the details of its implementation in order to 
exploit it in his/her applications. The DeepNLPF 
architecture is based on five major components (Fig. 1): 
 Pipeline: As the backbone of the proposed framework, 

it ensures the orchestration of all operations needed to 
execute a customized pipeline analysis of the input 
dataset. It also provides support for the integration of 
other components. 

 Plugins: this component ensures the integration of 
several NLP tools, and delegates the analysis 
responsibility to all subcomponents wrappers that 
access external (third-party) NLP tools. The integration 
is achieved by combining a set of wrappers, each one in 
charge of a specific analysis in the entire pipeline. 

 Models: this component interacts with the data in the 
internal database. It allows access to the corpus, system 
logs, annotations, statistics, among other generated 
metadata. 

 Templates: this component manages both the schemas 
that define the output file formats of the dataset 
annotations.  

 Statistics: this component performs statistical analyses 
of the input datasets. 

 

 
Figure 1:  Main DeepNLPF components. 
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3.2 Pipeline Component 

This is the main component in DeepNLPF architecture 
because it allows both the customization and execution of 
NLP tasks. It also contains all the control logic to 
synchronizing multithreads and parallelism of the NLP 
tools and their individual analysis (lexical, syntactical, 
and semantic). In addition, this component persists 
linguistic annotations in the database. Fig. 2 shows the 
class diagram of the Pipeline component.  

The current version of the DeepNLPF already integrates 
the following third-party NLP tools: Stanford CoreNLP, 
SpaCy, CogComp, SEMAFOR, and PyWSD. In 
DeepNLPF, NLP analyses are separated into the 
following levels lexical, syntactic, and semantic. Fig. 3 
illustrates the entire default pipeline. 

At the beginning of the pipeline, it is necessary to extract 
the sentences from the corpus and structure them, e.g., 
converting a plain text document to a second one 
containing one sentence per line. The sentences are then 
cleaned, i.e., symbols and extra spaces are first removed. 
Then the document is tokenized by default using the 
Stanford CoreNLP tokenizer. This first step is responsible 
to unify the sentence representation as a unique 
(canonical) tokenized representation of the sentence 
among all the integrated tools in DeepNLPF. As a result, 
the same number of tokens is passed to the other NLP 
tools which avoid the issue of having the same sentences 
with distinct numbers of tokens proposed by the selected 
NLP tools. Other analysis can be performed just after the 
tokenization; such as spell checking. 

 

Figure 2: Classes of the pipeline component. 

Next, the following NLP subtasks (at three level) are 
performed by the default DeepNLPF pipeline: 

 Lexical level which provides the following analyses 
from (i) Stanford CoreNLP: tokenization, sentence 
splitting, POS tagging, lemmatization, NER and true 
case; (ii) SpaCy: POS tag, word shape, label, is_alpha, 
is_title, and like_num; (iii) CogComp: mapping to NER 
ontonotes; (iv) GATE: mapping to NER with gazetteers; 
and (v) Custom: morph type.  

 Syntactical level performs the following syntactic 
analyses using the Stanford CoreNLP: constituent 
parsing, dependency parsing, coreference resolution, 
and shallow parsing (chunking analysis). 

 Semantic level is based on the following NLP tools (i) 
SEMAFOR: frame-based semantic parsing; (ii) 
CogComp: Semantic Role Labelling (SRL): verb, 

preposition, and Noun; and (iii) PyWSD : word sense 
disambiguation.  

For unambiguous WSD words (mainly nouns and verbs), 
the pipeline also integrates annotations that maps the 
word sense id to external semantic resources including 
WordNet, WordNet Domain, and aSUMO which provide 
detailed and more accurate information about the senses 
of a word.  

DeepNLPF also allows the user to deepen the analysis by, 
for instance, adding a discourse-based analysis, according 
to the user's project needs. 

After completing all the steps described above, each tool 
produces a document with its annotations, containing its 
analysis at sentences level. Finally, DeepNLPF retrieves 
those annotations and integrates them into a single 
annotation document according to a structured model 
defined for each linguistic annotation level by the user. 

 
Fig. 3: DeepNLPF default pipeline. 

3.3 Plugins Component 

In many complex downstream NLP applications (such as 
Relationship Extraction, Sentiment Analysis, etc.) it is 
necessary to perform various linguistic analyses from 
diverse NLP tools, commonly developed in different 
languages, and distinct settings (input/output formats, 
parameters, etc.). In order to integrate such heterogeneous 
NLP tools into a single NLP pipeline, one of the most 
successful strategies is based on the use of plugins 
(Cunningham, 2002). 

In DeepNLPF, the Plugin component (Fig. 4) is in charge 
of such a task. More concretely, all user-built plugins in 
DeepNLPF must implement all of the abstract methods of 
the IPlugin interface. Thus, the integration of a new third-
party NLP tool requires a new plugin to be inserted in a 
new directory named with the name of the NLP tool to be 
integrated. This label then is used throughout the pipeline 
in the sequence. 

In addition, this directory should also contains the 
following elements: the file __init__.py which is a 
wrapper that provides the functionalities of the NLP tool 
to be integrated, and the manifest.json file which contains 
all the information necessary for DeepNLPF to manage 
the new NLP tool to be integrated. 
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3.4 Models Component 

This component allows the user to employ a database for 
corpus storage, language annotations, corpus statistics, 
and system logs. The main interest of using a database is 
the speed of access to the data of the corpus to be 
processed. Moreover, it allows the user to focus on the 
application under construction, not wasting time creating 
strategies for data storage (De Rooij et al., 2012). The 
DeepNLPF database model was implemented in 
MongoDB

7
 (document-oriented) NoSQL system. The 

schema of the DeepNLPF database is shown in Fig. 5. 

To add a new "corpus" document to the database, it is 
necessary to define a document structure in JSON format, 
containing the following fields: "name" for the corpus 
name (mandatory field); "description" which denotes a 
brief description of the corpus (optional); "sentences" 
denoting the sentences of the corpus and, finally, 
date_time, denoting date and time when the document 
was created. This component also includes other 
functionalities to facilitate parsing texts in many formats, 
including TXT, XML, and JSON. The Pandas library 
provides the main services to deal with these types of data 
storage formats. 

 

 

Figure 4: The classes of the plug-in components. 

3.5 Templates Component 

DeepNLPF offers an annotation scheme based on a 
hybrid model, capable of encapsulating and organizing 
annotations by linguistic level (lexical, syntactic, and 
semantic), in JSON format. All language analysis tasks 
performed by the NLP tools integrated into DeepNLPF 
provide JSON annotations by default.  

Thus, the Model component retrieves these annotations 
and maps them with the formats defined by the template 
model, structuring in this manner all the analyses by 
linguistic level. When the user needs the annotation in 
another file format, such as XML, the user needs to 
indicate that to the Templates component that analyzes 
the JSON file and converts it to the desired output format. 

                                                 
7
 https://www.mongodb.com/ 

3.6 Statistics Component 

This component generates corpus-level statistics, 
including the total number of sentences in the corpus, the 
minimum and maximum number of tokens per sentence, 
the average number of words per sentence, the word 
frequency, and the frequency of POS tagging labels. 
Other customized statistics can be generated according to 
the user's needs. For example, the user can add a new 
method in the Statistics component to generate basic 
statistics concerning the frequency of bigrams and/or 
trigrams contained in the corpus. This component also 
allows the user to visualize data statistics interactively 
using the Python-based Plotly8 visualization library 
including frequency distribution of the number of words 
per sentence, the frequency distribution of POS tags, and 
corpus-level word clouds. 
 

 

Figure 5: Diagram of the DeepNLPF database. 

4. Multi-processing in DeepNLPF 

This section presents different strategies for using 
DeepNLPF which takes advantage of modern 
multiprocessing and parallel computer architectures. Due 
to its sequential processing nature, a given NLP pipeline 
can take a considerable amount of time to process all the 
input collection of documents. Consequently, it is 
advisable to use an effective parallelism and/or a 
multiprocessing strategy. 

4.1 Multi-process Strategy 

In the case of a complex pipeline defined by the user, i.e., 
composed of many types of analysis performed by 
different NLP tools, DeepNLPF takes profit of multi-core 
computer architecture to process all pipeline analyses in 
parallel. For that, DeepNLPF automatically identifies the 
number of cores in the CPU processor(s) and distributes 
each NLP tool in an asynchronous process, optimizing the 
execution of the individual pipeline subtasks. DeepNLPF 
implements its multiprocessing strategy using the Pathos 
Framework

9
, a framework used for heterogeneous 

computation (McKerns et al., 2011). Pathos mainly 
provides the communication mechanisms to configure 
and initiate parallel calculations via heterogeneous 
resources. Fig. 6 illustrates the multiprocessing execution 
of DeepNLPF using the Pathos Framework. 

                                                 
8
 https://plotly.com/python/ 

9  
https://pypi.org/project/pathos/ 

https://www.mongodb.com/
https://plotly.com/python/
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4.2 Using DeepNLPF via RESTful API 

DeepNLPF can also be used via its RESTFul API. It 

allows the user to make service requests via Web, GET 

and POST technologies. This service makes it possible to 

build NLP applications that will have more flexible 

Internet services (Masse, 2011). The RESTFul API was 

built using the Microframework Flask
10

.  To exploit it, the 

user has to run the service (python run.py) and then, in a 

client application, execute the requests via POST or GET, 

passing the correct settings with the Postman tool. 

 

Fig. 6: Deployment and multiprocessing execution of 

DeepNLPF with Pathos library. 

5. Experimental Evaluation 

This section discusses the results of two experiments that 
aim at comparing the runtime performance of the NLP 
tools and DeepNLPF for performing a pipeline analysis 
on a single CPU-based multi-core machine. More 
precisely, both experiments have the objective of 
answering the following experimental question: 

Is there a significant difference in runtime performance 
when the pipeline analysis performed by the third-party 
NLP tools are executed individually (by their own) 
compared to the same pipeline analysis when they are 
instantiated and executed by DeepNLPF? 

To answer the above question, we will consider two 
distinct assessment scenarios:  
Scenario 1: the pipeline analysis is divided into three 
linguistic levels (lexical, syntactic, and semantic) and 
evaluated at each level for each NLP tool at a time. 
Scenario 2: a full pipeline analysis is performed at once.  

5.1 Running Time Evaluation on a Single 

Multicore Machine 

The Profiling technique (Eyerman and Eeckhout, 2008) 
which identifies the most resource-intensive points in a 
given running application was used for measuring the 
running execution time of DeepNLPF and the NLP tools 
evaluated in this section. Furthermore, a dynamic analysis 
was performed that measures the execution time of the 
main modules and all its components. This profiling 
technique has the advantage of indicating the most 
consuming subroutines for adopting later optimization 
strategies. It should be mentioned that both the working 
memory (RAM) and swapping usage were not studied 
due to the complexity of third-party NLP tools. 

                                                 
10 

http://flask.pocoo.or 

For this quantitative evaluation, the SemEval 2010
11

 
reference dataset was used. This dataset contains 8000 
sentences with (Dataset III): 135,886 tokens from 
sentences composed by at least 4 tokens, and at most 95 
tokens (average 17 tokens/per sentence).  

We also generated two smaller datasets from the SemEval 
2010 dataset containing 1,000 (Dataset I) and 4,000 
(dataset II) sentences, respectively. The computer 
hardware configuration used in all the experiments 
reported in this section has the following hardware/OS 
configuration: 16 GB of RAM, Intel Core i5-6200U 
processor at 2.30 GHz with 4 (4 cores), a 120GB SSD 
hard disk, running the Linux Ubuntu 19.04 (64 bits) OS. 

All the tools were launched from a Python wrapper using 
the cProfile module, performing a dynamic analysis 
measuring the execution time of the program and all its 
components.  

Scenario 1: Individual NLP tools analysis at a time.  

The goal of this experiment is to assess the processing 
time that each NLP tool at the three linguistic level 
(lexical, syntactic, and semantic) required to process the 
three partitions of the SemEval 2010 dataset.  

The lexical level is formed by the following two 
pipelines: spaCy pipeline (pos, shape, label, is_alpha, 
is_title, and like_num), and CogComp pipeline (NER 
ontonotes). Table 2 shows the achieved results. 

For the syntactic level, two other pipelines were studied: 
Stanford CoreNLP pipeline (constituent parsing, 
dependency parsing, and coreference resolution), and 
CogComp pipeline (shallow parsing - chunking).  

For the semantic level, three pipelines were evaluated: 
SEMAFOR pipeline (frame-based semantic analysis), 
CogComp pipeline (SRL Noun, SRL Verb and SRL 
Prep), and PyWSD pipeline (WSD). Table 2 summarizes 
the results obtained on the SemEval 2010 dataset (Dataset 
I-1000, Dataset II 4000, Dataset III - 8,000).  

Tools 

  

Runtime(s) 

Dataset I 

(1000) 

Dataset II 

(4000) 

Dataset III 

(8000) 

Lexical Pipeline 

Stanford CoreNLP 73.6 206.0 379.0 

spaCy 15.3 46.9 93.3 

CogComp  286.0 1,370.0 2,280.0 

Syntactic Pipeline 

Stanford CoreNLP 234.0 714.0 1,330.0 

CogComp  242.0 1,170.0 2,040.0 

Semantic Pipeline 

SEMAFOR 84.1 234.0 466.0 

PyWSD 1,170.0 4,390.0 9,210.0 

CogComp  1,000.0 4,070.0 8,220.0 

Table 2: Runtimes of individual NLP tools. 
As it can be seen in Tab. 2, CoreNLP, spaCy, and 
SEMAFOR pipelines have a notable linear correlation 
between the number of sentences and the time required to 
execute them. Not surprisingly, the CogComp and 
PyWSD tools took the longest running time to process the 
input dataset. However, both tools were run online and 
not locally. A local execution requires a lot of computing 

                                                 
11

  https://www.cs.york.ac.uk/semeval2010W SI/datasets.html  

https://www.cs.york.ac.uk/semeval2010W%20SI/datasets.html
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resources (actually more than 32 GB RAM), due to the 
size of the models loaded in memory and it could not be 
evaluated here. 

Discussion.  Figures 7, 8 and 9 show the runtime results 
obtained by each NLP tool at the linguistic lexical, 
syntactic, and semantic levels, respectively.  

At the lexical level, the pipelines executed are: CoreNLP 
―default‖ pipeline (tokenization, pos, lemma and ner), 
spaCy ―default‖ pipeline (pos, shape, label, is_alpha, 
is_title, and like_num), and CogComp ―default‖ pipeline 
(NER ontonotes). Figure 7 displays the line graphs of the 
processing time of the NLP tools. More precisely, the 
dotted lines represent the NLP tools executed individually 
whereas the solid lines denote the same NLP tools 
executed individually, but under the control of the 
DeepNLPF optimization strategies. It can be seen that for 
spaCy, there is almost an overlap of the lines, which 
indicates that DeepNLPF has not improved the 
performance of this tool. This means that spaCy already 
takes into account optimization aspects in its 
implementation, such as multithread processing. In this 
scenario, DeepNLPF was not able to improve spaCy 
performance. However, for the CoreNLP tool, there is a 
significant performance improvement when using 
DeepNLPF. For the CogComp online version, there is 
still a slight improvement, considering the fact that the 
online version of CogComp runs in a cluster environment. 
Nevertheless, the lag for Internet data transfer has to be 
considered. 

At the syntactic level, the pipelines executed were: 
CoreNLP ―default‖ pipeline (parsing, dependency 
parsing. and coreference resolution), and CogComp 
―default‖ pipeline (shallow analysis). Figure 8 shows 
another significant improvement in the pipeline 
performance with DeepNLPF.  

At the semantic level, the executed pipelines were: 
SEMAFOR ―default‖ pipeline (semantic frame analysis), 
CogComp ―default‖ pipeline (SRL Nom, SRL Verb and 
SRL Prep) and PyWSD ―default‖ pipeline (WSD). As 
shown in Figure 9, for the SEMAFOR pipeline, there is 
no performance gain with DeepNLPF, while compared to 
CogComp pipeline, DeepNLPF gains about 2,500 
seconds, and for the PyWSD pipeline there is a significant 
difference in running time.  
These results show that the parallelism processing 
strategies implemented into DeepNLPF significantly 
shorten running time of the majority of the integrated 
third-party NLP tools. 
 
Scenario 2: Full pipeline analysis executed at once. In 
this scenario, each NLP tool was executed individually, 
one after the other, and the total of the running times of 
each tool is calculated. The results presented in Table 3 
show that the pipeline processing time of each of the 
dataset is proportional (almost linear) to the number of 
sentences in the datasets. Tab. 4 shows the runtime of the 
same pipelines in Tab. 3 but with those pipelines within 
DeepNLPF, i.e., the NLP tools in Tab. 3 were integrated 
into DeepNLPF by means of the proposed plugins. 

 

 
Fig. 7:  NLP tools vs DeepNLPF runtime (lexical analysis) 

 

 
Fig. 8:  NLP tools vs DeepNLPF runtime (syntactic analysis). 

The objective of this experiment is two-fold: to check 
whether the integration of third-party tools work correctly 
through the DeepNLPF plugins, and to verify whether 
DeepNLPF parallel processing strategies can reduce 
processing time. Indeed, as the last row of the Tab. 4 
shows, DeepNLPF was much more efficient thanks to its 
multiprocessing/parallel processing strategies, practically 
reducing processing time by 60%. 

To further improve DeepNLPF performance, an 
implementation of multiprocessing strategies based on the 
distribution of processes/threads on a cluster environment 
with several machines is our ongoing work. 
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Fig. 9:  NLP tools vs. DeepNLPF runtime (semantic analysis). 

Full Pipeline 

Tools Pipeline 

Dataset 

I 

Dataset 

II 

Dataset 

III 

Stanford 

CoreNLP 

tokenize, ssplit, pos, 

lemma, ner, parse, 
depparse, truecase, 

coref 270.0 776.0 1,630.0 

SpaCy 

pos, shape, label, 
is_alpha, is_title, 

like_num 12.3 46.3 91.2 

SEMAFOR 

frame-based 

semantic parsing 87.3 243.0 448.0 

CogComp 

srl nom, verb, prep, 

shallow parse, ner, 
ontonotes 1,050.0 5,110.0 9,350.0 

PyWSD wsd 1,020.0 3,760.0 7,360.0 

Total Runtime(s) 2.439.6 9,935.3  18,879.2  

Table 3:  Full pipeline runtime on the 3 datasets. 

 

Full Pipeline  

Tools 

  

Runtime (s) 

Dataset   I  Dataset II  Dataset III  

Stanford CoreNLP, 

SpaCy, SEMAFOR, 

PyWSD 2,439.6 9,935.3 18,879.2 

Stanford CoreNLP, 

SpaCy, SEMAFOR, 

PyWSD 

(DeepNLPF) 824.0 3,250.0 6,320.0 

Table 4. Comparison of the sequential processing time of the 

NLP tools with the parallel processing in DeepNLPF. 

6. Conclusion 

We presented DeepNLPF, a grey box type framework for 
integrating third-party NLP tools. It provides a default set 
of integrated state-of-the-art NLP tools that annotates 
natural language texts with lexical, syntactic, and 
semantic linguistic-based metadata.  

DeepNLPF provides a user-friendly interface, allowing 
non-NLP experts users to easily specify their NLP-based 
pipelines. Furthermore, DeepNLPF provides an optimized 
version of typical NLP pipelines that can be executed in 
multi-core processor machines, taking advantage of the 
available hardware resources for processing large datasets 
in less time. 

DeepNLPF organizes its operations around a database to 
store both data and metadata: dataset information, 
analyses, annotations, dataset statistics, and system logs. 

A first evaluation of DeepNLPF has been performed on a 
dataset adopting distinct multiprocessing/parallelism 
strategies. The obtained results are promising. We are 
currently testing an improved DeepNLPF version on a 
cluster computing architecture using larger datasets.  

DeepNLPF is freely available and a dedicated wiki 
(https://deepnlpf.github.io/site) provides all the   
documentation on how to install, use, and customize NLP 
pipelines. 
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