
HAL Id: hal-03521384
https://hal.science/hal-03521384

Submitted on 10 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semi-supervised annotation of Transcranial Doppler
ultrasound micro-embolic data

Yamil Vindas, Emmanuel Roux, Blaise Kévin Guépié, Marilys Almar,
Philippe Delachartre

To cite this version:
Yamil Vindas, Emmanuel Roux, Blaise Kévin Guépié, Marilys Almar, Philippe Delachartre. Semi-
supervised annotation of Transcranial Doppler ultrasound micro-embolic data. 2021 IEEE Inter-
national Ultrasonics Symposium (IUS), Sep 2021, Xi’an, China. �10.1109/IUS52206.2021.9593847�.
�hal-03521384�

https://hal.science/hal-03521384
https://hal.archives-ouvertes.fr


Semi-supervised annotation of Transcranial Doppler
ultrasound micro-embolic data

Yamil Vindas
CREATIS Laboratory∗

LYON, France
yamil.vindas@creatis.insa-lyon.fr

Emmanuel Roux
CREATIS Laboratory∗

LYON, France
emmanuel.roux@creatis.insa-lyon.fr

Blaise Kévin Guépié
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∗Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220,
U1294, F-69XXX, LYON, France

Abstract—Transcranial Doppler (TCD) is a non-invasive ultra-
sound monitoring technique allowing real time measurements of
the blood flow velocity mainly in the Middle Cerebral Artery. It is
commonly used to monitor patients with stroke risk by detecting
micro-emboli. This technique generates a considerable amount
of data whose annotation is expensive and time-consuming. We
propose a semi-supervised learning method to annotate a dataset
of micro-embolic data with reduced requirements of manual
annotation. First, we start by extracting features from TCD
spectrograms in an unsupervised manner using an Auto-encoder.
Then, we project those features in a 2D space using the t-
SNE algorithm. Afterwards, the dataset is partially annotated
by an expert based on the 2D projection and the overall data
information. Finally, the labels of the annotated samples are
propagated to a part of the unlabeled samples using a K-nearest-
neighbors (KNN) strategy. We evaluate our annotation method
through the annotation error and the percentage of labeled
samples with respect to the unlabeled samples. Our results show
that we are able to annotate all the unlabeled samples with an
annotation error of 12 % in less than 1 second against around
2 hours for a human expert. This represents a time saving of a
factor of 105, showing the interest of our method.

Index Terms—Semi-supervised learning, Emboli classification,
Stroke, Data Annotation

I. INTRODUCTION

Stroke is the second leading cause of death in the world [1],
and one of the leading causes of disability. The most common
type of stroke is ischaemic stroke [2] caused by the blockage
of an artery that supplies blood to the brain. Microembolic
signals have been associated to ischaemic strokes [3], hence
the importance of its detection to prevent and treat this medical
condition.

Transcranial Doppler (TCD) is a non-invasive ultrasound
monitoring technique allowing real time measurements over
long periods of time of the blood flow velocity mainly in
the Middle Cerebral Artery. It is commonly used to monitor
patients with stroke risk by detecting micro-emboli through

High Intensity Transient Signals (HITS). Many researchers
have used signal processing techniques such as Fourier and
Wavelet transforms [4] [5] [6], machine learning techniques
such as SVMs [7] and deep learning techniques such as
Convolutional Neural Networks (CNNs) to detect and classify
HITS between Artifacts (Art.) and Emboli. However it remains
difficult to differentiate between Gaseous Emboli (GE) and
Solid Emboli (SE).

In this study we propose a semi-supervised learning method
to annotate a dataset of micro-embolic TCD data with reduced
requirements of manual annotation. Similar semi-automatic
annotation methods have been proposed in other context by
Benato et al. [8] and Zhu and Ghahramani [9]. The first
team proposed to use of an Auto-Encoder (AE) to extract
features from the original data and then project this data
into a 2D space to manually annotate some samples and
automatically annotate a part of the remaining samples using
machine learning classifiers. The second team proposed a K-
nearest-neighbor (KNN) approach to propagate the labels from
a few labeled samples to the rest of the unlabeled samples.

In this paper, we propose a semi-automatic annotation
method for TCD data based on feature extraction, dimension-
ality reduction (DR), manual annotation and label propagation.
The proposed method is fast and accurate. To our knowledge,
this is the first work to achieve semi-automatic TCD data
annotation using machine and deep learning techniques.

II. PROPOSED METHOD

The method that we use for semi-automatic data annotation
is composed of four steps that are going to be detailed in
the following subsections. Furthermore, the proposed method
relies on three assumptions: the structure assumption (i.e.
samples that are in the same structure, cluster or manifold, are
likely to have the same labels) [10], the preservation of the
local structure during projection and the annotation space



coverage (i.e. the labeled samples should cover the whole 2D
annotation space).

A. Feature extraction

The first step of our method consists in extracting data spe-
cific features from the images representing the spectrograms of
the HITS using a convolutional AE. The architecture that we
use to do this is shown in figure 1. The AE has two parts: the
encoder that encodes the input into a latent feature space, and
the decoder that uses the latent representation to reconstruct
the original input.

As our objective is to annotate data thanks to the learned
representations of the AE (and not to reconstruct images using
the latent space), we use all the available data for training in
order to improve the learned representations of the encoder.

B. Dimensionality Reduction

The second step of our method consists in reducing the
dimension of the latent space obtained by the encoder of
the AE. Indeed, even if the chosen AE architecture allows
to considerably reduce the dimension of the original images,
it remains too high for visualization and annotation purposes.
To, tackle this problem, we follow the steps of Benato et al. [8]
an use the t-SNE algorithm [11] to project the encoder latent
feature space into a 2D space. Benato et al. showed that, t-
SNE is preferred over global DR techniques such as UMAP
or PCA because the preservation of the local structure of the
samples during projection is important for label propagation.

As in the previous step and for the same reasons, all the
samples are going to be used for training in this step.

C. Manual annotation

The third step of our method consists in manually annotating
a part of the available samples using the 2D space obtained in
the previous step and the overall data information. The idea
is to manually annotate data so that the labeled samples cover
the whole 2D space (i.e. avoid wide areas without labels).

Moreover, to do the annotation the expert has access to:
image of the HITS, audible (Doppler) signal of the HITS,
pathology of the subject, use of contrast agent, source hos-
pital and hospital service (all this information is not always
available for all the subjects). The expert annotator will use
this information to decide the membership score of a sample
to a certain class. The final label of a HITS corresponds to
the class having the highest membership score.

Furthermore, at the end of the step we dispose of a dataset
D = L ∪ U , where L corresponds to the labeled samples (C
classes) and U to the unlabeled samples (|U | >> |L|, where
|.| is the cardinal operator).

D. Label propagation

The fourth step consists in propagating the labels from the
labeled samples, L, to some (or all) of the unlabeled samples,
U .

Let’s denote NK(s) the K-neighborhood of the 2D rep-
resentation of sample s ∈ D. Let’s also denote C(s) =
[ps1, p

s
2, ..., p

s
C ] the membership scores of a sample s ∈ D,

where ∀i ∈ {1, ..., C}, s ∈ D, psi can be interpreted as the
probability that sample s belong to the class Ci. To propagate
the labels from the labeled samples to unlabeled samples, we
proceed using algorithm 1.

Algorithm 1: K-nearest-neighbor label propagation
Input: D = L ∪ U , K
Output: Set of newly labeled samples L̃
Initialization: L̃ = ∅
Iterations:
while exist samples to label do
A = ∅;
for s ∈ L ∪ L̃ do
VK(s) = NK(s) ∩ U ;
for u ∈ VK(s) do
C(u) = C(s);

end
A ← A∪ VK(s);
U ← U \A

end
L̃ ← L̃ ∪ A

end
The algorithm finishes when: (1) all the samples are labeled

or (2) the only remaining unlabeled samples are the ones that
are not in the K-neighborhood of any labeled samples.

The main difference between our method and the one
proposed by Benato et al. [8] is that we use a KNN strategy to
propagate the labels from the labeled samples to the unlabeled
samples whereas they use Laplacian SVM and Optimum Path
Forest.

E. Data description

TCD recordings were performed on 39 subjects of 11
different centers using an Atys Medical TCD Robotized Holter
(TCD-X, probe frequency of 1.5 MHz) allowing recordings
between 30 and 180 minutes. The spectrograms were com-
puted from the TCD signals and High Intensity Transient
Signals (HITS) were detected (9 dB threshold) resulting in
1545 extracted HITS, each of duration 250 ms. Finally, the
spectrograms of each HITS were transformed into images used
to train the AE for feature extraction.

III. RESULTS

To evaluate our semi-automatic data annotation method, we
proceed as follows. First, we apply the first three steps of our
method in order to get a dataset D = L ∪ U where |L| =
0.1 × |D|. Then, we apply the fourth step to propagate the
labels from the L samples to U samples (50 repetitions). If we
note, G the set of correctly labeled samples, we can measure
the performances of the method using the annotation error ε
and the percentage of labeled samples p:

ε = 1− |G|
|L̃|

and p =
|L̃|
|U|

(1)

Figure 2 shows ε and p with respect to K. First, we can
see that p increases with the value of K to converge to 100%
of labeled samples, and this, with ε ≤ 15%. Secondly, we can



Fig. 1: Autoencoder architecture used in the unsupervised feature extraction step of our proposed method (section II.B)

notice that ε increases with the value of K (for K ≤ 10),
we have (in average) ε ≤ 12.5%. Finally, we can identify two
regimes: the dynamic regime where for small values of K, p
increases; and the permanent regime where, for higher values
of K, p converges to 100%.

Moreover, we measure the time needed by our method and
by an expert to annotate one sample. Our method was able to
annotate one sample in 44.9± 3.9 µs with ε = 11.92± 2.08%
against around 8 s for a human annotator (we suppose that
the annotator does not make errors). This represents a gain in
time of a factor of 105.

IV. DISCUSSION

Our method was able to annotate much faster (factor of 105)
the same amount of data as a human expert at the expense of a
higher annotation error. Even though no human annotator can
achieve the speed annotation of our method, a more precise
measurement of the human annotation speed should be done
using different expert annotators.

Furthermore, we showed that there is a negative correlation
between the annotation error and the percentage of labeled
samples. There is then a trade-off between the annotation error
that one can tolerate and the percentage of labeled samples
needed in the database. In our case, as the percentage of
annotated samples converges to 100% and the annotation error
increases with K we focus on K ≤ 10, with K = 10 being the
first value of K allowing to annotate all the available samples.
Moreover, a good compromise between annotation error and
percentage of labeled samples is obtained for K = 5 where
more than 90% of the samples are labeled with an annotation
error smaller than 11% (c.f. figures 2 and 3).

Finally, annotation errors are inevitable with our proposed
method, and it can disrupt classifiers trained on this type of
data (c.f. figure 3). Most of the annotation errors are at the
boundaries of two clusters of different classes, especially at
the interface between the solid emboli and gaseous emboli. A
good solution to reduce the negative impact of wrongly labeled
samples is the use of robust loss functions such as Generalized
Cross-Entropy Loss [12] to compensate the noise in the labels.

V. CONCLUSION

This work proposes a semi-automatic annotation method for
TCD micro-embolic data. Our proposed method is composed
of four steps: feature extraction, dimensionality reduction,
manual annotation of a small amount of data and automatic la-
bel propagation. This pipeline allows to decrease considerably

the annotation time (gain in time of a factor of 105) while
keeping the annotation error smaller than 12%. We plan to
apply our method to a larger TCD dataset and use the obtained
dataset for a classification task. Additionally, to reduce the
annotation error, we plan to use local quality projection metrics
in order to identify the good candidates to propagate the labels.
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the annotation error in % (right axis). As the percentage of annotated samples converges to 100% and the annotation error
increases with K, we focus on K ≤ 12. There is a trade-off between the percentage of labeled samples and the annotation
error. For K = 5 we have a good trade-off with an annotation error of 10.20± 1.63% and a percentage of labeled samples of
95.52± 1.23%.

Fig. 3: Label propagation using K = 5. a) Initial dataset (10% of the total number of labeled samples). b) Manually labeled
dataset (1545 samples) obtained by manually annotating the remaining unlabeled samples. c) Automatically labeled dataset
(1491 samples) obtained using the initial dataset and our proposed method (annotation error of 9.11%, 96.12% of labeled
samples and 3.88% of unlabeled samples). GE and SE stands for Gaseous Emboli and Solid Emboli respectively. The diamonds
correspond to the wrongly labeled samples. The spectrograms of wrongly labeled and unlabeled samples are given as an example.
Wrongly labeled samples are usually in the boundaries between clusters of samples of different classes.
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