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Augmented Perception with Cooperative Roadside Vision Systems for
Autonomous Driving in Complex Scenarios

Stefano Masi', Sio-Song Ieng?, Philippe Xu' and Philippe Bonnifait!

Abstract— Performing autonomous driving in urban envi-
ronments is a challenging task, especially when there is a
reduced visibility of traffic participants in complex driving
scenarios. For this reason, we investigate the advantages of
cooperative perception systems to enhance on-board perception
capabilities. In this paper, we present a cooperative roadside
vision system for augmenting the embedded perception of an
autonomous vehicle navigating in a complex urban scenario.
In particular, we use an HD map to implement a map-aided
tracking system that merges the information from both on-
board and remote sensors. The road users detected by the
on-board LiDAR are represented as bounding polygons that
include the localization uncertainty whereas, for the camera, the
detected bounding boxes are projected in the map frame using
a geometric constrained optimization. We report experimental
results using two experimental vehicles and a roadside camera
in a real traffic scenario in a roundabout. These results quantify
how the cooperative data fusion extends the field of view and
how the accuracy of the pose estimation of perceived objects is
improved.

I. INTRODUCTION

During the past decades, research on cooperative per-
ception systems has been growing significantly. Individual
autonomous vehicles perception is always constrained by
the range of on-board sensors. To enhance vehicles field
of view perception ability, improving detection accuracy
and navigation safety, different vehicles need to exchange
information [5], [23], [1]. V2X communication offers an
appealing solution to share perception adding connectivity
to vehicles by means of ETSI or SAE standards [13], [12].

Shared perception information can be combined via data
fusion techniques to improve the accuracy in detected objects
[25], [15], [24]. This technique allows both to improve the
detection of obstacles in the driving environment via multi-
sensor data fusion [11] and to enhance safety in autonomous
vehicles navigation [16]. The main advantage is that data
collected from different sensors may contain complementary
information [6], and data collected from remote sensors can
help in filling blind spots [17]. To achieve data fusion,
techniques such as the Kalman Filter [14], Extended Kalman
Filter [21], Split Covariance Intersection Filter [18] and
others have been used.

Furthermore, shared perception can also be broadcast from
a remote intelligent roadside infrastructure [26]. In particular,
infrastructure can be used to a wide range of use cases, from
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sensing the driving environment providing additional infor-
mation about road users [20] to help autonomous vehicles
for cooperative driving maneuvers [7].

To test cooperative perception, nowadays the majority of
research in this field uses simulated or hybrid data as in [9],
or some existing datasets such as [8]. For this reason, there
is the necessity of high quality referenced data from fixed,
reproducible and static environments to test and compare the
performance of cooperative perception systems [8]. How-
ever, according to [8], many state-of-the-art datasets such
as KITTI [10] are not suited for cooperative perception
because they are focused on standalone perception, while
other datasets such as [22], [29] are focused on predicting
intentions rather than cooperative perception.

In this paper, we present a cooperative system composed
of a roadside camera than communicates with an AD vehicle
which is itself equipped a LiDAR sensor. The system is
validated experimentally in a roundabout scenario. First, we
introduce in Section II how a High Definition (HD) map can
be used in all the subsystems to help the navigation task.
We then introduce in Section III the map-aided on-board
LiDAR-based perception system. In Section IV, we detail
the image-based vehicle detection from the roadside camera
and how to compute the pose of the detected vehicles in
the map frame. Next, Section V introduces our map-aided
road objects tracking system that can be used for both the
camera or LiDAR data but also to do the fusion of the two.
Finally, we present experimental results in Section VI using
real data acquired with two experimental vehicles driving in
a roundabout in the city of Compiegne, France.

II. HD MAPS

Maps play naturally a central role in vehicle navigation
[19], but when enriched with detailed and precise information
about the environment, as in HD maps, they can serve mul-
tiple additional purposes. In this paper, we consider an HD
map containing information about driving lanes (represented
by a center line and some borders, e.g., lane markings,
road edges, pedestrian crossings, etc.) and also the road
infrastructure such as traffic signs, poles, traffic lights, etc.
The geometric position of these elements coded as points or
sequences of points (called polylines) are considered to be
centimeter accurate.

In cooperative ITS, when a common map is shared among
the users, it also serves easily as a common working frame
to exchange information. In the rest of the paper, we assume
that all the agents are able to provide information within a
local ENU (East-North-Up) frame.



(b)

Fig. 1: Road users detection pipeline. (a): Raw data LiDAR point cloud. (b): Ground filtering and bounding polygons computation. (c):
Bounding polygons with localization uncertainty injection and map filtering to filter objects that do not belong to the road surface. The
colors green, red and blue indicate respectively out of the road, on the road and on the boundary.

In the following, the HD map will be used for different
tasks. First, the geometry of the lanes is used within the
embedded perception system in order to filter out the obsta-
cles that are not lying on the road surface. This enables to
focus the perception only on road users. Second, the map is
used for the extrinsic calibration of the infrastructure camera.
This calibration also serves to estimate the homography of
the road surface from the HD map onto the image frame.
And inversely, this enables to project the detected object in
the image frame back to the HD map frame. For the object
detection task itself, the HD map also helps to estimate
the heading of the detected object by assuming that they
generally follow the curve of the driving lanes. Finally, the
center lines of the driving lanes, which are representative
of the vehicles trajectories, are used to assist the tracking
system. Intuitively, the HD map improves the evolution
model of the tracking as it provides additional constraints
between the tracked trajectories and the shapes of the lanes.

III. ON-BOARD PERCEPTION WITH 3D LIDAR

In our system, we exploit a Velodyne VLP23 LiDAR sen-
sor to scan the driving environment. The detection pipeline is
composed of the following main blocks. Further detail about
this detection pipeline can be found in [3]:

a) Ground segmentation and object clustering: To de-
tect road users from, we first separate the LiDAR point
cloud belonging to the ground from the rest. Then, from
the remaining points, we exploit a clustering algorithm to
individuate and group LiDAR points that belong to a same
object. To achieve this task, the algorithm proposed by
Zermas et al. [28] is used.

b) Bounding polygon: This step takes as input the
clusters obtained in the previous step and computes, for
each cluster, a 2D convex bounding polygon that bounds
the projections of the LIDAR points on the ground plane. To
perform this computation, the monotone chain algorithm [30]
has been used.

c) Map filter: Next, we use an HD map to filter out
bounding polygons that are not located within the driving
space, i.e., polygons that have an empty intersection w.r.t.
the driving space. To do so, the bounding polygons need

to be transformed from the LiDAR sensor frame to the map
frame via the AD vehicle localization. The uncertainty of the
localization information is taken into account by extending
the bounding polygon as in [3].

Figure 1 illustrates the subsequent steps of the raw point
cloud data treatment. Note that steps a) and b) can be
replaced by other LiDAR-based object detection methods of
the literature.

IV. PERCEPTION FROM THE INFRASTRUCTURE

The contributions of a cooperative perception system in-
stalled in the infrastructure are a wider and complementary
field of view to the on-board sensors. This makes it possible
to handle occlusion problems in complex areas, such as
roundabouts, where multiple road users interact with each
other. In this work, we assume that information from infras-
tructure is trustworthy and no infrastructure fail can happen.
Integrity and trustworthiness of received data is out of the
scope of this work. To be useful for the AD vehicle, the
perception information from the infrastructure needs to be
expressed in a common frame. In our study, our goal is to
compute 2D Euclidean bounding boxes in the HD map frame
from bounding boxes expressed in the image frame.

A. Obstacle detection and size estimation

Image-based obstacle detection can be solved efficiently
with state-of-the-art deep learning approaches such as
YOLO [4] or R-CNN family detectors [27]. These methods
detect and classify objects by returning bounding boxes
(BBox) in the image frame. From a monocular camera setup,
it is difficult to retrieve 3D information such as the size of
a vehicle (length and width). However, as the detection net-
work is capable of differentiating different types of vehicle, it
is possible to approximate their sizes. Indeed, the same kind
of vehicle has approximately the same dimension in Europe.
The dimensions of passenger cars are quite homogeneous
and the length is in the majority approximately 5.0 m and
the width is approximately 1.8 m. The truck dimensions
show more disparity in length and in width. It is difficult to
distinguish the smallest trucks from the biggest personal cars.
Buses have well-defined dimensions in France: the classical
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Fig. 2: Some road information which visible and georeferenced
in the HD map is mapped into the image to perform the camera
calibration.

model has a length of 12 m and the width is 2.50 m. The
articulated version is longer with 18 m.

B. Camera calibration using HD Map

The perception system observes a roundabout with a very
large area (approximately 4200 m?). The perception system
is calibrated by estimating the homography from the HD map
to the image plane, using the information available on the
HD map: ENU location of traffic signals, street lampposts
and road markings. The extrinsic calibration corresponds to
the estimation of the parameters of the rotation matrix and of
the translation vector which relates the 3D world coordinates
frame to the image coordinates system. The estimation of the
parameter is illustrated in Figure 2.

C. Position and heading estimation of detected vehicles

In the rest of this section, we consider that the detectors
provide bounding boxes along with the estimated dimensions
(length ¢ and width w) and that the camera is well calibrated.
The goal is now to compute the 2D top-down bounding
boxes in the HD map coordinates frame. By projecting a
BBox of a detected vehicle in the ground plane, we obtain
a trapezoid-like quadrilateral ((ABCD) in Fig. 3) within
which the algorithm extracts the position of the vehicle and
its heading (represented as the rectangle (F F'GH ) in Fig. 3).

When the vehicle is seen from the front/back or from the
side, the heading is easy to derive from the HD map. We will
now be interested in the case where the vehicle is seen in
an intermediate position between these two positions (front
and side) as depicted in Figure 3. In this situation the goal
is to find the geometric configuration such that E € [AB],
F € [BC] and H € [AD].

To solve this problem, we constrain E € [AB] and H €
[AD] and parameterize the problem with A = |AE| € (0, w).
Thanks to the calibrated camera, we can compute the ENU
coordinates of A = (z4,y4), the angles o and (3 as well
as the equation y = ax + b of the line (BC). For a given
value of A € (0,w), the coordinates of the points E and F'
are given as follows:

(g, yr) = (xa + AcosB,ya + Asin f) (1)
(xp,yr) = (xg + Lcosp,yE + {sinp) 2)

The heading angle ¢ can also be written as ¢ = o+ 3 +
~ — /2. Furthermore, when applying the law of sines in
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Homography transformation of the
bounding box from the image frame
to the HD map ENU coordinates frame

Fig. 3: The BBox is transformed from the image to the HD map
frame as the quadrilateral (ABCD). The top-down 2D bounding
rectangle (EFGH) is computed by constraining E € [AB] and
H € [AD] and finding the parameter A such that f(\) = 0
which leads to the optimal configuration represented by the dotted
rectangle.

the triangle (AEH), we have S22
coordinates of F' can be rewritten as

= Si%, therefore the

{ a:p:xA+)\cosﬂ+ésin(o¢+ﬁ+3rcsm(m%)) (3)

yr = ya + Asin 8 — £cos (o + 3 + arcsin (2522))

To solve the problem, we need to find the value of A\ such
that the point F belongs to the line (BC') which is given by
the equation y = ax + b. This is equivalent to finding the
root of the function

fAN) =yr—azp—b with0 <\ <w. 4)

The function f is monotonic w.r.t. A € (0, w), it is increasing
if the slope of the line (BC) is positive (as in Fig. 3) and
decreasing otherwise. If 0 € {f(A)|0 < A < w}, then the
solution is unique and can be computed numerically using
Newton-Raphson’s method. Otherwise, it means that the size
of the vehicle is largely overestimated or underestimated. The
configuration pictured in Figure 3 corresponds to a vehicle
heading in the right direction w.r.t. the camera, the other
direction is solved similarly by symmetry. Once the root of
f is found, the coordinates of the rectangle (EFGH) are
computed and broadcast to the AD vehicle.

V. MAP-AIDED ROAD OBJECTS TRACKING

To estimate the ENU localization of the perceived road
users we use a multi-sensor data fusion approach that consid-
ers both on-board sensors and remote infrastructure data. The
filter performs prediction and update steps of an Extended
Kalman Filter. To handle the problem of out-of-sequence
data due to communication and processing latency, we use
backward updates [2]. As each piece of information is time-
stamped to GPS time in a common reference time frame,
there is no clock synchronization issue and the backward
updates are done exactly at the right time.

For each road object, we track the position (z,y), the
heading angle ¢ and the longitudinal speed v with a constant
yaw rate and linear velocity. Indeed, one of the objectives
of the tracking is to estimate the speed of objects. In this
work, we have implemented a map-aided tracker because



it is our opinion that this solution behaves as a good
compromise between a Cartesian tracker and a curvilinear
one and better encompasses the true pose of detected objects
at lane-level. This means that, for both the LiDAR and
camera observations, we map-match the observations at lane-
level. Note that to localize LiDAR detected objects in ENU
coordinates, the AD vehicle localization has to be used. The
map-matched Cartesian coordinates of an object are therefore
given as observations to the tracking system. As the state
vector X k|, of the tracked objects is expressed in Cartesian
coordinates, the resulting estimate is free to move in the 2D
space and not constrained only to HD map polylines. This
makes it possible to manage behaviors that are not close to
the polylines such as lane change maneuvers.

In order to properly feed the tracking system with mean-
ingful observations, we have to select a point on the object
and we need a good representation of the uncertainty of the
map observations.

Let us consider the LiDAR polygons first. As shown in
[3], it is possible to propagate the AD vehicle localization
uncertainty directly into the cluster bounding polygons (Fig-
ure 1 (¢)). The tracker needs a point from the observation to
carry on its estimation process. In our case, we choose the
barycenter Zj, of the bounding polygon. This measurement is
then map-matched to give the observation Yy, = [z, yx]. To
compute the uncertainty of this observation, we first compute
a covariance matrix (denoted “R; ) along the polyline of the
HD map. To do so, we manipulate confidence domains. For
a given risk o, a 1 —« confidence interval is classically given
by:

PrX—yw<X<X+y)=1-a. (5)

In this work, we use v = ®71(1 — a/2) ~ 1.96 for a =
0.05. Where the function ® represents a normal distribution.
We can then propagate the localization uncertainty of the AD
vehicle to point Zj accordingly to [3]. The polygon obtained
by the uncertainty injection into Zj, is then expressed in the
HD map polyline frame in the along and cross directions
(see Ly and L,, in Fig. 4). For instance, the variance along
the polyline is given by Yo, = |Ls| /4.

The same reasoning is done for the transverse component
which leads to a covariance matrix L' R; = diag(Lo2, Lo2) in
the frame L of the polyline. In order to obtain the covariance
matrix R; in the world reference frame to be used by the
tracker, we consider the angle ¢ of the polyline and we do
a rotation Rot(¢) (under the hypothesis that the angle v has
a negligible uncertainty):

R = Rot(¢)).LR;. (Rot(y))" (6)

Regarding the camera information, they are always received
from the infrastructure in the form of an oriented rectangle,
the orientation being calculated as described in section IV.
The point measurement Zj, is chosen to be the center of the
box which is projected onto the map polyline in the same
way as the LiDAR observation. Regarding the uncertainty of
this observation, there is no need to manage the uncertainty
of the localization of the camera of the remote intelligent
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Fig. 4: Map-aided observation Y and its uncertainty. The blue
polygon is the bounding LiDAR cluster. The LiDAR measurement
Z is the barycenter of this polygon. The map-aided observation Y’
is the projection of point Z on the polyline. The green polygon
represents the direct propagation of the localization uncertainty on
point Z and the green ellipsoid represents the resulting uncertainty
on Y with the standard deviations o5 and o, in the polyline frame.

infrastructure. The uncertainty comes from the detection
errors of the objects in the image and their back-projection
in ENU. We have observed on experimental sequences that
this uncertainty is globally constant in the areas of interest.
For this reason, the covariance matrix (denoted R, of the
camera observation is chosen to be constant. However, one
improvement could be to use an uncertainty that is inversely
proportional to the distance between the camera and the
detected objects. This is useful to model the fact that objects
closer to the camera are detected more precisely w.r.t. far
objects.

The data association of the observations with the tracks
is based on the Hungarian algorithm (with Mahalanobis
distances) which makes it possible to associate only one
track with an observation. This method guarantees that there
is always a match between detections. However, to reject
unlikely matches, we introduced a thresholding after the as-
signment based on Mahalanobis distance. As a consequence,
each unassociated observation creates a new track so that
none of the detections are ignored. This entails that several
tracks can correspond to the same object, which makes the
tracker’s workload a little heavier, but increases the safety of
the decision. Tracks that are not associated with observations
during 3 update steps are eliminated. This allows the system
to be robust against little occlusions and small observation
losses. However, for a multisensor system, it is opinion of the
authors that a threshold based on a time window instead of
one based on update steps will lead to better performances.

VI. EXPERIMENTAL RESULTS

The evaluation of our tracking system has been carried out
on real data collected in a roundabout scenario in the city
of Compiegne, France. A camera was set up to observe the
roundabout and two experimental vehicles were used, one
played the role of the AD vehicle while the other was used
as a target to evaluate the tracking performance.



Fig. 5: The AD vehicle used for the data acquisition (white) and
the target vehicle of the platform used for ground truth localization
(black).

A. Experimental Setup Infrastructure

Regarding the infrastructure system, we have installed a
fixed camera on a bridge in the southern direction of the
roundabout, in order to observe the traffic on that side of the
roundabout. The camera was synchronized with the clocks
of the on-board systems of the two cars (through GNSS) via
an NTP server and it recorded images of the road users in
the roundabout. After the recording session, the camera data
have been treated offline to detect vehicles in the recorded
images, using YOLOV3, and to provide the road users ENU
position estimates in a CPM like format. The camera total
rate is fixed to 10 Hz. Figure 6 illustrates one frame of
the dataset with the raw-data image and its corresponding
bounding boxes. The perception computer was a desktop
with 2X Intel Xeon Silver 4110 (8 cores) and Nvidia Quadro
P5000 GPU.

B. On-board Experimental Setup and Driving Scenario

For this experiment, the dataset contains recorded accurate
positions of both the AD vehicle and the target vehicle used
as a target obstacle. For both cars, the accurate positions were
obtained with a NovAtel Span CPT IMU/GNSS receiver,
with Post Processed Kinematics (PPK) corrections, which
gives a centimetric-level of accuracy. Moreover, the AD
vehicle was also equipped with a Velodyne VLP32 LiDAR
sensor used to provide the observations for the LiDAR-based
objects tracking system.. The result of the detection process
is provided with a rate of 10 Hz.On our experimental car,
we used a standard laptop to process sensors data and to
perform data fusion

In the experiment, the AD vehicle navigation went through
a roundabout, also stopping it at the roundabout entrance to
acquire some data about the incoming traffic flow. At the
same time, the target car was navigating into the roundabout
among other vehicles, providing extra obstacles for the AD
car. The main advantage of this approach is that when the
AD car detects and tracks the target, it is possible to compare
the resulting estimated states of the track (e.g. position and
velocity) w.r.t. the ones obtained with the ground truth local-
ization system. To do so, we select, for every time instant and
among all the detected objects, the one that corresponds to
the track of the target vehicle and we compare its estimated
state with the ground truth. Figure 5 illustrates a scenario of
the dataset with the two cars and the corresponding LiDAR

Fig. 6: Projected bounding boxes in the HD map frame and the
target experimental vehicle with ground truth in black.
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Fig. 7: An overview of the experimental setup used in this ex-
periment. The target vehicle trajectory is represented by the cyan
polylines and the positions of the infrastructure and the AD vehicle
are indicated by the white dots pointed by the arrows.

point cloud. Figure 7 depicts the navigation scenario for this
validation tests with the corresponding trajectories of the AD
vehicle.

C. Results

The main objective of this section is to analyze and discuss
the performance of the tracking system regarding the state
estimation and the enhancement of the AD vehicle field of
view. We evaluate the performance of the tracking system
when it uses the on-board and infrastructure data separately
and then combined together. Figure 8 illustrates the results of
the tracking process for a data sequence of the dataset. This
figure illustrates the tracking result for all the vehicles present
in the scenario when using only the on-board LiDAR data
(a), only the data from the intelligent infrastructure (b) and
the combination of them (c). As one can see, the two sensors
have complementary fields of view and, when they are
combined together, the final result enlarges the autonomous
vehicle field of view, providing a more complete, robust and
reliable perception of the ongoing driving situation.

To illustrate the accuracy of the tracking system, Figure
9 depicts the tracking result for only the target vehicle. It
shows the tracking result using only the LiDAR data, the
camera data and both compared with the ground truth of
the vehicle. From this figure, one can notice that even if the
target car is free to move in the 2D space of the map, the



TABLE I: Root mean square error and the duration of the sequence
(in seconds) for the tracking methods obtained using only the
LiDAR, the camera and both sensors.

Sensors ~ Whole (m)  Overlapping (m)
LiDAR 0.70 0.99
Camera 1.88 0.78

Both 0.49

tracking result is more constrained to be close to the HD map
polylines. This is because of the map-aided tracking method.
However, one can notice some cases where the tracking result
deviates from the polylines. This can happen for example in
the case of a lane change maneuver. To quantify the gain of
the cooperative system w.r.t. the two single-sensor ones, we
compute the percentage of time where the target vehicle has
been tracked by each of them. This percentage is computed
as the ratio between the number of samples that correspond
to the target vehicle and the total number of samples of the
ground truth in the time interval represented in Figure 9.
For the single-sensor systems, the LIDAR-only system tracks
the target vehicle for 68% of the time, while the camera-
only system tracks it for 37%. Regarding the multi-sensor
tracker, it tracks the target vehicle for 92% of the total time,
outperforming the two others. Notice that the sum of the
single sensor system percentages does not correspond to the
multi-sensor system percentage because of the presence of
overlapping zones in sensors fields of view.

We have computed, for the target vehicle, the root mean
squared error for the three cases described before. To do so,
we have projected both the estimated state and the ground
truth position of the vehicle on the roundabout polylines
and compared the estimation error in terms of along track
error in curvilinear coordinates. This is useful because, many
autonomous vehicles navigation and motion planning strate-
gies rely on curvilinear coordinates [19]. For this reason,
it is interesting to investigate the accuracy in estimating
objects in a curvilinear framework. Table I illustrates the
computation of the RMSE for the three cases. When using
the whole sequence, the LiDAR-only tracking performance
is better than the camera-only one. This is mainly due to the
different accuracy of the sensors. When focusing the analysis
on the parts of the sequence where both the AD vehicle and
infrastructure can track the target vehicle, the combination
of both sensors performs better than the camera-only and
the LiDAR-only ones. In this particular situations, which
correspond to the zones where we have a transition from
the camera-only setup to the LiDAR-only one, the target
vehicle is almost out of the field of view of the sensor and
perceived from a frontal orientation w.r.t. the LIDAR, making
the estimation of its size less accurate.

VII. CONCLUSION

In this paper, we have presented a collaborative map-
aided tracking system to estimate road users position and
speed along the HD map polylines. The tracking process
relies on a cooperative perception system composed of an

on-board LiDAR sensor and a road side vision system that
broadcast the objects it detects. We have presented the main
key steps of the processing. In the first experimental part,
the performance of this system has been studied in terms of
augmentation of the AD vehicle field of view, highlighting
the gain of the cooperative perception system over the
standalone AD on-board perception. Clearly, a cooperative
system improves of the ability to track vehicles in almost all
the parts of the roundabout ring that has been considered in
this work.

Then; we have presented an evaluation of the tracking
performance thanks to the use of a target vehicle accurately
localized which allows computing errors on real data. As ob-
served, the three trackers have different accuracy, depending
on the sensors capabilities. This means that, in this particular
configuration and with the chosen sensors, enhancing the
field of view of the AD vehicle by adding an extra source of
information implies an accuracy loss in the overall estimation
of the position of the tracked objects by the standalone AD
vehicle perception. Nonetheless, we have shown that this
multi-sensor data fusion leads to benefits in the zones where
the field of view of the two sources of perception overlap,
providing a more accurate estimation of the state of the
perceived objects.

A perspective is to improve the quality of the infrastructure
information and to integrate it in the state estimation process
of the detected objects in terms of pose and occupancy.
Furthermore, an other approach would be to consider a map-
aided tracker that tracks the bounds of the objects instead
of considering the center of mass of perceived clusters. This
would help to provide a more stable and consistent estimation
of the state because, as we observed in our experiments, the
shape of the detected objects can change a lot from one
instant to another, with the consequence that the center of
mass moves a lot too.
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sometimes an instance of the tracked vehicle is present on both
lanes.
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