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Abstract— High Definition (HD) maps enable autonomous
vehicles to not only navigate roads but also localize. Using
perception sensors such as cameras or lidars, map features
can be detected and used for localization. The accuracy of
vehicle localization is directly influenced by the accuracy of
the features. It is therefore essential for the localization system
to be able to detect erroneous map features. In this paper, an
approach using Kalman smoothing with observation residuals
is presented to address this issue. A covariance intersection of
the residuals is proposed to manage their unknown correlation.
The method also leverages the information of multiple runs to
improve the detection of small errors. The performance of the
method is evaluated using experimental data recorded on public
roads with erroneous road signs. Our results allow to evaluate
the gain of detection brought during successive drives.

I. INTRODUCTION

High accuracy maps offer the possibility to greatly im-
prove the accuracy of localization systems [1], [2]. By
detecting features of the environment that are accurately
referenced in a HD map, a localization system can correct
the vehicle pose. However, this assumes that the map can
be trusted. Although road networks do not change quickly,
maps can still become outdated. Errors can be made during
the mapping process, features can be damaged or moved
because of traffic accidents and roadworks can change an
entire section of road for instance. It is therefore essential
for a reliable localization system to be able to detect changes
in the map.

In this work, the problem of detecting road signs with in-
accurate positions is addressed. While missing features lead
to fewer measurements, thus worse localization, incorrect
referencing of existing features lead to wrong measurements.
This induces an erroneous localization solution and overcon-
fidence in the estimated solution. In this work, road signs
whose positions have an error smaller than one meter are
considered. Detecting large faults is not a difficult problem. It
is the small and medium faults that are the most challenging.

In the next section, the existing literature on map error
detection is highlighted. Section III details the localization
framework used in this work. The method used to detect
map errors is explained in Section IV. Our approach uses a
localization system that generates residuals of the detected
features stored in the HD map through a smoothing method.
Finally, Section V presents experimental results carried out
with multiple drives recorded on open roads.

II. RELATED WORK

The widespread use of maps for intelligent vehicles has
led to questions about the accuracy of these maps [3] and

to the development of methods to detect and correct map
errors. There are different types of map errors leading to
widely different strategies to detect them.

An important element of the map that needs to be accurate
for intelligent vehicles is road geometry. The road geometry
changes slowly as there are few ways to affect it besides
roadworks. Errors on this aspect of the map would have
disastrous effects for control and planning systems.

Hartmann et al. [4] have trained a neural network to detect
maps errors. To detect errors, the network is fed with the
difference between observed road characteristics (distance to
lane markings, curvature, etc.) and characteristics obtained
from a map. With this information, the network outputs a
probability of error. The authors show that this approach
is able to detect errors such as missing roundabouts or
intersections. It is also important to note that unlike many
map error detection methods, this approach is able to detect
changes before the vehicle goes through an area using a
front-facing camera.

Although some have used the general road geometry
for localization purposes (e.g. in [5]), specific accurately
referenced features are more useful for localization. Hence,
research has also been done to address this problem.

Point clouds are also used as georeferenced data in so-
called dense maps. Even features maps used in this work
have been produced by cartographer using dense point clouds
of the area. Hence, detecting map changes can be made using
this format. The authors in [6] compared point cloud maps
using a point to point approach. Points from one map version
are classified based on their distance to points from another
map version. New points are far from any points of the
old map and points from the old version no longer existing
are too far from any point in the new map. This method
requires the original dense map format to be kept which
raises scalability issues as those types of map are heavy.

The HD map change detection problem has been addressed
in [7] using a dual particle filtering approach. Two parti-
cle filters are used, one estimate the vehicle state without
using the map, the other uses lane marking measurements.
From both sets of particles, descriptors such as the mean
lane marking innovation and the mean particle weights are
computed. Features are classified based on these descriptors
using thresholding techniques.

Nguyen et al. [8] have also used an estimation with and
without map features to figure out if the map is reliable. The
authors compare estimates obtained using map features for
localization to dead-reckoning estimates. A random forest



classifier trained to classify features as reliable or not is then
used to infer the features reliability.

Evaluating map features is not only limited to evalu-
ating the accuracy of their positions. Some have chosen
the strategy of trying to verify that a feature exists at
a known position. A feature persistence model has been
developed in [9] to account for the possibility of features
disappearing. The authors in [10] have proposed an approach
using Dempster-Shafer theory to deal with this issue. In
this framework, features that have moved will be classified
as deleted and a new feature will be added at the correct
position.

In contrast to the existing body of research, our method
aims at detecting position changes, using states estimated
using post-smoothing residuals. The proposed method can be
applied by simply storing the states and observations used
in the widely used Kalman filtering scheme.

III. ESTIMATION FRAMEWORK

A. General Architecture

To perform road signs error detection, the proposed
method relies on localization estimates. The real time lo-
calization solution is used in a post-processing fashion to
evaluate the mapped features.

The localization framework used in this work relies on
three components as shown in Figure 1. The main component
is the estimation layer that performs the actual estimation of
the vehicle states. This layer relies on a Kalman filtering
scheme to provide high frequency estimates. It fuses infor-
mation obtained from the vehicle proprioceptive sensors, the
GNSS receiver, lane marking and road sign measurements.
The vehicle is modeled using a Constant Turn Rate and
Velocity (CTRV) model. Both the estimated states (denoted
as xk) and observations (denoted as zk) are buffered such
that delays can be accounted for. The observations are
related to the states through the observation model (z =
h(x)). This component does not perform data association of
measurements to map features. The association is instead
performed in parallel in a matching layer. The matching
layer periodically acquires the state and observation buffers
of the estimation layer and performs a global association
of detection to map features. Once the matches have been
found, they are shared to the estimation layer to be used to
estimate the states. The matching method is detailed more
in [11]. Finally, a third component performs post processing
tasks. It records the measurements and states estimated
during a drive. At the end of a drive this data is used to
perform calibration tasks [12] and evaluate the map using
the method presented in this paper.

B. Road Sign Measurements

In this work, errors on road signs coordinates are being
detected. Unlike some methods that rely on independent
estimates and measurements to detect map errors, this work
instead aims at detecting errors on features used during the
estimation. It is therefore essential to detail the observation
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Fig. 1: Diagram of the localization architecture. The Filtering Layer
performs the actual state estimation at high frequency, the Matching
Layer associate measurements to map features using the state and
observation buffer from the Filtering Layer, the Post Processing
Layer records the observations and states to detect map errors.

model used to include road sign measurements in the esti-
mation.

The road sign detector used in this work relies on lidar
intensity measurements to detect road signs. Indeed, road
signs are designed to be retro-reflective to easily be seen
at night. This also makes them easily detectable using the
lidar intensity measurements. The road signs are detected by
filtering the lidar point cloud using a high-intensity threshold.
The remaining points are then clustered using Euclidean
clustering. The centroid

[
Mxjk

Myjk
]>

of each cluster j
is a measurement that can be used for state estimation (M

indicates that the coordinates are expressed in the mobile
frame attached to the vehicle).

As will be explained in Section IV the error detection
method relies on observation residuals (the difference be-
tween the actual observation and the expected observation:
zk−h(xk)). Even after a single drive, multiple residuals will
be obtained for a map feature (one for each observation).
A method to merge those residuals is proposed in Section
IV. However, not every type of residual can be merged.
The residuals need to be expressed in the same observation
frame. Indeed if the measured road sign positions (in the
sensor frame) were used as measurements, the residuals will
correspond to errors in the sensor frame. This frame changes
depending on the pose of the vehicle at every instant. An
erroneous road sign might have positive residuals when it is
observed in one direction but negative residuals when it is
observed in the opposite direction. The residuals would then
cancel each other make the error hard to detect.

To avoid this the observation model needs to be chosen
such that the residuals it produces do not depend on the van-
tage point. For that reason, the observation used for the state
estimation is not the local measured road sign position but
is instead the global map reference. The observation model
h is built using the measured local position

[
Mxjk

Myjk
]>

moved to the global frame using the vehicle position and



Fig. 2: Graphic of the road sign observation model. The road sign
measurement in the vehicle frame M can be transformed to the
global frame 0 using the vehicle pose.

orientation, as described in equation 2.

zjk =

[
xi
yi

]
=h (xk) (1)

=

[
cos θk − sin θk
sin θk cos θk

] [
Mxjk
Myjk

]
+

[
xk
yk

]
(2)

It is important to note that to simplify the equation, the
measurements are assumed to be obtained directly in the
vehicle frame. In practice the transformation between the
sensor and vehicle frame needs to be well calibrated.

The covariance matrix R of this observation model can
be evaluated by comparing the actual measurements with the
predicted measurements from the observation model using a
ground truth states.

IV. MAP ERROR DETECTION

A. Single Drive

1) Kalman Smoothing: The error detection method relies
on a Kalman filtering scheme for the state estimation.
Kalman filtering enables high frequency estimation but,
unlike graph based methods [13], it only estimates the state
xk using the observations z1 to zk. Hence, a state estimate
does not benefit from future measurements. This can be
mitigated using Kalman smoothing. Kalman smoothing, also
known as Rauch–Tung–Striebel (RTS) smoothing, enables
to propagate the new information from future measure-
ments to past states. This is not done using the future
observations but rather using only the states. Since future
states have been estimated using future observations, the
information is contained in the state estimates. With this
method, the buffer of filtered

{
x̂k|k,P k|k |k ∈ J0, NK

}
and

predicted
{
x̂k|k−1,P k|k−1 |k ∈ J1, NK

}
states estimates can

be smoothed sequentially in a backward pass from time N
to time 0. This is done using

x̂k|N = x̂k|k + Jk
(
x̂k+1|N − x̂k+1|k

)
(3)

P k|N = P k|k + Jk
(
P k+1|N − P k+1|k

)
J>k (4)

with Jk expressed with the evolution model Jacobian matrix
F k+1 as

Jk = P k|kF
>
k+1P

−1
k+1|k (5)

2) Covariance Intersection: To evaluate map features,
residuals are used. Map features can be observed multiple
times. For a single drive, multiple residuals are computed.
After having smoothed the state estimates, the residuals
yjk|N (and corresponding covariance matrices Sjk|N ) of each
observation are computed as follows [14],

yjk|N = zjk − h
(
x̂k|N

)
(6)

Sjk|N = Rk −HkP k|NH>k (7)

with Rk being the covariance matrix of the observation,
Hk the Jacobian of the observation model and P k|N the
covariance matrix of the smoothed state estimate.

It is important to note some observation models are not
suited to be used with this method. This method combines
multiple residuals from multiple observations and multiple
drives. This can be done only if the residuals can be
compared. In Section III, the observation model chosen for
road sign measurement was chosen such that the observation
(and thus the residuals) are expressed in the global reference
frame. With this observation model, all residuals can be
interpreted as the road sign error in the global frame. It
is for that reason that this method is not applied to lane
markings. The lane marking observation model as stated in
[15] would result in residuals depending on the point of view
(e.g. positive residuals when observing a marking driving
East to West but negative residuals when driving West to
East).

At the end of a drive, a subset M = {mi}i∈J0,MK of
map features has been observed. For every map feature mi,
residuals have been obtained

{
yk0 ,yk1 , . . . ,yNi

}
(where Ni

is the number of residuals for feature mi). These residuals
are correlated. Indeed, they are all computed using smoothed
state estimates that are themselves correlated. Therefore, the
residuals of features of the same trajectory are correlated.

To decide whether a feature should be used or not,
an aggregate residual is used. Because the residuals are
correlated standard fusion methods cannot be used. Instead,
the aggregated residual yi is obtained using a covariance
intersection strategy. Covariance intersection enables fusion
of multiple information with unknown correlation. It consists
in a linear interpolation between the different sources of
information weighted to minimize the resulting covariance
matrix. In this application, a feature mi has the Ni following
residuals

yk0 ,yk1 , . . . ,yNi
(8)

with corresponding covariance matrices

Sk0 ,Sk1 , . . . ,SNi
(9)

The aggregate residuals are expressed as

S−1i =ωk0S
−1
k0

+ ωk1S
−1
k1
, . . . ,+ωNiS

−1
Ni

(10)

yi =Si

(
ωk0S

−1
k0

yk0 + ωk1S
−1
k1

yk1 , . . . ,+ωNi
S−1Ni

ykNi

)
where

∑
k∈{k0,...,Ni} ωk = 1.

In the general case, the parameters ωk have to be found
using iterative estimation methods. For small value of the



dimension (five dimensions when minimizing det(Si) and
four dimensions when minimizing trace(Si)) analytic meth-
ods exist [16] to find the best parameter ω when intersecting
two residuals yk0 and yk1 . For that reason the covariance
intersection is not performed globally using all residuals at
once. Instead the residuals are intersected two by two until
all residuals associated to a map feature have been processed.

Hence the covariance intersection is solved sequentially
for each feature as shown in Algorithm 1.

Algorithm 1 Covariance Intersection
1: y ← yk0
2: S ← Sk0
3: for k ∈ Jk1, kNiK do
4: ω ← arg minω∈[0,1] det

(
ωS−1 + (1− ω)S−1k

)−1
5: S′ ←

(
ωS−1 + (1− ω)S−1k

)−1
6: y ← S′

(
ωS−1y + (1− ω)S−1k yk

)
7: S ← S′

8: end for
9: return y,S

To find the optimal value of ω, the algorithm presented in
[16] is used.

B. Multiple Drives

While residuals of the same trajectory are correlated,
residuals from different trajectories are not. Indeed, the
residuals from the same trajectory are correlated because all
states are correlated through the evolution model. The states
from different trajectories should be uncorrelated leading to
uncorrelated residuals. Therefore, multiple trajectories can be
used to further reduce the uncertainty of residuals.

A residual ȳ with corresponding covariance matrix S̄
known from previous drives can be updated using the new
residual y (with associated covariance matrix S) obtained as
described in algorithm 1 using the following equations,

ȳ ←
(
S̄
−1

+ S−1
)−1 (

S̄
−1

ȳ + S−1y
)

(11)

S̄ ←
(
S̄
−1

+ S−1
)−1

(12)

The updated residual can finally be used to evaluate the
feature.

C. Eliminating features

If the road sign is correctly referenced, its residual should
be centered. Therefore, as new observations are obtained
and new drives are performed, the residual should tend to
0 as the uncertainty of the residual decreases. However,
erroneous features will result in residuals not converging
toward 0 but covariance matrices still getting smaller. Hence,
at some point, the residual will be too high with respect to
the accuracy that would be expected from the covariance
matrix.

To detect these cases, a χ2 test is used. After the resid-
uals are computed, the inequality from equation (13) is

Fig. 3: Experimental vehicle of the Heudiasyc laboratory used in
these experiments. It is equipped with a low-cost GNSS receiver, a
Mobileye camera, and a Velodyne VLP-32C lidar. Ground truth is
provided by a post-processed IMU with PPK GNSS.

TABLE I: Length and duration of the Compiègne datasets.

Name Length Duration
Between

Roundabouts
9.50 km 17 min 30 s

Laboratory to BF 1 7.03 km 11 min 42 s
Laboratory to BF 2 7.03 km 12 min 54 s

Large Loop 1 12.85 km 14 min 43 s
Large Loop 2 12.85 km 14 min 37 s
Large Loop 3 12.84 km 14 min 17 s

performed. Features failing this test are flagged as erroneous
to be ignored in future estimations.

ȳS̄
−1

ȳT < F−1
χ2
2

(1− α) (13)

where Fχ2
2

is the cumulative distribution function of a χ2

distribution with 2 degrees of freedom and α is a tuning
parameter controlling the number of correct features rejected.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

The method presented in the previous section has been
tested using experimental data. The data was recorded in
Compiègne (France) using the experimental vehicle of the
Heudiasyc laboratory (see Figure 3). The sensor measure-
ments were obtained using the ROS framework. The method
has been tested on an Intel c© Core

TM
i7-7820HQ processor

(2.9 GhZ, 4 cores, 8 threads) with 16 GB of RAM. With this
hardware the localization was performed in real time (50 Hz)
and the post processing takes only a few seconds to run.
Multiple drives were recorded using the same experimental
vehicle. It can be noted that, although in those experiments
the same vehicle was used, the method can be applied to
different vehicles. On the whole, six drives totaling 55 km
have been used in these experiments (detailed in Table I).
The drives followed three different trajectories in Compiègne
(see Figure 4).

The HD map of the area was provided by a third party map
provider. The map does not have enough incorrect feature to
evaluate the detection method. For that reason, errors were



Fig. 4: Trajectories used in the experiments. In red is the first
trajectory ”Between Roundabouts”, in yellow is the trajectory used
for the drives ”Laboratory to BF” and in cyan is the trajectory
corresponding to the drives ”Large Loop”.

simulated in these experiments. Since the roads of the first
trajectory are also used for the second and third trajectory,
errors were added on road signs observed during the first
drive. In this first drive, 207 road signs are observed. On
20 randomly chosen of those signs, an error was artificially
added. The error was taken uniformly distributed within
[−1m , 1m] for both dimensions. The distribution of error
is shown in Figure 6. The parameter α was chosen at 5%.

B. Error Detection

From Table II, it can be seen from the first column that
after a single drive few erroneous features, 2 out of 20, have
been found. However, as more drives are done, most matched
erroneous features are correctly flagged (detected erroneous):
8 out of 11 (Flagged faulty in Table II).

Some correct road signs are being flagged, which is un-
avoidable. On average 7% of correct road signs are flagged,
which is well in accordance with the expected value α.

The number of unmatched (measurements that could not
be matched with any map feature) correct road signs de-
creases as more drives are done which is a normal behavior.
Meanwhile the number of unmatched faulty road signs
remains constant as they might not be matched because of
their errors. These unmatched features are actually detected
and measurements are available since the list of features
was chosen among the detected features of the first drive.
However, they are not used in the estimation or the feature
evaluation (since only matched features can be evaluated).

Most of the gain of using multiple drives is obtained after
the first three drives, 75% of flagged faulty signs are detected.
The last three drives only provide marginal improvements
with only two additional faulty road signs flagged.

C. Influence of the Error Magnitude

The error added to the road signs being chosen uniformly
between −1 and 1 meter in both dimensions, some road
signs have small errors. On Figure 6, it is shown that road
signs with errors higher than 0.5 m are either not observed
(not matched) or flagged. The three faulty road signs that

unchanged
with	added	error

Observed	Road	Signs

(a)

flagged

not matched

Observed Road Signs

not flagged

(b)

Fig. 5: (a) shows the map with the 207 road signs studied in these
experiments. The green dots indicate unaffected road signs and the
red dots road signs with an error. (b) shows the result of the error
detection after the last drive. The green dots show that no error has
been found the red dots are classified as erroneous, the yellow dots
have not been observed (the matching layer did not match these
measurements to any feature).



TABLE II: Evolution of the categorization of road signs. The
flagged road signs have been matched and detected as faulty. The
first three lines correspond to road signs with no added error (green
dots in Figure 5 (a)) the last three lines are the 20 road signs with
added errors.

first second third fourth fifth sixth
Not matched (ok) 28 16 15 14 14 11
Not flagged (ok) 147 162 161 161 161 159
Flagged (ok) 12 9 13 12 12 17
Not matched (faulty) 10 10 10 9 9 9
Not flagged (faulty) 8 7 4 4 4 3
Flagged (faulty) 2 3 6 7 7 8
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Fig. 6: Distribution of the errors added to the road signs. The colors
indicate whether the error was detected (red), it was never matched
(blue) or the error was missed (green).

remain not flagged are those with smaller errors. Errors
too small would require more drives to be detected. Also,
the number of road signs not observed when the errors are
added, even though they were observed before, shows that
the matching is able to discard some erroneous road signs
during localization.

VI. CONCLUSION

In this paper, a map feature evaluation method has been
presented. The method uses information from the localization
system to evaluate the quality of map features. It uses a
standard Kalman filtering scheme and can therefore be ap-
plied without significant modifications to different estimation
frameworks. It only requires the localization system to have
enough redundancy as to not rely on single (possibly faulty)
observations. The method uses multiple residuals from a
drive combined using Covariance Intersection. Different
drives can also be leveraged to further refine the estimation
of the residuals, thus improving the error detection. The
features are then flagged using a χ2 test. The method has
been evaluated using experimental data with map errors.
After several drives, the method is able to correctly detect
over 70 % of erroneous road signs used in the estimation.
Errors large enough are either detected or the observation was
already removed in the matching step. Undetected errors only
remain for road signs with errors below 0.5 m that would
require more drives to identify.

In this work, the method has been applied to maps
expected to be perfectly accurate but the method could be
adapted to account for map uncertainties. This approach can
also be used with multiple vehicles in order to crowdsource
the detection of map errors.
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