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Laboratoire de Mathématiques Raphaël Salem, Université de Rouen Normandie,
CNRS, France

Abstract
We construct a geometrico-symbolic version of the natural extension

of the random β-transformation introduced by Dajani and Kraaikamp
in [5]. This construction provides a new proof of the existence of a unique
absolutely continuous invariant probability measure for the random β-
transformation, and an expression for its density. We then prove that this
natural extension is a Bernoulli automorphism, generalizing to the random
case the result of Smorodinsky [15] about the greedy transformation.

Introduction

Expansions in base β

In all the paper, we fix a real number β, 1 < β < 2. For x ∈ [0, 1), an expansion
of x in base β is a sequence (xn)n>1 of {0, 1} such that

x =

+∞∑
n=1

xn
βn
.

Rényi [14] introduced the greedy map Tβ defined on [0, 1) by Tβ(x) = βx mod 1,
which provides a particular expansion of any real number in [0, 1), given by
the sequence xn := 1[1/β,1)(T

n−1
β (x)), for all n > 1. This expansion is called

the greedy expansion of x. In fact, almost every x ∈ [0, 1) has an infinite
number of expansions in base β, and the greedy expansion is the greatest in the
lexicographic order [7].

Rényi proved that Tβ has a unique absolutely continuous invariant proba-
bility measure νβ , and Parry [12] proved that its density is proportional to the
function ∑

n>0

1

βn
1[0,Tnβ (1)],

and that the associated measure-preserving system is weakly mixing.
Smorodinsky then showed in [15] that the natural extension of this system is

a Bernoulli automorphism. This result was also obtained by Dajani, Kraaikamp
and Solomyak in [6] through a geometric construction of this natural extension,
in the form of a tower.
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The greedy map can be extended to a map Tg defined on the interval Iβ :=

[0, 1
β−1 ] by setting Tg(x) :=

{
Tβ(x) for x ∈ [0, 1[
βx− 1 for x ∈ [1, 1

β−1 ]
.We will still refer to this

extended map as the greedy map. The measure νβ extended to Iβ by setting
νβ([1, 1

β−1 ]) = 0 is still the unique absolutely continuous invariant probability
measure of Tg on Iβ .

We can obtain the smallest expansion of any real number of the interval Iβ
with the lazy map T` [7], defined by

T` : Iβ → Iβ

x 7→

{
βx if x 6 1

β(β−1)
βx− 1 otherwise

.

For x ∈ Iβ , the lazy expansion of x is given by the sequence (x′n) defined for all
n > 1 by x′n = 1( 1

β(β−1)
, 1
β−1 ]

(Tn−1` (x)).
Let s be the symmetry on Iβ , defined by s(x) = 1

β−1 . The pushforward mea-
sure ν̃β := νβ ◦s−1 is the unique absolutely continuous invariant measure for T`,
and s conjugates Tg and T`, hence the systems (Iβ ,B, νβ , Tg) and (Iβ ,B, ν̃β , T`)
are isomorphic [4].

In 2003, Dajani and Kraaikamp [5] introduced the random β transformation.
We set Ω := {g, `}N∪{0}, the set of sequences of g and `. We then define the
transformation Kβ on Ω× Iβ by

Kβ :
Ω× Iβ → Ω× Iβ
(ω, x) 7→ (σ(ω), Tω0

(x))
,

where σ is the left shift on Ω. The sequence ω ∈ Ω describes the successive
transformations that will be applied to the real x ∈ Iβ : once Tω0

is applied to
x, we shift the sequence ω to the left and then apply Tω1

, and so on. If we
fix ω ∈ Ω, we obtain a particular expansion of x in base β, by setting, for any
n > 1:

xωn :=

{
1{π(Kn−1

β (ω,x))> 1
β }

if ωn−1 = g

1{π(Kn−1
β (ω,x))> 1

β(β−1)
} if ωn−1 = `

,

where π is the projection on Iβ . Any expansion of x can be obtain with a
sequence ω ∈ Ω [3].

In the model we consider, the sequence ω will be drawn with the product
Bernoulli measure mp, where p ∈ (0, 1) is a fixed parameter. In other words, we
draw each transformation independently with probability p for Tg and 1− p for
T`. Dajani and De Vries proved in [3] that there is a unique absolutely continu-
ous probability measure µp on Iβ such that mp ⊗ µp is Kβ-invariant. Kempton
[11] obtained an expression of the density ρ1/2 of µ1/2 with the construction
of a natural extension of (Ω × Iβ ,m1/2 ⊗ µ1/2,Kβ), using two symmetric tow-
ers. Suzuki [16] then generalized this expression for any p with the use of the
Perron-Frobenius operators.

Roadmap of this paper In this paper, we consider several extensions of
the random β-transformation. In section 1, we construct a first geometrico-
symbolic extension K of the random transformation. This extension is defined
on two towers (the greedy tower and the lazy tower), each tower having a “base”.
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By providing a simple invariant measure on this extension and projecting it on
Iβ , we obtain the expression of the density of µp for any p ∈ (0, 1) (formula (8)).
We then study the transformation Kg induced by K on the base of the greedy
tower, and define a particular partition of this base. We prove that this parti-
tion is an independent generator of the induced system (Proposition 10), thus
proving that this induced system is isomorphic to a unilateral Bernoulli shift.
This provides a new proof of the ergodicity of the random system and of the
uniqueness of µp. This first extension is not yet invertible. In section 2, we
construct a geometrico-symbolic version of the natural extension of this first
extension. With the use of the relatively independent joining above a factor, we
prove that this new extension is in fact the natural extension of the random β-
transformation (Theorem 21). We then prove that this extension is isomorphic
to a bilateral Bernoulli shift (Theorem 26), by “unfolding” the previous partition
on the two towers.

Figure 1: Extensions involved in this paper

1 The first extension

In this section, we extend the dynamics Kβ on two towers. Kempton [11]
implemented the same type of strategy in the case p = 1

2 , but his construction
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does not generalize to any p. We construct a different extension, valid for any
p ∈ (0, 1).

1.1 The domain of the extension: the greedy and lazy
towers

As in [11], the towers are made of floors. We first define the “base” of each
tower. Let Eg be the base of the greedy tower G, defined by:

Eg := Ω× {g} × [0, 1].

The label of the greedy base is (g), telling us that it is the first floor of the
greedy tower G. Likewise, E` is the base of the lazy tower L, defined by:

E` := Ω× {`} ×
[
s(1),

1

β − 1

]
.

A floor in one of the towers is denoted by Ee, where e is the label of the
floor. This floor is of the form:

Ee := Ω× {e} × Ie,

where Ie is a sub-interval of Iβ that will be specified later. Thus, a point in one
of the two towers is of the form c = (ω, e, x), where:

• The sequence ω ∈ {g, `}N∪{0} describes the successive transformations Tg
and T` to be applied to x.

• The label e is of the form

e = (h, ω−n, ω−n+1, . . . , ω−1)

and characterizes the floor containing the point c. The letter h indicates
the tower in which the floor is: if h = g, it is a floor from the greedy
tower, if h = `, from the lazy tower. The integer n is the level of the
floor Ee. Therefore, there are 2n floors of level n in each tower, the bases
being at level 0. Finally, the symbols ω−n, . . . , ω−1 indicate the applied
transformations since the last passage in one of the two bases: in other
words, the maps Tω−n to Tω−1 were applied to the real component of a
point in Ee since the base Eh.

• x represents the real component of the point c, on which will be applied
the transformation Tω0

. We have x ∈ Ie where{
Ie := [0, Tω−n,ω−n+1,...,ω−1(1+)] if h = g

Ie :=
[
Tω−n,ω−n+1,...,ω−1

(s(1)−), 1
β−1

]
if h = `

,

where the + and − signs respectively refer to the right and left limit at
the considered points, and Tω−n,ω−n+1,...,ω−1 is the composition Tω−1 ◦· · ·◦
Tω−n . For simplification, we will often note Tv with v ∈ {g, `}n to refer to
this type of composition.
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We then define the greedy tower as the disjoint union of all floors whose
label starts with a g, and the lazy tower as the disjoint union of all floors whose
label starts with an `:

G :=
⊔

e′∈{g,`}∗
Eg·e′ ,

L :=
⊔

e′∈{g,`}∗
E`·e′ ,

where the point · represents the concatenation, and the set {g, `}∗ is the set
of finite sequences (including the empty sequence) of g and `. We then note
X := G t L the disjoint union of the two towers, on which will be defined K.
Finally, given a floor of X, we call length of this floor the Lebesgue measure of
the associated interval.

Applying the dynamics K to a point in a tower consists in going up a level
in the tower, or going back to the base of the tower, or going to the base of
the other tower, depending on certain conditions that we will detail in the next
section.

We represent the two towers in Figure 2, one above the other (the lazy tower
is represented upside down). The ω-component is represented vertically. Two
points on a same vertical line have the same real coordinate x.

1.2 The dynamics on the two towers
We define the dynamics K on the greedy tower first. We consider a floor of G,
with label e := (g, ω−n, . . . , ω−1). The floor Ee is split into two parts, depending
on ω0:

Ee = (Ee ∩ [g]0) t (Ee ∩ [`]0),

where Ee ∩ [g]0 abusively refers to the set of points (ω, e, x) of Ee such that
ω0 = g (and in the same way for `). The dynamics K is different on each of
these parts. In the following, we note t the upper bound of Ie.

1. If ω0 = g and if t < 1
β (see Figure 3):

K :
Ee ∩ [g]0 → Ee·g
(ω, e, x) 7→ (σ(ω), e · g, βx)

.

K sends Ee ∩ [g]0 onto the floor Ee·g.

2. if ω0 = g and if t > 1
β , the left part of the floor is sent back onto the base

Eg (see Figure 4):

K :
Ee ∩ {ω0 = g, x < 1

β } → Eg
(ω, e, x) 7→ (σ(ω), g, βx)

;

and the right part goes up onto Ee·g:

K :
Ee ∩ {ω0 = g, x > 1

β } → Ee·g
(ω, e, x) 7→ (σ(ω), e · g, βx− 1)

.
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Figure 2: Greedy and lazy towers
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Figure 3: ω0 = g and t < 1
β

Figure 4: ω0 = g and t > 1
β
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Figure 5: ω0 = ` and t < 1
β(β−1)

3. if ω0 = ` and if t < 1
β(β−1) (see Figure 5):

K :
Ee ∩ [`]0 → Ee·`
(ω, e, x) 7→ (σ(ω), e · `, βx)

.

The part Ee ∩ [`]0 is sent onto the floor Ee·`.

4. if ω0 = ` and if t > 1
β(β−1) (see Figure 6), the central part of the floor is

sent onto the base E`:

K :
Ee ∩ {ω0 = `, s(1)β < x 6 1

β(β−1)} → E`
(ω, e, x) 7→ (σ(ω), `, βx)

;

and the left and right parts go up onto Ee·`:

K :
Ee ∩ {ω0 = `, x 6 s(1)

β } → Ee·`
(ω, e, x) 7→ (σ(ω), e · `, βx)

;

K :
Ee ∩ {ω0 = `, x > 1

β(β−1)} → Ee·`
(ω, e, x) 7→ (σ(ω), e · ω0, βx− 1)

.

On the lazy tower, the dynamics K is defined in the same way by symmetry
(see Figure 8).

We note π : X → Ω × Iβ the projection onto Ω × Iβ . By construction, we
have

π ◦ K = Kβ ◦ π.
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Figure 6: ω0 = ` and t > 1
β(β−1)

1.3 Construction of an invariant measure
The goal of this section is to define a K-invariant measure µ on X, such that
the projection of this measure on Iβ is absolutely continuous. We denote the
Lebesgue measure by λ, regardless of the interval on which we consider it. We
recall that mp is the product Bernoulli measure of parameter p on Ω (we draw
g with probability p and ` with probability 1− p, independently at each step).

We first define the measures µg and µ` with respective support G and L as
follows.

On the bases, we set:
µg |Eg := mp ⊗ λ,

µ`|E` := mp ⊗ λ.

On the floor Eg,ω−n,...,ω−1
, the measure µg is defined by:

µg |Eg,ω−n,...,ω−1
:=

1

βn
mp([ω−n, . . . , ω−1]n−10 ) mp ⊗ λ,

where [ω−n, . . . , ω−1]n−10 is the cylinder of Ω containing the sequences ω whose
n first terms are (ω−n, . . . , ω−1).

Likewise on the floor E`,ω−n,...,ω−1
, the measure µ` is defined by:

µ`|E`,ω−n,...,ω−1
:=

1

βn
mp([ω−n, . . . , ω−1]n−10 ) mp ⊗ λ.

On their respective tower, the measure µg and µ` are preserved by K when
it goes up in the tower, but we look for a measure µ on X, globally preserved by
K. The following theorem describes the situation in a more abstract framework,
and shows the existence of the measure µ.

Theorem 1. Let (X,B) be a standard Borel space, K a transformation on X
and G and L two disjoint subsets of X such that:
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Figure 7: Overview of the dynamics on a floor Ee of the greedy tower, depending
on the length of the floor
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Figure 8: Overview of the dynamics on a floor Ee of the lazy tower (reversed),
depending on the length of the floor
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1. X = G t L.

2. There exist two sets Eg ⊂ G and E` ⊂ L such that

K(G) ⊂ G ∪ E` (1)

and
K(L) ⊂ L ∪ Eg

3. There exist two finite measures µg and µ` with respective support in G and
L such that

µg(Eg) = µ`(E`) = 1

and for any measurable A of G \ Eg, we have:

µg(K−1(A)) = µg(A), (2)

and for any measurable A of L \ E`, we have:

µ`(K−1(A)) = µ`(A),

4. There exists positive constants g0, `0, g1, `1 such that for any measurable
A of X included in Eg, we have

µg(K−1(A) ∩ G) = g0µg(A) (3)

and
µ`(K−1(A) ∩ L)) = `0µg(A), (4)

and for any measurable A of X included in E`, we have:

µg(K−1(A) ∩ G) = g1µ`(A)

and
µ`(K−1(A) ∩ L)) = `1µ`(A).

Then there exist a unique probability measure µ on X, linear combination of µg
and µ`, such that µ is K-invariant.

Proof. Let µ be a measure of the form

µ = Cgµg + C`µ`,

with Cg and C` two positive constants. We wish to determine the values of Cg
and C` such that µ is a K-invariant probability measure on X.

Let A be a measurable subset of X included in G \ Eg. We have µ(A) =
Cgµg(A). Then, by assumptions (1) and (2), we have:

µ(K−1(A)) = Cgµg(K−1(A)) = Cgµg(A) = µ(A).

Similarly, for any measurable A of X included in L \ E`:

µ(K−1(A)) = C`µ`(K−1(A)) = C`µ`(A) = µ(A).
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Let A be a measurable subset of X included in Eg. We have, by assump-
tions (3) and (4):

µ(K−1(A)) = µ(K−1(A) ∩ G) + µ(K−1(A) ∩ L)

= Cgµg(K−1(A) ∩ G) + C`µ`(K−1(A) ∩ L)

= g0Cgµg(A) + `0C`µg(A)

= (g0Cg + `0C`)µg(A).

Therefore, µ(K−1(A)) = µ(A) if and only if

g0Cg + `0C` = Cg. (5)

Likewise, if A is a measurable subset of X included in E`, µ(K−1(A)) = µ(A) if
and only if

g1Cg + `1C` = C`. (6)

We need both the equations (5) and (6) to be satisfied. In other words, we solve
the system: {

(g0 − 1)Cg + `0C` = 0
g1Cg + (`1 − 1)C` = 0

. (7)

From assumption (1), we have:

µg(G) = µg(K−1(G \ Eg)) + µg(K−1(Eg) ∩ G) + µg(K−1(E`) ∩ G),

and since µg(K−1(G \ Eg)) = µg(G \ Eg), we get

µg(Eg) = µg(K−1(Eg) ∩ G) + µg(K−1(E`) ∩ G).

Since µg(Eg) = 1, we deduce that

g0 + g1 = 1.

Similarly,
`0 + `1 = 1.

Therefore, the system (7) can be reduced to the equation

Cg =
l0
g1
C`.

In order for µ to be a probability measure, we must also have

Cgµg(G) + C`µ`(L) = 1.

We finally obtain the (positive) values

Cg =
`0

`0µg(G) + g1µ`(L)

and
C` =

g1
`0µg(G) + g1µ`(L)

.

With this choice of constants, the measure µ is a K-invariant probability measure
on X.
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Let us prove that the extension built in the previous section satisfies the
assumptions of Theorem 1.

1. The greedy and lazy towers are disjoint.

2. Under the action of K, any element of G can go up in the tower G, or go
back to the base Eg, or be sent in the lazy base E`, and the situtation is
symmetric for the elements of the lazy tower.

3. The measures µg and µ` have their respective support in G and L, and
µg(Eg) = µ`(E`) = 1. Let A be a measurable subset of Eg,ω−n,...,ω−1 of
the form A := [u]

|u|−1
0 × {(g, ω−n, . . . , ω−1)} × [a, b], where u is a finite

sequence of elements of {g, `}, and |u| denotes the length of this sequence.
Let us prove that A and K−1(A) have the same measure. We have:

µg(K−1(A)) =
1

βn−1
mp([ω−n, . . . , ω−2]n−20 )mp([ω−1 · u]

|u|
0 )

1

β
(b− a)

=
1

βn
mp([ω−n, . . . , ω−1]n−10 )mp([u]

|u|−1
0 )(b− a).

We then deduce that for any measurable setA of G\Eg, we have µg(K−1(A)) =
µg(A). Similarly, for any measurable setA of L\E`, we have µ`(K−1(A)) =
µ`(A).

4. We set:

g0 := µg(K−1(Eg) ∩ G) =

+∞∑
n=0

1

βn+1

∑
v∈{g,`}n

Tv(1
+)> 1

β

mp([v · g]n0 ),

`0 := µ`(K−1(Eg) ∩ L) =

+∞∑
n=0

1

βn+1

∑
w∈{g,`}n

Tw(s(1)−)6 1
β

mp([w · g]n0 ),

g1 := µg(K−1(E`) ∩ G) =

+∞∑
n=0

1

βn+1

∑
v∈{g,`}n

Tv(1
+)> 1

β(β−1)

mp([v · `]n0 )

l1 := µ`(K−1(E`) ∩ L) =

+∞∑
n=0

1

βn+1

∑
w∈{g,`}n

Tw(s(1)−)6 1
β(β−1)

mp([w · `]n0 ).

Let A ⊂ Eg of the form A = [u]
|u|−1
0 × {g}×]a; b[, with 0 6 a 6 b 6 1.

Then:

K−1(A) ∩ G =
⊔
n>0

⊔
v∈{g,`}n

Tv(1
+)> 1

β

Eg·v ∩
{
x ∈

]
a

β
;
b

β

[
;ω ∈ [g · u]

|u|
0

}
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Therefore

µg(K−1(A) ∩ G) =
∑
n>0

∑
v∈{g,`}n

Tv(1
+)> 1

β

1

βn
×mp([v]n−10 )×mp([g · u]

|u|
0 )× 1

β
(b− a)

= g0µg(A).

We obtain the three other formulas with a similar computation.

Therefore, by setting Cg :=
`0

`0µg(G) + g1µ`(L)
and C` :=

g1
`0µg(G) + g1µ`(L)

,

the measure µ := Cgµg + C`µ` is a K-invariant probability measure on X.
On each floor of the two towers, the measure µ can be represented as the

product of mp on Ω and a multiple of λ. Thus, we get :

Proposition 2. By projecting the measure µ on Ω× Iβ, we obtain the measure
mp ⊗ µp, where µp has for density

ρp(x) :=

+∞∑
n=0

1

βn

Cg ∑
ω1,...,ωn∈{g,`}n

mp([ω1, ..., ωn]n−10 )1[0,Tω1,...,ωn
(1+)](x)

+C`
∑

ω1,...,ωn∈{g,`}n
mp([ω1, ..., ωn]n−10 )1[Tω1,...,ωn

(s(1)−); 1
β−1 ]

(x)

 . (8)

As a consequence, the natural projection π : X → Ω × Iβ is a factor map
from the system (X,µ,K) to (Ω× Iβ ,mp ⊗ µp,Kβ).

1.4 Properties of the extension
The aim of this section is to prove that the system (X,µ,K) is ergodic. For that,
we firstly study the properties of K when following paths on the towers. We
then study the induced transformation of K on the greedy base Eg, and prove
that the induced system is Bernoulli. From this, we derive the ergodicity of the
system (X,µ,K), which implies the ergodicity of the initial random system and
the uniqueness of µp (as an absolutely continuous probability measure on Iβ
such that mp ⊗ µp is Kβ-invariant).

To study the behaviour of the dynamics along paths in the towers, we first
define a class of functions that will be useful in the following:

Definition 3. Let n ∈ N. We define the class of functions Fn as the set of
functions f satisfying, up to a set of zero measure:

• There exists a finite number of disjoint intervals I1, . . . , Ir and a sub-
interval J of Iβ such that f : I1 t · · · t Ir → J .

• The function f is nondecreasing on its definition domain.

• On each interval Ii, f is a linear map with slope βn.

• f(
⊔r
i=1 Ii) =

⊔r
i=1 f(Ii) = J .
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Figure 9: Function from the class Fn

In particular, the intervals (Ii) are in the same order as the intervals (f(Ii)),
and we have

λ(I1 t · · · t Ir) =
1

βn
λ(J). (9)

Lemma 4. Let n1, n2 ∈ N and f ∈ Fn1
, g ∈ Fn2

such that the definition domain
Df of f is included in the image of g. Then f ◦ g|g−1(Df ) ∈ Fn1+n2

.

Proof. We note g : I1 t · · · t Ir1 → J and f : J1 t · · · t Jr2 → L and h =
f ◦ g|g−1(Df ). Then g−1(Df ) is the disjoint union of the intervals g−1(Ji) ∩ Ij
(when this set is not empty). Therefore, h is defined on

⊔
i,j g

−1(Ji) ∩ Ij with
values in L. As the composition of nondecreasing functions, h is nondecreasing
on its definition domain. Moreover, h is the composition of two linear maps of
slope βn1 and βn2 on each non-empty g−1(Ji)∩ Ij , so it is a linear map of slope
βn1+n2 . Finally, for all i ∈ {1, . . . , r2}, we have⊔

j

g(g−1(Ji) ∩ Ij) = Ji

thus ⊔
i,j

h(g−1(Ji) ∩ Ij) = L.

We note E := {g, `}∗ \ {∅} the set of non-empty finite sequences of {g, `},
in other words the set of labels. For e ∈ E , we note e(0) the first term of e and
e(−1) its last term.
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We define the oriented graph G on E describing the set of admissible se-
quences of labels. A label e ∈ E can be followed by the label e′ ∈ E (we then
note e → e′) if µ(K−1(Ee′) ∩ Ee) > 0. In other words, we have e → e′ if the
map K sends a subset of positive measure of the floor Ee onto the floor Ee′ .

We use the new class of functions Fn to describe the dynamics along paths
in the two towers:

Proposition 5. Let C = (e0 = e, e1, . . . , en = e′) (n > 1) be a finite sequence
of labels of E corresponding to a path in the graph G. We have

EC :=

n⋂
k=0

K−kEk = [e1(−1), . . . , en(−1)]n−10 × {e} × JC

with:

1. JC is a finite union of disjoint intervals I1, . . . , Ir,

2. Te1(−1),...,en(−1)|JC ∈ Fn.

In particular, the intervals (Ii) are in the same order as the intervals (Te1(−1),...,en(−1)(Ii)),
λ(JC) = 1

βnλ(Ie′) and the mapping Kn : EC → Ee′ is a bijection.

Proof. We prove each point by induction on the length of the path C. Suppose
that C = (e, e′) is an edge in the graph of transitions of E . Set ω0 = e′(−1).
Without loss of generality, we can suppose that e(0) = g. Finally, set Ie = [0, t],
with t ∈ [0, 1

β−1 [.

• If ω0 = g, then EC = [g]0 × {e} × JC with

– if t < 1
β , then JC = Ie,

– if t > 1
β , either e

′ = (g), then JC = [0, 1
β [, or e′ = e·g then JC = [ 1β , t].

• If ω0 = `, then EC = [`]0 × {e} × JC with

– if t < 1
β(β−1) , then JC = Ie,

– if t > 1
β(β−1) , either e

′ = (`) then JC =] s(1)β ; 1
β(β−1) ], or e

′ = e ·` then
JC = [0, s(1)β ]t] 1

β(β−1) , t].

In each case, JC is a finite union of disjoint intervals. Moreover, Tω0 : JC → Ie′

is a function of F1.
Suppose now that C = (e = e0, e1, . . . , en+1 = e′). Set C ′ = (e1, . . . , en+1).

The path C ′ is a path of length n in the graph of transitions of E , such that
EC′ satisfies the conclusions of the proposition, i.e. :

• EC′ = [e2(−1), . . . , en+1(−1)]n−10 × {e1} × JC′ where JC′ is a finit union
of disjoint intervals.

• Te2(−1),...,en+1(−1)|JC′
∈ Fn.

We then have EC = Ee ∩ K−1(EC′).
The component in Ω is indeed [e1(−1), e2(−1), . . . , en+1(−1)]n0 .
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Set g = Te1(−1)|Je0,e1
and f = Te2(−1),...,en+1(−1)|JC′

. We have g ∈ F1 and
f ∈ Fn. By setting JC := g−1(JC′), we do have that JC is a finite union of
disjoint intervals and

EC = [e1(−1), e2(−1), . . . , en+1(−1)]n0 × {e} × JC .

Furthermore, Te1(−1),e2(−1),...,en+1(−1)|JC
= f ◦g|JC . Applying Lemma 4, the

function Te1(−1),e2(−1),...,en+1(−1)|JC
is in Fn+1.

We now study the induced transformation of K on the base Eg. We note
Kg this induced transformation. The measure µ(.|Eg) is the measure µg, and
is preserved by the induced map Kg [1, Prop. 3.6.1 p.58]. In the following, we
identify the base Eg with Ω× [0, 1].

We consider the set C of possible paths for a first return to the base Eg. In
other words, C is the set of paths of the form C = (e0 = (g), e1, . . . , en = (g))
(where |C| := n is the length of the path C), with ek 6= (g) for 1 6 k 6 n − 1
such that

µ

(
n⋂
k=0

K−k(Eek)

)
> 0.

We then define the set P of subsets of Eg by

P := {EC , C ∈ C }.

Lemma 6. The set P is a countable partition of Eg, up to a set of zero measure.

Proof. If we consider two distinct paths C,C ′ ∈ C , then it is clear that EC and
EC′ are disjoint. And since µg-almost every a in Eg has a finite return time,
there exists C ∈ C such that a ∈ EC .

For almost every a ∈ Eg, we call P-name of a the unique sequence (Pn)n>0

of atoms of P such that for any n > 0, Kn
g (a) ∈ Pn.

Proposition 7. The sequence of partitions (K−ng (P))n>0 is independent for the
measure µg, i.e. for any integer n ∈ N, the partitions K−ng P and

∨
06k6n−1K−kg P

are independent.

Proof. Consider a path

C = (e0 = (g), e1, . . . , eN = (g))

starting and ending with the label of the greedy base Eg. Then this path is a
unique concatenation of paths C0, . . . , Ck ∈ C , and

EC =

k⋂
i=0

K−ig ECi =

N⋂
i=0

K−i(Eei) = [e1(−1), . . . , eN (−1)]N−10 × JC

with λ(JC) = 1
βN
λ(I(g)) = 1

βN
, from Proposition 5. Then, we have

µg(EC) = mp([e1(−1), . . . , eN (−1)]N−10 )× 1

βN
,
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and we have a similar equality for all Cj , 0 6 j 6 k. Therefore, it is clear that

µg(EC) =

k∏
j=0

µg(ECj ).

From Proposition 5, each atom of P is of the form [ω0, . . . , ωr−1] × JC .
Likewise, for each N > 0, each atom of

∨N
j=0K−jg P is again of this form.

Definition 8. Let N ∈ N ∪ {0} and (ω, x) ∈ Eg such that there exists an atom
of
∨N
j=0K−jg P containing (ω, x). We note C the associated path. Then, we

define the set AN (ω, x) included in the interval [0, 1] by

AN (ω, x) := JC .

Lemma 9. For almost every (ω, x) ∈ Eg, for all n ∈ N∪ {0} and m ∈ N, there
exists N > n and t ∈ [0, 1] such that

AN+m(ω, x) = AN (ω, x) ∩ [0, t].

Proof. Let P0 = [g]0 × [0, 1
β [. The set P0 is an atom of the partition P, of

positive measure, corresponding to the set of points returning to the base Eg
in one step. The process that maps a point in Eg to its P-name (defined for
almost every (ω, x) ∈ Eg) is a Bernoulli process. Therefore, for almost every
(ω, x) ∈ Eg, the orbit of (ω, x) under Kg meets infinitely often the atom P0.
Even better: for any m ∈ N, the orbit of (ω, x) meets the atom P0 m times in
a row, infinitely often.

Let n ∈ N ∪ {0}. For such a point (ω, x), let N > n be an integer such that

KNg (ω, x), . . . ,KN+m−1
g (ω, x) ∈ P0.

Observe that the atom of
∨N
j=0K

−j
g P containing (ω, x) is of the form

[ω0, . . . , ωr−1]r−10 ×AN (ω, x).

If we note AN (ω, x) = I1 t · · · t Im, Proposition 5 implies

[0, 1] = Tω0,...,ωr−1
I1 t · · · t Tω0,...,ωr−1

Im,

where Tω0,...,ωr−1
Ii is an interval for every 1 6 i 6 m, and the order of the

intervals (Tω0,...,ωr−1
Ii) is the same as the order of the intervals (Ii).

Since KNg (ω, x) ∈ P0, we have

AN+1(ω, x) = {y ∈ AN (ω, x), Tω0,...,ωr−1
(y) ∈ [0,

1

β
[}.

Then, there exists t1 ∈ [0, 1] such that Tω0,...,ωr−1
(AN (ω, x) ∩ [0, t1]) = [0, 1

β [.
Hence

AN+1(ω, x) = AN (ω, x) ∩ [0, t1].

Finally, since KNg (ω, x), . . . ,KN+m−1
g (ω, x) ∈ P0, we can apply the same

reasoning m times, which implies the existence of t ∈ [0, 1] such that
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AN+m(ω, x) = AN (ω, x) ∩ [0, t].

This real number t is such that λ(AN (ω, x) ∩ [0, t]) = 1
βmλ(AN (ω, x)).

Figure 10: Passage from AN (ω, x) to AN+1(ω, x)

Let F be the factor σ-algebra F :=
∨+∞
j=0 K−jg P. The partition P provides

a Bernoulli process, we want to show that this process generates the induced
system by proving the following proposition:

Proposition 10. The σ-algebra F is (up to zero measure sets) the Borel σ-
algebra on Eg. In other words, the partition P is a generator of the induced
system, which is isomorphic to a one-sided Bernoulli shift.

Lemma 11. F contains the σ-algebra generated by the ω-component.

Proof. Let N ∈ N. As said earlier, every atom of
∨N
j=0K−jg P is of the form

[ω0, . . . , ωr−1]r−10 × JC , with r > N . Therefore, for any N ∈ N, (ω0, . . . , ωN−1)
is F-measurable.

To prove Proposition 10, it suffices to show that for any continuous function
ϕ : Eg → R+, the conditional expectation E[ϕ|F ] satisfies

E[ϕ|F ] = ϕ, µg a.s.

The existence of the regular conditional probability implies that for almost
every (ω, x) ∈ Eg, there exists a measure µ(ω,x) on Eg such that for any positive
continuous function ϕ : Eg → R+,

E[ϕ|F ](ω, x) =

∫
ϕdµ(ω,x).
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We want to prove that for almost every (ω, x) ∈ Eg, the measure µ(ω,x) equals
the Dirac measure on (ω, x), which leads to the announced result. Lemma 11
implies that, for almost every (ω, x) ∈ Eg, the measure µ(ω,x) is of the form
δω ⊗ µ̃(ω,x), where µ̃(ω,x) is a measure on [0, 1]. In the following, we identify
the measures µ(ω,x) and µ̃(ω,x). Therefore, it remains to prove that µ(ω,x) is the
Dirac measure on x.

Let ϕ : Eg → R+ be a continuous function depending only on the real
variable x, i.e. ϕ(ω, x) = f(x), where f is a continous function from [0, 1] into
R+.

By the martingale convergence theorem, we have the almost sure conver-
gence:

E

ϕ∣∣∣∣ N∨
j=0

K−jg P

→ E[ϕ|F ].

Thus, for almost every (ω, x) ∈ Eg, we have the convergence

E

ϕ∣∣∣∣ N∨
j=0

K−jg P

 (ω, x)→
∫
f(y)dµ(ω,x)(y).

With N fixed, and for almost every (ω, x) ∈ Eg, we have:

E

ϕ∣∣∣∣ N∨
j=0

K−jg P

 (ω, x) =
1

λ(AN (ω, x))

∫
AN (ω,x)

f(y)dy.

Set µAN (ω,x) := 1
λ(AN (ω,x))λ|AN (ω,x) the normalized Lebesgue measure on

AN (ω, x). For almost every (ω, x) ∈ Eg, the sequence of measures (µAN (ω,x))N
converges weakly to the measure µω,x.

We define the set Ēg of full measure as the set of points (ω, x) ∈ Eg satisfying:

• There exists a probability measure µ(ω,x) on Eg such that for any continous
function ϕ : Eg → R+, we have:

E[ϕ|F ](ω, x) =

∫
ϕdµ(ω,x).

• For any continuous function ϕ : Eg → R+, E
[
ϕ|
∨n
j=0K−jg P

]
(ω, x) tends

to E[ϕ|F ](ω, x).

• For any integer N , the point (ω, x) belongs to an atom of the partition∨N
j=0K−jg P and satisfies Lemma 9.

• For any integer N and for any continous function ϕ : Eg → R+ such that
there exists a continuous function f : R → R+ such that ϕ(ω, x) = f(x)
for any (ω, x) ∈ Eg, we have:

E

ϕ∣∣∣∣ N∨
j=0

K−jg P

 (ω, x) =

∫
f(y)dµAN (ω,x)(y).
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Lemma 12. Let (ω, x) ∈ Ēg. Let [a, b] ⊂ [0, 1] such that µ(ω,x)[a, b] = 1. Then
one of these two propositions is true:

i) µ(ω,x)[a,
a+b
2 ] = 1,

ii) µ(ω,x)]
a+b
2 , b] = 1.

Proof. Suppose that ii) does not hold. Set η := µ(ω,x)([a,
a+b
2 ]) > 0. Let m be

a large enough integer so that 1
βm < η

2 . Let ε > 0. Let fε be the continous
function defined on [0, 1] by fε = 0 on [a, a+b2 ], fε = 1 on [a+b2 + ε, b] and fε is
a linear map on [a+b2 , a+b2 + ε].

Figure 11: Graph of the function fε

Then ∫
fεdµ(ω,x) 6 1− η.

Therefore, since the sequence (µAn(ω,x))n converges weakly to µ(ω,x), there exists
N0 ∈ N, such that for any n > N0,∫

fεdµAn(ω,x) 6 1− η

2
.

Thus, for any n > N0,

µAn(ω,x)

([
a+ b

2
+ ε, b

])
6 1− η

2
6 1− 1

βm
.

It then implies that

µAn(ω,x)

([
a,
a+ b

2
+ ε

[)
>

1

βm
.
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Let n > N0 such that Kn
g (ω, x), . . . ,Kn+m−1

g (ω, x) ∈ P0. Then from Lemma 9,
there exists a real number t ∈ [0, 1] such that An+m(ω, x) = An(ω, x) ∩ [0, t].
Moreover, λ(An+m(ω, x)) = 1

βmλ(An(ω, x)). It implies that An+m(ω, x) ⊂
[a, a+b2 + ε[, hence, for any n′ > n+m,

µAn′ (ω,x)

([
a+ b

2
+ ε, b

])
= 0.

Furthermore, we have ∫
f2εdµAn(ω,x) →

∫
f2εdµ(ω,x).

We then get that for any ε > 0, µ(ω,x)([
a+b
2 + 2ε, b]) = 0, hence

µ(ω,x)(]
a+b
2 , b]) = 0.

By dichotomy, we deduce that for any (ω, x) ∈ Eg, the measure µ(ω,x) is the
Dirac measure on x, which proves Proposition 10. In particular, the induced
transformation Kg is isomorphic to a one-sided Bernoulli shift.

Lemma 13. There exists a floor of the greedy tower with length greater than
or equal to 1

β(β−1) . In particular, it is always possible to go from the tower G to
the tower L under K.

Proof. We set:

n0 = min{n ∈ N ∪ {0}, Tn` (1) >
1

β(β − 1)
.}

Such integer n0 exists for any β > 1: if 1 < 1
β(β−1) , then T`(1) = β×1. Iterating

T` from 1 is just a multiplication by β, as long as the images are less than 1
β(β−1) .

Thus, the length of the floor Eg`n0 is greater than or equal to 1
β(β−1) . Then we

have
K(Eg`n0 ∩ {ω0 = `, x ∈]

s(1)

β
,

1

β(β − 1)
]}) = E`.

Theorem 14. The system (X,µ,K) is ergodic.

Proof. The induced transformation of K on Eg is Bernoulli, hence ergodic.
Therefore, it suffices to prove that, up to a zero measure set,⋃

n>1

K−n(Eg) = X.

In other words, we want to prove that almost every point in X reaches the base
Eg in a finite number of iterations of K.

We first prove that almost every point in X can be reached from the base
Eg. By construction of K, every floor of the greedy tower is the image of a part
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of Eg by a power of K. More precisely, for any e ∈ E such that e(0) = g, we
have:

Ee = K|e|−1
|e|−1⋂

k=0

K−k(Ee(0),...,e(k))

 .

Similarly, every floor of the lazy tower is the image by a power of K of a part
of the base E`. Finally, from Lemma 13, we can pass from the greedy tower to
the lazy tower.

Additionally, almost every point in the base Eg returns to Eg in a finite
number of iterations of K (from Poincaré recurrence theorem). Note Ng the
set of points of Eg which do not return to Eg. Then Ng is a zero measure set.
Therefore, the set

⋃
n>0Kn(Ng) is measurable, and of measure zero. Indeed,

let n ∈ N ∪ {0}. Then

Kn(Ng) =
⋃
|C|=n

Kn(Ng ∩ EC).

For any path C of length n, the transformation Kn is invertible on Ng ∩ EC
from Proposition 5. Therefore, µ(Kn(Ng ∩ EC)) = 0 and µ(Kn(Ng)) = 0.

Let a ∈ X \
⋃
n>0Kn(Ng). There exist a0 ∈ Eg and n ∈ N ∪ {0} such that

Kn(a0) = a. Moreover, a0 /∈
⋃
n>0Kn(Ng) so there exists a path Ca0 ∈ C such

that a0 ∈ PCa0 . It implies that a will return to the greedy base in a finite number
of iterations of K (following the path Ca0 ).

Since the system (Ω × Iβ ,mp ⊗ µp,Kβ) is a factor of the system (X,µ,K),
we have:

Corollary 15. The system (Ω× Iβ ,mp ⊗ µp,Kβ) is ergodic.

Corollary 16. The measure µp is the unique absolutely continuous probability
measure on Iβ such that mp ⊗ µp is Kβ-invariant.

Proof. From Lemma 13, for any 1 < β < 2, there exists a floor of the greedy
tower whose length is greater than or equal to 1

β(β−1) . Symmetrically, there
exists a floor of the lazy tower whose left limit is less than or equal to 1

β .
It implies that the support of µp is the full interval Iβ , and that mp ⊗ µp is
equivalent to mp ⊗ λ.

Let ν be an absolutely continuous probability measure (with respect to λ,
and so with respect to µp) such that mp⊗ ν is Kβ-invariant. Then the measure
mp ⊗ ν is absolutely continuous with respect to the ergodic measure mp ⊗ µp,
hence mp ⊗ ν = mp ⊗ µp, and ν = µp.

In [16], Suzuki proves that the density of µp is proportional to the function

B0(β, p)

1[0,1] +

∞∑
n=1

1

βn

∑
v∈{g,`}v

mp([v]n1 )1[0,Tv(1)]


+B0(β, 1− p)

1[s(1), 1
β−1 ]

+

∞∑
n=1

1

βn

∑
w∈{g,`}n

mp([w])n11[Tw(s(1)), 1
β−1 ]

 (10)

24



where

B0(β, p) = p

1−
∞∑
n=1

1

βn

∑
w∈{g,`}n−1

1S(Tw(s(1)))mp([w, `]
n
1 )

.
By uniqueness of µp, we know that the density (8) and the expression obtained
by Suzuki (10) are equal. This result can be easily proved in the case where
β is not a root of a polynomial of the form Xn0 − Xn1 − · · · − Xnk − 1 with
n0 > n1 > · · · > nk (which is equivalent to say that 1 has no finite expansion
in base β).

Indeed, we prove that, in this case, `0 = B0(β, p): on one hand, we recall
that

`0 =

+∞∑
n=0

1

βn+1

∑
w∈{g,`}n,Tw(s(1)−)6 1

β

mp([w · g]n0 ).

Since β is not a root of a polynomial of the form Xn0 −Xn1 − · · · −Xnk − 1,
then Tw(s(1)−) = Tw(s(1)) for any w ∈ {g, `}n. Moreover, Tw(s(1)−) 6 1

β is
equivalent to Tw(s(1)) < 1

β . Therefore, after adjusting the index of summation,
we have

`0 =

+∞∑
n=0

1

βn+1

∑
w∈{g,`}n

1R(Tw(1))mp([w · g]n0 ).

On the other hand, after a new reindexing in `1, we have:

`0 =1− `1 = 1−
+∞∑
n=0

1

βn+1

∑
w∈{g,`}n

1S∪R(Tw(1))mp([w · `]n0 )

=1−
+∞∑
n=0

1

βn+1

∑
w∈{g,`}n

1S(Tw(1))mp([w · `]n0 )− 1− p
p

`0.

Thus

`0 = p

1−
+∞∑
n=0

1

βn+1

∑
w∈{g,`}n

1S(Tw(1))mp([w · `]n0 )

 = B0(β, p).

By symmetry, we also obtain that g1 = B0(β, 1 − p), and the equality of the
two densities follows.

In the case where 1 has a finite expansion in base β, there exists n ∈ N
and a sequence w ∈ {g, `}n such that Tw(1) = 0, and the right limit Tv(1+)
and the value Tv(1) can differ, thus complicating the identification of the two
formulas. For the simple case where β = 1+

√
5

2 , we refer to the computations in
the appendix of [17].

2 The natural extension

2.1 Construction of the new extension
Any point in X which is not in a base has a unique preimage by K. However, a
point in one of the two bases can come from several floors. Indeed, at each return
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to a base, the map K “forgets” where it comes from. This lack of information
prevents K from being invertible.

We wish to construct a natural extension of K, denoted by K̃. In some sense,
it is the smallest invertible extension of K. Therefore, to construct K̃, we need
to extend the set X such that the information of the past floors is available. We
recall the definition of a natural extension of a system (see for example [2]).

Definition 17. The system (Y, C, ν, F ) is a natural extension of the system
(X,B, µ, T ) if there exist two sets X∗ ∈ B and Y ∗ ∈ C such that µ(X∗) =
ν(Y ∗) = 1 and a measurable mapping π : Y ∗ → X∗ such that:

1. F is a bijection of Y ∗,

2. µ = ν ◦ π−1,

3. π ◦ F = T ◦ π and

4. C =
∨
n>0

Fn(π−1(B)).

Moreover, all natural extensions of a system are isomorphic [13]. We now
construct the extension K̃ of K, and then prove that it is one of its natural
extensions. In the initial definition of the towers G and L, each floor has a
label e. More precisely, a label e is a finite sequence of g and `, where the first
term of e describes the present tower and the following terms of e (when there
are) describe which transformations have been applied since the base: the label
describes the recent past of a point in the floor. Therefore, instead of “erasing”
the label at each return to a base, we will keep track of every past label, so that
we can uniquely determine the past orbit of almost any point in the two towers.

We note Z the set of left-infinite sequences generated by the graph G, i.e.

Z := {(ej)j∈Z60
∈ EZ60 : ∀j 6 −1, ej → ej+1}.

A sequence of labels in Z contains in particular the information of the se-
quence of past transformations. Given a sequence e in Z, we will note e0 its
term of index 0.

For e ∈ E , we set
Ze := {e ∈ Z : e0 = e}.

We then define the base of the two towers by

Ẽg := Ω× Z(g) × [0, 1]

and
Ẽ` := Ω× Z(`) ×

[
s(1),

1

β − 1

]
.

If e = (g, ω−n, ..., ω−1), n ∈ N, we set

Ẽe := Ω× Ze × [0, Tω−n,...,ω−1
(1+)].

If e = (`, ω−n, ..., ω−1), n ∈ N, we set

Ẽe := Ω× Ze ×
[
Tω−n,...,ω−1

(s(1)−),
1

β − 1

]
.
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We note
G̃ :=

⊔
e∈E,e(0)=g

Ẽe

and
L̃ :=

⊔
e∈E,e(0)=`

Ẽe.

We finally note X̃ := G̃ t L̃. We set:

πX̃,X :
X̃ → X

(ω, e, x) 7→ (ω, e0, x)

the projection from X̃ onto X.
Let a = (ω, e, x) ∈ X̃. Then πX̃,X(a) = (ω, e0, x). We have K(ω, e0, x) =

(σ(ω), e′, Tω0
(x)), where the label e′ depends on e0, ω0 and x, according to the

previous construction. By construction of K, we obviously have e0 → e′ in the
graph G.

Applying the new dynamics K̃ on a consists in concatenating the new label
e′ to the sequence e (we note e · e′ this new sequence), in addition to shifting
the sequence ω and applying Tω0

to x: we retain every past labels in memory.
In other words, the dynamics K̃ is defined on X̃ by

K̃ :
X̃ → X̃

(ω, e, x) 7→ (σ(ω), e · e′, Tω0
(x))

,

where e′ is the label associated with the point K(ω, e0, x) ∈ X.
The projection πX̃,X is measurable and we have by construction

K ◦ πX̃,X = πX̃,X ◦ K̃.

Note B the Borel σ-algebra on X and B̃ the Borel σ-algebra on X̃. Let us
prove that

B̃ =
∨
n>0

K̃n(π−1
X̃,X

(B)). (11)

The inclusion
∨
n>0 K̃n(π−1

X̃,X
(B)) ⊂ B̃ is clear.

Let k and n be two non-negative integers. We consider a set A of B̃ of the
form A = [ω0, ω1, . . . , ωn]n0 × [e−k, . . . , e0]0−k × [a, b]. We then have:

A = (Ω× [e−k, . . . , e−1]−1−k × [a, b]) ∩ ([ω0, ω1, . . . , ωn]n0 × [e0]0 × [a, b]).

Set A− = Ω× [e−k, . . . , e−1]−1−k× [a, b] and A+ = [ω0, ω1, . . . , ωn]n0 × [e0]0× [a, b].
Then A− ∈ K̃k(π−1

X̃,X
(B)) and A+ ∈ π−1

X̃,X
(B) which implies that A ∈∨

n>0 K̃n(π−1
X̃,X

(B)), and proves (11).

We can now define the measure µ̃ on X̃. For A ∈
N∨
n=0

K̃n(π−1
X̃,X

(B)), we set

µ̃(A) := µ(πX̃,X(K̃−N (A))).

27



In some sense, the measure µ̃ of this set A is obtained by “shifting” the set A
to the future, so that it can be viewed as a set in the first extension X. No
information is lost by projecting it on X, allowing us to use the measure µ. The

measure µ̃ is well defined: if A ∈
N∨
n=0

K̃n(π−1
X̃,X

(B)), then for any integer k ∈ N,

we have
µ(πX̃,X(K̃−N (A)) = µ(πX̃,X(K̃−N−k(A))

since µ is K-invariant. For any B ∈ B, we have µ̃ ◦ π−1
X̃,X

(B) = µ(B), and the

measure µ̃ is K̃-invariant.
Finally, by construction, K̃ is one to one on X̃. It implies that (X̃, µ̃, K̃) is

a natural extension of (X,µ,K). Moreover, the natural extension of an ergodic
system is ergodic, which provides the following result, as a direct consequence
of Theorem 14:

Corollary 18. The system (X̃, µ̃, K̃) is ergodic.

2.2 Natural extension of the initial system
The goal of this section is to prove that the previous extension is in fact a
natural extension of the initial system (Ω× Iβ ,mp⊗µp,Kβ). To do so, we first
introduce a canonic way to construct a natural extension of the initial system,
then prove that the two extensions are isomorphic.

We adapt the construction described in [1, p. 62], which provides a natural
extension of Kβ . We set

X := {(ω, x) ∈ {g, `}Z × IZβ : ∀k ∈ Z, Tωkxk = xk+1}.

Let B be the σ-algebra generated by the cylinders of X. We define the measure
µ on every set of the form A = [ωk, . . . , ωn+k]n+kk × [Ik, . . . , In+k]n+kk , with
k ∈ Z, n ∈ N, and for any k 6 i 6 n + k, ωi ∈ {g, `} and Ii sub-interval of Iβ ,
by

µ(A) = mp ⊗ µp

(
[ωk, . . . , ωn+k]n0 ×

n⋂
i=0

T−iωk+i(Ik+i)

)
.

We note K the shift on X.

Proposition 19. [1] The dynamical system (X,µ,K) is a natural extension of
the system (Ω× Iβ ,mp ⊗ µp,Kβ).

Let (ω, e, x) ∈ X̃. We note ω = ω(ω, e) the sequence of {g, `}Z defined by
ω(k) = ωk if k > 0 and ω(k) = ek+1(−1) if k 6 −1. The sequence ω is the
bi-infinite sequence of applied transformations in the past, and transformations
to be applied in the future. For any k ∈ Z, we note xk the real component of
K̃k(ω, e, x), and x := (xk)k∈Z. We define the application

φ :
X̃ → X

(ω, e, x) → (ω, x)
.

One easily checks that:

Lemma 20. The application φ is a factor map from (X̃, µ̃, K̃) to (X,µ,K).
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Theorem 21. The factor map φ is an isomorphism. Therefore, the system
(X̃, µ̃, K̃) is a natural extension of (Ω× Iβ ,mp ⊗ µp,Kβ).

To prove this theorem, we use the notion of relatively independent joinings
above a factor (see for example [8, pp. 126-127]).

Let P be the relatively independent self-joining of the system (X̃, µ̃, K̃) above
its factor X i.e. the measure on X̃ × X̃ such that for two measurable sets
A,B ∈ X̃,

P(A×B) =

∫
X̃

µ̃(A|F)µ̃(B|F)dµ̃,

where F = φ−1(B(X)) is the factor σ-algebra associated to the factor (X,µ,K).
We have the following properties:

• P is a self-joining so its marginals on the first and second coordinate are
µ̃, and P is K̃ × K̃-invariant;

• the measure P is supported on the set {(a, b) ∈ X̃ × X̃ : φ(a) = φ(b)};

• P is supported on the diagonal of X̃ × X̃ if and only if the factor map φ
is an isomorphism.

Let a = (ω, e, x) and b = (ω′, e′, x′) be two elements of X̃ such that φ(a) =
φ(b). We then have ω(ω, e) = ω(ω′, e′) and x = x′. In other words, a and b
describe two trajectories in the towers, starting from the same real number x
and with the same transformations ω, but possibly following different floors e
and e′. Proving that P is supported by the diagonal of X̃×X̃ consists in proving
that for P-almost every (a, b) ∈ X̃ × X̃, the two sequences of floors e and e′ are
actually equal.

The idea of the proof consists in taking two trajectories in X̃ starting from
the same real number x, with the same transformations, and proving that they
end up in the same floor. Once these trajectories come at the same time in the
same floor, they coincide in the future, and in the past by injectivity.

We firstly work on the extension X. Let k ∈ N and consider the set of
positive measure

Ck :=

{
(ω, e, x) ∈ X : x <

1

βk
, ω0 = ω1 = · · · = ωk−1 = g

}
.

The set Ck describes the points of X whose real component is close to 0, and on
which will be appplied k times in a row the greedy transformation. The label
e does not take part in the definition of Ck, which means that the event Ck is
measurable with respect to the factor X: given two trajectories with the same
real component and the same sequence of transformations, the event Ck happens
almost surely (by ergodicity of K̃ and because Ck is of positive measure) and
at the same time for both trajectories. Knowing that Ck is realized actually
gives some information about the label. We will prove that for large k and
conditionally to Ck, both trajectories are in a floor of the greedy tower whose
interval is large, with high probability.

Let Ak be the union of the floors of G whose length is less than 1
βk

. Let Bk
be the complementary set of Ak in G. Then the set Ck can be divided into three
parts: Ck ∩L, Ck ∩Ak and Ck ∩Bk. The set Ck ∩Bk is particularly interesting
since a point in this set will end up in the greedy base Eg in at most k iterations:
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such a point will remain in the left part of its floor under the action of K, and
the length of the floor will eventually be larger than 1

β , allowing the point to
go to Eg in less than k iterations (see Figures 3 and 4). In the following, we
prove that for large k and knowing Ck, the event Ck ∩ Bk happens with high
probability.

We first introduce this technical lemma:

Lemma 22. The intervals of the lazy tower L never contain 0.

Proof. This property holds by construction of the extension K. Indeed, if an
interval of a floor of L contained 0, it would have to be the image by Tg of an
interval whose lower bound is 1

β . However, if the lower bound of an interval of
L equals 1

β , we are in the case where the part of the floor satisfying x ∈ [ 1β ,
2
β [

is sent to the greedy base when applying Tg.

For any label e ∈ E , we set Ye := Ω × {e}, and we have Ee = Ye × Ie. We
then set Y :=

⊔
e∈E Ye, which is represented vertically in the figure 2. We note

ν the measure on Y such that, for any e ∈ E ,

µ|Ee = ν|Ye ⊗ λ|Ie .

Finally, we note πX,Y the projection from X onto Y .
Let ε > 0 be small enough, so that 1− 1+2(β−1)

(β−1)µ(G)ε > 0.5. Let N ∈ N be such
that the measure µ of the floors beyond the level N in L is less than ε. By the
previous lemma, there exists k0 ∈ N such that no floor of L up to the level N
has an interval whose lower bound is less than 1

βk
.

As previously said, we have:

µ(Ck) = µ(Ck ∩ L) + µ(Ck ∩Ak) + µ(Ck ∩Bk). (12)

We want to estimate each term of the right hand side of equation (12). We
will prove that for large k, Ck ∩L and Ck ∩Ak have a small measure, and that
Ck ∩Bk represents more than half of the measure of Ck.

Lemma 23. For k large enough, we have

µ(Ck ∩ L) 6 2pk
β − 1

βk
ε.

Proof. Let k > k0. A floor of L can intersect Ck only if the lower bound of its
interval is less than 1

βk
. The integer N is fixed such that every floor below the

level N does not contain 1
βk

. Therefore, only the floors beyond the level N can
intersect Ck. Additionally, for any e ∈ E , we have, by definition of the measure
µ on each floor:

µ

({
(ω, e, x) ∈ Ee : ω0 = ... = ωk−1 = g, x <

1

βk

})
= pkµ

(
Ee ∩

{
x <

1

βk

})
.

We then have:

µ(Ck ∩ L) = pk
∑

e∈E,e(0)=`,|e|>N+1

ν(Ye)λ

(
Ie ∩

[
0;

1

βk

])
.
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For a floor Ee of the lazy tower such that Ie ∩ [0; 1
βk

] 6= ∅, we have

λ(Ie) >
1

β − 1
− 1

βk
.

For k large enough, we then have

λ(Ie) >
1

2(β − 1)
.

It implies that

λ

(
Ie ∩

[
0;

1

βk

])
6

1

βk
6 2

β − 1

βk
λ(Ie)

hence
µ(Ck ∩ L) 6 2pk

β − 1

βk
ε.

Lemma 24. For k large enough, we have

µ(Ck ∩Ak) 6
pk

βk
ε.

Proof. Let k ∈ N.

µ(Ck ∩Ak) = pk
∑

e∈E,Ee⊂Ak

ν(Ye)λ

(
Ie ∩

[
0;

1

βk

])
.

If Ee is a floor of Ak, then λ(Ie ∩ [0; 1
βk

]) 6 1
βk

. Therefore,

µ(Ck ∩Ak) 6
pk

βk
ν(πX,Y (Ak)).

We have ⋂
k>1

Ak = ∅,

hence

πX,Y

⋂
k>1

Ak

 = ∅.

Since the intersection of the Ak is decreasing, we have⋂
k>1

πX,Y (Ak) = ∅.

It implies that
lim
k→∞

ν(πX,Y (Ak)) = 0.

We can choose k large enough, so that ν(πX,Y (Ak)) < ε. Therefore,

µ(Ck ∩Ak) 6
pk

βk
ε.
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Proposition 25. For k large enough, we have

µ(Ck ∩Bk)

µ(Ck)
> 0.5.

Proof. Let k ∈ N large enough such that Lemmas 23 and 24 are both satisfied.
We have:

µ(Ck ∩Bk)

µ(Ck)
= 1− µ(Ck ∩Ak) + µ(Ck ∩ L)

µ(Ck)
.

From Lemmas 23 and 24, we then have

µ(Ck ∩Bk)

µ(Ck)
> 1−

pk

βk
ε+ 2pk β−1

βk
ε

µ(Ck)
> 1−

pk

βk
ε+ 2pk β−1

βk
ε

µ(Ck ∩ G)
.

On the other hand,

µ(Ck ∩ G) = pk
∑

e∈E,e(0)=g

ν(Ye)λ

(
Ie ∩

[
0;

1

βk

])
.

For any floor Ee of G, we have the minoration λ(Ie ∩ [0, 1
βk

]) > λ(Ie)
β−1
βk

hence

µ(Ck ∩Bk)

µ(Ck)
> 1−

pk

βk
ε+ 2pk β−1

βk
ε

pk β−1
βk

µ(G)
= 1− 1 + 2(β − 1)

(β − 1)µ(G)
ε.

The real ε is such that 1− 1+2(β−1)
(β−1)µ(G)ε > 0.5, which gives the result.

All these computations are also valid on the extension X̃. Indeed,
π−1
X̃,X

(Ck) ∈ π−1
X̃,X

(B), which implies µ̃(π−1
X̃,X

(Ck)) = µ(Ck). In the following

we will still note Ck instead of π−1
X̃,X

(Ck).

Since K̃ is ergodic and µ(Ck) > 0, almost every trajectory in X̃ encounters
Ck with frequency µ(Ck). Therefore, for P-almost every couple of trajectories in
X̃, both trajectories simultanously encounter Ck (since Ck is measurable with
respect to the factor X) with frequency µ(Ck) (since P is a self-joining of µ). In
other words, we have, for P-almost every (a, b) ∈ X̃ × X̃, for any n ∈ N ∪ {0},

• K̃n(a) ∈ Ck if and only if K̃n(b) ∈ Ck,

•
1

N

N∑
i=1

1Ck(K̃i(a)) =
1

N

N∑
i=1

1Ck(K̃i(b))→ µ(Ck).

The ergodicity of K̃ and Proposition 25 also imply that among the occur-
rences of Ck, the event Ck ∩ Bk occurs with a frequency greater that 0.5 for
the orbits of P-almost every (a, b) ∈ X̃ × X̃ under K̃. Therefore, for P-almost
every (a, b) ∈ X̃ × X̃, there exists n0 ∈ N ∪ {0} such that K̃n0(a) ∈ Ck ∩ Bk
and K̃n0(b) ∈ Ck ∩Bk. Once the two trajectories are in Ck ∩Bk simultaneously,
they will end up in the greedy base in at most k iterations (note that even if
one of the two points goes in the base before the other, it will “wait” for the
second one to join it. Since its real component is small enough, the point is
in the atom P0). In conclusion, for P-almost every (a, b) ∈ X̃ × X̃, if we note
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a = (ω, e, x) and b = (ω, e′, x), there exists an integer M = M(ω, x, e, e′) such
that eM = e′M = (g).

Let δ > 0. There exists an integer Mδ such that

P(M > Mδ) < δ.

Therefore, we have P(eMδ
= e′Mδ

) > 1−δ. Since P is K̃×K̃-invariant, we deduce
that for any integer k ∈ Z and any δ > 0,

P(ek = e′k) > 1− δ

hence e = e′. We proved that P is supported by the diagonal of X̃ × X̃, which
implies that φ is an isomorphism. Therefore, (X̃, µ̃, K̃) is a natural extension of
the initial system, which concludes the proof of Theorem 21.

2.3 Bernoullicity
We know that the natural extension of the initial random system is ergodic. In
fact, we have the following stronger result:

Theorem 26. The natural extension of the random β-transformation is iso-
morphic to a Bernoulli shift.

To prove this theorem, we introduce a generating partition of the two tow-
ers. We then prove that this partition is weak-Bernoulli, by an argument on
countable state space Markov chains of Ito, Totoki and Murata [9], which im-
plies the theorem. In the following, we note µ̃g := µ̃(·|Ẽg), and K̃g the induced
transformation of K̃ on the base Ẽg.

Lemma 27. Let (X,µ, T ) be an ergodic dynamical system, and A a measurable
set of X with positive measure. Note (X̃, µ̃, T̃ ) a natural extension of the system,
and π a factor map from X̃ onto X. Then the system induced by T̃ on π−1(A)is
a natural extension of the system induced by T on A.

Proof. We start by introducing the necessary notations. The natural extension
of the system (X,µ, T ) can be described by a two-sided shift T̃ on the set

X̃ := {x = (xn)n∈Z ∈ XZ,∀n ∈ Z, T (xn) = xn+1},

with the measure µ̃ defined by

µ̃([Ak, Ak+1, . . . , An+k]n+kk ) = µ

(
n⋂
i=0

T−i(Ak+i)

)
,

where Ak, . . . , An+k are measurable sets of X and [Ak, Ak+1, . . . , An+k]n+kk :=

{x ∈ X̃ : for k 6 i 6 n+ k, xi ∈ Ai}.
Note Ã := π−1(A) = {(xn) ∈ X̃, x0 ∈ A} and (Ã, µ̃Ã, T̃Ã) the system

induced by T̃ on Ã. The transformation T̃Ã is defined by T̃Ã(x) = T̃ rA(x0)(x)

for every x ∈ Ã, where rA(x0) is the return time of x0 in A, which is the same
as the return time of x in Ã.

We denote by (A,µ(·|A), TA) the system induced by T on A. The natural
extension of this induced system can also be described by a two-sided shift T
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on the set A = {x = (xn)n∈Z ∈ AZ,∀n ∈ Z, TA(xn) = xn+1}, with the measure
µ defined in the same way as µ̃.

We want to prove that the two systems (Ã, µ̃Ã, T̃Ã) and (A,µ, T ) are iso-
morphic. We define the map ϕ as:

ϕ :
Ã → A

x 7→ ((T̃n
Ã

(x))0)n∈Z
.

The map ϕ consists in keeping only the terms of the sequence x that belong to
A.

We clearly have that ϕ ◦ T̃Ã = T ◦ϕ and that µ is the pushforward measure
µ̃Ã ◦ ϕ−1: the map ϕ is a factor map from (Ã, µ̃Ã, T̃Ã) to (A,µ, T ).

We now prove that ϕ is an isomorphism. Let y = (yn)n∈Z ∈ A. Let n ∈ Z.
From yn, we can construct the finite sequence of the iterates of yn

s(yn) := (yn, T (yn), . . . , T rA(yn)−1(yn)),

stopping juste before yn+1 = T rA(yn)(yn). Then the sequence x obtained by
concatenating the sequences s(yn) for all n ∈ Z is by construction a sequence of
Ã such that ϕ(x) = y.

Let us prove that ϕ is one-to-one. Let w,x ∈ Ã such that ϕ(w) = ϕ(x).
Then w0 = x0, which implies that for any n ∈ N, Tn(w0) = Tn(x0), i.e. xn =
wn. Let j0 := max{j < 0, T̃ j(w) ∈ Ã}, and j1 := max{j < 0, T̃ j(x) ∈ Ã}. The
existence of the integers j0 and j1 is assured by Poincaré’s recurrence theorem
applied to T̃−1. Note that T̃ j0(w) = T̃−1

Ã
(w), and T̃ j1(x) = T̃−1

Ã
(x). Since

ϕ(w) = ϕ(x), we get that T̃ j0(w) = T̃ j1(x), i.e. wj0 = xj1 . The integer −j0 is
the return time of wj0 in A, which implies that j0 = j1, and wn = xn for n > j0.
By induction, we prove that w = x, and ϕ is an isomorphism, which concludes
the proof.

Corollary 28. The system (Ẽg, µ̃g, K̃g) is a natural extension of the system
(Eg, µg,Kg).

Proposition 29. The partition P̃ := π−1(P) is a generator of the system

(Ẽg, µ̃g, K̃g).

Proof. µg-almost every point a ∈ Eg is associated to a unique sequence (Can)n>0

of C N∪{0} such that for any n ∈ N ∪ {0}, Kng (a) ∈ ECan : the sequence (Can)n>0

can be viewed as the P-name of the point a. Note φP the application defined
almost everywhere on Eg by φP(a) = (Can)n>0. Note ν the image measure of
µg by φP and σ the left shift on C N∪{0}. The application φP is a factor map
from the system (Eg, µg,Kg) to the one-sided Bernoulli shift (C N∪{0}, ν, σ).
From Proposition 10, the partition P is a generator of the system (Eg, µg,Kg).
Therefore, the application φP is an isomorphism.

We can construct a natural extension of the system (C N∪{0}, ν, σ) the same
way we did for K. Doing so, we construct the system (C Z, ν̃, σ), which is a
two-sided Bernoulli shift on C Z. Since the natural extensions of a system are
isomorphic to one another, we deduce from the previous lemma that the systems
(C Z, ν̃, σ) and (Ẽg, µ̃G, K̃g) are isomorphic, thus concluding the proof.
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From this partition P̃, we construct the set

PX̃ := {K̃k(ẼC), C ∈ C , 0 6 k 6 |C| − 1}.

This family is obtained by “unfolding” the partition P̃ on the two towers: each
path C of C is not only described by the first atom ẼC , but by the sequence of
successive images of this atom by K̃.

Lemma 30. The set PX̃ is a partition of X̃.

Proof. Two distincts sets of PX̃ are clearly disjoint.
On the other hand, let (ω, e, x) ∈ X̃. Almost surely, There exists k ∈ N∪{0}

such that e−k = (g) (applying Poincaré recurrence theorem to K̃−1). Let k0 :=
min{k ∈ N ∪ {0}, e−k = (g)}. The integer −k0 corresponds to the last visit
of the greedy base in the past orbit of (ω, e, x). Almost surely, there exists a
unique C ∈ C such that K̃−k0(ω, e, x) ∈ ẼC . Since k0 is minimal, we have
0 6 k0 6 |C| − 1, and (ω, e, x) ∈ K̃k0(ẼC).

Proposition 31. The partition PX̃ is a generator of the system (X̃, µ̃, K̃).

Proof. The goal is to prove that almost every point in X̃ is uniquely determined
by its PX̃ -name.

Let (ω, e, x) ∈ X̃. Almost surely, we can define the integer k0 as in the
previous proof:

k0 := min{k ∈ N ∪ {0}, e−k = (g)}.
We note a := K̃−k0(e, x) ∈ Ẽg. Almost surely, a is characterized by its P̃-
name (Cn)n∈Z. To each path Cn corresponds a unique sequence of length |Cn|
of atoms of PX̃ : the sequence (K̃k(ẼCn), 0 6 k 6 |Cn| − 1). Therefore, a is
characterized by the unique sequence (Pn)n∈Z of elements of PX̃ such that for
any n ∈ Z,

K̃n(a) ∈ Pn.
We deduce that the point (ω, e, x) is uniquely determined by the sequence
(Pn+k)n∈Z.

We then define the isomorphism ϕ, which associates to almost every point
in X̃ its PX̃ -name. We note η the image measure of µ̃ by ϕ and σ the left shift
on PZ

X̃
. Then ϕ is a factor map from (X̃, µ̃, K̃) to (PZ

X̃
, η, σ).

The measure η is the Markov measure generated by the invariant distribution
(µ̃(P ))P∈PX̃ and the following transition probabilities:

• From an atom K̃k(ẼC) with C ∈ C and 0 6 k 6 |C| − 2, the process goes
to the atom K̃k+1(ẼC) with probability 1.

• From an atom K̃|C|−1(ẼC) with C ∈ C , the process can go to ẼC′ for any
C ′ ∈ C with probability µg(EC′).

Therefore, we can identify the natural extension (X̃, µ̃, K̃) with a Markov
shift on PZ

X̃
. This Markov shift is irreducible and recurrent, since K̃ is ergodic.

Moreover, it is aperiodic (the atom [g]0 × {(g)} × [0, 1
β [ can appear twice in a

row for example). Proposition 2 p. 579 of [9] implies that the partition PX̃
is weak-Bernoulli, and the system (X̃, µ̃, K̃) is isomorphic to a Bernoulli shift.
This concludes the proof of Theorem 26.
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Open questions

1. Can we generalize the extensions of this paper to any β > 2? We must take
into account the differents branches of the greedy and lazy transformations
in the construction of the natural extension, especially the branches that
induce a return to a base.

2. It seems natural to apply this kind of construction to other dynamical
systems, either deterministic or random ones. It seems that it can be
generalized to random systems with piecewise linear maps, even when the
branches have different slopes. Indeed, with the construction of the towers,
we can keep track of the exact branch that is being applied at each step.

However, systems based on continued fraction expansions should pose way
more difficulties. In [10], the authors highlight a bijection between the β
parameter of the non-integer base expansions and the λ parameter of λ-
continued fractions. The first question would be to identify the analog of
the greedy and lazy transformations in this case, and then to closely study
this bijection.

3. The description of the extension (X,µ,K) provides a better understand-
ing of the random β-transformation. The extension shows off some nice
renewal times at each passage to the greedy base, which provided a proof
of the Bernoullicity of the natural extension. We can hope to get limit
theorems as well thanks to this property. Indeed, in [18], Young describes
a certain class of dynamical systems with renewal properties on reference
sets. Young shows that the tail distribution of the return time to this
reference set is directly linked to convergence to equilibrium and limit
theorems. In our setup, an estimation of the length of paths of C should
help in this direction. Could we then obtain a central limit theorem for
the digit sequences in base β following a fixed sequence ω? Or on average
on ω?

4. Our construction heavily relies on the independent choice of the transfor-
mations at each step. Could we adapt some of these constructions to more
general stationary measures on Ω? For example Markov measures?
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