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Abstract: We carry out the theoretical investigation of the backward interaction optical7

parametric oscillator (OPO), in which one of the generated waves is counterpropagating with8

respect to the pump. We derive simple, self-consistent analytical formulas for the continuous-wave9

and pulsed regimes. While consistent with previous works on continuous-wave regime, our study10

enables to extend the analysis to the pulsed regime. In particular, we derive simple expressions of11

the oscillation build-up time, pulsed threshold and efficiency, for the first time to our knowledge.12

We also investigate the peculiar spectral features of the backward OPO when pumped with a13

narrow-linewidth pulsed radiation, in particular the absence of tolerance to phase mismatch and14

the natural ability to emit two waves with a Fourier-transform limited spectrum. Comparison15

with the convention forward OPO are also carried out to emphasize the unique properties of the16

backward OPO.17

© 2021 Optical Society of America18

1. Introduction19

Initially proposed by Harris in 1966 [1], the backward-wave optical parametric oscillator20

(BWOPO) is based on three-wave second-order nonlinear interaction in a nonlinear medium21

where one generated wave, referred as the backward wave, propagates in the opposite direction22

of the incident pump wave and the other generated wave, referred as the forward wave. In23

contrast to conventional optical parametric oscillators (OPOs) based on three co-propagating24

waves where an external feedback has to be provided to the nonlinear medium by an optical25

cavity, resonant at one or the two generated waves, oscillation in a BWOPO can occur thanks26

to the distributed feedback due to the presence of two counter-propagating parametric waves.27

Thus, for its operation, the BWOPO does not require to adjust and maintain any fine alignment of28

cavity mirrors, making the device very simple and reliable.29

Despite this striking attractive feature, it took 40 years before its experimental demonstration by30

Canalias and Pasiskevicius [2]. This long time gap was due to the fact that quasi-phase matching31

material with sub-micrometer poling period had first to be developed since conventional phase32

matching would require an extraordinary large birefringence. In [2], the authors also validated the33

unique spectral properties of the light emitted by the BWOPO, in which the spectral bandwidth34

of the pump wave is basically transferred to the forward wave while the backward wave exhibits35

a narrow spectral linewidth. These spectral properties have then been extensively investigated36

through experimental and numerical studies in pulsed regime and exploited to carry out coherent37

phase transfer from the pump wave to the signal wave [3–6].38

Regarding theoretical work, general plane-wave solutions to backward three-wave mixing in39

the continuous-wave (CW) regime, involving Jacobi elliptic functions, were derived by Meadors40

in 1969 [7]. Other theoretical studies devoted to the CW BWOPO were then published [8–10].41

In particular, [10] contains convenient analytical expressions to determine the CW BWOPO42

conversion efficiency and oscillation threshold.43

Due its high CW oscillation threshold intensity, typically of 50–100 MW/cm2, the BWOPO44

has only been operated in the pulsed regime so far. In this context, a theoretical analysis of the45



BWOPO threshold and efficiency in the pulsed regime is worth investigating. In particular, even46

through most of previous reported works involved pump pulses in the 10’s to 100’s picoseconds47

duration, the BWOPO is also very promising for operation with longer nanosecond pulses [11],48

where its unique spectral properties are promising for applications such as lidar remote gas49

sensing.50

Depending on the pulse duration, the pulsed threshold can be significantly higher than the CW51

threshold. To guide BWOPO design, it would thus be valuable to derive a BWOPO analog of52

the Brosnan–Byer expression of the pulsed OPO threshold [12]. A first step in this direction53

was taken in [13], but it was limited to the numerical investigation of the pulsed threshold as a54

function of the pump pulse duration and the derivation of an analytical expression of the pulsed55

threshold was not reported.56

In this paper, we carry out the theoretical investigation of the BWOPO by extending the57

approach we previously applied to conventional OPOs [14–17]. Exactly taking into account the58

nonlinear interactions between the waves in the nonlinear crystal, we derive universal expressions59

for the BWOPO in CW and pulsed regimes which enables to carry out convenient comparisons60

with the usual singly resonant OPO (SROPO). One of the main outcomes is the derivation of the61

analytical expressions of the BWOPO pulsed threshold and build-up time as well as the optimal62

pulse duration to minimize the threshold energy. We also provide an approximate expression63

of the pulsed conversion efficiency which could also be helpful for the design of a BWOPO.64

We finally carry out numerical simulation of the BWOPO by finite-difference time-domain65

(FDTD) modeling to assess the validity of our analytical expressions and further emphasize some66

distinctive spectral properties of the BWOPO compared to the conventional pulsed OPO.67

This paper is organized as follows. Section 2 presents the analysis of the threshold and the68

efficiency of the pulsed BWOPO. First, the coupled-wave equations and main assumptions are69

presented. Secondly, we derive the exact solutions to the equations in the CW regime using Jacobi70

elliptic functions. We recover the expressions previously derived in the literature and compare71

the characteristics of the BWOPO with the conventional SROPO. In particular, we determine72

the mirror reflectivity to have a SROPO with the same oscillation threshold as a mirrorless73

BWOPO based on an equivalent nonlinear medium. Then, we derive simple expressions to74

evaluate the pulsed oscillation threshold and efficiency, which are reported here for the first75

time to our knowledge. Section 3 is devoted to the investigation of the spectral properties of76

the BWOPO. First, we analyse particular phase-matching acceptance which is much narrower77

than for forward parametric interaction. Secondly, we investigate the parametric amplification78

bandwidth. In particular, we show that perfect phase-matching is required to be able to reach79

the BWOPO threshold. Thirdly, numerical calculations are carried out to validate the analytical80

results and to compare the spectral properties of the BWOPO with the conventional SROPO. The81

calculation confirms the ability of the BWOPO to naturally deliver single frequency radiation82

with a Fourier-transform linewidth. The final section summarizes the conclusions.83

2. Backward OPO threshold and efficiency84

2.1. Coupled-wave equations85

The geometry of the studied BWOPO is shown in Fig. 1. We consider a second-order nonlinear
material of length 𝐿 containing a quasi-phase-matching grating to enable efficient interaction
with a backward propagating wave. For the theoretical analysis, we start with the nonlinear
three-wave mixing coupled equations in the slowly-varying envelope approximation which reduce
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Fig. 1. Schematic of the BWOPO based on a periodically domain-inverted ferroelectric
crystal.

in the plane-wave limit to [4, 18]
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𝜕𝐴𝑏

𝜕𝑡
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𝜕𝐴 𝑓

𝜕𝑧
+ 1
𝑣𝑔 𝑓

𝜕𝐴 𝑓

𝜕𝑡
= 𝑖𝜅𝐴𝑝𝐴

∗
𝑏 exp (𝑖Δ𝑘𝑧), (1b)

𝜕𝐴𝑝

𝜕𝑧
+ 1
𝑣𝑔𝑝

𝜕𝐴𝑝

𝜕𝑡
= 𝑖𝜅𝐴𝑏𝐴 𝑓 exp (−𝑖Δ𝑘𝑧), (1c)

with 𝑣𝑔 𝑗 the group velocity of wave 𝑗 , where 𝑗 = 𝑏, 𝑓 , and 𝑝 corresponds respectively to the86

backward, forward, and pump wave, 𝜅 the nonlinear coupling coefficient87

𝜅 =
𝑑eff
𝑐

√︂
𝜔𝑏𝜔 𝑓𝜔𝑝

𝑛𝑏𝑛 𝑓 𝑛𝑝
, (2)

with 𝑑eff the effective nonlinear coefficient. 𝐴𝑏, 𝐴 𝑓 , and 𝐴𝑝 are the complex amplitudes related
to the real electric fields as follows:

𝐸𝑏 (𝑧, 𝑡) =
1
2

√︂
𝜔𝑏

𝑛𝑏
𝐴𝑏 (𝑧, 𝑡) exp [𝑖 (−𝑘𝑏𝑧 − 𝜔𝑏𝑡)] + 𝑐.𝑐., (3a)

𝐸𝑝, 𝑓 (𝑧, 𝑡) =
1
2

√︂
𝜔𝑝, 𝑓

𝑛𝑝, 𝑓
𝐴𝑝, 𝑓 (𝑧, 𝑡) exp

[
𝑖
(
𝑘 𝑝, 𝑓 𝑧 − 𝜔𝑝, 𝑓 𝑡

) ]
+ 𝑐.𝑐., (3b)

where 𝑛 𝑗 , 𝜔 𝑗 , and 𝑘 𝑗 are respectively the refractive index, angular frequency and wavevector of88

wave 𝑗 , and Δ𝑘 is the phase mismatch89

Δ𝑘 = 𝑘 𝑝 − 𝑘 𝑓 + 𝑘𝑏 − 𝐾𝐺 , (4)

with 𝐾𝐺 the quasi-phase matching wavevector. The analysis is limited to plane waves in order90

to derive simple formulas. The investigation of finite beam effects which would require a91

more elaborate model is beyond the scope of this paper. The model could nonetheless be92

straightforwardly extended to waveguide structures by using mode propagation constants instead93

of wavevectors, introducing mode overlap integrals, and, if necessary, adding waveguide losses.94

For simplicity’s sake, we consider that the magnitude of the group velocity is the same for the
three waves. However, since the backward wave propagates in the opposite direction, its group
velocity has an opposite sign compared to the group velocity of the forward and pump waves. As
a consequence, the relative group velocity difference is very large given that it is equal to 2𝑣𝑔,
which is dominant compared to other chromatic dispersion effects. Thereby, coupled equations



(1a)-(1c) become

𝜕𝐴𝑏

𝜕𝑧
− 1
𝑣𝑔

𝜕𝐴𝑏

𝜕𝑡
= −𝑖𝜅𝐴𝑝𝐴

∗
𝑓 , (5a)

𝜕𝐴 𝑓

𝜕𝑧
+ 1
𝑣𝑔

𝜕𝐴 𝑓

𝜕𝑡
= 𝑖𝜅𝐴𝑝𝐴

∗
𝑏, (5b)

𝜕𝐴𝑝

𝜕𝑧
+ 1
𝑣𝑔

𝜕𝐴𝑝

𝜕𝑡
= 𝑖𝜅𝐴𝑏𝐴 𝑓 , (5c)

where perfect quasi-phase matching is also assumed to investigate the BWOPO. As shown in95

Section 3.2, this is actually a necessary condition for parametric oscillation.96

2.2. Continuous-wave regime97

In CW regime, one can discard time dependence and the related partial derivative. The system
(5a)–(5c) thus simplifies into

d𝐴𝑏

d𝑧
= −𝑖𝜅𝐴𝑝𝐴

∗
𝑓 , (6a)

d𝐴 𝑓

d𝑧
= 𝑖𝜅𝐴𝑝𝐴

∗
𝑏, (6b)

d𝐴𝑝

d𝑧
= 𝑖𝜅𝐴𝑏𝐴 𝑓 , (6c)

To solve the above system, we decompose the complex amplitudes as follows98

𝐴 𝑗 (𝑧) = 𝑢 𝑗 (𝑧) exp
[
𝜑 𝑗 (𝑧)

]
, (7)

where amplitude 𝑢 𝑗 (𝑧) and phase 𝜑 𝑗 (𝑧) are both real-valued functions. For the BWOPO, we99

consider that there is no incident forward and backward waves, leading to the following boundary100

conditions:101

𝑢 𝑓 (0) = 𝑢𝑏 (𝐿) = 0, (8)

and we assume that the relative phase Δ𝜑 = 𝜑𝑝 − 𝜑𝑏 − 𝜑 𝑓 has reached the steady-state value
which maximizes the coupling between the three waves and thus satisfies cos [Δ𝜑 (𝑧)] = 1.
Moreover, we take pump depletion into account by a change of sign in 𝑢𝑝 (𝑧) rather than a step of
𝜋 in Δ𝜑(𝑧). With this additional assumption, we can know consider the following system which
only involves real functions and parameters:

d𝑢𝑏
d𝑧

= −𝜅𝑢𝑝𝑢 𝑓 , (9a)

d𝑢 𝑓

d𝑧
= 𝜅𝑢𝑝𝑢𝑏, (9b)

d𝑢𝑝
d𝑧

= −𝜅𝑢𝑏𝑢 𝑓 , (9c)

From Eqs. (9a)–(9c), the “constants of motion” are found to be

𝑢2
𝑝 (𝑧) + 𝑢2

𝑓 (𝑧) = 𝑢
2
𝑝0, (10a)

𝑢2
𝑝 (𝑧) − 𝑢2

𝑏 (𝑧) = 𝑢
2
𝑝0 − 𝑢

2
out, (10b)

𝑢2
𝑓 (𝑧) + 𝑢

2
𝑏 (𝑧) = 𝑢

2
out, (10c)



where we use the compact notations: 𝑢𝑝 (0) = 𝑢𝑝0, 𝑢𝑏 (0) = 𝑢 𝑓 (𝐿) = 𝑢out. These constant of102

motion are determined by the boundary conditions. Equation (9b) describing the evolution of the103

forward wave can then be rewritten as follows104

d𝑢 𝑓

d𝑧
= 𝜅

√︂(
𝑢2
𝑝0 − 𝑢

2
𝑓

) (
𝑢2

out − 𝑢2
𝑓

)
, (11)

which may be formally integrated as105

𝜅𝑧 =

𝑢 𝑓 (𝑧)∫
0

d𝑢 𝑓√︂(
𝑢2
𝑝0 − 𝑢

2
𝑓

) (
𝑢2

out − 𝑢2
𝑓

) , (12)

This latter expression has a solution in terms of Jacobi functions:106

𝑢 𝑓 (𝑧) = 𝑢out sn

(
𝜅 𝑧 𝑢𝑝0

�����𝑢2
out

𝑢2
𝑝0

)
, (13)

where the Jacobi inverse function sn is defined by [19]107

𝑥∫
0

d𝑡√︃(
𝑎2 − 𝑡2

) (
𝑏2 − 𝑡2

) =
1
𝑎

sn−1
(
𝑥

𝑏

����𝑏2

𝑎2

)
. (14)

The pump and backward waves spatial evolution can then be derived by use of (10a) and (10a):108

𝑢𝑝 (𝑧) = 𝑢𝑝0 dn

(
𝜅 𝑧 𝑢𝑝0

�����𝑢2
out

𝑢2
𝑝0

)
, (15)

and109

𝑢𝑏 (𝑧) = 𝑢out cn

(
𝜅 𝑧 𝑢𝑝0

�����𝑢2
out

𝑢2
𝑝0

)
, (16)

where we use the relations between the squares of the Jacobi functions: dn2 (𝑥 |𝑚) = 1−𝑚 sn2 (𝑥 |𝑚)110

and cn2 (𝑥 |𝑚) = 1 − sn2 (𝑥 |𝑚)111

Setting 𝑧 = 𝐿 in (13), one obtains the implicit equation for BWOPO CW oscillation112

sn

(
𝜅 𝐿 𝑢𝑝0

�����𝑢2
out

𝑢2
𝑝0

)
= 1. (17)

This expression is equivalent to the one derived by Meadors [7]. The CW oscillation threshold,113

𝑢CW
th , can then be easily derived using the approximation sn(𝑥 |𝑚) ≈ sin(𝑥) when 𝑚 → 0:114

𝑢CW
th =

𝜋

2𝜅𝐿
. (18)

The above expression can be conveniently expressed in terms of intensity, 𝐼 = 𝜖0 𝑐 𝑛 ⟨𝐸2⟩ =115

𝜖0 𝑐 𝜔 |𝐴|2 /2 (in W/m2), as follows:116

𝐼CW
th =

𝜖0 𝑐 𝑛𝑏 𝑛 𝑓 𝑛𝑝 𝜆𝑏 𝜆 𝑓

32𝑑2
eff 𝐿

2
. (19)



The latter expression of the threshold intensity is consistent with previously reported expressions117

when one take the different definitions of the effective nonlinear coefficient into account [1,7,10,13]118

One can introduce the photon conversion efficiency, 𝜂, defined as119

𝜂 = 𝑢2
out/𝑢2

𝑝0, (20)

and consider that120 (
𝑢𝑝0

/
𝑢CW

th

)2
= 𝐼𝑝/𝐼CW

th . (21)

The implicit equation for BWOPO CW oscillation (17) can then be rewritten:121

sn
(
𝜋

2

√︃
𝐼𝑝/𝐼CW

th

���� 𝜂) = 1. (22)

After some algebra, the latter equation can also be written in terms of complete elliptic integral of122

the first kind as follows, which is easier and faster for numerical solving and to derive approximate123

expressions:124

𝜋

2

√︃
𝐼𝑝/𝐼CW

th = 𝐾 (𝜂) , (23)

with125

𝐾 (𝜂) =
1∫

0

d𝑥√︃(
1 − 𝑥2) (

1 − 𝜂𝑥2) . (24)

Equation (23) is similar to the one derived by Ding and Khurgin [10].126

Approximate expressions can be derived for BWOPO operation close to the oscillation threshold127

by use of the following expansion of 𝐾 (𝜂):128

𝐾 (𝜂) = 𝜋

2

∞∑︁
𝑚=1


(

1
2

)
𝑚

𝑚!


2

𝜂𝑚, (25)

where Pochhammer’s symbol is defined as (𝑎)𝑛 = 𝑎 (𝑎 + 1) (𝑎 + 2) . . . (𝑎 + 𝑛 − 1). Equation129

(25) yields the following first- and second-order approximations:130

𝜂 ≃ 4
(√︃
𝐼𝑝/𝐼CW

th − 1
)
, (26)

and131

𝜂 ≃ 8
9

{[
1 + 9

(√︃
𝐼𝑝/𝐼CW

th − 1
)]1/2

− 1

}
. (27)

Conversely, for high conversion efficiencies (𝜂 → 1), the following approximation may be132

considered:133

𝐾 (𝜂) ≃ 1
2

ln
(

16
1 − 𝜂

)
, (28)

which yields134

𝜂 ≃ 1 − 16 exp
(
−𝜋

√︃
𝐼𝑝/𝐼CW

th

)
. (29)

As seen in Fig. 2, the first-order approximation, (26), is only valid very close to the oscillation135

threshold while the second-order approximation, (27), provides a reasonable agreement (better136

than 10 %) for 𝐼𝑝 < 1.4 𝐼CW
th . Conversely, the accuracy of asymptotic expression (29) is better137



1 2 3 4 5 6
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

 B W O P O
 1 s t  o r d e r  
 2 n d  o r d e r  
 A s y m p t o t i c
 S R O P O

CW
 co

nv
ers

ion
 ef

fici
en

cy 
(�)

N o r m a l i z e d  p u m p  i n t e n s i t y  ( I p / I C W
t h )

Fig. 2. CW conversion efficiency as a function of pump pump intensity normalized to
the CW threshold intensity. The SROPO has a coupler reflectivity given by (31) which
yields the same CW threshold intensity as the BWOPO.

than 10 % for 𝐼𝑝 > 1.6 𝐼CW
th . As discussed in next section, this latter approximation is actually138

convenient to evaluate the efficiency in pulsed regime where the involved peak intensity is often139

high enough.140

Let us now carry out a comparison with the more conventional singly resonant OPO (SROPO)141

based on the forward nonlinear interaction between three co-propagating waves while the feedback142

is provided by an optical cavity resonant at the signal wave. Using the same formalism as the one143

derived here [14], the CW oscillation of the SROPO reads:144

𝑢CW
th,SROPO =

1
𝜅𝐿

cosh−1
(

1
√
𝑅

)
, (30)

where 𝑅 is the output coupler reflectivity at the signal while the other loss are neglected and145

the mirror reflectivity is zero for the idler and the pump. Combining (18) and (30) enables to146

determine the coupler reflectivity, 𝑅SROPO, which yields the same threshold for the BWOPO and147

the SROPO:148

𝑅SROPO =
1

cosh2 (𝜋/2)
≃ 0.16, (31)

where we suppose that the product 𝜅𝐿 is the same for the two OPOs, i.e., we consider the same149

nonlinear materials and the same wavelengths. We can now compare the conversion efficiencies150

of both types of OPO with the same CW threshold using the SROPO implicit equation (16) of [14]151

with 𝑅 = 𝑅SROPO. As seen in Fig. 2, the efficiency of the SROPO grows faster just above threshold152

until it reaches complete pump depletion for 𝐼𝑝 ≃ 1.9 𝐼CW
th . This optimal normalized pump153

intensity, which can be evaluated with (24a) in [14], is different from the value of 𝜋2/4 ≃ 2.4154

usually considered in SROPO because of the low cavity finesse with 𝑅SROPO ≃ 0.16. Then, for155

input pump intensity higher than this value, part of the signal and idler is converted back into156

pump in the nonlinear crystal and the SROPO efficiency decreases. Such a back-conversion157

effect is a well-known limit to the conversion efficiency of pulsed SROPOs [16,17, 20]. On the158

other hand, such a detrimental effect is not observed with the BWOPO where the CW conversion159

efficiency presents a monotonic growth with an asymptotic limit of 1 for high pumping rates,160

without the occurrence of back-conversion.161

2.3. Pulsed regime162

In addition to the steady-state conversion efficiency, another important effect for the overall
efficiency in pulsed regime is the build-up of the oscillation from quantum noise during which



the pump intensity is not significantly depleted. To derive an analytic expression of the build-up
time, we have to further simplify the coupled-wave equations (5a)–(5c) which involve space
and time partial derivatives. First, we neglect pump depletion during build-up which enables to
reduce the system to (5a) and (5b) with the pump amplitude as a driving term. Secondly, we
assume that the characteristic timescale of the pulses is longer than the propagation delay through
the nonlinear crystal, 𝜏 = 𝐿/𝑣𝑔, so that space and time profiles can be factorized as separated
functions with the longitudinal profiles determined with CW-regime solutions. With these two
assumptions, the amplitudes of the three waves read:

𝐴𝑏 (𝑧, 𝑡) = 𝑎𝑏 (𝑡) cos [𝜋𝑧/(2𝐿)], (32a)
𝐴 𝑓 (𝑧, 𝑡) = 𝑎 𝑓 (𝑡) sin [𝜋𝑧/(2𝐿)], (32b)

𝐴𝑝 (𝑧, 𝑡) = 𝜋/(2𝜅𝐿)
√︃
𝐼𝑝 (𝑡) /𝐼CW

th , (32c)

where the longitudinal profiles correspond to CW solutions at threshold. Inserting amplitude
profiles (32a)–(32c) in coupled equations (5a) and (5b) and carrying out integration over 𝑧, the
following set of two coupled equations involving only time derivatives is obtained:

𝑎𝑏 (𝑡) +
2𝜏
𝜋

d𝑎𝑏 (𝑡)
d𝑡

=

√︃
𝐼𝑝/𝐼CW

th 𝑎∗𝑓 (𝑡) , (33a)

𝑎 𝑓 (𝑡) +
2𝜏
𝜋

d𝑎 𝑓 (𝑡)
d𝑡

=

√︃
𝐼𝑝/𝐼CW

th 𝑎∗𝑏 (𝑡) . (33b)

For a step-wise pump temporal profile with the pump intensity switched on to a constant value,163

𝐼𝑝 , at 𝑡 = 0, the solution in terms of intensity, 𝐼𝑏, 𝑓 ∝
��𝑎𝑏, 𝑓 ��2, is164

𝐼𝑏, 𝑓 (𝑡) = 𝐼𝑏, 𝑓 (0) exp (𝑡/𝜏BWOPO), (34)

with165

1
𝜏BWOPO

=
𝜋

𝜏

(√︄
𝐼𝑝

𝐼CW
th

− 1

)
. (35)

The oscillation build-up time is defined as the time to reach a detectable intensity level, 𝐼det,166

starting from the quantum noise characterized by the equivalent intensity level, 𝐼noise:167

𝜏bu =
𝜏 𝑔Log

𝜋

(√︃
𝐼𝑝/𝐼CW

th − 1
) , (36)

with168

𝑔Log = ln
(
𝐼det
𝐼noise

)
. (37)

The duration of the build-up time is thus proportional to 𝑔Log whose value depends on the169

detection sensitivity, the mode volume, and other experimental parameters. Conversely to the170

CW regime, the threshold definition in pulsed regime is thus somewhat arbitrary. For the171

calculations presented in the following, we set 𝑔Log = 18, as in [16]. However, the value of 𝑔Log172

is straightforwardly adjustable to be more relevant for other conditions. Moreover, one could173

note that a variation of the noise or detection level over more than an order of magnitude only174

induces a 10 % variation of the 𝑔Log value.175

The comparison with the SROPO can be continued for the build-up time. In the case of a176

SROPO with the same CW threshold as the BWOPO, i.e. 𝑅 = 𝑅SROPO with 𝑅SROPO defined in177

(31), and with cavity mirrors directly located on the crystal facets so that the cavity round-trip178



time 𝜏cav is equal to 2𝜏, the SROPO build-up time can be determined from (A6) (see Appendix)179

as follows:180

𝜏bu,SROPO = 𝜏𝑔Log

{
ln

[
cosh

(
𝜋

2

√︄
𝐼𝑝

𝐼CW
th

)]
− ln

[
cosh

( 𝜋
2

)]}−1

. (38)

The latter expression can be approximated with an accuracy better than 10% using the approxi-181

mation cosh (𝑥) ≃ exp (𝑥)/2, which yields:182

𝜏bu,SROPO ≃
2𝜏 𝑔Log

𝜋

(√︃
𝐼𝑝/𝐼CW

th − 1
) = 2𝜏bu. (39)

Whatever the input pump intensity, the build-up time of the BWOPO is thus typically two183

times shorter than the one of the considered “equivalent” SROPO. This is indeed confirmed184

in Fig. 3 where we also indicate estimated values for OPO setups based on typical parameters185

(𝐼CW
th = 75 MW/cm2 and 𝜏 = 44.3 ps). In Fig. 3, the build-up times calculated respectively with186

formulas (36) and (38) are also compared with FDTD numerical simulations, where the coupled187

nonlinear equations (5a)–(5c) are solved as explained in Section 3.3, except that we inject here a188

constant intensity instead of a random noise for an easier evaluation of the oscillation threshold189

criterion and consider here a step-wise pump temporal profile. The value of the build-up time190

provided by the analytic evaluation of the BWOPO is higher than the one obtained by numerical191

calculation. Nonetheless, except for peak intensities close to the CW threshold where there is a192

factor of two between numerical and analytical evaluations, the difference between the two values193

reduces rapidly to be less than 25 % for 𝐼𝑝 > 2𝐼CW
th despite the relatively strong assumptions194

made to derive the analytic expression.195
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Fig. 3. Build-up time of BWOPO and SROPO (with 𝑅SROPO = 1/cosh2 (𝜋/2) and
𝜏cav = 2𝜏) as functions of the pump intensity normalized to the CW threshold intensity
(solid lines: analytic formulas with 𝑔Log = 18; symbols: numerical simulation).
The left axis provides the build-up time, 𝜏bu, normalized to the light propagation
time, 𝜏, through the nonlinear medium while the right axis gives the corresponding
values for a typical nonlinear crystal with 𝐿 = 7 mm and 𝑛𝑔 = 1.9 (i.e., 𝜏 = 44.3 ps).
The pump intensity of the top axis is evaluated for a typical CW threshold intensity
𝐼CW
th = 75 MW/cm2.



2.3.1. Square temporal profile196

For a square temporal profile of duration 𝜏𝑝 , one can derive from (36) the pulsed peak intensity197

to reach a detectable level of generated radiation at the trailing edge of the pump pulse:198

𝐼
peak
th = 𝐼CW

th

(
1 + 𝜏

𝜋𝜏𝑝
𝑔Log

)2
. (40)

The corresponding threshold fluence is thus199

𝐽 th = 𝜏𝑝

(
1 + 𝜏

𝜋𝜏𝑝
𝑔Log

)2
𝐼CW
th . (41)

The latter expression provides a first estimation of the threshold fluence for a given pulse duration.200

Expression (41) has a minimum for pulse duration 𝜏𝑝,opt which satisfies d𝐽 th/d𝜏𝑝 = 0:201

𝜏𝑝,opt = 𝜏 𝑔Log/𝜋, (42)

with the corresponding minimum of the threshold fluence:202

𝐽 th,min = 4𝐼CW
th 𝜏 𝑔Log/𝜋, (43)

which corresponds to a peak power of 4 times the CW threshold power over a duration of 4.7𝜏.203

The pulsed threshold peak intensity can be derived in the same way for the equivalent SROPO204

from (38) or its approximation (39). The ratio between pulsed threshold peak intensities of the205

BWOPO and its equivalent SROPO can then be written as206

𝐼
peak
th,SROPO

𝐼
peak
th

≃
𝜋𝜏𝑝 + 2𝜏𝑔Log

𝜋𝜏𝑝 + 𝜏𝑔Log
. (44)

The ratio of the pulsed threshold peak intensities is thus between 1 for long pulse durations,207

where the conditions become close to the CW regime, and 2 for short pulses. However, this must208

be balanced by the fact that the considered equivalent SROPO is not representative of a typical209

SROPO based on a higher finesse cavity whose threshold intensity would actually be lower.210

As in [16], we can derive an approximate expression of the pulsed conversion efficiency. For211

this purpose, we assume that the temporal profile of the output divides into two distinct temporal212

phases in the same manner as in [20]. The first one is the BWOPO buildup phase, during which213

the pump is assumed constant and whose duration is 𝜏bu. The second one is the steady-state214

regime where all the intensities are known and are identical to continuous-wave regime solutions215

derived in Sec. 2.2. We can hence write216

𝜂pulse =
𝜏𝑝 − 𝜏bu

𝜏𝑝
𝜂, (45)

where 𝜂 is given by (23) and 𝜏bu by (36). The value of 𝜂pulse can then be numerically evaluated217

by solving (45). If one also approximate 𝜂 by its asymptotic value for strong pumping (29), an218

analytical formula can be derived for a square temporal pulse profile:219

𝜂pulse =

1 −
𝜏 𝑔Log

𝜏𝑝𝜋

(√︃
𝐼

peak
𝑝 /𝐼CW

th − 1
) 

[
1 − 16 exp

(
−𝜋

√︃
𝐼

peak
𝑝 /𝐼CW

th

)]
. (46)

The above equation can also be expressed in terms of pump fluence 𝐽 = 𝜏𝑝 𝐼
peak
𝑝 .220
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Fig. 4. BWOPO conversion efficiency as a function of the pulse duration for a
square pulse profile and several pump fluences (solid lines: calculation with (45)
with 𝑔Log = 18; dashed lines: approximated expression (46); symbol: numerical
simulation). The bottom axis provides the square pulse duration, 𝜏𝑝 , normalized to
the light propagation time, 𝜏, through the nonlinear medium while the top axis gives
the corresponding values for a typical nonlinear crystal with 𝐿 = 7 mm and 𝑛𝑔 = 1.9
(i.e., 𝜏 ≃ 44.3 ps). For a typical CW threshold intensity 𝐼CW

th = 75 MW/cm2, the three
considered pump fluences are respectively 0.083, 0.166, and 0.665 J/cm2. The black
dotted line provides the optimum duration and corresponding pulsed efficiency for
increasing fluences.

Fig. 4 shows the pulsed conversion efficiency evaluated with expression (45) and its approx-221

imation (46) as a function of the pulse duration for constant pump fluences. The agreement222

between the two expressions is excellent for pulse duration leading to peak intensities which are223

high enough for (29) to be accurate; i.e., better than 10 % for 𝜏𝑝 < 0.62 𝐽/𝐼CW
th . The estimation224

remains nevertheless reasonable for longer pulse lengths.225

Analytic evaluation of the pulsed efficiency is also compared with results obtained from226

numerical simulations in Fig. 4. The largest discrepancy is observed at short pulse durations227

where the assumption of a characteristic timescale longer than 𝜏, used to derive the analytic228

formulas, is not valid. The agreement remains nevertheless quite good despite the pulse profiles229

shown in Fig. 5(a) where steady-state is far from being reached during the pulse duration. On230

the other hand, as expected, an excellent agreement is obtained in Fig. 4 for pulses lengths231

corresponding to Fig. 5(b) and (c) where transient modulations only occurs during a relatively232

short duration.233

For a given pump fluence, the optimum of efficiency results from a balance between the234

minimization of the energy lost during the build up phase during which the optimal peak power235

is 4 times the CW threshold and the maximization of the steady-state conversion efficiency236

which requires the highest possible peak power. For the pump fluences considered in Fig. 4, the237

corresponding optimal pump peak power is respectively 4.07, 4.71 and 6.37 × 𝐼CW
th .238

Fig. 6 presents the BWOPO efficiency as a function of the pump peak intensity for various239

pulse durations. This illustrates the effect of the build-up time on the oscillation threshold and240

efficiency. It can also be noticed that the BWOPO operation is expected to be close to the CW241

limit for pulse durations longer than typically 100 𝜏, which corresponds to a few nanoseconds for242

typical crystal parameters.243

The impact of the quantum noise fluctuations on the pulsed conversion efficiency stability can244
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Fig. 6. BWOPO conversion efficiency as a function of the pump peak intensity for
a square pulse profile and several durations (solid lines: calculation with (45) with
𝑔Log = 18; dashed lines: approximated expression (46); symbol: numerical simulation).
For a typical nonlinear crystal with 𝐿 = 7 mm and 𝑛𝑔 = 1.9 (i.e., 𝜏 ≃ 44.3 ps), the
considered durations are respectively 0.22, 0.44, 2.21 and 4.43 ns.

be evaluated by differentiation of (45) with respect to 𝐼noise. After some algebra, one can write245

d𝜂pulse

𝜂pulse
=

d𝐼noise
𝐼noise

1(
𝜋𝜏𝑝/𝜏 + 𝑔Log

) (√︃
𝐼

peak
𝑝 /𝐼peak

th − 1
) , (47)

where (37) and (40) were used for the derivation of the latter expression. As expected, a higher246

output fluence instability is awaited close to the oscillation threshold. In addition, the shorter is247

the pulse duration, the higher is the anticipated fluctuation magnitude. This feature is related248

to the higher relative impact of the buildup time fluctuation on the pulsed efficiency for shorter249

pulses. For a given pumping ratio and with 𝜏 = 44.3 ps, it is thus expected to reduce the250

fluctuation by typically an order of magnitude by increasing the pulse duration from 200 ps to251

5 ns. This trend is confirmed by numerical simulation carried out with a random initial noise for252

various pulse durations (not shown here). A similar analysis could straightforwardly be carried253

out to evaluate the influence of pump intensity or pulse duration fluctuations.254



2.3.2. Gaussian pulse profile255

To derive the pulsed threshold formula, we chose the same convention as Brosnan and Byer [12]256

to define the Gaussian pulse profile:257

𝐼𝑝 (𝑡) = 𝐼peak
𝑝 exp

(
−2𝑡2/𝜏2

𝑝

)
. (48)

Also similarly to Brosnan and Byer, we introduce an equivalent square pulse profile whose258

duration 𝜏𝑝 corresponds to the time during which the instantaneous power is higher than the CW259

threshold power, i.e. 𝐼𝑝 (𝑡) > 𝐼CW
th . One obtains:260

𝜏𝑝 = 𝜏𝑝

√︂
2 ln

(
𝐼

peak
𝑝 /𝐼CW

th

)
. (49)

For the peak power 𝐼peak
𝑝 of the equivalent square pulse, it is defined such as the overall gain261

experienced by the forward and backward waves is similar to one provided by the Gaussian pulse262

when 𝐼𝑝 (𝑡) > 𝐼CW
th . From (33), this yields to the following relation263

𝜏𝑝

√︃
𝐼

peak
𝑝 =

√︃
𝐼

peak
𝑝

𝜏𝑝/2∫
−𝜏𝑝/2

exp
(
−𝑡2/𝜏2

𝑝

)
d𝑡, (50)

where 𝜏𝑝 is given by (49). One thus obtains264

𝐼
peak
𝑝 = 𝐼

peak
𝑝

𝜋

4

{
erf

[
𝜏𝑝/

(
2𝜏𝑝

) ]
𝜏𝑝/

(
2𝜏𝑝

) }2

, (51)

with265

erf (𝜏) = 2
√
𝜋

𝜏∫
0

exp
(
−𝑡2

)
d𝑡. (52)

The equivalent-square-pulse intensity at the pulsed oscillation threshold 𝐼peak
th has to satisfy266

(40) and the corresponding threshold peak intensity of the Gaussian pulse 𝐼peak
th is related to267

𝐼
peak
th through (51). For a given pulse duration 𝜏𝑝 , it is thus possible to numerically evaluate the268

threshold peak intensity of the Gaussian pulse by solving the closed system provided by (40),269

(49), and (51). The corresponding threshold fluence of the Gaussian pulse is then given by270

𝐽th =

√︂
𝜋

2
𝐼

peak
th 𝜏𝑝 . (53)

The threshold fluence from (53) is plotted in Fig. 7 as a function of the Gaussian pulse duration.271

The minimal fluence is obtained for a duration of typically 3𝜏, a fluence of 25𝜏𝐼CW
th , and a272

corresponding peak power 𝐼peak
th = 6.6 𝐼CW

th .273

However, the latter evaluation of the threshold fluence requires to numerically solve several274

equations and a more straightforward way to estimate the threshold peak intensity and fluence275

for the Gaussian pulse would be more convenient for practical use. For this purpose, as in276

Brosnan–Byer’s analysis, we assume that 𝜏𝑝 = 2𝜏𝑝 , which enables to derive a simple expression277

of the threshold peak intensity:278

𝐼
peak
th

(
𝜏𝑝 = 2𝜏𝑝

)
=

4
𝜋 erf2 (1)

(
1 + 𝜏

2𝜋𝜏𝑝
𝑔Log

)2
𝐼CW
th . (54)
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Fig. 7. Threshold fluence of BWOPO as a function of pulse duration for a Gaussian
pulse profile. The pump intensity is normalized to the CW threshold intensity (solid
blue line: numerical solution of (40), (49), and (50) with 𝑔Log = 18; dashed red line:
analytic formula (55) for short pulses; dashed green line: analytic formula (57) for long
pulses; symbols: numerical simulation). The left axis provides the build-up time, 𝜏bu,
normalized to the light propagation time, 𝜏, through the nonlinear medium while the
right axis gives the corresponding values for a typical nonlinear crystal with 𝐿 = 7 mm
and 𝑛𝑔 = 1.9 (i.e., 𝜏 ≃ 44.3 ps).

We can then use (53) to determine the corresponding threshold fluence279

𝐽th
(
𝜏𝑝 = 2𝜏𝑝

)
= 2.25 𝜏𝑝

(
1 +

𝑔Log 𝑛𝑔 𝐿

2𝜋 𝜏𝑝 𝑐

)2
𝐼CW
th , (55)

with 𝜏 = 𝑛𝑔𝐿/𝑐 and where we use the numerical evaluation of the factor 2
√

2/
[√
𝜋 erf2 (1)

]
=280

2.25. One could notice that the Gaussian pulse threshold fluence provided by (55) is actually281

close to threshold fluence for a square pulse profile (41): 𝐽th
(
𝜏𝑝 = 2𝜏𝑝

)
= 1.125 𝐽 th. Moreover,282

as seen in Fig. 7, the accuracy of (54) and (55) is the highest close to the pulse duration leading283

to the minimal threshold fluence; i.e., 𝜏𝑝,opt = 𝜏 𝑔Log/(2𝜋)284

For longer pump pulses, a better accuracy is obtained assuming 𝜏𝑝 = 𝜏𝑝 . The corresponding285

approximated expressions are then:286

𝐼
peak
th

(
𝜏𝑝 = 𝜏𝑝

)
=

1
𝜋 erf2 (1/2)

(
1 + 𝜏

𝜋𝜏𝑝
𝑔Log

)2
𝐼CW
th , (56)

and287

𝐽th
(
𝜏𝑝 = 𝜏𝑝

)
= 1.47 𝜏𝑝

(
1 +

𝑔Log 𝑛𝑔 𝐿

𝜋 𝜏𝑝 𝑐

)2
𝐼CW
th , (57)

where we use the numerical evaluation of the factor 1/
[√

2𝜋 erf2 (1/2)
]
= 1.47.288

Threshold fluences determined by numerical simulation are also shown in Fig. 7. A very good289

agreement with approximate expression (57) is obtained for pulse durations longer than typically290

30𝜏. For pulse shorter than 10𝜏 it is more accurate to use approximate expression (55) with a291

relative difference of typically 20 % down to duration shorter than 𝜏 where the assumptions made292

to derive expressions (53) and (55) are too invalid. For such short pulse durations the threshold293

fluence determined by numerical simulation grows more slowly than the one provided by the294



expressions when the duration shortens. The discrepancy remains nonetheless still reasonable295

(less than a factor 2).296

To further assess the relevance of our model, we compare experimental values of the peak297

intensity at threshold, reported in the literature for two different pulse durations (47 ps and 13 ns),298

with 𝐼peak
th , determined by solving the closed system provided by (40), (49), and (51), and its299

approximations 𝐼peak
th

(
𝜏𝑝 = 2𝜏𝑝

)
and 𝐼peak

th
(
𝜏𝑝 = 𝜏𝑝

)
, respectively given by expressions (54) and300

(56). As shown in Table 1, a good agreement (better than 5 %) between experimental values301

and 𝐼peak
th is obtained for both pulse durations assuming 𝑑eff = 8 pm/V and with 𝑔Log = 18. As302

expected, 𝐼peak
th

(
𝜏𝑝 = 2𝜏𝑝

)
is more accurate than 𝐼peak

th
(
𝜏𝑝 = 𝜏𝑝

)
for the shortest pulse duration303

and conversely for the longest pulse duration. The threshold expressions provided by our model304

might thus be useful for the practical design of BWOPOs.

Table 1. Measured threshold peak intensities of pulsed BWOPO reported in the
literature and corresponding theoretical values determined with the expressions
derived in this work. 𝑑eff = 8 pm/V is assumed for the calculation of 𝐼CW

th .

Experiment

𝐿𝑐 5 mm 7 mm

𝜏𝑝 47 ps 13 ns

𝐼
peak
th,experiment 1.6 GW/cm2 83 MW/cm2

Reference [2] [11]

Theory

𝐼CW
th 101 MW/cm2 71.5 MW/cm2

𝐼
peak
th 1.52 GW/cm2 80.4 MW/cm2

𝐼
peak
th

(
𝜏𝑝 = 2𝜏𝑝

)
1.56 GW/cm2 130.6 MW/cm2

𝐼
peak
th

(
𝜏𝑝 = 𝜏𝑝

)
2.81 GW/cm2 87.3 MW/cm2

305

3. Linewidth306

3.1. Phase-matching acceptance bandwidth307

As shown by Canalias and Pasiskevicius [2], the BWOPO exhibits peculiar spectral properties308

with the generation of a very narrow backward radiation while the spectral content of the pump is309

transferred to the forward wave. For a narrow, Fourier-transform limited pump it is thus expected310

that both the backward and the forward waves have a narrow spectral linewidth.311

Assuming that quasi-phase matching is satisfied for angular frequencies 𝜔𝑝 , 𝜔𝑏, and 𝜔 𝑓 with312

𝜔𝑝 = 𝜔𝑏 + 𝜔 𝑓 , the magnitude of the phase mismatch, Δ𝑘 (Δ𝜔), for frequencies 𝜔′
𝑏
= 𝜔𝑏 + Δ𝜔313

and 𝜔′
𝑓
= 𝜔 𝑓 − Δ𝜔 is given by314

Δ𝑘 (Δ𝜔) = 𝑘 (𝜔𝑏 + Δ𝜔) − 𝑘 (𝜔𝑏) − 𝑘
(
𝜔 𝑓 − Δ𝜔

)
+ 𝑘

(
𝜔 𝑓

)
(58)

A first order Taylor expansion yields315

Δ𝑘 (Δ𝜔) =
(

1
𝑣𝑔𝑏

+ 1
𝑣𝑔 𝑓

)
Δ𝜔, (59)



The difference-frequency generation (DFG) bandwidth for backward interaction, defined by316

the condition Δ𝑘𝐿/2 = 𝜋, thus reads in terms of frequency, 𝜈 = 𝜔/(2𝜋), rather than angular317

frequency318

Δ𝜈BWDFG =
𝑐

2𝑛𝑔𝐿
, (60)

where 𝑛𝑔 is the average group index, 𝑛𝑔 =
(
𝑛𝑔𝑏 + 𝑛𝑔 𝑓

)
/2.319

One can compare the latter expression with the same definition of the DFG acceptance320

bandwidth for forward interaction:321

Δ𝜈FWDFG =
𝑐

Δ𝑛𝑔𝐿
, (61)

where Δ𝑛𝑔 is the group index difference between signal and idler, Δ𝑛𝑔 =
��𝑛𝑔𝑠 − 𝑛𝑔𝑖 ��.322

For similar crystal lengths, the ratio of the two bandwidth is thus given by323

Δ𝜈FWDFG
Δ𝜈BWDFG

=
2𝑛𝑔
Δ𝑛𝑔

. (62)

In terms of DFG acceptance bandwidth, backward interaction is thus equivalent to forward324

interaction in a nonlinear medium with a “giant” group index difference equal to 2𝑛𝑔. If one325

consider typical values 𝑛𝑔 = 1.9 and Δ𝑛𝑔 = 0.02 [4], the acceptance bandwidth for backward326

interaction is thus more than a hundred times narrower than for forward interaction, as pointed out327

in early backward DFG experiments [21]. This narrow acceptance bandwidth is very promising328

to generate Fourier-transform-limited pulses (at both 𝜔𝑏 and 𝜔 𝑓 ) from a backward OPO without329

any additional spectral filtering, provided that the pump spectrum is also narrow.330

3.2. Optical parametric amplifier bandwidth331

To derive the OPA gain spectrum, we solve the coupled-wave equations in CW regime under the
undepleted pump approximation where we now consider imperfect phase-matching:

d𝐴𝑏

d𝑧
= −𝑖𝜅𝐴𝑝0𝐴

∗
𝑓 exp (𝑖Δ𝑘𝑧), (63a)

d𝐴 𝑓

d𝑧
= 𝑖𝜅𝐴𝑝0𝐴

∗
𝑏 exp (𝑖Δ𝑘𝑧), (63b)

where 𝐴𝑝 (𝑧) = 𝐴𝑝 (0) = 𝐴𝑝0 and Δ𝑘 = 𝑘 𝑝 − 𝑘 𝑓 + 𝑘𝑏 − 𝐾𝐺 . We assume that there is no input
for the backward wave, i.e. 𝐴𝑏 (𝐿) = 0, and that there is an input for the forward wave. After
solving the system (63) under these assumptions, one obtains the expression of the output forward
amplitude

𝐴 𝑓 (𝐿) = 𝐴 𝑓 (0)
(
4𝜅2 ��𝐴𝑝0

��2 + Δ𝑘2
)1/2

𝑒𝑖 Δ𝑘 𝐿/2
/{(

4𝜅2 ��𝐴𝑝0
��2 + Δ𝑘2

)1/2

× cos
[(

4𝜅2 ��𝐴𝑝0
��2 + Δ𝑘2

)1/2
𝐿/2

]
+ 𝑖 Δ𝑘 sin

[(
4𝜅2 ��𝐴𝑝0

��2 + Δ𝑘2
)1/2

𝐿/2
]}

(64)

The gain for the forward intensity,
��𝐴 𝑓 (𝐿)

��2 /��𝐴 𝑓 (0)
��2 = 1 + 𝐺BWOPA, can be determined to be332

𝐺BWOPA =

sin2
[
(𝜋/2)

(
𝐼𝑝/𝐼CW

th + Δ𝑘2𝐿2/𝜋2
)1/2

]
𝐼𝑝/𝐼CW

th

cos2
[
(𝜋/2)

(
𝐼𝑝/𝐼CW

th + Δ𝑘2𝐿2/𝜋2
)1/2

]
𝐼𝑝/𝐼CW

th + Δ𝑘2𝐿2/𝜋2
, (65)



where the incident pump intensity 𝐼𝑝 is normalized by the BWOPO threshold (19). For Δ𝑘 = 0,333

one can notice that 𝐺BWOPA tends to infinity when 𝐼𝑝 → 𝐼CW
th , which is consistent with the onset334

of the parametric oscillation. On the other hand, as soon as Δ𝑘 ≠ 0, there is no value of the pump335

intensity that makes the denominator in (65) equal to zero and it is thus not possible to reach336

oscillation since337

𝐺BWOPA ≤ 𝜋2

Δ𝑘2𝐿2
𝐼𝑝

𝐼CW
th

. (66)

This feature is a very particular characteristic of the BWOPO that differs from the conventional338

forward OPO where the small-signal gain can be larger than the cavity loss for phase-mismatched339

interactions if the pump intensity is high enough.340

When 𝐼𝑝 approaches 𝐼CW
th and for a small phase mismatch, (65) can be approximated by the341

following expression:342

𝐺BWOPA ≃ 4

𝜋2
(
1 −

√︃
𝐼𝑝/𝐼CW

th

)2
+ 4Δ𝑘2𝐿2/𝜋2

. (67)

It is then straightforward to derive the phase-mismatch acceptance, Δ𝑘BWOPA, at half maximum343

of the BWOPA gain given by (67), which reads344

Δ𝑘BWOPA =
𝜋2

2𝐿

(
1 −

√︃
𝐼𝑝/𝐼CW

th

)
. (68)

The accuracy of above approximation is better than 10% for 𝐼𝑝 > 0.35𝐼CW
th , compared to the345

bandwidth derived by numerical calculation with (65).346

As for threshold and efficiency, we can compare the backward OPA bandwidth with its forward
interaction analog. For this purpose, we consider the sub-threshold SROPO or cavity-enhanced
forward OPA (CE-FWOPA) with an equivalent mirror reflectivity 𝑅SROPO given by (31) leading
to the same CW oscillation threshold as the BWOPO. The corresponding CE-FWOPA gain reads
(see Appendix):

𝐺CE−FWOPA = sinh2
( 𝜋

2

)
× sinh2


𝜋

2

(
𝐼𝑝

𝐼CW
th

− Δ𝑘2𝐿2

𝜋2

)1/2
𝐼𝑝

𝐼CW
th

/©­«cosh2
( 𝜋

2

) (
𝐼𝑝

𝐼CW
th

− Δ𝑘2𝐿2

𝜋2

)1/2

−
cosh2


𝜋

2

(
𝐼𝑝

𝐼CW
th

− Δ𝑘2𝐿2

𝜋2

)1/2
𝐼𝑝

𝐼CW
th

− Δ𝑘2𝐿2

𝜋2


2ª®®¬

2

. (69)

In same way as for the BWOPA gain, one can derive an approximate expansion of (69) for 𝐼𝑝347

close to 𝐼CW
th and for small phase mismatch:348

𝐺CE−FWOPA ≃ 4 sinh2 (𝜋/2){
𝜋

(
1 −

√︃
𝐼𝑝/𝐼CW

th

)
+ [𝜋/2 − tanh (𝜋/2)] Δ𝑘2𝐿2/𝜋2

}2 . (70)

The corresponding phase-mismatch acceptance at half maximum of 𝐺CE−FWOPA is given by349

Δ𝑘CE−FWOPA =
𝜋

𝐿


2
(√

2 − 1
)

1 − (2/𝜋) tanh (𝜋/2)


1/2 (

1 −
√︃
𝐼𝑝/𝐼CW

th

)1/2
. (71)



To have an accuracy better than 10% compared to numerical calculation with (69) the pump350

intensity must satisfy: 𝐼𝑝 > 0.7𝐼CW
th .351

Including the group index scaling factor provided by (62), the ratio of the two OPA bandwidths352

(71) and (68), expressed in terms of frequency bandwidth is given by353

Δ𝜈CE-FWOPA
Δ𝜈BWOPA

= 0.9 ×
2𝑛𝑔/Δ𝑛𝑔(

1 −
√︃
𝐼𝑝/𝐼CW

th

)1/2 , (72)

where the leading factor is numerically evaluated for the sake of readability. The analysis of (72)354

thus reveals that the BWOPA bandwidth narrows faster than the one of the CE-FWOPA when355

the pump intensity approaches the OPO threshold, i.e. the ratio of the two bandwidths tends to356

infinity. This means that the very large reduction of the bandwidth that already occurs at low357

gain is further increased when the pump intensity approaches the oscillation threshold. Fig. 8358

illustrates these singular spectral properties for 𝐼𝑝 = 0.95𝐼CW
th where one can notice that the gain359

for the CE-FWOPA is basically flat over the full bandwidth of the BWOPA. These features are360

confirmed in the following for pulsed parametric oscillation.361

3.3. Pulsed OPO bandwidth362

To extend our investigation of the spectral bandwidth to the case of pulsed OPOs, we carry out363

FDTD numerical simulations for both the BWOPO and the conventional SROPO under the plane364

wave approximation; i.e., we numerically solve system (1a)–(1c) for the BWOPO and system365

(A1a)–(A1c) for the SROPO. The considered simulation parameters are detailed in Table 2. In366

both case quasi-phase matching is assumed at the carrier frequencies. In the case of the BWOPO,367

comparable results are obtained with identical group velocities for the three waves, which confirm368

the relevance of the assumption made for the analytic analysis, i.e. 2𝑛𝑔 ≫ Δ𝑛𝑔.369

For the conventional forward SROPO, since we consider Δ𝑛𝑔 = 0.02, we have Δ𝜈FWDFG =370

2.1 THz for a crystal length 𝐿 = 7 mm. We still consider a SROPO with an equivalent cavity371

reflectivity given by (31) to have the same CW threshold. We also assume the shortest possible372

cavity length for the SROPO with mirrors directly on the nonlinear medium ends, i.e. at 𝑧 = 0373

and 𝑧 = 𝐿.374

In both cases, we consider a broadband noise (Δ𝜈noise = 40 THz) characterized by a random375
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electric field with a mean value of zero and an equivalent intensity of half a photon per time unit376

and surface unit.377

Table 2. Parameters used for the numerical simulation of the backward OPO and
forward singly resonant OPO.

Parameter BWOPO SROPO

𝑛𝑔 𝑓 , 𝑛𝑔𝑠 1.88

𝑛𝑔𝑏, 𝑛𝑔𝑖 1.90

𝑛𝑔𝑝 1.92

𝐿 7 mm

𝑅 n.a. 0.16

𝐼CW
th 75 MW/cm2

Pulse shape Gaussian

𝜏𝑝 (FWHM) 5 ns

𝐼
peak
𝑝 /𝐼CW

th 3

As shown in Fig. 9, the pulses emitted by the BWOPO exhibit smooth temporal profiles with378

the emission of a narrow Fourier-transform limited spectum for the forward wave. The spectrum379

of the backward wave is similarly narrow. To investigate the stability of the output fluence and380

spectrum, the simulation is carried out 50 times with the same parameters (only the initial random381

noise changes from pulse to pulse). This leads to relative fluctuation of 0.4 % (standard deviation)382

of the conversion efficiency of the BWOPO without any observable variations of the forward and383

backward central wavelength and spectral linewidth. Whatever the spectral distribution of the384

initial noise, only the forward and backward wavelengths at perfect phase matching oscillate. The385

only observable variations concern the value of the peak spectral intensity. In the time domain,386

this is reflected in variations of the pulse build-up time.387

On the other hand, as seen in Fig. 10, the SROPO delivers pulses with strong temporal388

modulations, whose features are consistent with bandwidth and group-velocity effects previously389

reported in the literature [22]. These modulations display a periodic pattern with a period390

corresponding to cavity round-trip time. The resulting signal spectrum is thus multimode with a391

bandwidth of about 800 GHz. As expected, the build-up time of the SROPO is longer that the392

one of the BWOPO.393

The statistics over 50 pulses shows relative fluctuations of a 0.3 % (standard deviation) of394

the conversion efficiency, which is comparable to the BWOPO. The most striking difference395

compared to the BWOPO actually concerns the pulse to pulse variations of the spectrum. Indeed,396

as expected for a SROPO [18], we observe large variations of the power partition between the397

emitted modes, which are related to the spectral distribution of the initial noise.398

This study confirms the very different spectral properties of the BWOPO and the SROPO.399

While the pump pulse features are the same for the two OPOs and the nonlinear parameters are400

identical, the BWOPO naturally emits a Fourier-transform-limited spectrum while the SROPO401

delivers a broadband multimode spectrum. To obtain a Fourier-transform limited emission from402

the SROPO, one should implement more complex cavity schemes with intracavity spectal filters403

or based on injection seeding of a narrow-linewidth radiation [23]. On the other hand, the404

BWOPO deliver a narrow linewidth without any cavity or additional spectral filter.405

One should nevertheless keep in mind that our approach considers plane waves in an ideal406
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Fig. 9. (a) Temporal profiles of input pump, depleted pump, forward, and backward
pulses of the BWOPO calculated by numerical simulation with parameters in Table 2;
(b) corresponding spectrum of the forward wave.

QPM nonlinear medium with a monochromatic pump. It would be interesting to extend this407

work by analyzing the effects of imperfect QPM period while it is expected that a large or408

non-Fourier-transform-limited pump spectrum would mainly alter the spectrum of the forward409

wave [4–6]. Another useful outlook would be to develop a more elaborate model to take into410

account finite beam effects which might alter the BWOPO spectral and spatial profiles. Dedicated411

experimental studies would also be essential to validate the theoretical results.412
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Fig. 10. (a) Temporal profiles of input pump, depleted pump, signal, and idler pulses
of the SROPO calculated by numerical simulation with parameters in Table 2; (b)
corresponding spectrum of the signal wave.

4. Conclusion413

In this paper we have presented the theoretical investigation of the BWOPO in CW and pulsed414

regime. By exactly taking into account the parametric interaction between the three waves in the415

nonlinear crystal, our approach has enabled to recover steady-state solutions which are consistent416

with the literature. Then, we have developed an approach adapted to the description of the pulsed417

BWOPO oscillation build-up. As the main outcome of this analysis, we have derived an analytic418

expression of the BWOPO build-up time. Owing to this expression, we have been able to derive419

a BWOPO analog of the Brosnan–Byer threshold fluence formula for the conventional SROPO.420

These expressions have then been successfully compared with experimental threshold values421

reported in the literature. We have also derived an approximate expression of the conversion422

efficiency in pulsed regime. These expressions can be useful to design a pulsed BWOPO without423

resorting to extensive numerical simulations. The developed formalism has also been exploited424

to carry out informative comparisons between the BWOPO and the SROPO. In particular, we425

show that a SROPO with a coupler reflectivity of about 16 % has the same CW oscillation as the426

BWOPO based on a similar nonlinear material. This equivalent SROPO has however a build-up427

time that is typically two times longer than the BWOPO.428

We have also study the spectral properties of the BWOPO. A striking result is that the429

BWOPO oscillation threshold can only be reached at perfect quasi-phase matching and that the430

subthreshold gain bandwidth is typical several hundreds times narrower than for forward-wave431

parametric amplification. Numerical simulations of the BWOPO and SROPO pumped by a432

Fourier-transform-limited nanosecond Gaussian pump pulse have confirmed that the spectral433

properties of both OPOs are very different. While the SROPO delivers a broadband multimode434

spectrum, the BWOPO emission is naturally Fourier-transform limited. This unique features is435



very promising to implement differential absorption lidar emitters based on BWOPOs for remote436

gas sensing.437

Appendix A: Build-up time and gain bandwidth of the SROPO438

A.1. Single-pass FWOPA gain439

The coupled nonlinear equations for forward parametric interaction read [23]:

𝜕𝐴𝑖

𝜕𝑧
+ 1
𝑣𝑔𝑖

𝜕𝐴𝑖

𝜕𝑡
= 𝑖𝜅𝐴𝑝𝐴

∗
𝑠 exp (𝑖Δ𝑘𝑧), (A1a)

𝜕𝐴𝑠

𝜕𝑧
+ 1
𝑣𝑔𝑠

𝜕𝐴𝑠

𝜕𝑡
= 𝑖𝜅𝐴𝑝𝐴

∗
𝑖 exp (𝑖Δ𝑘𝑧), (A1b)

𝜕𝐴𝑝

𝜕𝑧
+ 1
𝑣𝑔𝑝

𝜕𝐴𝑝

𝜕𝑡
= 𝑖𝜅𝐴𝑖𝐴𝑠 exp (−𝑖Δ𝑘𝑧), (A1c)

Considering monochromatic continuous waves and assuming that the pump wave is not depleted,
i.e. 𝐴𝑝 (𝑧) = 𝐴𝑝0, the latter coupled equations reduce to

d𝐴𝑖
d𝑧

= 𝑖𝜅𝐴𝑝0𝐴
∗
𝑠 exp (𝑖Δ𝑘𝑧), (A2a)

d𝐴𝑠

d𝑧
= 𝑖𝜅𝐴𝑝0𝐴

∗
𝑖 exp (𝑖Δ𝑘𝑧). (A2b)

When there is no input for the idler wave, i.e. 𝐴𝑖 (0) = 0, the gain for the signal intensity after440

a single pass in the FWOPA, |𝐴𝑠 (𝐿) |2 /|𝐴𝑠 (0) |2 = 1 + 𝐺FWOPA, can be determined by solving441

(A2a) and (A2b) to be442

𝐺FWOPA =
4𝜅2

��𝐴𝑝0
��2

4𝜅2
��𝐴𝑝0

��2 − Δ𝑘2
sinh2

[(
4𝜅2 ��𝐴𝑝0

��2 − Δ𝑘2
)1/2

𝐿/2
]
, (A3)

A.2. SROPO build-up time443

Let us consider a SROPO characterized by a cavity round-trip time, 𝜏cav, and a coupler reflectivity,444

𝑅, while the other cavity loss are negligible. Considering that the pump is not depleted during the445

oscillation build-up time, the intracavity signal intensity temporal evolution can approximated by446

𝐼𝑠 (𝑡) = 𝐼𝑠 (0)
[
𝑅 cosh2 (

𝜅
��𝐴𝑝0

�� 𝐿) ] 𝑡/𝜏cav
, (A4)

where perfect phase matching was assumed in (A3). The above expression can be rewritten447

𝐼𝑠 (𝑡) = 𝐼𝑠 (0) exp (𝑡/𝜏SROPO), (A5)

with448

𝜏SROPO =
𝜏cav

ln (𝑅) + 2 ln
{
cosh

[
cosh−1

(
1/
√
𝑅

)
𝑢𝑝0/𝑢CW

th,SROPO

]} (A6)

and449

𝑢CW
th,SROPO =

1
𝜅𝐿

cosh−1
(

1
√
𝑅

)
(A7)



A.3. Cavity-enhanced FWOPA gain spectrum450

We now consider the CE-FWOPA (or sub-threshold SROPO). Assuming that the signal frequency451

is a cavity eigenfrequency, the gain of the CE-FWOPA can be written452

𝐺CE−FWOPA =
(1 − 𝑅)𝐺FWOPA[

1 −
√︁
𝑅 (1 + 𝐺FWOPA)

]2 . (A8)

such as the signal intensity incident on the cavity, 𝐼 in
𝑠 , is related to the output signal intensity, 𝐼out

𝑠 ,
by 𝐼out

𝑠 /𝐼 in
𝑠 = 1 + 𝐺CE−FWOPA. Inserting (A3) in (A8), one obtains the following expression:

𝐺CE−FWOPA = (1 − 𝑅) 4𝜅2 ��𝐴𝑝0
��2

× sinh2
[(

4𝜅2 ��𝐴𝑝0
��2 − Δ𝑘2

)1/2
𝐿/2

]/ [ (
4𝜅2 ��𝐴𝑝0

��2 − Δ𝑘2
)1/2

−
√
𝑅

{
4𝜅2 ��𝐴𝑝0

��2 cosh2
[(

4𝜅2 ��𝐴𝑝0
��2 − Δ𝑘2

)1/2
𝐿/2

]
− Δ𝑘2

}1/2
]2

. (A9)
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