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Université de Toulon,
CNRS,
LIS,
Campus de Saint Jérôme,
Marseille, France
Email: patrice.bellot@univ-amu.fr

Abstract: The continued increase in the use of smartphones and other
mobile devices has led to a substantial increase in the demand for mobile
applications. With the growing availability of mobile apps, retrieving the
right application from a large set has become difficult. However, the existing
term-based search engines tend to retrieve relevant apps based on query
terms rather than considering app features really required by users, such
as functionalities, technical or user-interface characteristics. The novelty of
this paper lies in extracting app features from app description and social
users’ reviews, extracting user-requested features and matching between
them to get the feature-based score. In addition, we propose effective
techniques that extract and weight features requested in the query. Finally,
we combine Feature-based and term-based scores together to obtain the app
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relevance score. The experimental results indicate that the proposed approach
is effective and outperforms the state-of-the-art retrieval models for app
retrieval.
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natural language processing; NLP; feature-based score; term-based score.
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1 Introduction

The use of smartphones and other mobile devices is on the rise. This has led to increase
the demand for mobile applications (apps); there were about 28.7 billion downloads
in the second quarter of 2019 combined Global Apple App Store and Google Play
Store (Statista, 2020c). On the other side, the number of apps available for download
in Google Play Store was about 2.9 million (December 2019) (Statista, 2020b) and was
about 2.2 million in Apple App Store (Statista, 2020a) (January 2017). Therefore, an
efficient app search system is essential.
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The mobile app platforms allow the app’s developers to upload their app and make
a detailed description to explain the functionalities and features that the app has. They
also allow online users to rate apps out of five stars. Online users can also evaluate apps
in the form of reviews; they can write about features provided by these apps or point
out the difficulties and problems related to use or installation. This important amount of
information has drawn the interest of researchers toward mobile applications.

Mobile applications have drawn attention of researchers in information processing
fields in order to analyse the description (information provided by developers) and user
reviews (social information provided by online users) to extract useful information like
features of applications. Kang et al. (1990) defines the feature as the prominent or
distinctive visible characteristic or quality of a product. Following Guzman and Maalej
(2014), and after looking at app description and reviews, we noticed that app features
can be any description of specific app functionality visible to the user (e.g., ‘play music’,
‘send message’), a specific characteristic related to the user interface (e.g., ‘large font’),
a general quality of the app (e.g., ‘real-time’), as well as specific technical characteristics
(e.g., ‘GPS tracker’).

The information extracted from description and reviews can be used to help users
to find out the features and advantages of applications or help app developers to update
their applications based on the opinion of users with regard to some features. Among
these works, the work of Fu et al. (2013) proposes a system that can analyse user
ratings and comments in mobile app in order to identify reasons why users like or
dislike a given app. At first, the authors applied a linear regression to model the
relationship between review text and rating, then latent Dirichlet allocation (LDA) (Blei
et al., 2003) was used to discover topics that correspond to the root causes of people’s
concerns toward apps. Guzman and Maalej (2014) used natural language processing
(NLP) techniques to identify fine-grained app features in the reviews. Then they extract
the user sentiments about the identified features and give them a general score across
all reviews. Mobile app review analyser (MARA) (Iacob and Harrison, 2013) is an
automatic retrieval of mobile application features requested by users in their comments.
A set of language rules has been defined to facilitate the identification of sentences
referring to such requests. Vu et al. (2015) proposed a keyword-based framework
(MARK) for semi-automated review analysis. MARK allows an analyst describing his
interests in one or several mobile apps by a set of keywords. As a response MARK
returns the most relevant reviews to each given keyword. Most recently, Li et al.
(2017) adopted NLP methods to identify comparative reviews of similar apps to be used
to provide fine-grained app comparisons based on different aspects like performance,
stability and usability.

Some research works have paid attention to mobile app retrieval (Jiang et al., 2013;
Park et al., 2015; Krishna et al., 2019). We will give more details of these works
in Section 3. Their main objective is to retrieve apps that best match a query user
using description and reviews as a representation of apps. They rely on term-based
search engine that apply term matching technique to retrieve relevant apps based on the
keywords issued by user. However, they lack the consideration of app features which
are really required by users. To the best of our knowledge, no research has extracted
features from reviews and description and used them in a retrieval system.

Actually, when a user looks for a particular app, she certainly has in her mind, a list
of features that this app must provide. To seek this app in a search engine, she expresses
her needs through a set of keywords. For instance, the owner of the query ‘simple
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notepad large font’ requests apps that provide the two features ‘simple notepad’ and
‘large font’. Hence, the retrieval system must return a list of applications that provide
these two features. Thus, we are interested to develop a Feature-based app retrieval
system that finds applications that provide features requested by user in her query. Our
work is the first to consider the app features requested by users, in their queries, in a
search system for mobile apps. To achieve this goal, we propose to extract app features
from description and reviews, extract features requested by user from her query and
develop a retrieval model that matches between query and apps. The main covered
research questions are:

• How can we extract app features from the description and the user reviews?

• How can we automatically formulate the user query from a list of keywords to a
list of requested features?

• Can the combination of feature-based and term-based models improves the
retrieval performance?

The rest of this paper is organised as follows: in Section 2, we present some related
works, Sections 3 and 4 devoted respectively to app retrieval and feature extraction. In
Section 5 we present our proposed approach, by respectively describing the intuition
behind it and explaining terms and features indexing and app retrieving. Section 6 is
dedicated to the experimental results and Section 7 provides a brief conclusion and
future works.

2 Related works

In this section, we give a brief literature survey of works in the domain of social
information retrieval, feature-based recommendation and entity ranking that are very
closely related to our work.

Social information retrieval systems (Bouadjenek et al., 2016) are related to our
approach since they exploit social information generated by users in online platforms,
and we leverage social users’ reviews to help users find apps. Several social information
like tags, reviews and annotations are used to enhance the retrieval process and
improove the ranking results. Zhang et al. (2009) and Chen and Zhang (2009) proposed
to add social information to the content of document and reported that adding such
information enhances the search quality. Social book search (SBS) (Kumar and Pamula,
2018) is another research domain in which books are represented by a controlled
meatadata (isbn, title, publishers, etc.) and enriched with social data (tags from
LibraryThing and user reviews from Amazon). The objective of SBS is to help users to
search and find relevant books to their requests by exploiting social metadata.

Feature-based recommender systems (Xu et al., 2018; Raja and Pushpa, 2019)
that use app features for recommendation are also closely related to our work. These
works extract features from apps that the target users have previously installed.
Afterwards, the extracted features are used to match features of new applications and
generating recommendations. Xu et al. (2018) propose a functionality-based mobile app
recommendation architecture. App functional aspects are extracted by applying the part
of speech (PoS) tagging method. The approach predicts new functional aspects for the
target user based on the functional aspects that were used by this user in order to find
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out and recommend the apps that offer those new functionalities. Likewise, DIPMMAR
(Raja and Pushpa, 2019) is another work that employs LDA to determine the latent
user-specific preferences by extracting features from reviews on installed applications.
It also extracts the features for each application and then explores both the user’s
preferences and application features to provide the top-K recommendation through a
context-aware ranking method. These works are different from our approach because
they do not need any query given by the user, whereas in our our work, the user must
explicitly expresses her needs through a list of keywords.

Since our aim is to retrieve and rank apps which might be considered as entities
to be ranked based on their features, entity ranking approaches (De Vries et al., 2007;
Balog et al., 2011; Tonon et al., 2012) are also considered as related works as they find
and rank entities such as people, organisations, locations and products with respect to a
given query. The most related work is Ganesan and Zhai (2012), in which they proposed
a different way of leveraging opinionated content, in order to rank interesting entities
based on how well the opinions on these entities match a user’s preferences on various
aspects of an entity. This work differs from our work in three ways. First, the entities
that will be ranked have a specific type (cars, hotels, etc.), and therefore they have the
same aspects (features), while in our work, apps are not of the same type, and thus each
app has a specific features that it could share with other apps. Second, queries submitted
to a such system must be structured with user’s preferences on different aspects of the
entity and have limited support for keyword queries. In contrast, this issue does not arise
in our work, since the requested features (user preferences) are automatically extracted
from a list of keywords. Third, they used the opinion about each aspect of the entity
to match user’s preferences, whereas in our work we use only features that apps have
without considering the opinions about them.

3 App retrieval

While the general information retrieval task is to retrieve and rank documents for a
given query, the app retrieval focuses on apps instead of documents. The problem
of apps searching and retrieval is studied for the first time by Jiang et al. (2013)
who provide a semantic-based search and ranking method for apps. They propose app
topic model (ATM) in order to discover the latent semantics from app descriptions. To
evaluate the relevance of an app with respect to a search query, they combined the
textual score of the app (relevance of the app with regard to query terms using the
traditional IR technique TF-IDF), the semantic search employing semantic similarity
between terms and 12 static quality scores from the three perspectives of app popularity,
developer reputation and link prestige. Experiments were carried out using a set of 1,000
search queries and 1,000 apps crawled from Google Play, Appgravity and AppBrain.
Park et al. (2015) is the first work that rigorously studied the app retrieval problem.
For that, the authors build a dataset that contains 43,041 app description enriched by
1,385,607 user reviews from Google Play Store and 56 realistic queries generated by
domain experts based on android forums. Reviews were added to represent applications
because reviews and queries are written by users, so there may be less vocabulary
gap between them. They performed experiments using state-of-the-art information
retrieval models including BM25, query likelihood language model and proposed a
topic model-based approach, AppLDA. The proposed approach used LDA on both
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representations, description and user reviews and identified topics in reviews which were
also mentioned in the app description. AppLDA achieved a significant improvement in
retrieval performance compared to traditional information retrieval models. The same
dataset has been used in Krishna et al. (2019) for mobile app retrieval and categorisation.
Word embeddings (RelEmb) are learned with a neural network architecture using app
description only. The learning of word embeddings is carried out based on the notion
of relevance (for each word, the information contained in the top retrieved documents
are utilised when the same word is used as a query to retrieval engine). Thereafter,
the learned word embedding was used to expand queries by adding the top five terms
closely related to the initial user query. The proposed word embeddings are effective
for query expansion task and eventually improve retrieval effectiveness.

4 Feature extraction

Product features extraction from users reviews, has found wide use in recent years
(Bakar et al., 2016). It can be defined as the process that identifies and extracts the
set of most relevant features of the product that customers have talked about in their
reviews. The objective is to help users to know the characteristics of the product before
starting their purchase or help product manufacturers to improve the quality of their
product. Since NLP methods have shown success in extracting information from text
like named entity recognition (Barua and Niyogi, 2019), most of the works that have
been performed for product features extraction have used NLP techniques for candidate
feature extraction followed by the application of some statistical measures in order
to keep only the relevant and discard the irrelevant ones. For more details, we refer
the reader to Bakar et al. (2016) which surveys recent works in in the field feature
extraction.

One of the most-cited works in this domain is that of Hu and Liu (2004), in which
the authors proposed a mining system that, first conducts POS tagging on the corpus,
then runs the association rule miner to find all the frequent noun terms and noun phrases
as candidate set. Because not all candidates generated by association mining are useful
and in order to improve the precision of the extraction system, two types of pruning
are applied (compactness pruning and redundancy pruning): the first method to check
features that contain at least two words and the second one to remove redundant features
that contain single words. Experimental results show that the proposed approach gives
good results in term of recall (80%) and precision (70%).

Only few works used the mobile app reviews to extract the features requested by
user or extract the existing features of mobile apps. Guzman and Maalej (2014) proposed
an approach that produces a fine-grained list of features mentioned in app reviews. The
Natural Language Toolkit (NLTK) (Bird and Loper, 2004), was used for identifying
and extracting the nouns, verbs, and adjectives from reviews. Afterwards, the features
are extracted by applying a collocation finding algorithm provided by the same toolkit
before filtering the less frequent. Xu et al. (2018) noticed that most app functionalities
are in the form of single nouns, noun phrases (noun + noun), and verb-object phrases
(verb + noun, e.g., get direction). Based on this observation, they used the Stanford
CoreNLP toolkit (Manning et al., 2014) to perform text preprocessing [tokenisation,
POS tagging (select noun, verb and adjective) and lemmatisation]. Finally, they kept
only the single nouns, two-gram nouns, and two-gram verb-object that appear more
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than ten times, and in less than 80% of the apps as function aspects. MARA is a
prototype that has been developed by Iacob and Harrison (2013) in order to mine
app reviews and retrieve the app features requested by users. MARA was designed to
collect all the reviews available for a given app, mine the content of the reviews for
identifying sentences or fragment of sentences that express feature requests, summarise
feature requests, and finally present the results in a user-friendly manner. for feature
request extraction, the authors of MARA defined a set of linguistic rules to allow the
identification of sentences referring to such requests. Then, they apply LDA to identify
topics among the feature request extracted. Similarly, SAFE (Johann et al., 2017) is
an approach that extracts features from users’ reviews and app description based on
linguistic rules. The authors manually build 18 part-of-speech patterns and 5 sentence
patterns that are frequently used in text referring to app features. Thereafter, these
patterns are used to extract features from the app description and reviews.

Liu et al. (2017) proposed an approach to automatically mine domain knowledge
from app descriptions. They have defined a set of rules by analysing and summarising
the relationships between structures of sentences and features and used them to
effectively extract features from app descriptions. Specifically, each sentence from a
description text is transformed into a parsing tree using Stanford Parser, then the features
are extracted from the tree based on the pre-defined rules, and the result is manually
evaluated by domain analysts. In order to experiment and test their approach, they
collected descriptions from 140 app products covering 7 main stream classes in Google
Play, for a total of 2,245 sentences.

To conclude, the existing works on features extraction can be used in retrieval
systems to enhance their performance. However, none of the reported works uses
features to retrieve apps. These gaps will be addressed with our proposed method.

5 The proposed approach

We are interested in helping mobile app users to search and retrieve apps in response
to their queries and satisfy their needs. In real life, when a user looks for an app, she
issues a text query q to a search engine. The keywords of q represent the search intent
of the user in terms of functionalities and features. Then, the search engine retrieves the
relevant apps that satisfy the user intent, ranks them according to their relevance to q
and presents them to the user as a final result to her query. The user usually prefers that
the apps returned by the search engine provide all the features that she requested.

Formally, we have M apps A = {a1, ..., aM}. Each app ai is represented by a
description (di) given by the app developer and user reviews (ri) given by online users.
Given a user query q = {t1, t2, ..., tn}, the purpose of the app retrieval system is to
rank the apps according to their relevance to q, based on the descriptions and reviews
of the apps. Since the users need apps that provide some specific features, our goal in
this work is to extract app features from description and reviews to give a feature-based
representation to apps, extract the features requested by the user in her query and finally
match between query and apps to find relevant apps based on how well their reviews
and description match the user’s preferences. Thus, our work included two steps: terms
and features indexing and app retrieving. Both steps are outlined in Figure 1.
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Figure 1 App indexing and retrieval framework based on terms and features

Notes: The same framework will be applied for both representations
(description and reviews) separately.

5.1 Terms and features indexing

As shown in Figure 1(a), each app will be indexed using two types of indexes: indexing
by terms and indexing by features. In the first indexing type, the terms extracted
from description and reviews are used as a basis of the index process. Thus, we
first extract tokens from app description and reviews by a classical indexing approach
(tokenisation, stop word removal and then stemming). Then, we index the terms with
their frequencies for each app into Desc Term Index and Review Term Index, which are
the two term-based indexes of descriptions and reviews, respectively.

In feature indexing, the features extracted from reviews and description are used as
a basis of the index. To identify and extract features from description and reviews of
applications we followed the same approach as in Guzman and Maalej (2014) study.
They reached 91% precision and 73% recall for the whatsapp app. Averaged over all
apps used in the experiments, the precision was approximately 60% and the recall was
about 50%. The steps of our process are as follows:

• Use POS tags to identify and extract noun, verb and adjective from description
and reviews since they are the most likely to be used in natural language to
describe features.

• Remove stopwords to eliminate terms that are very common in the English
language.

• Use PorterStemmer algorithm to stem the terms in order to give the same root for
terms that are semantically equal but syntactically different.

• Use collocation functionality to extract bigram words (< Noun >< V erb >,
< Noun >< Noun > and < Adjective >< Noun >) that frequently occur
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together within a window size, regardless of whether these terms are adjacent or
not. For example, when we look at the the following three sentences, ‘send the
auto reply message’, ‘send out the automatic message’ and ‘it sends messages’,
despite the fact that the distance between ‘send’ and ‘message’ is different in the
three sentences but ‘send message’ is considered to be a collocation and therefore
considered as a feature. More details on the choice of window size will be
discussed in the experimental section. We consider also that the word ordering is
not important for describing features. For example, we consider that the pairs of
words ‘send message’ and ‘message send’ reflect the same meaning.

This task was applied on descriptions and reviews separately. After the completion
of the features extraction process, the features extracted from reviews are filtered by
taking into consideration only those that appear in at least two reviews, so as to have
a list of features with their frequencies for each app. The obtained result is used to
construct the two indexes, Desc Feat Index and Review Feat Index, respectively, the
index of descriptions based on features and the index of reviews based on features.
Table 1 shows the features and their frequencies extracted from description and reviews
of the application airplay.android, one of the most relevant apps of the query ‘airplay
music stream’. From this table we can see that the frequency of features is higher in the
reviews than in the description. This is the case, because several users can talk about
the same feature in their reviews, whereas the app developer does not repeat the same
feature several times in the description. We also notice that the features extracted from
description and reviews match well with the user requested features (‘AirPlay Music’
and ‘Music Stream’). This observation motivated us to perform a feature-based retrieval
system.

Table 1 Features with their frequencies extracted from description and reviews of the app
‘airplay.android’

Representation Extracted features

Reviews Music Play (13), Google Music (9), Google Play (9), AirPlay Apple (6),
Music Stream (6), Airport Express (5), App Bought (5), Give Star (4),

App Great (4), App Work (4)
Description Free Player (2), AirPlay Android (2), Music Play (2), Google Play (2),

Music Video (2), Google Support (2), AirPlay Video (2), Speaker Wireless (2),
Google Music (2), AirPlay Music (2)

5.2 Apps retrieval framework

The four obtained indexes will be used to retrieve apps based on terms and features
extracted from description and reviews. Figure 1(b) shows an app retrieval framework
used to retrieve apps that best match the query q. The same framework process will be
applied to description and review representations. In order to get the score of apps based
on description, we first apply a classical retrieval model using terms only. Then the
top-ranked retrieved apps are used to weight the features extracted from query which are
used for matching against the apps indexing features. Once term-based and feature-based
scores are obtained, we combine them to get for each app the description score Sd(q, d).
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As for review representation, the same steps are repeated to compute for each app the
review score Sr(q, r). Finally, the description and review scores are combined to get
the final score. Thus, the score of each app a corresponding to a query q is calculated
as follows:

S(q, a) = αS(q, d) + (1− α)S(q, r) (1)

where α is a parameter used to determine the proportions of description score S(q, d)
and review score S(q, r) which are calculated as follow:

S(q, d) = βSt(q, d) + (1− β)Sf (q, d) (2)

S(q, r) = γSt(q, r) + (1− γ)Sf (q, r) (3)

where St(q, d) and St(q, r) are the two term-based scores using, respectively,
description and reviews, and Sf (q, d) and Sf (q, r) are the two feature-based scores
using, respectively, description and reviews. β and γ are two parameters to determine
the proportion of term-based score and feature-based score using description and reviews
respectively.

Table 2 Table of notations

Notation Description

a, t, f, q Application a, term t, feature f , query q

d Application represented by description
r Application represented by reviews
|Dt|, |Df | Description app lengths in terms of, respectively, terms and features
|Rt|, |Rf | Reviews app lengths in terms of, respectively, terms and features
Ctd, Cfd The entire collection using description in terms of, respevtively,

terms and features
Ctr, Cfr The entire collection using reviews in terms of, respectively, terms

an features
pml(t, d), pml(f, d) The maximum likelihood estimate (MLE) of t and f in app

description
pml(t, r), pml(f, r) MLE of t and f respectively in app reviews
pml(t, Ctd), pml(f, Cfd) MLE of t and f respectively in the description collection
pml(t, Ctd), pml(f, Cfd) MLE of t and f respectively in the reviews collection
|Ctd|, |Cfd| Description collection lengths in terms of, respectively, terms and

features
|Ctr|, |Cfr| Reviews collection lengths in terms of respectively, terms an

features
c(t, d), c(f, d) Count of t and f in app description d

c(t, r), c(f, r) Count of t and f in app reviews r

c(t, Ctd), c(f, Cfd) Count of t and f in descriptions collections
c(t, Ctr), c(f, Cfr) Count of t and f in reviews collections
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5.3 Retrieval model

The language model (Ponte and Croft, 1998; Hiemstra and Kraaij, 1998) was used in
several previous works and shown to have a strong performance in ad-hoc retrieval.
We therefore use this model, in this paper, to estimate the scores mentioned above. The
score of a document d with respect to query q is computed as follows:

S(q, d) =
∏
t∈q

p(t | d) (4)

where t is a term (unigram), p(t|d) is the probability of t being in d. After
applying Dirichlet smoothing technique (Zhai and Lafferty, 2004), in order to avoid
zero-frequency problem of the unseen terms in document, the score of document d with
respect to a query q is calculated as follows:

S(q|d) =
∑

t∈q∩d

log

[
1 +

|D|pml(t, d)

µpml(t, C)

]
+ nlog

µ

|D|+ µ
(5)

where n is the number of terms in the query, |D| is the length of the document d,
C is the set of all documents, µ is the Dirichlet smoothing parameter, pml(t, d) =
c(t,d)
|D| and pml(t, C) = c(t,C)

|C| are the maximum likelihood estimate (MLE) of term t in,
respectively, the document and in the collection; where c(t, d) and c(t, C) denote the
count of term t in, respectively, the document d and the collection C respectively, |C|
is the number of terms in the entire collection. Function (5) will be used to calculate
the scores of apps. Table 2 depicts the summary of notations.

5.4 Term-based app scores

We are given a query q = {t1, t2, ..., tn} made of a set of terms and an app a represented
by the terms contained in the description d and the terms contained in user reviews
r. According to equation (5) the two term-based scores of a corresponding to q are
calculated as follows:

St(q, d) =
∑

t∈q∩d

log

[
1 +

|Dt|pml(t, d)

µtdpml(t, Ctd)

]
+ nlog

µtd

|Dt|+ µtd
(6)

St(q, r) =
∑

t∈q∩r

log

[
1 +

|Rt|plm(t, r)

µtrpml(t, Ctr)

]
+ nlog

µtr

|Rt|+ µtr
(7)

where pml(t, d) =
c(t,d)
|Dt| , pml(t, r) =

c(t,r)
|Dr| , pml(t, Ctd) =

c(t,Ctd)
|Ctd| and pml(t, Ctr) =

c(t,Ctr)
|Ctr| . µtd and µtr are the two smoothing parameters used for term-based scores of

description and reviews.
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5.5 Feature-based app scores

Before introducing the function that calculates feature-based scores of apps, we first
explain the extraction of the requested features from the query terms. We mentioned
previously, when a user looks for a particular app, he certainly has a list of features and
functionalities that the app must provide. To seek this app, she issues a query in the
form of terms to a search engine. For instance, the owner of the query ‘simple notepad
large font’ requests apps that provide the two features ‘simple notepad’ and ‘large font’.
The challenge is to extract a list of requested features from a set of term given by a
user so as to bring the most relevant results to the top ranks. To tackle this problem, we
propose three techniques to select the most relevant features from the user query:

5.5.1 All pairs of query terms as requested features

We consider the set of all possible term pairs as the set of requested features. If we
have n terms in the query, we will obtain n(n− 1)/2 requested features. For example,
if the query consists of q = (t1, t2, t3), we obtain the following set Fq = {f1, f2, f3} of
requested features, such as f1 = t1 t2, f2 = t1 t3 and f3 = t2 t3, with the ordering of
terms being unimportant (similarly to the indexing process). The disadvantage of this
technique is that it considers that all query pairs of terms are requested features and
have the same weight (w(fi) = 1), whereas if we take the query ‘simple notepad large
font’ the term pairs like ‘font simple’ or ‘notepad large’ should not be considered as
features requested by the user who made the query.

5.5.2 Features in top-k ranked apps as requested features

Pseudo relevance feedback (Rocchio, 1971; Robertson and Jones, 1976), also known
as blind relevance feedback, is an important technique that can be used to improve
the effectiveness of IR systems. The idea behind this technique is to assume that the
initially returned top-k ranked documents are relevant and therefore their terms are used
to perform a new query. Intuitively, we assume that the top-k ranked apps returned by
the term-based retrieval model, as described in Subsection 5.4, are relevant to the user
query, which makes it very likely that the features provided by these apps match well
with the features requested by the user in his query. Consequently, the query term pairs
that appear for at least one of the top-k ranked apps are considered as requested features
and the others are ignored. We give a weight for each term pair as follows:

w(f) =

{
1, if ∃ ai ∈ top-k, f appear in ai
0, otherwise (8)

where f is the requested feature whose weight we want to calculate and ai is the ith

app in the top-k ranked list represented either by description, or by reviews.

5.5.3 Likelihood ratio to weight requested features

The preceding technique has the disadvantage of being based on the presence of
the query term pairs in the top-k ranked applications, giving them the same weight
w(f) = 1, but ignoring their importance in the description or reviews of application.
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However, some of the features extracted from apps as described in Subsection 5.1 are
observed due to the high frequency of the involved individual terms. This NLP problem
is called occurrence-by-chance (Khan et al., 2012). To avoid this problem and determine
whether the term pair has some real structural importance and can be considered as a
requested feature, we have adopted the ‘likelihood ratio’ approach for hypothesis testing
of independence (Dunning, 1993), which takes into account the description/reviews of
the application that has been considered for calculating the frequency of the term pair
as well as the frequency of the individual terms. The weight of each term pair will be
calculated as follows:

w(f = t1 t2) =
k∑

i=1

LR(f, ai) (9)

where k is the number of top-k ranked apps and LR is the log-likelihood ratio of term
pair f in the app ai and is calculated based on the contingency tables of observed and
expected frequencies, shown in Tables 3 and 4, respectively.

LR(f, a) = 2 ∗
∑
i,j

oij log

(
oij
eij

)
(10)

Table 3 Contingency table of observed frequencies of t2 and t2

t2 Not t2
t1 o11 o12 R1
Not t1 o21 o22 R2

C1 C2 N

Table 4 Contingency table of expected frequencies of t1 and t2

t2 Not t2
t1 e11 = R1C1

N
e12 = R1C2

N
R1

Not t1 e21 = R2C1
N

e22 = R2C2
N

R2
C1 C2 N

Now that we have calculated the weights of each requested feature of the query, we only
need to measure the two feature-based scores of each application using the two indexes
Desc Feat Index and Review Feat Index. We are given a query q = {f1, f2, ..., fn}
made of a set of requested features weighted using the three previous methods and
an app a represented by the features contained in the description d and the features
contained in user reviews r. According to equation (5), the two feature-based scores of
app a corresponding to q are calculated as follows:

Sf (q, d) =
∑

f∈q∩d

log

[
1 +

|Df |pml(f, d)

µfdpml(t, Cfd)

]
+ nlog

µfd

|Df |+ µfd
(11)

Sf (q, r) =
∑

f∈q∩r

log

[
1 +

|Rf |plm(f, r)

µfrpml(f, Ctr)

]
+ nlog

µfr

|Rf |+ µfr
(12)
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where pml(f, Ctd) =
c(f,Cfd)
|Cfd| and pml(f, Cfr) =

c(f,Cfr)
|Cfr| . µfd and µfr are the two

smoothing parameters used for the feature-based scores of description and reviews.
Since each requested feature has its weight, the MLE of f in app reviews and

description is calculated as follows:

pml(f, d) =
w(f) ∗ c(f, d)

|Df |
(13)

pml(f, r) =
w(f) ∗ c(f, r)

|Dr|
(14)

where w(f) is the weight of the requested feature f calculated using the above three
techniques, based on app description for calculating Sf (q, d) and on app reviews for
calculating Sf (q, r).

6 Experiments and results

In this section, we describe the details of the dataset used to perform experiments and
the results obtained by our approach using terms and features to index applications.

6.1 Dataset and evaluation metric

To evaluate our approach, we used the same mobile app retrieval dataset used in
Park et al. (2015). This dataset contains 43,041 mobile app and 56 queries with their
relevance judgments. Each app is represented by a description given by the app’s
developer and a set of reviews (max = 50) given by online users. As for queries, each
query is a set of keywords generated by domain experts based on android forums. With
regard to evaluation metrics, we also employed induced NDCG at 3, 5, 10, 20, used in
Park et al. (2015), allowing us to compare the results of our approach with the ones
found in their work. The induced NDCG metric ignores unjudged apps from the ranked
list and keeps only the judged apps and is calculated in the same way as regular NDCG.
More details on this metric can be found in Yilmaz and Aslam (2006).

6.2 Parameter setting

To get the final score of each app for a given query, by using equation (1), we first
have to compute several scores, employing the four indexes, before combing them. The
computations require the tuning of several parameters. We tuned the parameters using
the average of the four Induced NDCG at 3, 5, 10, 20 (avg − ndcg = 1

4

∑
i ndcg@i).

Thereby, we started our experiments by calculating the two term-based scores based
on apps descriptions and reviews. for St(q, d) and St(q, r) we set µtd and µtr to,
respectively, 1,000 and 300, since these values showed the best performance in Park
et al. (2015). Once completed the computation of term-based scores, we used the same
values of µtd and µtr to integrate the feature-based scores with equations (2) and (3).
We mention here that we tried several window sizes to extract features from description
and reviews, as described in Subsection 5.1. Among the tested values (i.e., w ∈ [3,
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4, 5]), the best results were obtained, respectively, with w = 3 for description and
w = 5 for reviews. For the number of apps used to weight the requested features, we set
k = 10 and the best results were obtained when we applied the Likelihood ratio to weight
the requested features. As for µfd and µfr, we followed (Nie et al., 2007; Petkova
and Croft, 2008), and set their values to the average collection length in features on
description and reviews, respectively. The values β and γ were set to 0.4 and 0.7,
respectively. Finally, the two scores S(q, d) and S(q, r) performed to measure the scores
of the app using features and terms in description and reviews were combined, and α
was set to 0.4 which showed the best results.

Figure 2 Avg-NDCG measures for different values of window size (w) and different
weighting methods of requested features (L-ratio, in-top-K, all-pairs) obtained from,
(a) description representation (b) review representation

(a) (b)

Figure 3 NDCG measures for different values of β in, (a) description representation
(b) different values of γ in review representation to determine the impact of
feature-based score and term-based score on both representations (see online version
for colours)

(a) (b)
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Table 5 NDCG evaluation results obtained by different methods of our approach compared to
related works

ndcg@3 ndcg@5 ndcg@10 ndcg@20

Description Term-only 0.522 0.530 0.516 0.537
Terms + features 0.580+ 0.569+ 0.554+ 0.572+

Reviews Term-only 0.615 0.600 0.566 0.557
Term + features 0.648 0.620 0.595• 0.587•

Description and reviews Term-only 0.649 0.632 0.612 0.615
Terms + features 0.680 0.665* 0.635* 0.633

AppLDA (Park et al., 2015) 0.651 0.656 0.627 0.634
RelEmb (Krishna et al., 2019) 0.577 0.563 0.556 /
Google Play (Park et al., 2015) 0.589 0.575 0.568 0.566

Figure 4 NDCG measures for different values of α to determine the impact of description
score and review score (see online version for colours)

6.3 Analysis

In this section we present the results of experiments and show the impact of choosing the
widow size to extract features, the impact of requested features weigthing, of combining
terms and features and the impact of description and reviews on the model performance.
We also compare our results against those obtained in previous works.

Table 5 shows the evaluation performance, in terms of ndcg@3, 5, 10, 20 and the
average NDCG of the suggested methods compared with previous works (Park et al.,
2015; Krishna et al., 2019) as well as with Google Play’s app search engine. We use
symbols +, • and * to mark if the improvement for integrating features is statistically
significant (paired t-test with p ≤ 0.05) in each measure over term-based models using
description, reviews and both description and reviews, respectively.

As expected, Table 5 shows that when integrating features in the score function has
an influence on the retrieval performance. The models that combine terms and features
outperform term only model in all measures when either using description, reviews or
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combining the two representations to represent apps; indicating that apps may be better
represented by terms and features than terms only. The same table also shows that the
model that use reviews only perform better than the model that use app descriptions
only; that means that social users’ reviews are a good resource for app search compared
to descriptions. For example when using terms only, ndcg@3 = 0.522 for description,
whereas it equals 0.615 for reviews and when combining feature and terms, ndcg@3
= 0.580 for description, whereas it equals 0.648 for reviews. We also noticed that the
impact of combining features and terms for description is more significant than for
reviews. For example, ndcg@3 increases from 0.522 to 0.580 (11.11%) for description,
whereas it increases from 0.615 to 0.648 (5.36%) and it is not statistically significant
in terms of this measure as shown in the table. In addition, Table 5 shows the good
results obtained when window size is fixed to, respectively, 3 and 5 for description
and reviews in the process of extracting features and using Likelihood-ratio to weight
requested features.

Figure 2 shows the effects of weighting methods and the parameter w on the
retrieval performance for the two representations description and reviews. We noticed
that whatever the representation of the apps, the best results in terms of Avg-NDCG are
obtained when likelihood-ratio (L-ratio) is present as a weighting method compared to
other methods. However, the worst results are obtained when all term pairs of the query
terms are used as requested features. It is also clear that the best results are obtained
when w = 3 for description and w = 5 for reviews regardless of the used weighting
method. This difference may be due to the difference between the language styles used
by the app developer to write the description and by online users to describe their
opinion in reviews. Consider as an example the app ‘airplay.android’ and the feature
‘AirPlay Music’. When we look at the description of this app, we find that the two
terms of this feature are close to each other (“Magicplay brings AirPlay Music and video
support to Android”, “AirPlay Music from Android to Wi-Fi speakers and receivers”)
but when we look at reviews, these terms are far from each other (“Latest update kinda
broke AirPlay in Google Play music”, “Show me the AirPlay code as it does when
trying music broadcast”) which explains the obtained results.

In order to understand the effects of features and terms, we further investigate
performance when different values of β (descrription score) and γ (review score) are
used. NDCG measures for different values of these parameters are shown in Figure 3.
Here, when β = 0 or γ = 0 the models exploit terms only, whereas they exploit features
only when β = 1 or γ = 1. From the figure, we notice that using features and terms
together yields even better performance than using terms only or features only for both
representations. We notice also that for description (β = 0.4), the effect of feature score
is stronger than the term score but the opposite is true for reviews (γ = 0.7).

Figure 4 shows the performance of our model when different values of α are used.
Here, when α = 0, the model exploits description only while it exploits reviews only
when α = 1. From the figure, we notice that using description and reviews together
yields even better performance than using description only or reviews only. The best
results are obtained when α = 0.4, which means that the two representations are
important and each complements the other.

Making a comparison with the results of related works, AppLDA (Park et al., 2015)
(exploits description and reviews), RelEmb (Krishna et al., 2019) (exploits description
only) and Google Play’s app search engine (unavailable information), We can see from
Table 5 that, when using description and reviews together, our approach outperforms
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AppLDA in terms of all NDCG measures except for ndcg@20 when the results are
almost the same (0.634 for AppLDA and 0.633 for our approach. As for the case of
using description only, our model outperforms RelEmb model in ndcg@3 and ndcg@5
and gives almost the same results as this approach in terms of ndcg@10.

7 Conclusions

In this paper, we conducted a study to build an app retrieval model based on terms and
features extracted from the description given by the app developer and the social reviews
given by online users. We started first by extracting and indexing terms and features
from description and reviews using NLP techniques. Then, and in order to make the
matching between the query and feature indexes, we proposed three techniques to extract
and weight the requested features from the query terms. Finally, several scores using
description and reviews as well as terms and features were calculated and combined
to measure the relevance of each app to a given query. Evaluation results show that
the models that incorporate features with terms outperform the models that use terms
only regardless of whether reviews or descriptions are used, meaning that integrating
features in the retrieval model effectively helps app retrieval. Using reviews only gives
better results than using descriptions only, meaning that the vocabulary gap between
social reviews and users queries is smaller than the gap between descriptions and users
queries. Extracting features from reviews requires the window size of co-occurrence
to be larger than the one used to extract features from description. This is probably
due to the difference between the language styles used by the app developer to write
description and by online users to describe their opinion in reviews. Evaluation results
show also that statistical association measures, in our case likelihood-ratio, can be used
to weight the requested features extracted from query terms.

Our proposed approach provides interesting directions for future work. Firstly, not
all the features mentioned by users in their reviews are actual features provided by the
application, some of them can be features requested by users because the application
does not provided them. This could potentially skew the results. Therefore, it is
necessary to, first use a review analyser system that can distinguish between features
provided by the app and features requested by the users before incorporating them into
the retrieval model. Secondly, the application of a topic modeling algorithm like LDA
to group related features in the same topic could possibly improve the performance by
bridging the existing gap between the language present in description and reviews and
the language present in queries.
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