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a b s t r a c t

In this paper, we propose a methodology to derive a macro-scale momentum equation that is free from
the turbulence model chosen for the pore-scale simulations and that is able to account for large-scale
anisotropy. In this method, Navier–Stokes equations are first time-averaged to form a new set of equa-
tions involving an effective viscosity. The resulting balance equations are then up-scaled using a volume
averaging methodology. This procedure gives a macro-scale generalized Darcy–Forchheimer equation to
which is associated a closure problem that can be used to evaluate the apparent permeability tensor
including inertia effects. This approach is validated through 2D and 3D calculations. Finally, the method
is used to evaluate the tensorial macro-scale properties for a gas flow through structured packings.

1. Introduction

Structured packings play a large role in chemical engineering
processes involving gas–liquid separation such as air distillation
unit or CO2 absorption columns [48,30]. Such structures maximize
the exchange surface between gas and liquid while pressure drops
remain low enough. Generally, the columns are operated in the
counter-current flow mode: a thin liquid gravity film is sheared
by the upward turbulent flow of a gas phase. We can apprehend
such a structure as a high porosity porous medium for which the
pore-scale is the elementary pattern that constitutes the structure
packing while the macro-scale may be assimilated to the packing
scale. Due to this structured geometry, the relationship between
pressure drop within the packing and velocity may be anisotropic
and may depend not only on the gas velocity but also on the flow
direction. Moreover, gas can flow at very high pore-scale Reynolds
number and the generated turbulence effects may lead to addi-
tional anisotropic behavior. In this paper we will assume that the
liquid film is thin enough to have no significant impact on the
gas pressure drop. Discussions regarding the liquid spreading in
the structured packing are beyond the scope of this article. Readers
that are concerned by such a topic can refer to the original

approaches developed by Mahr and Mewes [22] and more recently
revisited by Soulaine [47]. Consequently, we will only consider the
gas flow.

Attempts to model three-dimensional gas flow patterns at the
packing scale are still scarce in the chemical engineering literature.
Mostly, the classical approach consists in empirical correlations
based on one-dimensional Darcy–Forchheimer’s law [4,49,3]. In
these works, authors evaluated the Ergun’s coefficients [15] as well
as the exponent of the 1D Forchheimer inertial correction by fitting
the pressure losses provided by laboratory-scale or industrial
experiments. During the last decade, with the perspective of devel-
oping new types of column internal organs, researchers and man-
ufacturers have used CFD simulations over a Representative
Elementary Volume (REV) to evaluate the flow resistance in the
direction of the column [34,42]. To account for the anisotropy in-
duced from the structured packing geometry, Mewes et al. [26]
introduced a flow resistance tensor that depends on the velocity
magnitude. In the case of a packing made by corrugated sheets
with an angle shift of 90� between two successive sheets, Raynal
and Royon-Lebeaud [43] assume that the flow resistance in the
horizontal axis is equivalent to the one calculated in the column
vertical axis. From measurements and CFD simulations over cut-
out segments of packing with different orientations, Mahr and
Mewes [22] proposed correlations for the anisotropic gas flow
resistance tensor as a function of direction and magnitude of the
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gas velocity. When increasing the mass flow rate, eddies are gener-
ated at the pore scale and accurate turbulent simulations must be
performed. In such structures, the k – �model is known to result in
erroneous gas flow patterns and models that account for turbulent
anisotropy such as the k�x family are preferred [29,45,41,18].
However, all these approaches involving pore-scale turbulent
CFD simulations attempt to predict the overall pressure loss in
the industrial columns but not to determine the full anisotropic
flow macro-properties.

Concerning the appropriate macro-scale model to be used in
such cases, two major problems must be addressed. Firstly, it is
not granted that a Darcy–Forchheimer’s law is still acceptable for
high pore-scale Reynolds numbers. Secondly, Direct Numerical
Simulations (DNS) are not handy to analyze full anisotropic effects
when local streamlines are deformed by inertial effects. Indeed, in
the Darcy–Forchheimer regime, the inertia correction tensor de-
pends not only on the medium but also on both Reynolds number
and pressure gradient orientation [20]. This means that to a local
velocity field corresponds a full Forchheimer tensor, i.e., we have
potentially 9 unknowns for only 3 equations if one assumes that
the permeability tensor has been previously estimated. DNS alone
cannot provide informations for all the tensor coefficients and that
is why computation through closure problems are preferred [52].
Let us examine the first problem. Indeed, the question of turbu-
lence modeling in porous media remains a challenging field of
study and has not received a complete, comprehensive theoretical
solution. Experimental investigations [9] performed over simple
and complex porous media are in favor of a Darcy–Forchheimer
model (the superficial velocity is non-linearly related to the pres-
sure drop according to a function that depends on the solid struc-
ture and a power of the Reynolds number that varies between 0
and 1), even in the case of pore-scale turbulence. Moreover, most
of the empirical correlations that evaluate the overall dry pressure
drop of distillation columns [4,49,3]are based on such a formalism.
Kuwahara et al. [19] conducted numerical experiments for turbu-
lent flows through a periodic array of square cylinders using Large
Eddy Simulations (LES). They showed that, in such case, Darcy–
Forchheimer equation may well predict the pressure losses. From
a purely theoretical point of view, numerous attempts to model
turbulence effects in porous media have emerged in the literature
this last decade. One can find an exhaustive review in [10,11].

Basically, two opposite approaches can be found concerning the
derivation of macro-scale equations that model turbulence in a
porous medium: either the use of volume averaging operator be-
fore time averaging is applied [1,17]or the application of time aver-
aging followed by volume averaging [24,28,27,35,7,12]. Using the
double decomposition concept introduced in [32,33]demonstrated
that these two approaches should be mathematically equivalent,
i.e., the two additional viscous and drag terms in the momentum
balance equation have identical final forms after the application
of both operators. Defining a macro-scale turbulent kinetic energy
and a macroscopic turbulent viscosity, authors propose k – � mod-
els with additional resistance terms due to the porous structure.
The turbulent kinetic energy is used to evaluate the level of turbu-
lence and thus a diffusion term in the momentum equation. This
diffusion term is non-zero only when the gradient of the volume
averaged velocity is non-zero, usually close to a free fluid domain
[5] or a singular object which generates extra-pore eddies at larger
scales. This kind of situation may also occur in some ‘‘porous med-
ia’’ with high porosity and permeability, for the investigation of
forest fire spreading [36], of flows in electric cupboards or wind
flows within an high density city for example. This concept is rel-
evant when one studies the transition of a turbulent flow from a
free domain towards a porous medium, since it provides a continu-
ity of the turbulent variables [6]. However, in many cases, turbu-
lence effects are confined to the intra-pore domains. This is for
example the case for high Reynolds number flows in structured
packing (see Fig. 6): vapor streams flow through each ‘‘channel’’
and eddies are generated at each criss-crossing junction and re-
main confined in this area which will prevent the appearance of
large scale eddies. In such case, we suppose that macro-scale mod-
els involving turbulent kinetic energy are no longer necessary to
model high velocity flows in porous media, and, possibly as we
shall demonstrate, Darcy–Forchheimer type-like models offer a
convenient way of representing the macro-scale behavior.

In this paper, we derive a macro-scale model that accounts for
pore-scale turbulence. In the proposed method, Navier–Stokes
equations are classically first time-averaged to form a new set of
equations involving an effective viscosity. The resulting balance
equations are then up-scaled in a restrictive sense developed later
in this paper, using the volume averaging methodology as depicted
in [53]. It yields a generalized Darcy–Forchheimer law where

Nomenclature

h:ic Intrinsic average for c-phase
h:i Superficial average
ec Volume fraction of the c-phase
V Volume defining the unit-cell (m3)
Vc Volume of the c-phase within the unit-cell (m3)
qc Density in the c-phase (kg/m3)
g Gravity acceleration (m/s2)
vc Velocity field in c-phase i (m/s)
vc Statistical average of vc (m/s)
hvcic Intrisic spatial average of vc (m/s)
hvci Superficial spatial average of vc (m/s)
~vc Spatial deviation of vc (m/s)
pc Pressure field of the c-phase (kg/m/s2)
pc Statistical average of pc (kg/m/s2)
p�c Turbulent pressure (kg/m/s2)
hpcic Intrisic spatial average ofp�c (kg/m/s2)
hpci Superficial spatial average of p�c (kg/m/s2)
~pc Spatial deviation of p�c (kg/m/s2)
lcmol

Molecular viscosity (kg/m/s)

lcturb
ðrÞ Turbulent viscosity (kg/m/s)

lcðrÞ,lc Effective viscosity (kg/m/s)

hlcic Intrisic spatial average of lc (kg/m/s2)
~lc Spatial deviation of lc (kg/m/s2)

k Turbulent energy (m2/s2)
� Turbulent dissipation (m2/s3)
C1,C2,Cl,rk,r� closure variable of the k� � model
lc Characteristic length of the pore-scale (m)
L Characteristic length of the macro-scale (m)
Recturb Turbulent Reynolds number
Re Reynolds number
Bc,B0

c Closure variables
bc,b

0
c Closure variables

Cc Source term (kg/m3/s)
K Permeability tensor (m2)
F Forchheimer tensor
K� Apparent permeability tensor (m2)
DP
L Linear pressure drop (kg/m2/s2)



effective parameters results from pore-scale simulations. This ap-
proach is then validated through 2D and 3D calculations. Finally,
we apply the method to evaluate the tensorial macro properties
of gas flow through examples of structured packings.

2. Pore-scale problem

The following development considers the flow of an incom-
pressible single-phase (denoted c-phase) in a saturated, rigid por-
ous medium where the solid phase is denoted r. If the time and
space mesh scales are small enough to represent all the flow pat-
terns, including turbulence, then the Navier–Stokes equations
may be used to simulate the flow through the solid structure

r � vc ¼ 0 in Vc; ð1Þ
qc

@vc
@t

þ qcvc � rvc ¼ �rpc þ qcgþr � ðlcmol
rvcÞ in Vc; ð2Þ

vc ¼ 0 at Arc; ð3Þ
where qc;vc; pc; g and lcmol

respectively stand for the fluid density,
the velocity, the pressure field, the gravity and the molecular
viscosity.

Up-scaling of this pore-scale problem has received a lot of
attention in the literature. It has already been shown that the vol-
ume averaging of such a system at moderate Reynolds numbers
leads to a Darcy–Forchheimer equation [52], in which the Forch-
heimer correction is not necessarily of the quadratic type, as previ-
ously suggested empirically by Forchheimer [16]. Indeed, it has
been found that the first correction to Darcy’s law, i.e., very small
Reynolds number for classical porous media, is of cubic type [55]
using asymptotic homogenization and on the basis of numerical
simulations by Barrère [2]. Subsequent investigations taking into
account larger Reynolds numbers suggested various dependence
for the Forchheimer correction [46,20]. The work of Lasseux et al.
[20] shows that these different behaviors can be retrieved
following the derivation in [52], i.e., under the form of a general-
ized Darcy–Forchheimer equation. Here the word ‘‘generalized’’
emphasizes the fact that the correction is not necessarily of the
quadratic type, and we will come back on this notion at the end
of the paper. However, in the case of turbulent regimes, Direct
Numerical Simulations of the Navier–Stokes equations would re-
quire very small mesh sizes and time steps, which is often inacces-
sible because of heavy computer resources requirements. This has
called for the development of turbulence models as discussed
below.

Many turbulence models have been developed. A typical exam-
ple is the Reynolds Averaged Navier–Stokes (RANS) model (see one
of the the numerous books on the topic as Wilcox [54] for exam-
ple). This approach consists to time-average the Navier–Stokes
equations (1)–(3). These equations are then transformed using
the Reynolds decomposition of each field into the time-averaged
contribution and a fluctuating quantity. The resulting equations in-
volve more unknown variables (essentially in the term called the
Reynolds stress tensors) than equations and consequently a closure
is needed. The Boussinesq approximation introduces the eddy dif-
fusivity concept to model the Reynolds stress tensor resulting from
the time-averaging operation. All the RANS turbulence models
(k� �; k�x . . .) attempt to evaluate this new viscosity using extra
transport equations to represent the turbulent properties of the
flow.

For example, the ‘‘Standard’’ k – � model [21], which is one of
the most common turbulence models, adds to the Reynolds
averaged momentum and continuity equations two additional
equations to account for effects like convection and diffusion of
turbulent energy. The first variable is the turbulent kinetic energy
k and the second one is the turbulent dissipation �. This latter

variable determines the rate at which turbulence kinetic energy
is converted into thermal internal energy, whereas the first
variable determines the turbulence energy. This model is formu-
lated as

r � vc ¼ 0 in Vc; ð4Þ

qc
@vc
@t

þ vc � rvc
� �

¼ �r pc þ 2
3
qk

� �
þ qcgþr

� lcmol
þ lcturb

ðrÞ
� �

rvc
� �

in Vc; ð5Þ

qc
@k
@t

þ vc � rk
� �

¼ r � lcmol
þ lcturb

ðrÞ
rk

� �
rk

� �
þ lcturb

ðrÞrvc : rvc � qc� in Vc; ð6Þ

qc
@�
@t

þ vc � r�
� �

¼ r � lcmol
þ lcturb

ðrÞ
r�

� �
r�

� �

þ C1
�2

k
lcturb

ðrÞrvc : rvc � qcC2
�2

k
in Vc: ð7Þ

In these equations, the overlines depict the statistical averaged
quantities. The turbulent viscosity is then evaluated from the k
and � values through the relation

lcturb
ðrÞ ¼ qcCl

k2

�
: ð8Þ

This system of equations requires some additional values to be en-
tirely closed. A common set of values is [54]: Cl ¼ 0:09 ; C1 ¼ 1:44 ;
C2 ¼ 1:92 ; rk ¼ 1 ; r� ¼ 1.

Some authors (see [28,27,35,12] for instance) attempt to vol-
ume average this set of equations in order to propose a macro-
scopic version of the k – � turbulence model in porous media.
However, their methods are fully dependent of the chosen model
for the microscopic calculations, i.e., the k – � model. The develop-
ments should be carried on again if one wishes to up-scale one of
the numerous versions of the k – � or a k –x SST model.

In this paper, we propose a complementary and original ap-
proach assuming that all the turbulence properties required to
fully represent the flow are incorporated within the variable vis-
cosity lcðrÞ resulting from turbulent simulations at the scale of
the REV. In this analysis, we do not take into consideration the en-
ergy and dissipation equations, which brings an important simpli-
fication to the problem that will allow us to investigate more
deeply anisotropic effects by up-scaling only the momentum and
continuity equations (this time with a spatially variable viscosity).
Hence, the mathematical boundary value problem can be summed
up as

r � vc ¼ 0 in Vc; ð9Þ

qc
@vc
@t

þ qcvc � rvc ¼ �rp�
c þ qcgþr � ðlcðrÞrvcÞ in Vc; ð10Þ

vc ¼ 0 at Arc: ð11Þ
Here we have introduced the notion of turbulent pressure such as
p�
c ¼ pc þ 2

3 k.
It is important to notice that all RANS models can be written fol-

lowing such a formulation. We also note that, despite a different
origin of the derivation, the momentum equation in Large Eddy
Simulations (LES) models can also be written under this effective
viscosity formulation. In short, the approach we will develop in
the next sections offers a general framework to interpret turbulent
simulations in porous media in terms of a macro-scale model. Once
again, we insist on the fact that the usefulness of the approach re-
lies on the obtention of local quasi-periodic turbulent fields and



that the following developments are free from the turbulence
model chosen for the pore-scale simulations.

3. Volume averaging

The problem formed by Eqs. (9)–(11) is reminiscent of the prob-
lem studied in [52] with the additional difficulty that viscosity var-
ies in space. Therefore, we will follow the lines of development of
this paper, with the necessary modifications. We will not detail all
steps relevant to the volume averaging procedure and we refer the
reader to the literature, for instance to [53], for further general de-
tails. We recall in this section the main definitions and theorems
necessary to develop the macroscopic model from the pore-scale
equations using the volume averaging methodology. We consider
the averaging volume as illustrated in Fig. 1.

For a tensor wc (order 0, 1 or 2) associated with the c-phase, we
define the superficial average as

hwci ¼
1
V

Z
Vc

wcdV ð12Þ

and the corresponding intrinsic phase average as

hwcic ¼
1
Vc

Z
Vc

wcdV : ð13Þ

Both are connected by

hwci ¼ echwcic with ec ¼ Vc

V
; ð14Þ

where Vc is the volume of the c-phase and ec is the porosity of the
medium. Throughout this paper, the porous medium is homoge-
neous and ec does not vary.

The phase variable wc is classically expressed using the follow-
ing decomposition

wc ¼ hwcic þ ~wc: ð15Þ
Further, from Eqs. (15) and (12) we approximatively have

h~wci ’ 0: ð16Þ
To interchange integrals and derivatives, we will use the following
two theorems [23]. For spatial averaging, we have

hrwci ¼ rhwci þ
1
V

Z
Acr

ncrwcdA; ð17Þ

for the gradient operator and a similar expression for the diver-
gence operator. The integrals in this equality express the interfacial
effects typical of porous media physics. For time derivatives, direct
application of the Reynolds transport theorem for static boundaries
yields

@wc

@t

� �
¼ @hwci

@t
: ð18Þ

3.1. Continuity equation

The mere application of the volume averaging theorem Eq. (17)
to the continuity equation (9) leads to

r:hvci þ 1
V

Z
Acr

ncr � vcdA ¼ 0: ð19Þ

Moreover, from the no-slip velocity boundary condition at the
fluid–solid interface and the relation equation (14), we deduce that

r:hvcic ¼ 0: ð20Þ
Note that, for sake of clarity, we have removed the overline nota-
tions that depict the time-averaged values. The reader must keep
in mind that the pressure and velocity fields considered in the rest
of the development are in reality time-averaged fields.

3.2. Momentum conservation

We now form the averaged momentum balance equation by
successive applications of the volume averaging theorem. We start
from the conservative form of Eq. (10) for the c-phase

@qcvc
@t

þr � qcvcvc
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðLHSÞ

¼ �rpc þ qcgþr � lcðrÞrvc
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðRHSÞ

in Vc:

ð21Þ
We remind the reader that, in this equation, the velocity and pres-
sure fields are time averaged and that we have defined an effective
viscosity lcðrÞ that combines both molecular (lcmol

) and turbulent
(lcturb

ðrÞ) viscosities. This latter viscosity is a known field obtained
from micro-scale turbulent simulations. Hence, in our analysis,
lcðrÞ is an input scalar field that may strongly vary within the REV.

The average of the left hand side leads to

hLHSi ¼ @qchvci
@t

þr � ðqchvcvciÞ ð22Þ

and, with the decomposition vc ¼ hvcic þ ~vc and hvci ¼ echvcic, it
becomes

hLHSi ¼ @ecqchvcic
@t

þr � ðecqchvcichvcicÞ þ r � ðqch~vc~vciÞ; ð23Þ

using the macroscopic continuity equation (20) it can be trans-
formed to a non-conservative form:

Fig. 1. Schematic representation of the hierarchy of length scales of a model porous
medium and of a typical representative volume. This figure illustrates the three
characteristic length-scales involved in this system: (1) the macro-scale, L; (2) the
radius of the averaging volume, R; and (3) the average pore size, lc . Throughout this
paper we use the following assumption: lc � R � L.



hLHSi ¼ ecqc
@hvcic
@t

þ ecqchvcic � rhvcic þr � ðqch~vc~vciÞ: ð24Þ

We continue the development with the averaging of the right hand
side. This part is close to the derivation of Darcy’s law from the
Stokes problem proposed by Whitaker [51] and extensively pre-
sented in other works [38–40,50]. Since, in our analysis, we account
for a variable viscosity, the derivation of the averaged equation
from the micro-scale problem is, however, a little bit different than
usual. The application of the volume averaging theorem Eq. (17)
gives

hRHSi¼�rhpci�
1
V

Z
Acr

ncpcdAþhqcgiþr� hlcrvciþ
1
V

Z
Acr

ncr �lcrvcdA:

ð25Þ

In this relation we can note that

hlcrvci ¼ echlcicrhvcic þ hlcr~vci ð26Þ

and

1
V

Z
Acr

ncr �lcrvcdA¼hr~lci �rhvcic�hlcicrhvcic �recþ 1
V

Z
Acr

ncr �lcr~vcdA;

ð27Þ

where we have used the relation,

1
V

Z
Acr

ncr ~lcdA ¼ hr~lci: ð28Þ

We search an averaged equation in terms of the intrinsic average
velocity and pressure hvcic and hpcic. Using the spatial decomposi-
tion, Eq. (15) for vc and pc and the relation equation 14 that relates
intrinsic and superficial averages, one can eventually obtain:

hRHSi ¼ �ecrhpcic þ ecqcgþ ecr � ðhlcicrhvcicÞ þ r

� hlcr~vci þ hr~lci � rhvcic þ 1
V

Z
Acr

ncr

� �~pcIþ lcr~vc
h i

dA: ð29Þ

Combining LHS and RHS gives us the averaged equation:

qc
@hvcic
@t

þ qchvcic � rhvcic þ e�1
c r � ðqch~vc~vciÞ

¼ �rhpcic þ qcgþr � ðhlcicrhvcicÞ þ e�1
c r � hlcr~vci

þ e�1
c hr~lci � rhvcic þ

e�1
c

V

Z
Acr

ncr � �~pcIþ lcr~vc
h i

dA: ð30Þ

We notice that, if we assume that ~lc ¼ 0, then we recover the for-
mulation proposed by Whitaker [52] in the case of inertial flow
where the viscosity is constant.

At this stage of the development, the averaged momentum
equations are not under a closed form since velocity and pressure
deviations having microscopic length-scale are still present. The
classical strategy is to derive a problem that governs the devia-
tions, then to represent them in terms of average quantities (the
so-called closure problem), and, finally, to insert these representa-
tions into the conservation equation (30) to get the closed form of
the averaged equations.

4. Mathematical problem governing the deviations

The aim of this section is to develop the relationships between
spatial deviations and average quantities in order to close the mac-
roscopic model.

4.1. Continuity equation

We form the equation that governs the deviation continuity
equation in the c-phase by subtracting Eq. (20) from Eq. (9). We
obtain,

r � ~vc ¼ 0 in Vc: ð31Þ

4.2. Momentum equation

We can now follow an equivalent procedure for the momentum
balance. Subtracting Eq. (30) from Eq. (21) and considering the
decompositions yields in

qc
@~vc
@t

þ qc vc � rvc � hvcic � rhvcic
	 
� e�1

c r � ðqch~vc~vciÞ

¼ �r~pc þr � lcrvc � hlcicrhvcic
� �

� e�1
c r � hlcr~vci

� e�1
c hr~lci � rhvcic �

e�1
c

V

Z
Acr

ncr � �~pcIþ lcr~vc
h i

dA: ð32Þ

Considering that

vc � rvc � hvcic � rhvcic ¼ vc � r~vc þ ~vc � rhvcic ð33Þ
and that

r� lcrvc �hlcicrhvcic
� �

¼r� lcr~vc þ ~lcrhvcic
� �

¼r� lcr~vc
� �

þ r~lc
	 
 �rhvcic þ ~lcr2hvcic;

ð34Þ

one can reformulate Eq. (33) as

qc
@~vc
@t

þqcvc �r~vcþqc~vc �rhvcic�e�1
c r�ðqch~vc~vciÞ

¼�r~pcþr� lcr~vc
� �

þ r~lc�hr~lcic
	 
 �rhvcic

þ ~lcr2hvcic�e�1
c r�hlcr~vci�

e�1
c

V

Z
Acr

ncr � �~pcIþlcr~vc
h i

dA:

ð35Þ
We can realize some simplifications based on the assumption of
length-scale separation. Indeed, if we note lc and L respectively
the characteristic dimensions associated to microscopic and macro-
scopic spatial variations, we have the length-scale constraint

lc � L: ð36Þ
Under these circumstances, the convective and the dispersive terms
that appear in the left hand side of Eq. (35) can be estimated by

qcvc � r~vc ¼ O qc
max ðvcÞ2

lc

 !
; ð37Þ

qc~vc � rhvcic ¼ O qc
max ðvcÞ2

L

 !
; ð38Þ

e�1
c r � ðqch~vc~vciÞ ¼ O qc

max ðvcÞ2
L

 !
: ð39Þ

Therefore, from the length-scale separation assumption equation
(36) we deduce

qc~vc � rhvcic � e�1
c r � ðqch~vc~vciÞ � qcvc � r~vc: ð40Þ

Moreover, according to Quintard and Whitaker [37], we can assume
time scales separation as well, which leads us to neglect the accu-
mulation term in Eq. (35).



The terms in the right hand side of Eq. (35) can be estimated by

r � lcr~vc
� �

¼ O
maxðlcÞmaxðvcÞ

l2c

 !
; ð41Þ

r~lc � hr~lcic
	 
 � rhvcic ¼ O

maxðlcÞmaxðvcÞ
lcL

� �
; ð42Þ

~lcr2hvcic ¼ O
maxðlcÞmaxðvcÞ

L2

� �
; ð43Þ

e�1
c r � hlcr~vci ¼ O

maxðlcÞmaxðvcÞ
lcL

� �
; ð44Þ

e�1
c

V

Z
Acr

ncr � lcr~vcdA ¼ O
maxðlcÞmaxðvcÞ

l2c

 !
: ð45Þ

Then we deduce that

~lcr2hvcic � r~lc � hr~lcic
	 
 � rhvcic � e�1

c r � hlcr~vci

� r � lcr~vc
� �

� e�1
c

V

Z
Acr

ncr � lcr~vcdA: ð46Þ

Finally, after these simplifications, the closure equation for the
momentum balance takes the form

qcvc �r~vc ¼�r~pcþr� lcr~vc
� �

�e�1
c

V

Z
Acr

ncr � �~pcIþlcr~vc
h i

dA:

ð47Þ
It must be noticed that, in spite of the apparent similarity with the
equation derived by Whitaker [52] in the case of laminar flow, the
above equation deals with time-averaged quantities and variable
viscosity.

4.3. Boundary conditions

The boundary condition associated with this deviation problem
is obtained using vc ¼ hvcic þ ~vc into Eq. (11)

~vc ¼ �hvcic at Acr: ð48Þ
In addition, we have the condition equation (16) which says that
average of the deviations must be zero

h~vcic ¼ 0; h~pcic ¼ 0: ð49Þ
In order to solve the closure problem in a representative region of
the porous medium instead of considering the entire macro-struc-
ture, we consider the model of a spatially periodic system. Hence,
we add the following periodic conditions to this deviation problem,

~vcðrþ liÞ ¼ ~vcðrÞ; ~pcðrþ liÞ ¼ ~pcðrÞ; i ¼ 1;2;3: ð50Þ

4.4. Deviation representations

Clearly hvcic appears as a non-homogeneous term in the bound-
ary conditions for the closure problem, and this needs to be consid-
ered in the representation for the spatial deviations. We assume
that the averaged velocity hvcic generates perturbations in each
direction. The generated deviations can be very different with re-
gards to the direction. Hence, to account for this potential anisot-
ropy, we propose the following mapping:

~vc ¼ Bc � hvcic; ~pc ¼ bc � hvcic; ð51Þ
where Bc is a tensor while bc is a vector. This representation differs
slightly from the one usually proposed in the literature [51,52,50]

since the viscosity is not included in the pressure representation.
We could have, of course, introduced a reference viscosity in the
second equation in Eq. (51) to recover the notations of the cited
authors. However, that would not bring any interesting simplifica-
tions in the closure problem which is marked by the spatial varia-
tions of lcðrÞ, contrary to the cited literature. Authors use such a
representation to obtain a permeability tensor that is independent
from the fluid properties. However, in our study, the viscosity is
space-dependent and consequently cannot be pulled out from
integrals.

5. Closure problem

The next step of our development is to establish the mathemat-
ical problem that will allow us to determine the closure variables
Bc and bc. This problem will be solved over a periodic representa-
tive unit-cell. It is obtained by substituting the above suggested
mapping equation (51) into the deviations problem of Section 4.
The identification of each term involving hvcic provides the follow-
ing closure problem

qcvc � rBc ¼ �rbc þr � lcrBc

� �
� e�1

c

V

Z
Acr

ncr � �bcIþ lcrBc

h i
dA in Vc; ð52Þ

r � Bc ¼ 0 in Vc; ð53Þ
Bc ¼ �I at Acr; ð54Þ
Bcðrþ liÞ ¼ BcðrÞ; bcðrþ liÞ ¼ bcðrÞ; i ¼ 1;2;3; ð55Þ
hBcic ¼ 0; hbcic ¼ 0: ð56Þ

At this point of the development, we derived an integro-differential
boundary value problem. We recognize a Navier–Stokes-like prob-
lem that involves additionnal source terms.

The resolution of such a problem can be simplified using a spe-
cial change of variables. This will allow to free oneself from the
presence of integrals and other source terms within the governing
equations. We propose the following change of variables:

B0
c ¼ ðBc þ IÞ � C�1

c ; b0
c ¼ bc � C�1

c ; ð57Þ

where we have defined Cc as

Cc ¼
e�1
c

V

Z
Acr

ncr � �bcIþ lcrBc

h i
dA: ð58Þ

Finally, we obtain the following closure problem

qcvc � rB0
c ¼ �rb0

c þr � lcrB0
c

� �
� I in Vc; ð59Þ

r � B0
c ¼ 0 in Vc; ð60Þ

B0
c ¼ 0 at Acr; ð61Þ

B0
cðrþ liÞ ¼ B0

cðrÞ; b0
cðrþ liÞ ¼ b0

cðrÞ; i ¼ 1;2;3: ð62Þ

The tensor Cc is a result of the simulation and can be evaluated
through the average value of B0

c . Moreover, to insure uniqueness
of the solution, we must constrain the b0

c field, which gives:

hB0
cic ¼ C�1

c ; hb0
cic ¼ 0: ð63Þ

6. Closed form of the averaged momentum equation

We form the macroscopic equation by introducing the repre-
sentation of the deviation as a function of the average velocity,
Eq. (51) within the non-closed averaged momentum equation,
(30). However, before to carry out such an operation, we will



analyze the order of magnitude of each term in order to simplify
this equation. We recall here the non-closed macroscopic equation,

qc
@hvcic
@t

þ qchvcic � rhvcic þ e�1
c r � ðqch~vc~vciÞ

¼ �rhpcic þ qcgþr � ðhlcicrhvcicÞ þ e�1
c r � hlcr~vci

þ e�1
c hr~lci � rhvcic þ

e�1
c

V

Z
Acr

ncr � �~pcIþ lcr~vc
h i

dA; ð64Þ

For the term in the right hand side of Eq. (64) we have the following
estimations

e�1
c

V

Z
Acr

ncr � lcr~vcdA ¼ O
maxðlcÞmaxðvcÞ

l2c

 !
; ð65Þ

r � ðhlcicrhvcicÞ ¼ O
maxðlcÞmaxðvcÞ

L2

� �
; ð66Þ

e�1
c r � hlcr~vci ¼ O

maxðlcÞmaxðvcÞ
lcL

� �
; ð67Þ

e�1
c hr~lci � rhvcic ¼ O

maxðlcÞmaxðvcÞ
lcL

� �
: ð68Þ

Consequently, based on the length-scale separation assumption
equation (36) and the estimation equation (45) we deduce that

r � ðhlcicrhvcicÞ � e�1
c r � hlcr~vci � e�1

c hr~lci � rhvcic

� e�1
c

V

Z
Acr

ncr � lcr~vcdA: ð69Þ

We now focus on the evaluation of the order of magnitude of the
term in the left hand side of Eq. (64) in front of the integral equation
(65)

qchvcic � rhvcic
e�1
c

V

, Z
Acr

ncr � lcr~vcdA

¼ O qc
max ðvcÞ2

L

l2c
maxðlcÞmaxðvcÞ

 !
¼ O Recturb

lc
L

� �
; ð70Þ

e�1
c r � ðqch~vc~vciÞ

e�1
c

V

, Z
Acr

ncr � lcr~vcdA

¼ O qc
max ðvcÞ2

L

l2c
maxðlcÞmaxðvcÞ

 !
¼ O Recturb

lc
L

� �
: ð71Þ

Clearly, these terms can be neglected if the Reynolds number is
small enough. In other words, it means that the constraint,

Recturb ¼
qc maxðvcÞlc
maxðlcÞ

� L
lc
; ð72Þ

must be satisfied, which is often true if the length scales are sepa-
rated enough. From similar arguments, we can also neglect the
accumulation term. All these simplifications give,

0 ¼ �rhpcic þ qcgþ e�1
c

V

Z
Acr

ncr � �bcIþ lcrBc

h i
dA

 !
� hvcic:

ð73Þ
Identifying the integral as Cc it becomes,

0 ¼ �rhpcic þ qcgþ e�1
c Cc � hvci: ð74Þ

We can decompose the tensor Cc into two parts. The first one will
produce the Darcy’s law permeability tensor that depends only on
the geometry of the porous medium under consideration, the sec-
ond part will lead to an inertial/turbulent correction:

e�1
c Cc ¼ �lcmol

K�1 � Iþ Fð Þ: ð75Þ

This way, we obtain a similar form of Darcy–Forchheimer equation
derived by Whitaker [52]. However, in our case, F not only accounts
for inertial effects but for turbulence effects as well via the viscosity
spatial variations.

hvci ¼ � K

lcmol

� rhpcic � qcg
� �

� F � hvci: ð76Þ

In this equation,

� one must keep in mind that hvci depicts the volume average of a
local time-averaged velocity field and that hpcic is the volume
average of a local time-averaged local field described as a turbu-
lent pressure,

� K is the permeability tensor and has the dimension of m2. It is
intrinsic to the porous medium pore-scale geometry. It is sym-
metric and positive definite [14]. It can be evaluated using the
closure problem equations (59)–(63) when vc ¼ 0 and
lcðrÞ ¼ lcmol

,
� F is the Forchheimer correction tensor (dimensionless) that
account for both inertial and turbulence effect at macro-scale.
In order to learn something about F, one first needs to estimate
K as pointed out by Whitaker [52], and then solve the closure
problem equations (59)–(63) where vc and lcðrÞ come from a
preliminary turbulent microscopic simulations. Finally, F is
merely deduced from Eq. (75). Note that F may strongly depend
on these input fields and is not necessarily proportional to the
velocity, as in the classical Forchheimer equation. Therefore, it
must be tabulated based on several microscopic simulations.
There is not, in general, a simple relationship allowing to
extrapolate F between two different velocity field realizations.
Therefore, tabulation must account for velocity magnitude and
its orientation. At the opposite of what is generally believed,
Lasseux et al. [20] proved that F is not always symmetric.

We can also directly evaluate an apparent permeability tensor
K� [13] defined as

e�1
c Cc ¼ �lcmol

K��1; ð77Þ

i.e. K��1 ¼ K�1 � Iþ Fð Þ. From this definition, one can easily note that
K� varies continuously with regards to the Reynolds number. This
point is consistent with the experimental studies by Chauveteau
and Thirriot [9]. Moreover, all the remarks concerning F are also
available for K�. With such a definition, the macro-scale momentum
equation becomes,

hvci ¼ � K�

lcmol

� rhpcic � qcg
� �

: ð78Þ

While the use of lcmol
is consistent with the non-inertial limit, we

should note that, at this point, we could have chosen another refer-
ence viscosity and that this would have changed the definition of
K�.

We insist on the fact that to a microscopic velocity and a micro-
scopic viscosity fields correspond a particular apparent permeabil-
ity tensor K�. Therefore, all the tensor components depend on
these local fields. They are consequently functions of the velocity
magnitude and orientation and must be tabulated with regards to
these two parameters.

7. Validation of the approach

We present in this section two-dimensional simulations with
the objective to validate the mathematical up-scaling procedure



developed in this paper. Reference 3D simulations will be intro-
duced in the next section.

7.1. Principle of the validation

To validate an up-scaling methodology, a common method con-
sists in a comparison between the pore-scale numerical simula-
tions of the flow over a geometry made of several representative
unit-cells and the results from the macro-scale model. In such
method, the pore-scale fields are averaged over unit-cells to form
reference macro-scale fields. Because of the pore-scale computing
cost, this method is often restricted to simple unit cell geometry
like stratified media or arrays of beads. In this section, we propose
to use another methodology to validate the upscaling process. It fo-
cuses upon the estimation of the pressure drop per unit-length it-
self ðDPL Þ as will be described later. This pressure drop can be
estimated from two different manners. The first one directly re-
sults from the simulation of the Reynolds Average Navier–Stokes
equations over a Representative Elementary Volume. Due to the
periodic feature of the REV, this pressure loss per unit-length also
corresponds to the pressure drop through the whole domain. We
will call it ‘‘direct pressure drop’’. The second one derives from the
application of the generalized Darcy–Forchheimer’s law Eq. (78)
resulting from the up-scaling analysis. In this case, we will talk
about ‘‘reconstructed pressure drop’’. This validation method itself
suggests that the closure problem equations (59)–(63) is somehow
an interpretation of the RANS simulation results. From a practical
point of view, simulations performed to validate the proposed
method are realized in two steps:

1. First, we carry out what we call a direct simulation over the REV
in order to obtain the local velocity and viscosity fields. We
impose a macroscopic pressure drop per unit length by adding
a vector source term DP

L

	 

directe0 into the momentum equation of

the turbulence model. The vector e0 determines the local fields
orientation. Direct simulations are performed using the finite
volume CFD toolbox OpenFOAM�. Gas flow is assumed to be
steady-state within the REV. Therefore, we use the SIMPLE pres-
sure–velocity coupling procedure proposed by Patankar [31] to
solve the RANS problem. We adapt the existing simpleFoam sol-
ver to integrate the pressure drop source term in the momen-
tum equation. The resulting velocity field is then volume
averaged to obtain hvcidirect .

2. In a second stage, the closure problem, as defined by Eqs. (59)–
(63), is solved from the previous velocity and viscosity fields to
evaluate K�. As for the first step, we program the equations in
the framework of the OpenFOAM� platform using a SIMPLE pro-
cedure. The inputs are the velocity and turbulent viscosity fields
computed at the first step. The output consists in the apparent
permeability tensor K� for the given micro-scale velocity field.

Finally, to validate the results, we compare the direct pressure
drop of step (1) (i.e., ðDPL Þdirecte0) with regards to the pressure drop
reconstructed from Eq. (78). Hence, the relation

DP
L

� �
direct

e0 ¼ DP
L

� �
reconstructed

e0 ¼ �lcmol
K��1 � hvcidirect
� �

ð79Þ

must be satisfied. The principle of the validation is sketched in
Fig. 2.

7.2. Turbulent flow through a straight tube

The first validation test consists in the up-scaling of a turbulent
flow through a straight tube. In 2D, the tube is assimilated to a
rectangle 1 cm thick. For this simple geometry, we define the

REV as the vertical cross-sections. Although the apparent perme-
ability is well-known and can be easily calculated in the range of
inertial flows, it is not possible to obtain analytical calculations
when turbulence is present. Consequently, even for as simple
geometries as straight tubes, numerical simulations are necessary
to account for turbulence effects. The turbulent flow is statistically
steady and oriented along the x-axis.

We use the ‘‘Standard’’ k – � model as described in Section 2 to
obtain the microscopic fields. The flow behavior in the near wall re-
gion is approximated using the standardwall functions [54].We use
the following fluid properties, qc ¼ 1 kg=m3;lcmol

¼ 10�5 kg=m=s
and we carry out calculations for pressure drops in the range
½14;70 Pa=m	, which corresponds to Reynolds numbers between
2600 and 7000.

Then, in a second time, the calculation of the closure
problem, Eqs. (59)–(63), provides the apparent permeability
tensor. As expected from the geometry shape, only the diagonal
coefficients are non-zero. Hence, we can reconstruct the pressure
drop with

DP
L

� �
reconstructed

¼ �lcmol

hvcx idirect
K�

xx
: ð80Þ

The comparison between both results is shown in Fig. 3. We can ob-
serve that the ‘‘direct’’ and ‘‘reconstructed’’ pressure drops are in
fairly good agreement, which is an argument toward the validation
of the macro-scale model proposed in this paper, as well as the
upscaling procedure.

7.3. Turbulent flow through a simple array of beads

In this section we analyze the upscaling of turbulent flows
through a two-dimensional array of beads. The equations for the
microscopic flow and the closure problem are numerically solved
inside the REV depicted in Fig. 4. With such a geometry, the poros-
ity is ec 
 0:8. Periodic boundary conditions are defined on vertical
edges and wall conditions are defined on both horizontal edges and
bead outline as depicted in Fig. 4. As previously, simulations of the
fully turbulent flow regime are performed using the k – � method
and the standard wall functions. Calculations are carried out for
Reynolds number from 104 up to 5 � 104.

Fig. 2. Principle of the validation methodology. In one hand, the local fields are
computed from numerical simulations with a pressure drop as source term. In
another hand, the apparent permeability tensor is obtained from the calculation of
the closure problem, and the pressure drop is then reconstructed using Darcy–
Forchheimer law. Both pressure loss values should match to validate the upscaling.



The apparent permeability tensor is then evaluated from the
resolution of the closure problem, Eqs. (59)–(63). As expected from
the geometry shape, the non-diagonal coefficients are zero and the
pressure drop can be reconstructed using Eq. (80). Both direct and
reconstructed pressure drops are shown in Fig. 5. As in the previous
example, they are in good agreement, so we can consider that the
methodology developed hereby to interpret turbulent local fields
in term of a generalized Darcy–Forchheimer law is validated. In
the next section, simulations will provide additional validations
for 3D geometries characteristic of structured packings.

8. Application to structured packings

In this section, we apply our methodology to structured pac-
kings used in chemical engineering reactors. These devices are
made up of an assembly of corrugated sheets where two adjacent
sheets are respectively inclined by an angle and the opposite of this
angle from the vertical axis denoted by y in all this section (see
Fig. 6). In our example, this angle is equal to 45�. The crossing
junction of two ‘‘channels’’ forms the Representative Elementary
Volume as depicted in Fig. 6. This pattern is repeated million times
within the packing. The flow through this microscopic pattern
leads to anisotropic flows at larger scales and this anisotropy must
be characterized to design enhanced materials.

According to the present theory, the macro-scale momentum
equation can be modeled by a generalized Darcy–Forchheimer
law where the superficial velocity is related to the pressure gradi-
ent through an apparent permeability tensor K�. This tensor in-
volves 9 components that depend on both the orientation and
the magnitude of the velocity field. This representation, complex
in appearance, can be simplified as described below. Indeed,
although the microscopic flow field confined between two adjacent
corrugated sheets is three dimensional, as depicted in Fig. 7, the
macroscopic flow is essentially 2D. Therefore, the macro-scale
momentum equation, for one packing element oriented in the x-
direction, reads neglecting gravity effects

hvci ¼ � 1
lcmol

K�
xx K�

xy 0
K�

yx K�
yy 0

0 0 0

0
B@

1
CA � rhpcic; ð81Þ

where y denotes the vertical axis.
Usually, distillation columns are filled with several layers of

structured packings which are alternatively rotated around the col-
umn axis by 90�relative to each other in order to improve liquid
distribution. Consequently, the next packing is oriented in the z
direction and the macroscale momentum equation becomes:

hvci ¼ � 1
lcmol

0 0 0
0 K�

yy K�
yz

0 K�
zy K�

zz

0
B@

1
CA � rhpcic: ð82Þ

Due to the packings rotation, K�
xx and K�

zz must obey the same law.
Same arguments yield in K�

xy ¼ K�
zy and K�

yx ¼ K�
yz. Therefore, the

evaluation of the apparent permeability tensor in one packing is
necessary to simulate the flow through industrial columns made
of several packings. Mahr and Mewes [22] and Raynal and Royon-
Lebeaud [43] state that the non-diagonal terms are negligible.
Moreover, Raynal and Royon-Lebeaud [43] assumes that since the
geometry of the REV does not vary if it is seen with regards to the
x- or the y-axis, then the diagonal coefficients must be equal. To
analyze these statements, we perform simulations in a large range
of mass flow rate to scan the different macro-scale flow regimes,
from the creeping flow regime to the fully turbulent flow regime:
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Fig. 5. Comparison of the pressure drops, DP
L , evaluated through the direct and the

reconstructed methodologies for the case of a simple array of beads. Both results are
in good agreement.

Fig. 4. Figure of the Representative Elementary Volume used to simulate flow in a
simple array of beads. In this geometry, D ¼ 5 mm;H ¼ 10 mm and S ¼ 15 mm. The
grid is made of 10,000 cells.
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agreement.



� We start with the creeping flow regime. From a macro-scale
point of view, it corresponds to the Darcy’s regime, i.e., the
pressure drop is strictly proportional to the superficial average
velocity,

� Then, laminar simulations are performed up to the apparition of
turbulence effects.

� Finally, the turbulent flow is simulated with the kX-SST
method.

To insure good results, especially in the investigation of the
turbulent flow regime, we had to use a very fine grid made of more
than 700,000 hexahedral cells. For the simulationswe have used the
following set of fluid properties: qc ¼ 4 kg=m3;lcmol

¼ 5 kg=m=s.

8.1. Calculation of the intrinsic permeability

We first evaluate the permeability tensor by solving the bound-
ary value problem equations (59)–(63) with vc ¼ 0 and
lcðrÞ ¼ lcmol

. From the symmetry of the REV, we clearly deduce that
the non-diagonal coefficients are zeros. This point is validated by
the simulations. Moreover, since the shape of the REV is invariant
if one examines it with regards to the x- or the y-axis, it was also ex-
pected to find that Kxx ¼ Kyy. We obtain Kxx ¼ Kyy ¼ K0 ¼ 610�7m2.
Hence, for this particular packing, the permeability tensor K is iso-
tropic in the 2D plan xOy and we have:

K ¼
K0 0 0
0 K0 0
0 0 0

0
B@

1
CA: ð83Þ

8.2. Laminar simulations

Then, we perform laminar simulations to investigate the form of
the apparent permeability tensor K� in inertial flow regimes. In
normal functioning service, the gas flows through the distillation
columns along the vertical axis. We study this configuration by
imposing a macroscopic pressure drop in the vertical axis
(e0 ¼ ey) with ðDPL Þdirect varying in the range ½0:01; 2 Pa=m	 which
corresponds to Reynolds numbers in the range ½5; 550	. The appar-
ent permeability tensor is evaluated by solving the boundary value
problem equations (59)–(63) with lcðrÞ ¼ lcmol

and vc obtained
from the flow simulations in the REV. It appears that there is a sev-
eral orders of magnitude difference between the diagonal and the
other terms. So, these latter terms can be neglected and the recon-
structed pressure drop is evaluated using

DP
L

� �
reconstructed

¼ �lcmol

hvcy idirect
K�

yy
: ð84Þ

Following the methodology introduced in Section 7 we compare the
direct and the reconstructed pressure drops. From their representa-
tions in Fig. 8 we can observe that they are in very good agreement.
This point validate the current approach for laminar flows in a
three-dimensional geometry.

Fig. 7. Plot of the local magnitude velocity field in the REV. Although the
microscopic field is 3D, the corresponding macro-scale velocity profile is essentially
2D. To investigate turbulence effects, the grid is made of more than 700,000
hexahedral cells.

Fig. 6. (a) Picture of a structured packing made of an assembly of corrugated sheets where two adjacent sheets are respectively inclined by an angle and the opposite of this
angle from the vertical axis. In the case under study, this angle is equal to 45�. (b) The Representative Elementary Volume made of the crossing junction of two adjacent
corrugated sheets. The grid is made of more than 700,000 cells to ensure good results in turbulence flow regime.



The resulting apparent permeability coefficient in the stream-
wise direction is plotted in Fig. 9 for different mass flow rates.
We notice that the permeability coefficient in the main flow direc-
tion can be correlated by

K�
yy ¼

K0

1þ cl
ffiffiffiffiffiffi
Re

p ; ð85Þ

where K0 is the permeability and cl is a dimensionless fitting coef-
ficient. It has been estimated equal to cl ¼ 0:035. This correlation is
reminiscent of Chauveteau and Thirriot [8] proposal in the case of
fully developed inertia terms. It is also in agreement with the work
by Skjetne and Auriault [46] who derived a similar law from the
homogenization of the laminar, incompressible steady flow prob-
lem also in the case of fully developed inertia but with no turbu-
lence. We may also note that the correlation proposed by
Stichlmair et al. [49] to predict dry pressure drops in structured
packings involves a correction term in

ffiffiffiffiffiffi
Re

p
, as well.

In case of malfunction of the distillation process like the flood-
ing of pores by the liquid phase, the orientation of the velocity
fields in the neighborhood of the flooding area may be highly im-
pacted. In such cases, the local velocity field is deflected from the
vertical axis. In order to study the flow orientation-dependency
of the permeability tensor K�, we have made several simulations
imposing a macroscopic pressure drop with ðDPL Þdirect ¼ 0:5 Pa=m
(which corresponds to Re 
 170) and a flow orientation

e0 ¼
cos h
sin h
0

0
@

1
A with h varying in the range ½0;P4 	. We plot in

Fig. 10 the values of the permeability coefficients K�
xx;K

�
xy;K

�
yx and

K�
yy with respect to the flow orientation angle. These results sug-

gest the following remarks: (i) the non-diagonal coefficients are
clearly negligible in comparison with the diagonal terms, (ii) the
value of the permeability coefficients is almost constant and we
can conclude that the flow orientation has no impact on the value
of K� for this particular structure, (iii) finally, we notice that the
diagonal terms are almost equal (K�

xx 
 K�
yy). Although the initial

problem seems quite complex (9 coefficients that depend on the
flow magnitude and the flow orientation), it can be simplified
and the apparent permeability tensor K� may be described by
the following simple expressions

K�ðRe; hÞ 


K0
1þcl

ffiffiffiffi
Re

p 0 0

0 K0
1þcl

ffiffiffiffi
Re

p 0

0 0 0

0
BB@

1
CCA: ð86Þ

These conclusions however are restricted to the particular case of
packings where the corrugated sheet are inclined by 45�from the
column axis. One should perform the overall investigation again
to characterize the macro-scale properties for other devices.

8.3. Turbulent simulations

To perform simulations in the turbulent regime, we choose the
kX-SST model which was found to give good results in the litera-
ture to simulate turbulent flows in structured packings
[29,45,41,18]. In these simulations, the near wall regions are trea-
ted following the blending approach by Menter and Esch [25]. The
apparent permeability tensor is evaluated by solving the boundary
value problem equations (59)–(63) with lcðrÞ and vc obtained
from the turbulent flow simulations in the REV. As previously, to
determine the full apparent permeability tensor K� in the turbu-
lent flow regime, we investigate the influence of the local fields
with regards to, (i) the flow magnitude, and (ii) the flow
orientation.

To study the first point, we perform flow simulations by impos-
ing a macroscopic pressure drop in the vertical axis (e0 ¼ ey) with
DP
L

	 

direct varying in the range ½35; 120 Pa=m	, which corresponds to

Reynolds numbers in the range ½3500; 5000	. As for the laminar
case, it appears that differences of several orders of magnitude ex-
ist between the diagonal and the other terms. So, these latter terms
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can be neglected and the reconstructed pressure drop is evaluated
using Eq. (84). We plot in Fig. 11 the direct and reconstructed pres-
sure drops we got from these simulations. Both are in very good
agreement, which is an additional validation point for the theory
introduced in the present paper. The resulting apparent permeabil-
ity coefficient in the vertical direction is plotted in Fig. 12 as a func-
tion of the Reynolds number. We note that it can be correlated by

K�
yy ¼

K1

1þ ctRe
; ð87Þ

where ct is a dimensionless fitting coefficient, and K1 has the
dimension of permeability (m2) but, as pointed out by Skjetne and
Auriault [46], it does not necessary refer to the intrinsic permeabil-
ity value. They have been estimated equal to cl ¼ 6:9 10�4 and
K1 ¼ 2:35 10�7 m2. This formulation is reminiscent of Ergun [15]
work as well as most of the empirical structured packing dry pres-
sure drop correlations [4,3,44].

In a second step, we investigate the value of the apparent per-
meability tensor with regards to the local velocity field orientation
by imposing a macroscopic pressure drop with DP

L

	 

direct ¼ 90 Pa=m

(which correspond to Re 
 4300) and a flow orientation

e0 ¼
cos h
sin h
0

0
@

1
A with h varying in the range ½0;P4 	. Once again, we

can observe in Fig. 13 that, (i) the non-diagonal coefficients are
negligible, (ii) the permeability coefficients do not strongly vary

with regards to the orientation angle, and (iii) we approximatively
have K�

xx 
 K�
yy.

Finally, to model high flow rate in structured packing, we can
use the following permeability tensor:

K�ðRe; hÞ 

K1

1þbtRe
0 0

0 K1
1þbtRe

0

0 0 0

0
BB@

1
CCA: ð88Þ

As it was indicated in the laminar case, this relation is restricted to
the particular case of structured packings with corrugated sheets
rotated by 45�with regards to the vertical axis and conclusion
may be different in other configurations.

9. Conclusions and perspectives

At this point, we have developed a macro-scale model with clo-
sure for an incompressible single phase flow in a porous medium in
the presence of turbulence. The momentum and continuity equa-
tions of a general RANS model have been volume averaged, assum-
ing that all the turbulent information is included in a variable
viscosity. The resulting macro-scale momentum balance equation
has the form of a generalized Darcy–Forchheimer law with tenso-
rial effective properties. These tensors can be evaluated through
the provided closure problem where the required inputs are the
velocity and turbulent viscosity fields that result from the
turbulent simulations. Basically, we have developed a method to
evaluate Ergun coefficients in a large range of Reynold’s number
from creeping flow to turbulent flow regimes.

The theory has been successfully validated through 2D and 3D
simulations and has been applied to the macro-scale characteriza-
tion of gas flow through columns equipped with structured pac-
kings. We have investigated the dependency of the apparent
permeability tensor with the orientation and the magnitude of
the flow in a large range of mass flow rates. In the particular case
we studied, the flow orientation seems to have a very low impact
on the permeability tensor values. The same methodology should
be used to characterize effective properties of structured packings
with a stronger anisotropic design.

References

[1] B. Antohe, J. Lage, A general two-equation macroscopic turbulence model for
incompressible flow in porous media, Int. J. Heat Mass Transfer 40 (13) (1997)
3013–3024.

6.0⋅10-8

6.5⋅10-8

7.0⋅10-8

7.5⋅10-8

8.0⋅10-8

8.5⋅10-8

9.0⋅10-8

 2400  2800  3200  3600  4000  4400  4800

pe
rm

ea
bi

lit
y 

co
ef

fic
ie

nt
 (m

2 )

Reynolds number

Kyy from simulation
Kyy from Eq (87)

Fig. 12. Plot of the apparent permeability value in the vertical direction with
regards to the mass flow rate in turbulent regime. Results may be correlated by
K�

yy ¼ K1
1þct Re.

-1e-08

 0

 1e-08

 2e-08

 3e-08

 4e-08

 5e-08

 6e-08

 7e-08

 0  5  10  15  20  25  30  35  40  45

Pe
rm

ea
bi

lit
y 

te
ns

or
 c

oe
ffi

ci
en

ts
 (m

2 )

Orientation angle

Kxx
Kxy
Kyx
Kyy

Fig. 13. Plot of the permeability coefficients value with regards to the flow
orientation. The simulations correspond to Re 
 4300. We note that (i) the non-
diagonal coefficients are negligible, (ii) the permeability coefficients do not strongly
vary with regards to the orientation angle, and (iii) we approximatively have
K�

xx 
 K�
yy.

 30

 40

 50

 60

 70

 80

 90

 100

 2400  2800  3200  3600  4000  4400  4800

lin
ea

r p
re

ss
ur

e 
dr

op
 (P

a/
m

)

Reynolds number

Fig. 11. Plot of the direct and reconstructed pressure drops in turbulent flow regime.
Both results are in good agreement which is a validation point of the present theory.



[2] J. Barrère, Modélisation des écoulements de Stokes et de Navier–Stokes en
milieu poreux (Ph.D. thesis), Université de Bordeaux 1, 1990.

[3] R. Billet, M. Schultes, Prediction of mass transfer columns with dumped and
arranged packings: updated summary of the calculation method of Billet and
Schultes, Chem. Eng. Res. Des. 77 (6) (1999) 498–504.

[4] J.L. Bravo, J.A. Rocha, J.R. Fair, Pressure drop in structured packings,
Hydrocarbon process. (1986) 65.

[5] M. Chandesris, A. D’Hueppe, B. Mathieu, D. Jamet, B. Goyeau, Direct numerical
simulation of turbulent heat transfer in a fluid-porous domain, Phys. Fluids 25
(12) (2013).

[6] M. Chandesris, D. Jamet, Derivation of jump conditions for the turbulence
model at a fluid/porous interface, Int. J. Heat Fluid Flow 30 (2) (2009) 306–318.

[7] M. Chandesris, G. Serre, P. Sagaut, A macroscopic turbulence model for flow in
porous media suited for channel, pipe and rod bundle flows, Int. J. Heat Mass
Transfer 49 (2006) 2739–2750.

[8] G. Chauveteau, C. Thirriot, Sur les pertes de charge en écoulement laminaire
dans quelques géométries simples et dans le milieu poreux, Trieste, 1965, 1–7.

[9] G. Chauveteau, C. Thirriot, Régimes d’écoulement en milieu poreux et limite de
la loi de Darcy, La Houille Blanche 2 (1967) 141–148.

[10] M.J. de Lemos, Turbulence in Porous Media: Modelling and Applications,
Pergamon, Tarrytown, 2006.

[11] M.J. de Lemos, Turbulence in Porous Media: Modelling and Applications,
second ed., Pergamon, Tarrytown, 2012.

[12] M. Drouin, O. Grégoire, O. Simonin, A consistent methodology for the
derivation and calibration of a macroscopic turbulence model for flows in
porous media, Int. J. Heat Mass Transfer 63 (0) (2013) 401–413.

[13] D.A. Edwards, M. Shapiro, P. Bar-Yoseph, M. Shapira, The influence of reynolds
number upon the apparent permeability of spatially periodic arrays of
cylinders, Phys. Fluids A: Fluid Dyn. 2 (1) (1990) 45–55.

[14] H. Ene, E. Sanchez-Palencia, Equations et phénomènes de surface pour
l’écoulement dans un modèle de milieu poreux, J. Mécanique (1975) 14.

[15] S. Ergun, Fluid flow through packed columns, Chem. Eng. Prog. 48 (2) (1952)
89–94.

[16] P. Forchheimer, Wasserbewegung durch boden, Z. Ver. Deutsch. Ing. 45 (1901)
1782–1788.

[17] D. Getachew, W. Minkowycz, J. Lage, A modified form of the k – � model for
turbulent flows of an incompressible fluid in porous media, Int. J. Heat Mass
Transfer 43 (16) (2000) 2909–2915.

[18] S.H. Hosseini, S. Shojaee, G. Ahmadi, M. Zivdar, Computational fluid dynamics
studies of dry and wet pressure drops in structured packings, J. Indus. Eng.
Chem. (0) (2012).

[19] F. Kuwahara, T. Yamane, A. Nakayama, Large eddy simulation of
turbulent flow in porous media, Int. Commun. Heat Mass Transfer 33 (2006)
411–418.

[20] D. Lasseux, A.A.A. Arani, A. Ahmadi, On the stationary macroscopic inertial
effects for one phase flow in ordered and disordered porous media, Phys.
Fluids 23 (7) (2011) 073103.

[21] B.E. Launder, B.I. Sharma, Application of the energy-dissipation model of
turbulence to the calculation of flow near a spinning disc, Lett. Heat Mass
Transfer 1 (1974) 131–137.

[22] B. Mahr, D. Mewes, CFD modelling and calculation of dynamic two-phase flow
in columns equipped with structured packing, Chem. Eng. Res. Des. 85 (8)
(2007) 1112–1122.

[23] C.M. Marle, Ecoulements Monophasiques en Milieu Poreux (1967) 1471–1509.
[24] T. Masuoka, Y. Takatsu, Turbulence model for flow through porous media, Int.

J. Heat Mass Transfer 39 (13) (1996) 2803–2809.
[25] F. Menter, T. Esch, Elements of industrial heat transfer predictions, in: COBEM

2001, 16th Brazilian Congress of Mechanical Engineering, 2001.
[26] D. Mewes, T. Loser, M. Millies, Modelling of two-phase flow in packings and

monoliths, Chem. Eng. Sci. 54 (21) (1999) 4729–4747.
[27] A. Nakayama, F. Kuwahara, A general macroscopic turbulence model

for flows in packed beds, channels, pipes, and rod bundles, J. Fluids Eng. 130
(2008).

[28] A. Nakayama, F. Kuwahara, A macroscopic turbulence model for flow in a
porous medium, J. Fluids Eng. 121 (1999) 427–433.

[29] M.K. Nikou, M. Ehsani, Turbulence models application on CFD simulation of
hydrodynamics, heat and mass transfer in a structured packing, Int. Commun.
Heat Mass Transfer 35 (9) (2008) 1211–1219.

[30] Z. Olujic, M. Jödecke, A. Shilkin, G. Schuch, B. Kaibel, Equipment improvement
trends in distillation, Chem. Eng. Process.: Process Intensification 48 (6) (2009)
1089–1104.

[31] Patankar, Numer. Heat Transf. Fluid Flow, Tay, 1980.
[32] M.H. Pedras, M.J. de Lemos, On the definition of turbulent kinetic energy for

flow in porous media, Int. Commun. Heat Mass Transfer 27 (2) (2000) 211–
220.

[33] M.H.J. Pedras, M.J.S. de Lemos, Macroscopic turbulence modeling for
incompressible flow through undeformable porous media, Int. J. Heat Mass
Transfer 44 (6) (2001) 1081–1093.

[34] C.F. Petre, F. Larachi, I. Iliuta, B.P.A. Grandjean, Pressure drop through
structured packings: breakdown into the contributing mechanisms by cfd
modeling, Chem. Eng. Sci. 58 (1) (2003) 163–177.

[35] F. Pinson, O. Grégoire, O. Simonin, k – � macro-scale modeling of turbulence
based on a two scale analysis in porous media, Int. J. Heat Fluid Flow 27 (5)
(2006) 955–966 (Special issue of the 6th International Symposium on
Engineering Turbulence Modelling and Measurements – ETMM6).

[36] B. Porterie, J.-L. Consalvi, J.-C. Loraud, F. Giroud, C. Picard, Dynamics of
wildland fires and their impact on structures, Combust. Flame 149 (3) (2007)
314–328.

[37] M. Quintard, S. Whitaker, Convection, dispersion, and interfacial transport of
contaminants: homogeneous porous media, Adv. Water Resour. 17 (4) (1994)
221–239.

[38] M. Quintard, S. Whitaker, Transport in ordered and disordered porous media I:
the cellular average and the use of weighting functions, Transp. Porous Media
14 (1994) 163–177, http://dx.doi.org/10.1007/BF00615199.

[39] M. Quintard, S. Whitaker, Transport in ordered and disordered porous media
II: generalized volume averaging, Transp. Porous Media 14 (1994) 179–206,
http://dx.doi.org/10.1007/BF00615200.

[40] M. Quintard, S. Whitaker, Transport in ordered and disordered porous media
III: closure and comparison between theory and experiment, Transp. Porous
Media 15 (1994) 31–49, http://dx.doi.org/10.1007/BF01046157.

[41] A. Rafati Saleh, S.H. Hosseini, S. Shojaee, G. Ahmadi, CFD studies of pressure
drop and increasing capacity in mellapakplus 752.y structured packing, Chem.
Eng. Technol. 34 (9) (2011) 1402–1412. <http://dx.doi.org/10.1002/
ceat.201000557>.

[42] L. Raynal, C. Boyer, J.-P. Ballaguet, Liquid holdup and pressure drop
determination in structured packing with cfd simulations, Can. J. Chem. Eng.
82 (5) (2004) 871–879.

[43] L. Raynal, A. Royon-Lebeaud, A multi-scale approach for CFD calculations of
gas–liquid flow within large size column equipped with structured packing,
Chem. Eng. Sci. 62 (24) (2007) 7196–7204 (8th International Conference on
Gas–Liquid and Gas–Liquid–Solid Reactor Engineering).

[44] J.A. Rocha, J.L. Bravo, J.R. Fair, Distillation columns containing structured
packings: a comprehensive model for their performance. 1. hydraulic models,
Ind. Eng. Chem. Res. 32 (4) (1993) 641–651.

[45] W. Said, M. Nemer, D. Clodic, Modeling of dry pressure drop for fully
developed gas flow in structured packing using CFD simulations, Chem. Eng.
Sci. 66 (10) (2011) 2107–2117.

[46] E. Skjetne, J.-L. Auriault, High-velocity laminar and turbulent flow in porous
media, Transp. Porous Media 36 (1999) 131–147, http://dx.doi.org/10.1023/
A:1006582211517.

[47] C. Soulaine. Modélisation des écoulements dans les garnissages structurés: de
l’échelle du pore à l’échelle de la colonne (Ph.D. thesis), Institut National
Polytechnique de Toulouse, 2012.

[48] L. Spiegel, W. Meier, Distillation columns with structured packings in the next
decade, Chem. Eng. Res. Des. 81 (1) (2003) 39–47 (International Conference on
Distillation and Absorption).

[49] J. Stichlmair, J.L. Bravo, J.R. Fair, General model for prediction of pressure drop
and capacity of countercurrent gas/liquid packed columns, Gas Sep. Purif. 3 (1)
(1989) 19–28.

[50] F.J. Valdès-Parada, J.A. Ochoa-Tapia, J. Alvarez-Ramirez, Validity of the
permeability Carman–Kozeny equation: a volume averaging approach, Phys.
A: Stat. Mech. Appl. 388 (6) (2009) 789–798.

[51] S. Whitaker, Flow in porous media I: a theoretical derivation of Darcy’s law,
Transp. Porous Media 1 (1986) 3–25, http://dx.doi.org/10.1007/BF01036523.

[52] S. Whitaker, The Forchheimer equation: a theoretical development, Transp.
Porous Media 25 (1996) 27–61, http://dx.doi.org/10.1007/BF00141261.

[53] S. Whitaker, The Method of Volume Averaging of Theory And Applications of
Transport in Porous Media, vol. 13, Kluwer Academic Publishers, 1999.

[54] D.C. Wilcox, Turbulence modeling for CFD, DCW Industrie, Inc, 1994.
[55] J.-C. Wodié, T. Lévy, Correction non-linéaire de la loi de Darcy, C.R. Acad. Sci.

Paris 312 (1991) 157–161.


