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Abstract 

Aedes aegypti is a known vector of Dengue, Chikungunya and Zika and the goal of this study is to propose the first mathematical 

model to describe the dynamic transmission of these three diseases. We present two preliminary models that consist of the SEIR 

model for the human populations and an SEI model for the vector to describe (a) the single transmission dynamics of dengue, 

Chikungunya or Zika, and (b) any possible coinfection between two diseases in the same population. In order to do that, we 

obtain an analytical solution of the system of 17 and 30 coupled differential equations for each model respectively, and later 

obtain the eigenvalues by analyzing the Jacobian matrix in order to begin the development of a surveillance system to prevent the 

spread of these three diseases. 
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1. Introduction 

Recently, cases of Dengue, Chikungunya and Zika have 

been confirmed in Africa, Southeast Asia, the Pacific Islands, 

the Caribbean and Latin America and unfortunately, a vaccine 

or an effective treatment is not currently available. All 

diseases were transmitted through the bite of the female 

mosquito Aedes aegypti [1, 2]. 

Zika is an emerging mosquito-borne virus genus Flavivirus 

and it was first isolated in Uganda [3] and it has been 

confirmed to exist recently in the United Kingdom, the United 

States, Southeast Asia, the Pacific Islands, and South America. 

In parallel, it has been reported that a possible coinfection 

could occur between these mosquito transmitted diseases. For 

example, Dengue and Zika occurred in two patients in New 

Caledonia [4], Dengue and Chikungunya occurred in Central 

Africa where 1567 patients tested positive for Chikungunya, 

376 for Dengue serotype 2 and 37 were coinfected with both 

viruses [5]. Just recently, it was reported that a Colombian 

patient was coinfected with all three diseases in 2016 [6]. 

It is necessary to develop surveillance systems to prevent 

the spread of these three epidemics. Up to the present time, a 

mathematical model that considers the transmission dynamics 

of a triple epidemic outbreak has not been proposed. 

We propose two mathematical models to explain the 

transmission dynamic of Dengue, Chikungunya and Zika by 

employing the SEIR/SEI models. 

2. Mathematical Model 

The models are based on the recent model proposed by Isea 

[7]. In this model, the host population (�) is subdivided into 

multiple subpopulations based on the following criteria: 

- The model assumes that a human cannot infect another 

human. 

- The model excludes the transmission of Zika from person 

to person by sexual contact because the percentage of infected 

people is very small in comparison with Chikungunya and 

Dengue patients. 

- The model only considers one subtype of Dengue. 

- The total mosquito (vector) population is denoted by � 
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and it is divided into 7 classes. The first is ���  which 

represents the mosquito population carrying the virus. The 

next four are the mosquitoes that are exposed to the Dengue, 

Chikungunya and Zika viruses. We write 

� � 	��� 	� 		�
� 	� 		��	� �		��� 	� 	
�
� 	� 	
��� 	� 	 
���    (1) 

where the prime indicates the derivative with respect to time. 

The next section will present the two models that are 

proposed in this work. 

MODEL 1 

The initial model considers that the total human population 

at time t is divided into 10 subpopulations. This model does 

not consider coinfection between Dengue and Chikungunya, 

Chikungunya and Zika, or any other possible combinations 

between them and only later, coinfection between them is 

considered.  

The susceptible population (��) that will be exposed to an 

infection by one type of virus is denoted by (ED,	 EC,	 EZ) where 

the subscript ‘D’, ‘C’ and ‘Z’ refer to Dengue, Chikungunya 

and Zika, respectively. Subsequently, the populations will 

become infected and it is denoted by (ID,	 IC,	 IZ). Finally the 

human population that recovers is indicated with (RD,	 RC,	 RZ). 
The total population (N) is given by:  

N � 	S�� � E�� � E�� � 	�� � 

� � 
�� , �
�� � �
� � ��� � ���  (2) 

where the prime indicates derivatives with respect to time t. 

The model 1 consists of a set of 17 ordinary differential 

equations: 

����� 	� 	 !� " ��# 	"	 ��$ 	!%
	
�
 	� 	%� 	
�� 	� 	%�	
��#  (3) 

�&'�� 	� 		 ��(	 	 )%* 	
�* 	" 	 !+* �  #		*,             (4) 

�-'�� 	� 	 +* 		* "	!.* �  #	
*              (5) 

�/'�� 	� 	∑ 	)	.*	
* 	" 	 �*,1*23              (6) 

��4�� 	� 	�	 " 	�� 	54$ 		!

 	� 	 
� 	� 	 
�# 	"	 �	��     (7) 

�&4'�� 	� 	 �� 	54$ 	
* 	" 	!+� �  �#		�*           (8) 

�-4'�� 	� 	 +�		�* 	" 	 !.� �  �#	
�*            (9) 

where 6  = 1, 2, 3 which represent ‘D’, ‘C’ and ‘Z’, 

respectively. We assumed that the birth and the death rates are 

equal and are denoted by  ; (.
 , 	.� , 	.� # are the mean 

infectious periods; (+
, +� , 	+�) are the mean latent periods; 

and (%
 , 	%� , 	%�) are the transmission parameters of Dengue, 

Chikungunya and Zika, respectively. 

MODEL 2 

This model only considers that one person will be infected 

by one disease and be later coinfected by the other diseases. 

Suppose that one is initially exposed to Dengue !	
# and 

eventually becomes infected with this disease !

 	#	 and can 

or cannot recover !�
#. Later, this same individual is exposed 

to Chickungunya or Zika, and we represent it with two 

subindices: DC or DZ that represents that it was exposed to 

Dengue and Chikungunya, or Dengue and Zika, respectively. 

Figure 1 shows the SEIR model of population employed in 

this work. 

 

Figure 1. The compartmental diagram of the host population employed in the 

Model 2. 

Therefore the differential equations of Model 2 are 30 

equations (see equations 10 until 19): 

����� 	� 	 	!� " ��# 	"	��$ 	!%�
 	
�
 	� %�� 	
�� 	� %��	
��# (10) 

�&'�� 	� 		 ��( 	 )%�* 	
�* 	" 	 !+* �  #		*,            (11) 

�-'�� 	� 	 +* 		* 	" 	!.* �  #	
*            (12) 

�/'�� 	� 	 .* 	
* 	" 		 �* 	" 	/'$ 	∑ 	%�* 	
�*172378*          (13) 

�&'9�� 		� 	�* 549$ 	
�7 	" 	:+7 �  ;		*7            (14) 

�-'9�� 	� 	+7 		*7	 "	:.7 �  ;	
*7              (15) 

�<	�� �	∑ 	.* 	
7* 	1=23=8> " 	 	�              (16) 

��4�� 	� 	�	 " 	�� 	54$ 	!

 � 
� � 
�# 	" 	 �	��     (17) 

�&4'�� 	� 	�� 	54$ 	
* 	" 	!	+� �  �	#		�*          (18) 

�-4'�� 	� 	 )	+�	�* 	" 	 !.� �  �#	
�*,         (19) 

where 6  = 1, 2, 3 which represent ‘D’, ‘C’ and ‘Z’, 

respectively. The term 	*7  corresponds to the following terms 	
� , 		
� , 	�
 , 	�� , 	�� , 		�
;  while 
*7  corresponds to 

� , 	

� , 	
�
 , 	
�� , 	
�� , 
�
. 

3. Results 

The epidemiologically relevant bioregion that is 

symbolized with Ω [7, 8] is given by  

Model 1: 



 American Journal of Modern Physics and Application 2016; 3(2): 11-15 13 

 

Ω3 � !��� , 	
� , 	�� , 	�� , 

� , 
�� , 
�� , �
� , ��� , ��� , 	��� , 	�
� , 		��� , 	��� , 
�
� , 
��� , 
��� #       (20) 

Model 2: 

ΩA � !��� , 	
� , 	�� , 	�� , 

� , 
�� , 
�� , �
� , ��� , ��� , 	
�� , 	
�� , 	�
� , 	��� , 	�
� , 	��� , 

�� , 

�� , 
�
� , 
��� , 
�
� , 
��� , 	�� , 	��� , 	�
� , 	��� , 	��� , 
�
� , 
��� , 
��� #        (21) 

The solution of this system of equations uses the same 

methodology as explained in Isea [7], Janreug and 

Chrrivirigasit [8], and employed previously [9-11]. We show 

the results for each model. 

Model 1: 

We obtain a critical point of the system of equations (3-9): 

�� 	� 	 B	$BC�D                 (22) 

	
 	� 	 B	5E	-4E!BCFE#	!�DCB#               (23) 

	� 	� 	 B	5G	-4G!BCFH#	!�DCB#               (24) 

	� 	� 	 B	5I	-4I!BCFI#	!�DCB#               (25) 



 	� 	 5E	B	FE	-4E�D!3CB#	)FE!JECB#CBJECBK,          (26) 


� 	� 	 5H	B	FH	-4H�D!3CB#	)FH!JHCB#CBJHCBK,         (27) 


� 	� 	 5I	B	FI	-4I�D!3CB#	)FI!JICB#CBJICBK,              (28) 

�� 	� 	L	$�K                  (29) 

	�
 	� 	L	54E	-E$	�K	�M                 (30) 

	�� 	� 	L	54H	-H$	�K	�M                  (31) 

	�� 	� 	L	54I	-I$�K�M                 (32) 


�
 	� 	LF4	54	-E�K	�MK                 (33) 


�� 	� 	L	F4	54	-H�K	�MK                (34) 


�� 	� 	L	F4	54	-I�K	�MK                (35) 

where the constants are: 

N3 	≡ 	 	�	 � 	%
	
�
 	� %� 	
��	 � %�	
�� 

NA 	≡ 	 �	�	 � 	%�	!

 � 
� � 
�# N1 	≡ 	 +� "  � 

The next step is to obtain the Jacobian matrix denoted by J 

(equation 36), ie. the partial derivative of the differential 

equations evaluated at the critical point. The elements of the 

Jacobian are: 

P	 � 		Q P3,3 ⋯ P3,3S⋮ ⋮ ⋮P3S,3 … P3S,3SV              (36) 

The non-zero elements are: 

P3,3 	� 	" 3$ 	!%�
 	
�
 � %�� 	
�� � %��	
��# "  ; 

PA,3 	� 	54E-4E( ; PA,A 	� 	"σ� " μ; P1,3 	� 	54H-4H( ; 

P1,1 	� 	"σ� " μ; PY,3 	� 	54I-4I( ; PY,Y 	� 	"σZ " μ; 

P[,A 	� 	"σ�; P[,[ 	� "σ� " μ; P\,1 	� 	"σ�; 

P\,\ 	� 	"σ� " μ; 

PS,Y 	� 	"σZ; PS,S 	� 	"σZ " μ;  P],[ 	� 	 γ�; P_,\ 	� 	 γ�; 

P],] 	� 	 P_,_ 	� 	 P3`,3`	 �	"μ;	P3`,S 	� 	γZ; P3A,33 	� 	 a-E( ; 

P33,33 	� 	" 5$ 	!

 � 
� � 
�# "  �; P31,33	 �	 a-H( ; 

P3Y,33 	� 	 a-I( ; P3A,3A	 � 	P31,31 	� 	 P3Y,3Y 	� 	"σb " μb; 

P3[,3A 	� 	 P3\,31 	� 	 P3S,3Y 	� 	 .�; 

P3[,3[ 	� 	 P3\,3\	 � 	P3S,3S 	� 	"γb " μb; 

The determinant of Jacobian matrix is equal to: 

" 1	!" � " .�#1	!"+� "  �#1	!".� "  #	!".
 "  # 
!".� "  #	!"+� "  #	!"+
 "  #	!"+� "  # 
c"	%�
 	
�
N 	−	%��	
��N 	−	%��	
��N 	− 	 d 

c	−	β	

 	N −	β	
�N 	−	β	
�N 	−	 �d 

Finally, we obtained the eigenvalues this by examining the 

Jacobian evaluated at the critical point. We obtain:  

	−+� −  ;	−+f 	− 	 ;		−+g − 	 ;	 
.� − 	 ;	.f −  ;	.g −   

the solution is stable when this eigenvalues are negative, and 

for this reason, we find that .� <  , .f <   and .g <  , 

Model 2: 

We seek a one nontrivial point of equilibrium of the 

system of equations and find: 

�� 	= 	 B$BCi                 (37) 

	
 	= 	 B	54E	-4E
(BCFE)	(iCB)	C	BK            (38) 

	� 	= 	 B	54H	-4H
(BCFH)	(iCB)	C	BK            (39) 

	� 	= 	 B	54I	-4I
	(BCFj)	(iCB)	C	BK            (40) 
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 	� 	 54E	B	FE	-4E!FECB#	!iCB#	!JECB#            (41) 


� 	� 	 54H	B	FH	-4H!FHCB#	!iCB#	!JHCB#            (42) 


� 	� 	 54I	B	FI	-4I!FICB#	!iCB#	!JICB#             (43) 

�
 	� 	 B	$	54E	-4E		!54H-4HC54I-4I#	!iCAB#Ck!54E-4ECk(#       (44) 

�� 	� 	 B	$	54H	-4H	lm	nm!54E-4EC54I-4I#	!iCAB#Ck!54H-4HCk(#        (45) 

�� 	� 	 B	$	54I	-4I	lj	nj!54H-4HC54E-4E#	!iCAB#Ck!54I-4ICk(#       (46) 

	
�	 �	 B	54E	-4E	54H	-4H	JE	FE!54H-4HC54I-4I#	!iCAB#Ck!54E-4ECk(#      (47) 

	
� 	� 	 B	54E	-4E	54I	-4I	lo	np!54H-4HC54I-4I#	!iCAB#Ck!54E-4ECk(#       (48) 

	�
 	� 	 B	54H	-4H	54E	-4E	lm	nq!54E-4EC54I-4I#	!iCAB#Ck!54H-4HCk(#       (49) 

	�� 	� 	 B	54H	-4H	54I	-4I	lmnq!54E-4EC54I-4I#	!iCAB#Ck!54H-4HCk(#        (50) 

	�� 	� 	 B	54I	-4I	54H	-4H	lj	nr!54E-4EC54H-4H#	!iCAB#Ck!54I-4ICk(#        (51) 

	�
 	� 	 B	54I	-4I	54E	-4E	lj	nr!54E-4EC54H-4H#	!iCAB#Ck!54I-4ICk(#          (52) 



� 	� 	 B	54E	-4E	54H	-4H	JE	FE	FH!54H-4HC54I-4I#	!iCAB#Ck!54E-4ECk(#             (53) 



� 	� 	 B	54E	-4E	54I	-4I	lo	np	FI!54H-4HC54I-4I#	!iCAB#Ck!54E-4ECk(#        (54) 


�
 	� 	 B	54H	-4H	54E	-4E	lm	nq	FE!54E-4EC54I-4I#	!iCAB#Ck!54H-4HCk(#         (55) 


�� 	� 	 B	54H	-4H	54I	-4I	lm	nq	FI!54E-4EC54I-4I#	!iCAB#Ck!54H-4HCk(#          (56) 


�� 	� 	 B	54I	-4I	54H	-4H	lj	nr	FH!54E-4EC54H-4H#	!iCAB#Ck!54I-4ICk(#          (57) 


�
 	� 	 B	54I	-4I	54E	-4E	lj	nr	FE!54E-4EC54H-4H#	!iCAB#Ck!54I-4ICk(#         (58) 

�� 	� 	 LsCk                 (59) 

	�* 	� 	∑ 	 L	54	-'$	!J4Ckt#	!sCB4#	1	=23             (60) 


�* 	� 	∑ 	 L	F4	54	-'(	!uCB4#	!J4Ckt#	!F4CB4#1=23         (61) 

where 6 correspond to 1 until 3 for Dengue, Chikungunya and 

Zika, respectively; and we defined the following variables: 

vw	 ≡	 	54E	-4E$ ; vN		 ≡ 	54H	-4H$ ; vx	 ≡ 	54I	-4I$ ; 

y	 ≡ 	vN � vw � vx 

A	 ≡ 	%�N 	!
� � 

 � 
�# 
Similarly with the Model 1, they are 63 nonzero elements of 

Jacobian matrix, but only show the first 32: 

P3,3 	= 	− 3
$ 	(%�

�
 � %��
�� � %��
��) −  ; 

PA,3 	= 	54E-4E( ; PA,A 	= −σ� − μ; P1,3 	= 	54H-4H( ; 

P1,1 	= 	 P33,33 =	−σ� − μ; PY,3 	= 	54I-4I( ; 

PY,Y 	= 	 P3A,3A =	−σZ − μ; 

P[,A 	= 	−σ�; P[,[ 	= 	 P31,31 = −σ� − μ; P\,1 	= 	−σ�; 

P\,\ 	= 	−σ� − μ; 

PS,Y 	= 	−σZ; PS,S 	= 	−σZ − μ; 	P],[ 	= 	 γ�; P_,\ 	= 	 γ�; 

P],] 	= 	− 3
$ 	(%��
�� � %��
��) −  ; P3`,S 	= 	 γZ; 

P_,_ 	= 	− 3
$ 	(%�

�
 � %��
��) −  ; 

P3`,3` 	= 	− 3
$ 	(%�

�
 � %��
��) −  ; 

P3`,S 	= 	γZ; P33,] 	= 	 a	-4H( ;	P3A,] 	= 	 a	-4I( ; P3A,] 	= 	 a	-4E( ; 

P33,33 	= 	− 5	
$ (

 � 
� � 
�) 	−  �; P31,33	 =	 a-H( ; 

P3Y,33 	= 	 a-I( ; P3A,3A 	= 	 P31,31 	= 	 P3Y,3Y 	= 	−σb − μb; 

For this model, it is complicated to obtain the eigenvalues 

and it is necessary to dedicate more time for a complete 

understanding. In addition, the most critical value in the 

epidemic model is obtaining the Basic Reproduction Value 

(R0), but this result is difficult to perform and will be analyzed 

in the future.  

However, it is possible to resolve numerically the equations 

in the Model 1 using the Python program (see Figure 2), where 

we have employed an arbitrary choice for the parameters. For 

this example, we have assumed 3 cases of Dengue, 4 of 

Chikungunya and 1 for Zika. 

 

Figure 2. Numerical solution of the Model 1 presented with 3 cases of Dengue, 

4 Chikungunya (asterisk) and 1 for Zika 1 versus time. The parameters were 

selected randomly. 
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4. Conclusion 

We have developed a preliminary model for the 

transmission dynamics of a triple epidemic outbreak 

employing the SEIR-SEI model. The initial models reveal that 

the critical points are not trivial to obtain and it is necessary to 

expand in this subject in the future, but we believe that these 

equations may initiate such a study. This model is the first 

development to help to prevent outbreaks from these 

epidemics, and the next step in the future is to determine the 

basic reproductive number R0 which is the number of 

secondary cases which one case would produce in a complete 

susceptible population, and adjust the parameters of the 

mathematical model with the cases reported by country. 
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