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Abstract

In the context of architected materials, it has been observed that
both long-wavelength instabilities leading possibly to localization and
short-wavelength commensurate to cell-size instabilities leading to the
apparition of a deformation pattern could occur. This work compares
the ability of two families of higher order equivalent media, namely
strain-gradient and micromorphic media, to capture both mesoscale cell-
commensurate and long-wavelength macroscopic instabilities in those
materials. The studied architected material consists in a very simple
one-dimensional arrangement of non-linear springs, thus allowing for
analytical or nearly analytical treatment of the problem, dismissing
any uncertainties or imprecisions coming from a numerical method. A
numerical solving of the problem is then used to compare the post-
buckling predictiion of both models. The study concludes that, even
on a very simple case, it is impossible for a strain-gradient Taylor-
series expansion type of homogenization method to capture the cell-
commensurate instabilities while the micromorphic medium can capture
both instabilities but fails to converge properly in the post-buckling
regime when localization appears. Micromorphic media are thus the
family of equivalent continuum model that are to prefer when deal-
ing with the possibility of patterning inside a structured medium, but
if localization is to consider, it would be interesting to combine both
strategies into a micromorphic, gradient enhanced equivalent medium.
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1 Introduction

Due to their interesting and sometimes even exotic mechanical properties,
architected materials are more and more studied nowadays. As defined in [1–3],
architected materials consists in an arrangement of material on at least three
length scales : the microscopic scale, describing the constitutive material(s)
composition, the macroscopic scale, describing the structure composed by the
architectured material and the mesoscopic scale(s) describing the constitutive
material(s) arrangement in space (see. Fig.1).

(a) conventional material (b) architected material

Fig. 1: Difference in scale separation in conventional materials and architec-
tured materials. (a) In conventional materials, there are two distinct scales: the
macroscopic scale and the microscopic scale, (b) In architectured materials,
there are three distinct scales: like in classical materials there are macroscopic
and microscopic scales but a third, intermediate ”mesoscopic” scale exists of
the order of the material’s Representative Volume Element size.

The behavior of such materials when submitted to compressive loading has
been extensively studied and experiments have led to the conclusion that, when
architected materials have a periodic mesoscale arrangement, meaning that
they are composed of periodic unit cells, two types of instabilities can occur
in those materials : (i) long-wavelength instabilities, that take place at the
macroscopic scale and can lead to either global buckling or localization and (ii)
short-wavelength ”cell-commensurate” instabilities that creates a deformation
pattern at the mesoscopic scale. These two types of instabilities are illustrated
on Fig.2 alongside with a localized deformation. Localization can happen after
a long-wavelength instability and in the case presented in Fig.2.c, a shortwave-
length instability appeared first, followed by a long-wavelength instability that
lead to a localization as explained in [4].

When dealing with architected materials, it is common to have a scale
separation between all scales, meaning that the number of mesoscopic cells
in the whole structure can be large. As a consequence, the computation of
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(a) macroscopic buckling (b) mesoscopic buckling (c) localization

Fig. 2: Various types of instabilities observed in architectured materials. (a)
and (b) from [5] and (c) from [6]

the non-linear behavior of these structures when submitted to compressive
loadings can lead to excessively large amount of time if all the mesoscopic
cells have to be taken into account. It is thus quite common to try to build an
equivalent continuum medium to the architected material, able to capture its
essential behaviors, in order to reduce the computation time. Additionally, in
the context of designing the mesoscopic geometry of the unit cell, optimisation
procedures based on homogenization and deshomogenization techniques have
been proven recently very efficient. Finally, as presented in the coming para-
graph, it has been shown that generalized media are to consider if one wants
to capture instabilities in architected materials. Before reviewing the scientific
literature on the generalized media for short and long-wavelength instabilities,
it can be useful to present the two main families of generalized media.

A scheme from [7] and reproduced in Fig.3 presents the two families that
stem from a classical Cauchy medium when trying to generalize the kinematics.
From the left to the right, rotation then stretch are added to the kinemat-
ics. For higher-order continua these extensions are independent DOF, while
for higher-grade continua they are controlled by higher-order gradients of the
displacement field. For the sake of simplicity, in the remainder of this arti-
cle, higher-order media will be referred to as ”micromorphic” media whereas
higher-grade will be named ”strain-gradient”.

In the context of instabilities appearing in periodic architected materials,
pioneer article by [8] studied the ability of a strain-gradient model to capture
long wavelength instabilities and localization appearing in a periodic arrange-
ment of one-dimensional springs. This model, built by a Taylor expansion
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Fig. 3: Basic extensions of a classical continuum. From [7].

of the mesoscopic displacement, appeared to be perfectly able to capture
the macroscopic long-wavelength instability and the subsequent localization
phenomenon that appeared. No mention of the possible short-wavelength
buckling was made in this article. In [9], authors propose a quasi-continuum
model based also on strain-gradient in order to capture both long and
short wavelength instabilities appearing in a periodic arrangement of atoms
linked by non-linear interatomic potentials. The conclusion is that the quasi-
continuum media can capture some sort of short-wavelength instability but
it appears that the buckling threshold is not appropriately captured by the
model. Finally, attention on short wavelength instabilities has recently grown,
because of their possible application for creating band gaps when propagat-
ing elastic waves. [10] have recently proposed a micromorphic computational
homogenization procedure to capture patterning, meaning short-wavelength
instabilities.

Based on the observation that, in architected materials, both short and
long-wavelength instabilities can occur, and that both micromorphic and
strain-gradient media have been proposed in the litterature to capture such
behaviors, it is of interest in this study to compare the ability of these two types
of generalized media to capture each type of instability on a very simple prob-
lem. As a consequence, the example of a periodic arrangement of non-linear
springs, as presented in Fig.4 below has been proposed.

2 Discrete system

2.1 Setting

Consider a one-dimensional structure composed of initially equally spaced
nodes connected by non-linear elastic springs, campled at one end and sub-
mitted to an end displacement or force at the other end. The node spacing is
denoted by b and the total length of the structure is L = Nb where N >> 1.
The structure thus has a total number of N + 1 nodes. A typical node n is
connected to its adjacent nodes m with possibility to connect to nodes further
than the immediate neighboring node as displayed in Fig.4 where a connection
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L = Nb

b b

0 1 i− 1 i i+ 1 N − 1 N

K1 K1 K1 K1 K1 K1 K1

K2 K2 K2 K2

K2 K2 K2 K2

Fig. 4: 1D arrangement of non-linear springs with connection to next-
to-neighbour node, displaying both cell-commensurate and long-wavelength
instabilities. Black and red springs have different internal energies represented
by the letter K indexed by a number.

to the next-to-neighbor node is presented. As such, an integer q indicates the
maximum number of neighboring nodes to which each node is connected on
each side. The strain ϵp in a spring of length pb (1 ≤ p ≤ q) attached to node
n is given by Equation 1:

ϵp+n =
un+p − un

pb
or ϵp−n =

un − un−p

pb
. (1)

The stored energy density in a spring of length pb is wp(ϵ
p). The stored energy

density of the discrete structure, denoted W , equals half of the energy of all
springs connected to an interior node n divided by nodal spacing b, as presented
in Equation 2:

W =
1

2b

n=N∑
n=0

q∑
p=1

p
[
wp(ϵ

n+
p ) + wp(ϵ

n−
p )

]
. (2)

The total energy of the system is then defined by:

E = W − 1

Nb
FuN , (3)

where F is the force exerted at the end node N necessary to induce the
displacement uN .

The discrete system is considered to be at equilibrium when the derivative
of this energy with respect to the displacement of node n is null for all nodes n
inside the system. This condition give rises to the following system of difference
equation :

∂W

∂un
= 0 ∀n ∈ [0, N − 1] ;

∂W

∂uN
=

F

Nb
. (4)
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A solution of the system of equilibrium equations Equation 4 is called an

equilibrium state and noted
r
u. In order to access stability of this equilibrium

state, perturbations δun are introduced and the positive definiteness of the
quadratic part of the energy expansion is studied:

∂2W

∂un∂um

∣∣∣∣r
u

δum > 0? (5)

The system is said to be stable whenever Equation 5 is true and unstable
otherwise.

Following recommendations of [9], we will study, in this paper, only the
case q = 2 depicted in Fig.4. As for the non-linear stored energy per unit
length for one spring, it will be taken equal to the one proposed in the Type
A model of [8]:

wp(ϵ) =
1

2
Kpϵ

2 − 1

4
Mpϵ

4 +
1

6
Npϵ

6, (6)

where Kp, Mp and Np are stiffness-like coefficients for the spring and are then
considered to be positive intrinsic constants. One recognizes, in the quadratic
term, the usual stored energy function for linear springs wp(ϵ) =

1
2Kpϵ

2. Thus
Kp has to be positive in order to ensure realistic springs.

2.2 Stability Analysis

The discrete system, in the case q = 2 and using the stored energy function
presented in Equation 6, presents an equilibrium equation for a given inner
node n of the form:

0 = b4K1 ((un − un+1)− (un−1 − un))− b2M1

(
(un − un+1)

3 − (un−1 − un)
3
)

+N1

(
(un − un+1)

5 − (un−1 − un)
5
)

+
1

32

[
16b4K2 ((un − un+2)− (un−2 − un)) − 4b2M2

(
(un − un+2)

3 − (un−2 − un)
3
)

+N2

(
(un − un+2)

5 − (un−2 − un)
5
)]

.
(7)

A trivial solution to this equation is given by un = un+p ∀n ∈ [0, N ] ∀ −
q ≤ p ≤ q, leading to a uniform displacement of all the nodes corresponding
to a global translation that is of no interest for this study.

Another solution would be un − un+1 = un−1 − un & un − un+2 =
un−2 − un ∀n ∈ [0, N ] which corresponds to uniform strain ϵn+p = ϵn−p =
0
ϵ ∀n ∈ [0, N ] ∀ − q ≤ p ≤ q of the discrete system. This solution will be

named principal solution and further noted
0
u. Of interest in this study will

be the stability of this principal solution
0
u.
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Following the methodology proposed in [4, 11, 12], we will use the Bloch-
waves (also termed the phonon or Floquet method) to study stability of the
principal solution. This method consists in perturbing the studied solution
by plane-waves such that the perturbation of node n + p is related to the
perturbation of node n by Equation 8:

δun+p = δun(k)e
2iπkpb, (8)

where k is the normalized spatial wavenumber corresponding to the imposed
plane-wave.

Given that q = 2, the only non-zero terms in the quadratic part of the

energy expansion ∂2W
∂un∂um

∣∣∣0
u
δum are defined by n−q ≤ m ≤ n+q. For the sake

of simplicity, these terms will be noted Cn,m = ∂2W
∂un∂um

∣∣∣0
u
and can be directly

computed as:

Cn,n = 1
b2

[
2(K1 − 3M1

0
ϵ2 + 5N1

0
ϵ4) +K2 − 3M2

0
ϵ2 + 5N2

0
ϵ4
]

Cn,n−1 = −1
b2 (K1 − 3M1

0
ϵ2 + 5N1

0
ϵ4) = Cn,n+1

Cn,n−2 = −1
2b2 (K2 − 3M2

0
ϵ2 + 5N2

0
ϵ4) = Cn,n+2.

(9)

We are then left with determining the conditions for Equation 10 to be
satisfied, in order to ensure stability of the principal solution.

Cn,n−2e
−4iπkb+Cn,n+2e

4iπkb+Cn,n−1e
−2iπkb+Cn,n+1e

2iπkb+Cn,n > 0. (10)

Using expressions for Cn,m terms defined in Equation 9 and semi-angle
formulæ, Equation 10 simplifies to:

sin2(πkb)
[
K1 − 3M1

0
ϵ2 + 5N1

0
ϵ4 + (1 + cos(2πkb))(K2 − 3M2

0
ϵ2 + 5N2

0
ϵ4)

]
> 0

⇔ sin2(πkb)
[
g1(

0
ϵ) + (1 + cos(2πkb))g2(

0
ϵ)
]
> 0,

(11)
where g1 and g2 functions, defined as gi(ϵ) = Ki − 3Miϵ

2 + 5Niϵ
4 i = 1, 2 ,

have been introduced to further simplify the expressions.
This latter expression resembles the one presented in Equation 7 of [9] as it
presents a quadratic term of sin.

By studying stability condition presented in Equation 11, it appears that the
only unstable wavelengths are:

• the short-wavelength instability associated with wavelength k = 1
2b corre-

sponding to a periodic instability at the scale of two springs of length b.
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This instability will appear at global strain
0
ϵ solution of g1(

0
ϵ) = 01. This

instability was nammed ”commensurate” in [9] ;
• the long-wavelength instability corresponding to the case of k → 0 (acoustic

branch) appearing when the global strain
0
ϵ is such that g1(

0
ϵ) + 2g2(

0
ϵ) = 0.

There is then three possible stability regimes depending on the respec-
tive values of the stiffness parameters. The conditions for these regimes
to appear are presented below. They depend on four conditions. The
negation of a condition will be noted with an overline, for instance
cond 0 : K1 > 0 ⇒ cond 0 : K1 ≤ 0.

• conditions for a stable path for all imposed global strains:

M1 <
2

3

√
5K1N1︸ ︷︷ ︸

cond 1

& M2 <
−M1

2
+

√
5

3

√
(K1 + 2K2)(N1 + 2N2)︸ ︷︷ ︸

cond 2

For instance, choosing K1 = K2 = N1 = N2 = 1, cond 1 imposes M1 <
2
√
5

3 ≈ 1.49. Picking M1 = 1, cond 2 leads to M2 < −1
2 +

√
5 ≈ 1.736, for

example M2 = 1.6. The loading path corresponding to this choice of stiffness
parameters is plotted in plain blue line in Figure 5.

• conditions for a short-wavelength instability to appear first:

M1 ≥ 2

3

√
5K1N1︸ ︷︷ ︸

cond 1

& 6M2 +
|K2N1 −K1N2|

K1N1

√
9M2

1 − 20K1N1 < 3M1

(
K2

K1
+

N2

N1

)
︸ ︷︷ ︸

cond 3

For instance, choosing K1 = K2 = N1 = N2 = 1, cond 1 implies

M1 > 2
√
5

3 ≈ 1.49. Picking M1 = 2, cond 3 leads to M2 < M1 = 2 ; for
example M2 = 1. The loading path corresponding to this choice of stiffness
parameters is plotted in plain orange line in Figure 5.

• conditions for a long-wavelength instability appearing first along the princi-
pal path:

M1 ≤ 2

3
(K2N1 +K1(N1 +N2))

√
5

(K1 + 2K2)(N1 + 2N2)︸ ︷︷ ︸
cond 4

& cond 2

or

cond 4 & cond 3

For instance, choosing K1 = K2 = N1 = N2 = 1, cond 4 implies M1 ≤
2
√
5

3 ≈ 1.49. Picking M1 = −1, cond 2 leads to M2 ≥ −1
2 +

√
5 ≈ 2.736 ; for

1corresponding to
0
ϵ2 =

3M1
10N1

± 1
10

√
9M2

1−20K1N1

N2
1

with K1 <
9M2

1
20N1
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example M2 = 3. The loading path corresponding to this choice of stiffness
parameters is plotted in plain green line in Figure 5.

Additionally, the two previously described instabilities can appear simultane-

ously whenever g1(
0
ϵ) = g2(

0
ϵ).

In order to be realistic, the structure has to be stable under null applied
strain for all wavelength thus leading to the conditions K1+2K2 > 0 & K1 > 0
which are both automatically satisfied when K1 and K2 are taken to be
positive, as requested in the problem setting section.

Using g1 and g2, a stability diagram can be established in the plane of
these two ”parameters”. Then, since these parameters are actually functions
that depends on the global applied strain ϵ, the loading path followed by
these functions as ϵ evolves can be plotted. On Figure 5, the stable region
is represented in blue with orange and green borders corresponding to short
and long-wavelength instability criteria, respectively. This graph also presents
examples of loading paths leading to long-wavelength instability (green), short-
wavelength instability (orange) or no instability (blue). All these path start in
the stable region and evolve to cross either the orange or the green border. If
no border is crossed, the path remains stable. The parameters chosen for these
paths make them cross the border twice so that they recover stability after a
trip in the unstable regime2 ; this feature is not compulsory and it is possible
to design systems that would remain unstable all along.

-2 -1 0 1 2 3
-2

-1

0

1

2

3

g1

g2

stable

Macro

commensurate

stable

Fig. 5: Stability diagram for the discrete model with q = 2. Region of stability
is shown in blue. Orange and green borders to this blue stability region cor-
respond to criteria for short and long-wavelength instabilities, respectively. In
plain colored lines with arrows are plotted examples of loading paths leading
to long-wavelength instability (green), short-wavelength instability (orange)
and no instability (blue). Parameters for these paths are stated in the text.

2The return of stability appears for the green path out of the bounds of the graph that has
been zoomed on the zone of interest
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3 Homogenization

Of interest in this study is the comparison of the micromorphic-type and the
strain-gradient-type homogenization strategies in their ability to capture short
and long-wavelength instabilities of non-linear spring assemblies. This section
details the derivation of both equivalent continuum energies.

3.1 Strain-gradient equivalent medium

This part follows the strain-gradient energy derivation proposed in [8].

The strain-gradient homogenization strategy is based on a Taylor series
expansion of the displacement continuous function u(x) that is assumed to
coincide with all equilibrium discrete displacements un at nodal points xn = nb
corresponding to node n. As such, using Equation 1, the strains ϵp+n and ϵp−n
in all the non-linear springs affecting node n equilibrium can be expressed as

in Equation 12 where the following simplified notation is used u,x = du(x)
dx :

ϵp+n =
un+p−un

pb = u,x + 1
2pbu,xx + 1

6 (pb)
2u,xxx + ...

ϵp−n =
un−un−p

pb = u,x − 1
2pbu,xx + 1

6 (pb)
2u,xxx − ...

(12)

Introducing this decomposition into the stored energy density of the
discrete structure Equation 2 , one gets the following expression for the strain-
gradient stored energy, where the discrete sum is naturally replaced by an
integral over the length L = Nb of the system:

W s(u,x) =

∫ L

0

w1(u,x)+2w2(u,x)−
b2

24

[
(w”1(u,x) + 8w”2(u,x)) (u,xx)

2
]
+O(b4)dx

(13)
Thus, using the Type A stored energy function Equation 6, the homogenized
strain-gradient macroscopic energy density is then:

W s(E) =

∫ L

0

E2K1 + 2K2

2
− E4M1 + 2M2

4
+ E6N1 + 2N2

6︸ ︷︷ ︸
E(E)

+ (∇E)2
b2

2

1

12

[
−(K1 + 8K2) + 3(M1 + 8M2)E

2 − 5(N1 + 8N2)E
4
]

︸ ︷︷ ︸
h(E)

dx.

(14)

The equilibrium equation corresponding to this stored energy is found by
extremizing it over all admissible displacements δu: W,u δu = 0. This leads,
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using Euler-Lagrange equations, to Equation 15:

E ′(E)− b2
(
∆E h(E) +

(∇E)2

2
h′(E)

)
= F, (15)

where F is the external applied force exerted at the end of the structure.

A trivial solution to this equation is E =
0

E where
0

E is a constant. This
corresponds to the principal path of our discrete problem.

In order to study the stability of this principal equilibrium state, one
must examine the positive definiteness of the second Frechet derivative of
the homogenized strain-gradient macroscopic energy regarding all admissible
displacement δu and evaluated along the principal path:

(W s,uu (
0
u,∆)δu)δu = E”(

0

E)(δu,x )
2 − b2h(

0

E(δu,xx )
2. (16)

On can use, without loss of generality, the following admissible functions
satisfying the admissible to zero boundary conditions δu(0) = δu(L) = 0:

δu(x) =

√
2

L

∞∑
k=1

δun sin

(
kπx

L

)
. (17)

This yields the stability condition:

∞∑
k=1

[
E”(

0

E) + b2
(
kπ

L

)2

h(
0

E)

](nπ
L

δu
)2

> 0. (18)

As explained in [8], this stability condition is satisfied as long as E”(
0

E) +

b2
(
kπ
L

)2
h(

0

E) > 0. Using the Type A stored energy function Equation 6,

and noting ℓ = b
L the non-dimensional length appearing in this problem, the

stability condition takes the following form:

(K1 + 2K2)− 3(M1 + 2M2)E
2 + 5(N1 + 2N2)E

4)

+
(ℓkπ)2

12

[
−(K1 + 8K2) + 3(M1 + 8M2)E

2 − 5(N1 + 8N2)E
4
]
> 0 (19)

Critical points correspond to Equation 19 equal to zero, they will thus depend
on the value of non-dimensional length parameter ℓ and integer k. The first
condition arising when studying instability corresponds to the long-wavelength
condition: K1 − 3M1E

2 + 5N1E
4 + 2(K2 − 3M2E

2 + 5N2E
4)︸ ︷︷ ︸

g1(E)+2g2(E)

= 0, second
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condition corresponds to k = −
√
3

ℓπ & K1 − 3E2M1 + 5E4N1︸ ︷︷ ︸
g1(E)

= 0. But k

has to be an integer and ℓ is fixed by the ratio of microscopic to macroscopic
lengths. As a consequence, there is little to no chance for this second condition
to be respected and thus, the short-wavelength instability will be miscaptured
by the strain-gradient equivalent continuum.

3.2 Micromorphic Equivalent medium

The stability analysis of the discrete system has shown that only two unstable
modes could occur in the case q = 2: a short-wavelength period-doubling insta-
bility and a long-wavelength instability. It is of interest in this study to derive
homogenized models that would be able to capture both modes. The studied
system being periodic of period b, the micromorphic homogenization strategy
consists in writing the springs node displacements according to the Cauchy-
Born hypothesis [13], corresponding to the description of the displacement field
as the sum of a homogeneous displacement Ex and a periodic displacement,
named shift, s:

u(x) = Ex+ s(x), (20)

where E is the applied macroscopic strain supposed to be known, x is the
position of the node and s(x) the periodic shift (unknown), function of the
node position. This hypothesis is similar to the one usually applied in the
periodic homogenization process.

Given that the stability analysis of the discrete system uncovered the pos-
sibility for a period-doubling instability to occur, the homogenization will take
place on a unit-cell comprising two adjacent nodes n and n+ 1, thus working
on a total length of two periods: 2b. In order to prevent uniform translations,
node n is considered to be fixed: un = 0. With these assumptions, the strains
of each spring connected to the studied nodes n and n + 1 can be computed
from Equation 1:

ϵ1+n = E+
s

b
; ϵ1−n = ϵ1+n+1 = E−s

b
; ϵ2+n = ϵ2−n = ϵ2+n+1 = ϵ2−n+1 = E .

(21)
Using the Type A stored energy function Equation 6 along with the strain

expressions derived in Equation 21 and injecting those into the stored energy
of the structure composed of 2 nodes (N=1) Equation 2 leads to the following
homogenized internal energy:

Wm(E, s) =

∫ L

0

E2K1 + 2K2

2
− E4M1 + 2M2

4
+ E6N1 + 2N2

6

+
K1 − 3E2M1 + 5E4N1

2

(s
b

)2

− M1 − 10E2N1

4

(s
b

)4

+
N1

6

(s
b

)6

dx

(22)
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The attentive reader could notice in this last expression that the term
gathered in E(E) – the first order term – is equal to the homogenized inter-
nal shift energy Equation 22 when the shift is null W s(E, 0). Additionally, the
displacement shift s appears to be always associated with microscopic length
b as s

b ; this term can be called the ”deformation shift” and examples later
on will explain its physical interpretation. The homogenized internal energy
Equation 22 now depends on two state variables: the macroscopic applied
strain E and the deformation shift s

b . On the one hand, differentiating this
internal energy with respect to the macroscopic strain E gives rises to the
macroscopic equilibrium of the structure where a loading term F correspond-
ing to the external applied force exerted at the end of the structure appears
(Equation 23):

E
(
K1 + 2K2 − E2(M1 + 2M2) + E4(N1 + 2N2)

)
+(−3M1 + 10N1E

2)E
(s
b

)2

+ 5N1E
(s
b

)4

= F (23)

On the other hand, differentiating this energy with respect to the defor-
mation shift leads to the equation for the internal equilibrium of the periodic
unit cell:

s
[
b4

(
K1 − 3E2M1 + 5E4N1

)
− b2

(
M1 − 10E2N1

)
s2 +N1s

4
]
= 0 , (24)

which admits several solutions. The trivial solution s = 0 describes an
homogeneous strain of the structure and corresponds to the principal path.
Equation 24 corresponds to the evolution law of state variable deformation
shift s

b with respect to macroscopic deformation E.

The stability of the principal path can be studied by looking at the positive
definiteness of the matrix defined by the second derivatives of the homogenized
total energy with respect to both state variables, evaluated along the principal
path (meaning that s = 0): [

∂2Wm

∂E2
∂2Wm

∂E∂s
∂2Wm

∂E∂s
∂2Wm

∂s2

]∣∣∣∣∣
s=0

.

When the determinant of this matrix becomes null, the stability of the system
is lost. This loss of stability happens if one of the two conditions listed in
Equation 25 are satisfied:

K1 − 3M1E
2 + 5N1E

4︸ ︷︷ ︸
g1(E)

= 0 or K1 − 3M1E
2 + 5N1E

4 + 2(K2 − 3M2E
2 + 5N2E

4)︸ ︷︷ ︸
g1(E)+2g2(E)

= 0

(25)
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One can then recognize immediately in these equations the two conditions
g1(ϵ) = 0 and g1(ϵ) + 2g2(ϵ) = 0 established in subsection 2.2.

As a consequence, the homogenized model using the deformation shift as
additional state variable has the ability to capture both short-wavelength and
long-wavelength instabilities.

4 Numerical study

Strain-gradient models have an internal length, and as such have been proven
to be numerically efficient to capture localization phenomena as underlined in
[8]. It is thus of interest to compare the numerical efficiency of both models
in cases where short-wavelength instabilities appear but also in a case with
a long-wavelength instability followed by a localization. These two cases are
presented below, they correspond to the orange and green cases presented in
the discrete analysis section and are related to the following set of parameters:
K1 = K2 = N2 = N2 = 1 and M1 = 2, M2 = 1 for the short wavelength
instability and M1 = 1, M2 = 2 for the long wavelength instabiilty. They will
be compared with a computation made on the full discrete system including
all the springs. The computations have been carried out using a custom
home-made bifurcation and branch-following software [14, 15] for the discrete
and micromorphic models and using software AUTO-07p [16] for the strain-
gradient model.
The problem of interest for this numerical study is an arrangement of 40
springs connecting direct neighboring nodes associated with internal energy
w1(ϵ

1) and 39 springs connecting next-to neighbor springs associated with
internal energy w2(ϵ

2). In order to ensure a regular constant strain principal
solution, the boundary next-to neighbor springs are in fact connected to their
direct neighbor and associated with an internal energy w2(ϵ

1) as represented
in Figure 4. This arrangement of springs is considered to be clamped on the
left end and submitted to an end force F associated with end displacement ∆
at the other end.

When using the micromorphic equivalent medium, and internal length has
to be set corresponding to the ratio between the microscopic to the macroscopic
length. In this model, it has been chosen as ℓ = 1/40 in accordance with the
number of springs in the discrete model. A finite difference scheme has been
employed with 40 elements. This number of elements could be increased or
decreased without changing the displayed results.

4.1 Short-wavelength instability

Internal energy model parameter are chosen to be K1 = K2 = N2 = N2 = 1
and M1 = 2, M2 = 1 so that the system should display a short-wavelength
instability that spans over two nodes, as explained in the discrete analysis
section.
Results corresponding to the numerical computation of the problem on the
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Fig. 6: Numerical results of computation on the discrete system. (a) End force-
displacement graph with principal path in black and first bifurcated branch in
orange. Empty squares mark the location of bifurcation points and the plain
circles are the computation points for which bifurcated modes are outputted.
(b) first and (c) second bifurcation modes represented in terms of deformation
corresponding to the plain circle output points.

discrete system are displayed in Figure 6. The systems shows a monotonic prin-
cipal branch (Figure 6a) in plain black line with a bifurcation point appearing
at (∆ϵ, F ) = (0.44773, 1.03815). From that point, a bifurcated branch in plain
orange line emerges that displays wide oscillations corresponding to propa-
gation of the alternate mode across the springs (Figure 6b) to finally reach
the entire length of the system Figure 6c. The predicted short-wavelength
instability is thus confirmed and appropriately spreads across two nodes as
represented by the alternate values of deformation on each node. The systems
has a discrepancy in terms of deformation, which loses uniformity near the
end, corresponding to the fact that it is not infinite.

When using the micromorphic equivalent medium, the principal path is
appropriately captured and the bifurcation point corresponds to (∆E , F ) =
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(0.447214, 1.0375355) with relative error of 10−3 on the displacement and of
6.10−4 on the force value. No oscillations are present on the bifurcated branch
which directly corresponds to a uniform internal shift across the system’s
length. Figure 7a presents the end force-displacement curve for the micro-
morphic equivalent medium. In transparent plain orange line is displayed the
results on the discrete model for comparison. A very good agreement between
the discrete and the micromorphic model can be observed on this curve. This
agreement can also be observed when comparing the values of deformation and
deformation shift (= s/b) coming from the micromorphic medium to the values
of the local deformation from the discrete model. Indeed, the micromorphic
deformation E corresponds to the mean deformation of the bifurcated mode
while the micromorphic deformation shift s/b is the amplitude of the discrete
mode oscillations.
Now, when using the strain-gradient equivalent medium, the principal path is
also appropriately captured. Several bifurcation points appear on this branch
including one before the bifurcation point of interest. The closest bifurca-
tion point to the one found by the discrete model appears at (∆E , F ) =
(0.449357, 1.0400949) with relative error of 3.10−3 on the displacement and
of 1.8.10−3 on the force value, meaning that the error this three times higher
than for the micromorphic medium. Additionally, the bifurcated branch differs
from the discrete bifurcated branch and does not converge all the way.

From this first numerical study of a short-wavelength bifurcating system,
it appears that the micromorphic medium is more precise to capture the onset
of short-wavelength bifurcation and more accurate in the prediction of the
bifurcated branch than the strain-gradient medium which cannot converge all
the way along the bifurcated branch. This confirms the conclusions drawn after
the analytical analysis carried out in the homogenization section.

4.2 Long-wavelength instability and localization

Internal energy model parameter are chosen to be K1 = K2 = N2 = N2 = 1
and M1 = −1, M2 = 3 so that the system should display a long-wavelength
instability followed by a localization, as explained in the discrete analysis
section.

Results corresponding to the numerical computation of the problem on the
discrete system are displayed in Figure 8. The systems shows a non-monotonic
up-down-up principal branch (Figure 8a) in plain black line which comes to
a limit point at (∆ϵ, F ) = (0.525731, 0.9711368291). According to [8], the up-
down-up behavior ensures a localization phenomenon appearing after the first
turning point. A series of very close bifurcation points appear indeed right
after the turning point. The first bifurcation point corresponds to (∆ϵ, F ) =
(0.525852, 0.9711376579). From that point, a bifurcated branch in plain green
line emerges that an almost horizontal line (called the Maxwell line [17]). This
branch actually contains oscillations (see the zoom in Figure 8b corresponding
to propagation of the localized mode across the springs (Figure 8d) to finally
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Fig. 7: End force-displacement graphs with principal path in black and first
bifurcated branch in orange. Empty square marks represent the location of
the bifurcation points. In transparent plain orange line is displayed the results
on the discrete model for comparison. (a) Results using the micromorphic
equivalent medium. (b) Results using the strain-gradient model. (c) values of
deformation and deformation shift for the micromorphic model at the output
point and comparison with discrete results at the same point.

reach the almost entire length of the system ??. The predicted long-wavelength
instability followed by a localization is thus confirmed. Author would like to
emphasize that the more springs are present in the system, the smaller are
the amplitudes of the observed oscillations but this amplitude also depends
on the system’s stiffness parameters (Ki, Mi, Ni i = 1, 2). This oscillating
feature has been observed also experimentally and numerically in the literature
[18, 19].The localization starts at one end of the system due to imperfect
boundary conditions that break the periodicity.

When using the micromorphic equivalent medium, the principal
path is appropriately captured and the limit point corresponds to point
(∆E , F ) = (0.525731, 0.9711376579) with relative error of the order of mag-
nitude of the computer’s accuracy on both displacement and force values.
Figure 9a presents the End force-displacement curve for the micromorphic
equivalent medium. No bifurcation point is detected after the limit point
using a perfect system. As a consequence the localization phenomenon cannot
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Fig. 8: Numerical results of computation on the discrete system. (a) End force-
displacement graph with principal path in black and first bifurcated branch
in green. Empty squares mark the location of bifurcation points and the plain
circles the computation points for which bifurcated modes are outputted. (b)
and (c) bifurcation modes represented in terms of deformation corresponding
to the plain circle output points.

be captured this way. Using an imperfection of 0.1% on the stiffness of the
first element, the beginning of the discrete bifurcation branch is captured
but the plateau cannot be reached. Additionally, no bifurcation point can
be identified because of imperfection. The point where the imperfect curve
diverges from the perfect one happens (∆E , F ) = (0.511623, 0.9704268022),
with relative error of 2.7 .10−2 on the displacement and 7.10−4 on the force
value. Modifying the imperfection amplitude leads to a modification of the
”bifurcation point” whereas changing the number of elements in the compu-
tation implies a change in the proximity of the branch to the principal path.
As so, a higher number of elements leads to a branch closer to the principal
path and a larger imperfection leads to an increasing value for the bifurcation
point displacement force value. If one plots the value of the deformation and
deformation shift across the elements (cf Figure 9c), the localized mode does
not appear. The micromorphic medium seems to lack, in essence, the ability
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to appropriately capture localization as it can capture the onset, if imperfec-
tions are introduced, but cannot reproduce the Maxwell line.
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Fig. 9: End force-displacement graphs for computations using the micromor-
phic equivalent medium. (a) perfect model, (b) imperfection of 0.1% in the
model on the stiffness of first element. (c) values of deformation and deforma-
tion shift for the micromorphic model at the output points

When using the strain-gradient equivalent medium, the princi-
pal path is appropriately captured with a limit point located at
(∆E , F ) = (0.525731, 0.9711376579) with relative error of the order of
magnitude of the computer’s accuracy on both displacement and force val-
ues. Right after this limit point, a bifurcation point is detected at point
(∆E , F ) = (0.5262165, 0.9711368274) with relative error of 7.10−4 on the
displacement and of the order of magnitude of the computer’s accuracy on
the force value. The subsequent bifurcating branch seems to be in very good
agreement with the reference discrete branch but does not display any oscil-
lations (cf. Figure 10b). The associated deformation mode corresponds to a
localization propagating along the system’s length with values agreeing with
those of the discrete model. It can thus be concluded that the strain gradient
model is able to capture in a satisfactory manner the localization behavior
and reproduces accurately the Maxwell line but not the oscillations appearing
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along this line.
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Fig. 10: End force-displacement graphs for computations using the strain-
gradient equivalent medium. (a) perfect model, (b) imperfection of 0.1% in the
model on the stiffness of first element. (c) values of deformation and deforma-
tion shift for the micromorphic model at the output points

From this second numerical study of a long-wavelength bifurcating system,
it appears that both models are able to capture de limit point accuratelry but
only the strain-gradient model can capture the bifurcation point and subse-
quent localization that appear afterwards. An imperfect micromorphic model
has been proposed to try to capture the bifurcated branch. This model could
propose an equilibrium path that is different from the perfect principal path
but this path does not corresponds to the discrete bifurcated branch and espe-
cially failed to capture the Maxwell line. This second numerical study is of
great importance as it shows the benefits of using strain-gradient equivalent
medium when localization phenomena are to be modelled.

Conclusion

The objective of this paper was to question the ability of two families of
generalized continua (namely micromorphic of strain-gradient) in capturing
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appropriately onset and post-bifurcated behavior of systems displaying either
a patterning type of bifurcation (meaning short-wavelength instability) or a
localization phenomenon following a long-wavelength instability. The studied
system is an assembly of non-linear springs attached to direct and next-to-
neighbor nodes and with stiffness parameters adjusted to display one or the
other type of instability. The equivalent media energy are built analytically
by microscopic analysis for the micromorphic medium or by Taylor expansion
for the strain-gradient medium. A numerical study has been carried out to
compare quantitatively the results with a reference computation on a discrete
system. It appears that the micromorphic equivalent medium is the only one
able to appropriately capture the onset and the post-bifurcation regime when a
short-wavelength instability appears, creating a pattern of deformation, while
the strain-gradient equivalent medium is the only one able to appropriately
capture the localization phenomenon appearing after a long-wavelength insta-
bility.
This study, on a very simple system, allows us to build models analytically
and thus avoiding possible errors stemming from numerical approximations.
Moreover, the conclusions drawn out in this paper explain the choice made by
[10] to use a micromorphic model at the macroscopic scale in their numerical
homogenization. Indeed, the objective of their work was to capture the pat-
terning instability that spreads on two unit cells and it appears that this can
only be done via micromorphic type models.
Of course, the two types of models compared in this study could be combined
and this is the authors recommendation if both localization and patterning
are expected to happen in the modelled system. This work is currently under
investigation, along with studying the ability of each model to capture non-
commensurate instabilities that would appear if mode complex models are at
stake, as suggested in [9]
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