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In the context of architected materials, it has been observed that both long-wavelength instabilities leading possibly to

localization and short-wavelength commensurate to cell-size instabilities leading to the apparition of a deformation

pattern could occur. This work compares the ability of two families of higher order equivalent media, namely

strain-gradient and micromorphic media, to capture both mesoscale cell-commensurate and long-wavelength

macroscopic instabilities in those materials. The studied architected material consists in a very simple one-dimensional

arrangement of non-linear springs, thus allowing for analytical or nearly analytical treatment of the problem,

dismissing any uncertainties or imprecisions coming from a numerical method. A numerical solving of the problem is

then used to compare the post-buckling predictiion of both models. The study concludes that, even on a very simple

case, it is impossible for a strain-gradient Taylor-series expansion type of homogenization method to capture the

cell-commensurate instabilities while the micromorphic medium can capture both instabilities but fails to converge

properly in the post-buckling regime when localization appears. Micromorphic media are thus the family of equivalent

continuum model that are to prefer when dealing with the possibility of patterning inside a structured medium, but if

localization is to consider, it would be interesting to combine both strategies into a micromorphic, gradient enhanced

equivalent medium.

Keywords instability , bloch wave , higher-order , micromorphic , strain-gradient , homogenization , patterning

1 Introduction
Due to their interesting and sometimes even exotic mechanical properties, architected materials are

more and more studied nowadays. As defined in Brechet et al. (2013); Barthelat (2015); Poncelet et al.

(2018), architected materials consists in an arrangement of material on at least three length scales : the

microscopic scale, describing the constitutive material(s) composition, the macroscopic scale, describing the

structure composed by the architectured material and the mesoscopic scale(s) describing the constitutive

material(s) arrangement in space (see. Fig.1).

(a) conventional material (b) architected material

Figure 1: Difference in scale separation in conventional materials and architectured materials. (a) In conventional

materials, there are two distinct scales: the macroscopic scale and the microscopic scale, (b) In architectured materials,

there are three distinct scales: like in classical materials there are macroscopic and microscopic scales but a third,

intermediate "mesoscopic" scale exists of the order of the material’s Representative Volume Element size.

The behavior of such materials when submitted to compressive loading has been extensively studied

and experiments have led to the conclusion that, when architected materials have a periodic mesoscale

arrangement, meaning that they are composed of periodic unit cells, two types of instabilities can occur in

those materials : (i) long-wavelength instabilities, that take place at the macroscopic scale and can lead to

either global buckling or localization and (ii) short-wavelength "cell-commensurate" instabilities that creates

a deformation pattern at the mesoscopic scale. These two types of instabilities are illustrated on Fig.2

alongside with a localized deformation. Localization can happen after a long-wavelength instability and in
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the case presented in Fig.2.c, a shortwavelength instability appeared first, followed by a long-wavelength

instability that lead to a localization as explained in (Combescure, Elliott, and Triantafyllidis 2020).

(a) macroscopic buckling (b) mesoscopic buckling (c) localization

Figure 2: Various types of instabilities observed in architectured materials. (a) and (b) from He et al. (2018) and (c)

from Papka et al. (1999)

When dealing with architected materials, it is common to have a scale separation between all scales,

meaning that the number of mesoscopic cells in the whole structure can be large. As a consequence, the

computation of the non-linear behavior of these structures when submitted to compressive loadings can

lead to excessively large amount of time if all the mesoscopic cells have to be taken into account. It is

thus quite common to try to build an equivalent continuum medium to the architected material, able to

capture its essential behaviors, in order to reduce the computation time. Additionally, in the context of

designing the mesoscopic geometry of the unit cell, optimisation procedures based on homogenization and

deshomogenization techniques have been proven recently very efficient. Finally, as presented in the

coming paragraph, it has been shown that generalized media are to consider if one wants to capture

instabilities in architected materials. Before reviewing the scientific literature on the generalized media for

short and long-wavelength instabilities, it can be useful to present the two main families of generalized

media.

A scheme from Auffray et al. (2015) and reproduced in Fig.3 presents the two families that stem from a

classical Cauchy medium when trying to generalize the kinematics. From the left to the right, rotation

then stretch are added to the kinematics. For higher-order continua these extensions are independent

DOF, while for higher-grade continua they are controlled by higher-order gradients of the displacement

field. For the sake of simplicity, in the remainder of this article, higher-order media will be referred to as

"micromorphic" media whereas higher-grade will be named "strain-gradient".

Rotation: Stretch:

Cosserat

≃

��

//
Micromorphic

≃

��
Classical continua

𝐻𝑖𝑔ℎ𝑒𝑟−𝑜𝑟𝑑𝑒𝑟 33

𝐻𝑖𝑔ℎ𝑒𝑟−𝑔𝑟𝑎𝑑𝑒 ++
Koiter

//
Strain-Gradient

Figure 3: Basic extensions of a classical continuum. From Auffray et al. (2015).

In the context of instabilities appearing in periodic architected materials, pioneer article by Triantafyl-

lidis et al. (1993) studied the ability of a strain-gradient model to capture long wavelength instabilities and

localization appearing in a periodic arrangement of one-dimensional springs. This model, built by a Taylor

expansion of the mesoscopic displacement, appeared to be perfectly able to capture the macroscopic

long-wavelength instability and the subsequent localization phenomenon that appeared. No mention of the

possible short-wavelength buckling was made in this article. In Truskinovsky et al. (2005), authors propose

a quasi-continuum model based also on strain-gradient in order to capture both long and short wavelength

instabilities appearing in a periodic arrangement of atoms linked by non-linear interatomic potentials. The
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conclusion is that the quasi-continuum media can capture some sort of short-wavelength instability but it

appears that the buckling threshold is not appropriately captured by the model. Finally, attention on short

wavelength instabilities has recently grown, because of their possible application for creating band gaps

when propagating elastic waves. Rokoš et al. (2019) have recently proposed a micromorphic computational

homogenization procedure to capture patterning, meaning short-wavelength instabilities.

Based on the observation that, in architected materials, both short and long-wavelength instabilities

can occur, and that both micromorphic and strain-gradient media have been proposed in the litterature

to capture such behaviors, it is of interest in this study to compare the ability of these two types of

generalized media to capture each type of instability on a very simple problem. As a consequence, the

example of a periodic arrangement of non-linear springs, as presented in Fig.4 below has been proposed.

𝐿 = 𝑁𝑏

𝑏 𝑏

0 1 𝑖 − 1 𝑖 𝑖 + 1 𝑁 − 1 𝑁

𝐾1 𝐾1 𝐾1 𝐾1 𝐾1 𝐾1 𝐾1

𝐾2 𝐾2 𝐾2 𝐾2

𝐾2 𝐾2 𝐾2 𝐾2

Figure 4: 1D arrangement of non-linear springs with connection to next-to-neighbour node, displaying both

cell-commensurate and long-wavelength instabilities. Black and red springs have different internal energies represented

by the letter K indexed by a number.

2 Discrete system
2.1 Setting
Consider a one-dimensional structure composed of initially equally spaced nodes connected by non-linear

elastic springs, campled at one end and submitted to an end displacement or force at the other end. The

node spacing is denoted by 𝑏 and the total length of the structure is 𝐿 = 𝑁𝑏 where 𝑁 >> 1. The structure

thus has a total number of 𝑁 + 1 nodes. A typical node 𝑛 is connected to its adjacent nodes𝑚 with

possibility to connect to nodes further than the immediate neighboring node as displayed in Fig.4 where a

connection to the next-to-neighbor node is presented. As such, an integer 𝑞 indicates the maximum

number of neighboring nodes to which each node is connected on each side. The strain 𝜖𝑝 in a spring of

length 𝑝𝑏 (1 ≤ 𝑝 ≤ 𝑞) attached to node 𝑛 is given by Equation 1:

𝜖
𝑝+
𝑛 =

𝑢𝑛+𝑝 − 𝑢𝑛
𝑝𝑏

or 𝜖
𝑝−
𝑛 =

𝑢𝑛 − 𝑢𝑛−𝑝
𝑝𝑏

. (1)

The stored energy density in a spring of length 𝑝𝑏 is𝑤𝑝 (𝜖𝑝 ). The stored energy density of the discrete

structure, denoted𝑊 , equals half of the energy of all springs connected to an interior node 𝑛 divided by

nodal spacing 𝑏, as presented in Equation 2:

𝑊 =
1

2𝑏

𝑛=𝑁∑︁
𝑛=0

𝑞∑︁
𝑝=1

𝑝

[
𝑤𝑝 (𝜖𝑛+𝑝 ) +𝑤𝑝 (𝜖𝑛−𝑝 )

]
. (2)

The total energy of the system is then defined by:

E =𝑊 − 1

𝑁𝑏
𝐹𝑢𝑁 , (3)

where 𝐹 is the force exerted at the end node 𝑁 necessary to induce the displacement 𝑢𝑁 .

The discrete system is considered to be at equilibrium when the derivative of this energy with respect

to the displacement of node 𝑛 is null for all nodes 𝑛 inside the system. This condition give rises to the

following system of difference equation :

𝜕𝑊

𝜕𝑢𝑛
= 0 ∀𝑛 ∈ [0, 𝑁 − 1] ;

𝜕𝑊

𝜕𝑢𝑁
=

𝐹

𝑁𝑏
. (4)
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A solution of the system of equilibrium equations Equation 4 is called an equilibrium state and noted

𝑟
𝑢.

In order to access stability of this equilibrium state, perturbations 𝛿𝑢𝑛 are introduced and the positive

definiteness of the quadratic part of the energy expansion is studied:

𝜕2𝑊

𝜕𝑢𝑛𝜕𝑢𝑚

����𝑟
𝑢

𝛿𝑢𝑚 > 0? (5)

The system is said to be stable whenever Equation 5 is true and unstable otherwise.

Following recommendations of Truskinovsky et al. (2005), we will study, in this paper, only the case

𝑞 = 2 depicted in Fig.4. As for the non-linear stored energy per unit length for one spring, it will be taken

equal to the one proposed in the Type A model of Triantafyllidis et al. (1993):

𝑤𝑝 (𝜖) =
1

2

𝐾𝑝𝜖
2 − 1

4

𝑀𝑝𝜖
4 + 1

6

𝑁𝑝𝜖
6, (6)

where 𝐾𝑝 ,𝑀𝑝 and 𝑁𝑝 are stiffness-like coefficients for the spring and are then considered to be positive

intrinsic constants. One recognizes, in the quadratic term, the usual stored energy function for linear

springs𝑤𝑝 (𝜖) = 1

2
𝐾𝑝𝜖

2
. Thus 𝐾𝑝 has to be positive in order to ensure realistic springs.

2.2 Stability Analysis
The discrete system, in the case 𝑞 = 2 and using the stored energy function presented in Equation 6,

presents an equilibrium equation for a given inner node 𝑛 of the form:

0 = 𝑏4𝐾1 ((𝑢𝑛 − 𝑢𝑛+1) − (𝑢𝑛−1 − 𝑢𝑛)) − 𝑏2𝑀1

(
(𝑢𝑛 − 𝑢𝑛+1)3 − (𝑢𝑛−1 − 𝑢𝑛)3

)
+ 𝑁1

(
(𝑢𝑛 − 𝑢𝑛+1)5 − (𝑢𝑛−1 − 𝑢𝑛)5

)
+ 1

32

[
16𝑏4𝐾2 ((𝑢𝑛 − 𝑢𝑛+2) − (𝑢𝑛−2 − 𝑢𝑛)) − 4𝑏2𝑀2

(
(𝑢𝑛 − 𝑢𝑛+2)3 − (𝑢𝑛−2 − 𝑢𝑛)3

)
+𝑁2

(
(𝑢𝑛 − 𝑢𝑛+2)5 − (𝑢𝑛−2 − 𝑢𝑛)5

) ]
. (7)

A trivial solution to this equation is given by 𝑢𝑛 = 𝑢𝑛+𝑝 ∀𝑛 ∈ [0, 𝑁 ] ∀ − 𝑞 ≤ 𝑝 ≤ 𝑞, leading to a

uniform displacement of all the nodes corresponding to a global translation that is of no interest for this

study.

Another solution would be 𝑢𝑛 − 𝑢𝑛+1 = 𝑢𝑛−1 − 𝑢𝑛 & 𝑢𝑛 − 𝑢𝑛+2 = 𝑢𝑛−2 − 𝑢𝑛 ∀𝑛 ∈ [0, 𝑁 ] which
corresponds to uniform strain 𝜖𝑛+𝑝 = 𝜖𝑛−𝑝 =

0

𝜖 ∀𝑛 ∈ [0, 𝑁 ] ∀ − 𝑞 ≤ 𝑝 ≤ 𝑞 of the discrete system. This

solution will be named principal solution and further noted

0

𝑢. Of interest in this study will be the stability

of this principal solution

0

𝑢.

Following the methodology proposed in Combescure, Henry, et al. (2016); Combescure and Elliott

(2017); Combescure, Elliott, and Triantafyllidis (2020), we will use the Bloch-waves (also termed the

phonon or Floquet method) to study stability of the principal solution. This method consists in perturbing

the studied solution by plane-waves such that the perturbation of node 𝑛 + 𝑝 is related to the perturbation

of node 𝑛 by Equation 8:

𝛿𝑢𝑛+𝑝 = 𝛿𝑢𝑛 (𝑘)𝑒2𝑖𝜋𝑘𝑝𝑏, (8)

where 𝑘 is the normalized spatial wavenumber corresponding to the imposed plane-wave.

Given that 𝑞 = 2, the only non-zero terms in the quadratic part of the energy expansion
𝜕2𝑊

𝜕𝑢𝑛𝜕𝑢𝑚

���
0

𝑢
𝛿𝑢𝑚

are defined by 𝑛 − 𝑞 ≤ 𝑚 ≤ 𝑛 + 𝑞. For the sake of simplicity, these terms will be noted 𝐶𝑛,𝑚 = 𝜕2𝑊
𝜕𝑢𝑛𝜕𝑢𝑚

���
0

𝑢
and can be directly computed as:

𝐶𝑛,𝑛 = 1

𝑏2

[
2(𝐾1 − 3𝑀1

0

𝜖2 + 5𝑁1

0

𝜖4) + 𝐾2 − 3𝑀2

0

𝜖2 + 5𝑁2

0

𝜖4
]

𝐶𝑛,𝑛−1 =
−1
𝑏2
(𝐾1 − 3𝑀1

0

𝜖2 + 5𝑁1

0

𝜖4) = 𝐶𝑛,𝑛+1
𝐶𝑛,𝑛−2 =

−1
2𝑏2

(𝐾2 − 3𝑀2

0

𝜖2 + 5𝑁2

0

𝜖4) = 𝐶𝑛,𝑛+2 .

(9)

We are then left with determining the conditions for Equation 10 to be satisfied, in order to ensure stability

of the principal solution.

𝐶𝑛,𝑛−2𝑒
−4𝑖𝜋𝑘𝑏 +𝐶𝑛,𝑛+2𝑒4𝑖𝜋𝑘𝑏 +𝐶𝑛,𝑛−1𝑒−2𝑖𝜋𝑘𝑏 +𝐶𝑛,𝑛+1𝑒2𝑖𝜋𝑘𝑏 +𝐶𝑛,𝑛 > 0. (10)
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Using expressions for𝐶𝑛,𝑚 terms defined in Equation 9 and semi-angle formulæ, Equation 10 simplifies to:

sin
2 (𝜋𝑘𝑏)

[
𝐾1 − 3𝑀1

0

𝜖2 + 5𝑁1

0

𝜖4 + (1 + cos(2𝜋𝑘𝑏)) (𝐾2 − 3𝑀2

0

𝜖2 + 5𝑁2

0

𝜖4)
]
> 0

⇔ sin
2 (𝜋𝑘𝑏)

[
𝑔1 (

0

𝜖) + (1 + cos(2𝜋𝑘𝑏))𝑔2 (
0

𝜖)
]
> 0,

(11)

where 𝑔1 and 𝑔2 functions, defined as 𝑔𝑖 (𝜖) = 𝐾𝑖 − 3𝑀𝑖𝜖
2 + 5𝑁𝑖𝜖

4 𝑖 = 1, 2 , have been introduced to further

simplify the expressions.

This latter expression resembles the one presented in Equation 7 of Truskinovsky et al. (2005) as it presents

a quadratic term of sin.

By studying stability condition presented in Equation 11, it appears that the only unstable wavelengths are:

• the short-wavelength instability associated with wavelength 𝑘 = 1

2𝑏
corresponding to a periodic

instability at the scale of two springs of length 𝑏. This instability will appear at global strain

0

𝜖

solution of 𝑔1 (
0

𝜖) = 0
1
. This instability was nammed "commensurate" in Truskinovsky et al. (2005) ;

• the long-wavelength instability corresponding to the case of 𝑘 → 0 (acoustic branch) appearing

when the global strain

0

𝜖 is such that 𝑔1 (
0

𝜖) + 2𝑔2 (
0

𝜖) = 0.

There is then three possible stability regimes depending on the respective values of the stiffness param-

eters. The conditions for these regimes to appear are presented below. They depend on four conditions.

The negation of a condition will be noted with an overline, for instance cond 0 : 𝐾1 > 0 ⇒ cond 0 : 𝐾1 ≤ 0.

• conditions for a stable path for all imposed global strains:

𝑀1 <
2

3

√︁
5𝐾1𝑁1︸              ︷︷              ︸

cond 1

& 𝑀2 <
−𝑀1

2

+
√
5

3

√︁
(𝐾1 + 2𝐾2) (𝑁1 + 2𝑁2)︸                                                ︷︷                                                ︸

cond 2

For instance, choosing 𝐾1 = 𝐾2 = 𝑁1 = 𝑁2 = 1, cond 1 imposes𝑀1 <
2

√
5

3
≈ 1.49. Picking𝑀1 = 1,

cond 2 leads to𝑀2 <
−1
2
+
√
5 ≈ 1.736, for example𝑀2 = 1.6. The loading path corresponding to

this choice of stiffness parameters is plotted in plain blue line in Figure 5.

• conditions for a short-wavelength instability to appear first:

𝑀1 ≥
2

3

√︁
5𝐾1𝑁1︸              ︷︷              ︸

cond 1

& 6𝑀2 +
|𝐾2𝑁1 − 𝐾1𝑁2 |

𝐾1𝑁1

√︃
9𝑀2

1
− 20𝐾1𝑁1 < 3𝑀1

(
𝐾2

𝐾1

+ 𝑁2

𝑁1

)
︸                                                                       ︷︷                                                                       ︸

cond 3

For instance, choosing 𝐾1 = 𝐾2 = 𝑁1 = 𝑁2 = 1, cond 1 implies𝑀1 >
2

√
5

3
≈ 1.49. Picking𝑀1 = 2,

cond 3 leads to𝑀2 < 𝑀1 = 2 ; for example𝑀2 = 1. The loading path corresponding to this choice of

stiffness parameters is plotted in plain orange line in Figure 5.

• conditions for a long-wavelength instability appearing first along the principal path:

𝑀1 ≤
2

3

(𝐾2𝑁1 + 𝐾1 (𝑁1 + 𝑁2))
√︂

5

(𝐾1 + 2𝐾2) (𝑁1 + 2𝑁2)︸                                                                     ︷︷                                                                     ︸
cond 4

& cond 2

or

cond 4 & cond 3

For instance, choosing 𝐾1 = 𝐾2 = 𝑁1 = 𝑁2 = 1, cond 4 implies𝑀1 ≤ 2

√
5

3
≈ 1.49. Picking𝑀1 = −1,

cond 2 leads to𝑀2 ≥ −1
2
+
√
5 ≈ 2.736 ; for example𝑀2 = 3. The loading path corresponding to this

choice of stiffness parameters is plotted in plain green line in Figure 5.

Additionally, the two previously described instabilities can appear simultaneously whenever 𝑔1 (
0

𝜖) = 𝑔2 (
0

𝜖).

In order to be realistic, the structure has to be stable under null applied strain for all wavelength thus

leading to the conditions 𝐾1 + 2𝐾2 > 0 & 𝐾1 > 0 which are both automatically satisfied when 𝐾1 and 𝐾2

are taken to be positive, as requested in the problem setting section.

1
corresponding to

0

𝜖2 =
3𝑀1

10𝑁1

± 1

10

√︂
9𝑀2

1
−20𝐾1𝑁1

𝑁 2

1

with 𝐾1 <
9𝑀2

1

20𝑁1

5
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Using 𝑔1 and 𝑔2, a stability diagram can be established in the plane of these two "parameters". Then,

since these parameters are actually functions that depends on the global applied strain 𝜖 , the loading path

followed by these functions as 𝜖 evolves can be plotted. On Figure 5, the stable region is represented in

blue with orange and green borders corresponding to short and long-wavelength instability criteria,

respectively. This graph also presents examples of loading paths leading to long-wavelength instability

(green), short-wavelength instability (orange) or no instability (blue). All these path start in the stable

region and evolve to cross either the orange or the green border. If no border is crossed, the path remains

stable. The parameters chosen for these paths make them cross the border twice so that they recover

stability after a trip in the unstable regime
2
; this feature is not compulsory and it is possible to design

systems that would remain unstable all along.

-2 -1 0 1 2 3
-2

-1

0

1

2

3

g1

g2

stable

Macro

commensurate

stable

Figure 5: Stability diagram for the discrete model with 𝑞 = 2. Region of stability is shown in blue. Orange and green

borders to this blue stability region correspond to criteria for short and long-wavelength instabilities, respectively. In

plain colored lines with arrows are plotted examples of loading paths leading to long-wavelength instability (green),

short-wavelength instability (orange) and no instability (blue). Parameters for these paths are stated in the text.

3 Homogenization
Of interest in this study is the comparison of the micromorphic-type and the strain-gradient-type

homogenization strategies in their ability to capture short and long-wavelength instabilities of non-linear

spring assemblies. This section details the derivation of both equivalent continuum energies.

3.1 Strain-gradient equivalent medium
This part follows the strain-gradient energy derivation proposed in Triantafyllidis et al. (1993).

The strain-gradient homogenization strategy is based on a Taylor series expansion of the displacement

continuous function 𝑢 (𝑥) that is assumed to coincide with all equilibrium discrete displacements 𝑢𝑛 at

nodal points 𝑥𝑛 = 𝑛𝑏 corresponding to node 𝑛. As such, using Equation 1, the strains 𝜖
𝑝+
𝑛 and 𝜖

𝑝−
𝑛 in all the

non-linear springs affecting node 𝑛 equilibrium can be expressed as in Equation 12 where the following

simplified notation is used 𝑢,𝑥 =
𝑑𝑢 (𝑥 )
𝑑𝑥

:

𝜖
𝑝+
𝑛 =

𝑢𝑛+𝑝−𝑢𝑛
𝑝𝑏

= 𝑢,𝑥 + 1

2
𝑝𝑏𝑢,𝑥𝑥 + 1

6
(𝑝𝑏)2𝑢,𝑥𝑥𝑥 + ...

𝜖
𝑝−
𝑛 =

𝑢𝑛−𝑢𝑛−𝑝
𝑝𝑏

= 𝑢,𝑥 − 1

2
𝑝𝑏𝑢,𝑥𝑥 + 1

6
(𝑝𝑏)2𝑢,𝑥𝑥𝑥 − ...

. (12)

Introducing this decomposition into the stored energy density of the discrete structure Equation 2 ,

one gets the following expression for the strain-gradient stored energy, where the discrete sum is naturally

replaced by an integral over the length 𝐿 = 𝑁𝑏 of the system:

𝑊 𝑠 =

∫ 𝐿

0

𝑤1 (𝑢,𝑥 ) + 2𝑤2 (𝑢,𝑥) −
𝑏2

24

[ (
𝑤”1 (𝑢,𝑥 ) + 8𝑤”2 (𝑢,𝑥 )

)
(𝑢,𝑥𝑥 )2

]
+𝑂 (𝑏4)𝑑𝑥 (13)

. Thus, using the Type A stored energy function Equation 6, the homogenized strain-gradient macroscopic

2
The return of stability appears for the green path out of the bounds of the graph that has been zoomed on the zone of interest

6
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energy density is then:

𝑊 𝑠 (𝐸) =
∫ 𝐿

0

𝐸2
𝐾1 + 2𝐾2

2

− 𝐸4𝑀1 + 2𝑀2

4

+ 𝐸6𝑁1 + 2𝑁2

6︸                                                 ︷︷                                                 ︸
E(𝐸 )

+ (∇𝐸)2𝑏
2

2

1

12

[
−(𝐾1 + 8𝐾2) + 3(𝑀1 + 8𝑀2)𝐸2 − 5(𝑁1 + 8𝑁2)𝐸4

]︸                                                                 ︷︷                                                                 ︸
ℎ (𝐸 )

𝑑𝑥. (14)

The equilibrium equation corresponding to this stored energy is found by extremizing it over all

admissible displacements 𝛿𝑢:𝑊,𝑢 𝛿𝑢 = 0. This leads, using Euler-Lagrange equations, to Equation 15:

E′ (𝐸) − 𝑏2
(
Δ𝐸 ℎ(𝐸) + (∇𝐸)2

2

ℎ′ (𝐸)
)
= 𝐹, (15)

where 𝐹 is the external applied force exerted at the end of the structure. A trivial solution to this equation

is 𝐸 =
0

𝐸 where

0

𝐸 is a constant. This corresponds to the principal path of our discrete problem.

In order to study the stability of this principal equilibrium state, one must examine the positive

definiteness of the second Frechet derivative of the homogenized strain-gradient macroscopic energy

regarding all admissible displacement 𝛿𝑢 and evaluated along the principal path:

(𝑊 𝑠 ,𝑢𝑢 (
0

𝑢,Δ)𝛿𝑢)𝛿𝑢 = E”(
0

𝐸) (𝛿𝑢,𝑥 )2 − 𝑏2ℎ(
0

𝐸 (𝛿𝑢,𝑥𝑥 )2. (16)

On can use, without loss of generality, the following admissible functions satisfying the admissible to zero

boundary conditions 𝛿𝑢 (0) = 𝛿𝑢 (𝐿) = 0:

𝛿𝑢 (𝑥) =
√︂

2

𝐿

∞∑︁
𝑘=1

𝛿𝑢𝑛 sin

(
𝑘𝜋𝑥

𝐿

)
. (17)

This yields the stability condition:

∞∑︁
𝑘=1

[
E”(

0

𝐸) + 𝑏2
(
𝑘𝜋

𝐿

)
2

ℎ(
0

𝐸)
] (𝑛𝜋

𝐿
𝛿𝑢

)
2

> 0. (18)

As explained in Triantafyllidis et al. (1993), this stability condition is satisfied as long as E”(
0

𝐸) +
𝑏2

(
𝑘𝜋
𝐿

)
2

ℎ(
0

𝐸) > 0. Using the Type A stored energy function Equation 6, and noting ℓ = 𝑏
𝐿
the non-

dimensional length appearing in this problem, the stability condition takes the following form:

(𝐾1 + 2𝐾2) − 3(𝑀1 + 2𝑀2)𝐸2 + 5(𝑁1 + 2𝑁2)𝐸4) + (ℓ𝑘𝜋 )2
12

[
−(𝐾1 + 8𝐾2) + 3(𝑀1 + 8𝑀2)𝐸2 − 5(𝑁1 + 8𝑁2)𝐸4

]
> 0. (19)

Critical points correspond to Equation 19 equal to zero, they will thus depend on the value of non-

dimensional length parameter ℓ and integer 𝑘 . The first condition arising when studying instability

corresponds to the long-wavelength condition: 𝐾1 − 3𝑀1𝐸
2 + 5𝑁1𝐸

4 + 2(𝐾2 − 3𝑀2𝐸
2 + 5𝑁2𝐸

4)︸                                                         ︷︷                                                         ︸
𝑔1 (𝐸 )+2𝑔2 (𝐸 )

= 0, second

condition corresponds to 𝑘 = −
√
3

ℓ𝜋
& 𝐾1 − 3𝐸2𝑀1 + 5𝐸4𝑁1︸                    ︷︷                    ︸

𝑔1 (𝐸 )

= 0. But 𝑘 has to be an integer and ℓ is fixed

by the ratio of microscopic to macroscopic lengths. As a consequence, there is little to no chance for this

second condition to be respected and thus, the short-wavelength instability will be miscaptured by the

strain-gradient equivalent continuum.

3.2 Micromorphic Equivalent medium
The stability analysis of the discrete system has shown that only two unstable modes could occur in the

case 𝑞 = 2: a short-wavelength period-doubling instability and a long-wavelength instability. It is of

interest in this study to derive homogenized models that would be able to capture both modes. The studied

system being periodic of period 𝑏, the micromorphic homogenization strategy consists in writing the

springs node displacements according to the Cauchy-Born hypothesis (Eriksen 2012), corresponding to

7
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the description of the displacement field as the sum of a homogeneous displacement 𝐸𝑥 and a periodic

displacement, named shift, 𝑠:

𝑢 (𝑥) = 𝐸𝑥 + 𝑠 (𝑥), (20)

where 𝐸 is the applied macroscopic strain supposed to be known, 𝑥 is the position of the node and 𝑠 (𝑥) the
periodic shift (unknown), function of the node position. This hypothesis is similar to the one usually

applied in the periodic homogenization process.

Given that the stability analysis of the discrete system uncovered the possibility for a period-doubling

instability to occur, the homogenization will take place on a unit-cell comprising two adjacent nodes 𝑛 and

𝑛 + 1, thus working on a total length of two periods: 2𝑏. In order to prevent uniform translations, node 𝑛 is

considered to be fixed: 𝑢𝑛 = 0. With these assumptions, the strains of each spring connected to the studied

nodes 𝑛 and 𝑛 + 1 can be computed from Equation 1:

𝜖1+𝑛 = 𝐸 + 𝑠
𝑏

; 𝜖1−𝑛 = 𝜖1+𝑛+1 = 𝐸 − 𝑠

𝑏
; 𝜖2+𝑛 = 𝜖2−𝑛 = 𝜖2+𝑛+1 = 𝜖

2−
𝑛+1 = 𝐸 . (21)

Using the Type A stored energy function Equation 6 along with the strain expressions derived in

Equation 21 and injecting those into the stored energy of the structure composed of 2 nodes (N=1)

Equation 2 leads to the following homogenized internal energy:

𝑊𝑚 (𝐸, 𝑠) =
∫ 𝐿

0

𝐸2
𝐾1 + 2𝐾2

2

− 𝐸4𝑀1 + 2𝑀2

4

+ 𝐸6𝑁1 + 2𝑁2

6

+ 𝐾1 − 3𝐸2𝑀1 + 5𝐸4𝑁1

2

( 𝑠
𝑏

)
2

− 𝑀1 − 10𝐸2𝑁1

4

( 𝑠
𝑏

)
4

+ 𝑁1

6

( 𝑠
𝑏

)
6

𝑑𝑥 (22)

The attentive reader could notice in this last expression that the term gathered in E(𝐸) – the first

order term – is equal to the homogenized internal shift energy Equation 22 when the shift is null𝑊 𝑠 (𝐸, 0).
Additionally, the displacement shift 𝑠 appears to be always associated with microscopic length 𝑏 as

𝑠
𝑏
; this

term can be called the "deformation shift" and examples later on will explain its physical interpretation.

The homogenized internal energy Equation 22 now depends on two state variables: the macroscopic

applied strain 𝐸 and the deformation shift
𝑠
𝑏
. On the one hand, differentiating this internal energy with

respect to the macroscopic strain 𝐸 gives rises to the macroscopic equilibrium of the structure where a

loading term 𝐹 corresponding to the external applied force exerted at the end of the structure appears

(Equation 23):

𝐸
(
𝐾1 + 2𝐾2 − 𝐸2 (𝑀1 + 2𝑀2) + 𝐸4 (𝑁1 + 2𝑁2)

)
+ (−3𝑀1 + 10𝑁1𝐸

2)𝐸
( 𝑠
𝑏

)
2

+ 5𝑁1𝐸

( 𝑠
𝑏

)
4

= 𝐹 . (23)

On the other hand, differentiating this energy with respect to the deformation shift leads to the

equation for the internal equilibrium of the periodic unit cell:

𝑠
[
𝑏4

(
𝐾1 − 3𝐸2𝑀1 + 5𝐸4𝑁1

)
− 𝑏2

(
𝑀1 − 10𝐸2𝑁1

)
𝑠2 + 𝑁1𝑠

4
]
= 0 , (24)

which admits several solutions. The trivial solution 𝑠 = 0 describes an homogeneous strain of the structure

and corresponds to the principal path. Equation 24 corresponds to the evolution law of state variable

deformation shift
𝑠
𝑏
with respect to macroscopic deformation 𝐸.

The stability of the principal path can be studied by looking at the positive definiteness of the matrix

defined by the second derivatives of the homogenized total energy with respect to both state variables,

evaluated along the principal path (meaning that 𝑠 = 0):[
𝜕2𝑊𝑚

𝜕𝐸2
𝜕2𝑊𝑚

𝜕𝐸𝜕𝑠
𝜕2𝑊𝑚

𝜕𝐸𝜕𝑠
𝜕2𝑊𝑚

𝜕𝑠2

] �����
𝑠=0

.

When the determinant of this matrix becomes null, the stability of the system is lost. This loss of stability

happens if one of the two conditions listed in Equation 25 are satisfied:

𝐾1 − 3𝑀1𝐸
2 + 5𝑁1𝐸

4︸                    ︷︷                    ︸
𝑔1 (𝐸 )

= 0 or 𝐾1 − 3𝑀1𝐸
2 + 5𝑁1𝐸

4 + 2(𝐾2 − 3𝑀2𝐸
2 + 5𝑁2𝐸

4)︸                                                         ︷︷                                                         ︸
𝑔1 (𝐸 )+2𝑔2 (𝐸 )

= 0 . (25)

One can then recognize immediately in these equations the two conditions 𝑔1 (𝜖) = 0 and 𝑔1 (𝜖) +2𝑔2 (𝜖) = 0

established in subsection 2.2.

As a consequence, the homogenized model using the deformation shift as additional state variable has

the ability to capture both short-wavelength and long-wavelength instabilities.

8
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4 Numerical study
Strain-gradient models have an internal length, and as such have been proven to be numerically efficient

to capture localization phenomena as underlined in Triantafyllidis et al. (1993). It is thus of interest to

compare the numerical efficiency of both models in cases where short-wavelength instabilities appear but

also in a case with a long-wavelength instability followed by a localization. These two cases are presented

below, they correspond to the orange and green cases presented in the discrete analysis section and

are related to the following set of parameters: 𝐾1 = 𝐾2 = 𝑁2 = 𝑁2 = 1 and𝑀1 = 2,𝑀2 = 1 for the short

wavelength instability and𝑀1 = 1,𝑀2 = 2 for the long wavelength instabiilty. They will be compared with

a computation made on the full discrete system including all the springs. The computations have been

carried out using a custom home-made bifurcation and branch-following software (Elliott et al. 2002;

Elliott 2007) for the discrete and micromorphic models and using software AUTO-07p (Doedel et al. 2007)

for the strain-gradient model.

The problem of interest for this numerical study is an arrangement of 40 springs connecting direct

neighboring nodes associated with internal energy𝑤1 (𝜖1) and 39 springs connecting next-to neighbor

springs associated with internal energy𝑤2 (𝜖2). In order to ensure a regular constant strain principal

solution, the boundary next-to neighbor springs are in fact connected to their direct neighbor and associated

with an internal energy𝑤2 (𝜖1) as represented in Figure 4. This arrangement of springs is considered to be

clamped on the left end and submitted to an end force 𝐹 associated with end displacement Δ at the other end.

When using the micromorphic equivalent medium, and internal length has to be set corresponding to

the ratio between the microscopic to the macroscopic length. In this model, it has been chosen as ℓ = 1/40
in accordance with the number of springs in the discrete model. A finite difference scheme has been

employed with 40 elements. This number of elements could be increased or decreased without changing

the displayed results.

4.1 Short-wavelength instability
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Figure 6: Numerical results of computation on the discrete system. (a) End force-displacement graph with principal

path in black and first bifurcated branch in orange. Empty squares mark the location of bifurcation points and the

plain circles are the computation points for which bifurcated modes are outputted. (b) first and (c) second bifurcation

modes represented in terms of deformation corresponding to the plain circle output points.
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Internal energy model parameter are chosen to be 𝐾1 = 𝐾2 = 𝑁2 = 𝑁2 = 1 and𝑀1 = 2,𝑀2 = 1 so that

the system should display a short-wavelength instability that spans over two nodes, as explained in the

discrete analysis section.

Results corresponding to the numerical computation of the problem on the discrete system are displayed

in Figure 6. The systems shows a monotonic principal branch (Figure 6(a)) in plain black line with a

bifurcation point appearing at (Δ𝜖 , 𝐹 ) = (0.44773, 1.03815). From that point, a bifurcated branch in

plain orange line emerges that displays wide oscillations corresponding to propagation of the alternate

mode across the springs (Figure 6(b)) to finally reach the entire length of the system Figure 6(c). The

predicted short-wavelength instability is thus confirmed and appropriately spreads across two nodes as

represented by the alternate values of deformation on each node. The systems has a discrepancy in terms

of deformation, which loses uniformity near the end, corresponding to the fact that it is not infinite.

When using the micromorphic equivalent medium, the principal path is appropriately captured and

the bifurcation point corresponds to (Δ𝐸, 𝐹 ) = (0.447214, 1.0375355) with relative error of 10
−3

on the

displacement and of 6.10−4 on the force value. No oscillations are present on the bifurcated branch which

directly corresponds to a uniform internal shift across the system’s length. Figure 7(a) presents the end

force-displacement curve for the micromorphic equivalent medium. In transparent plain orange line is

displayed the results on the discrete model for comparison. A very good agreement between the discrete

and the micromorphic model can be observed on this curve. This agreement can also be observed when

comparing the values of deformation and deformation shift (= 𝑠/𝑏) coming from the micromorphic medium

to the values of the local deformation from the discrete model. Indeed, the micromorphic deformation 𝐸

corresponds to the mean deformation of the bifurcated mode while the micromorphic deformation shift

𝑠/𝑏 is the amplitude of the discrete mode oscillations.

Now, when using the strain-gradient equivalent medium, the principal path is also appropriately captured.

Several bifurcation points appear on this branch including one before the bifurcation point of interest. The

closest bifurcation point to the one found by the discrete model appears at (Δ𝐸, 𝐹 ) = (0.449357, 1.0400949)
with relative error of 3.10−3 on the displacement and of 1.8.10−3 on the force value, meaning that the error

this three times higher than for the micromorphic medium. Additionally, the bifurcated branch differs

from the discrete bifurcated branch and does not converge all the way.

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1 1.2

e
n
d
F
o
r
c
e

end displacement

principal path

bifurcated path

output point

(a) micromorphic medium

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2

e
n
d
F
o
r
c
e

end displacement

principal path

bifurcated path

(b) strain-gradient medium

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40

d
e
f
o
r
m
a
t
i
o
n

point number

deformation

deformation shift

def+/-shift

(c) micromorphic deformation mode

Figure 7: End force-displacement graphs with principal path in black and first bifurcated branch in orange. Empty

square marks represent the location of the bifurcation points. In transparent plain orange line is displayed the results

on the discrete model for comparison. (a) Results using the micromorphic equivalent medium. (b) Results using the

strain-gradient model. (c) values of deformation and deformation shift for the micromorphic model at the output point

and comparison with discrete results at the same point.

From this first numerical study of a short-wavelength bifurcating system, it appears that the micromor-

phic medium is more precise to capture the onset of short-wavelength bifurcation and more accurate in
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the prediction of the bifurcated branch than the strain-gradient medium which cannot converge all the

way along the bifurcated branch. This confirms the conclusions drawn after the analytical analysis carried

out in the homogenization section.

4.2 Long-wavelength instability and localization
Internal energy model parameter are chosen to be 𝐾1 = 𝐾2 = 𝑁2 = 𝑁2 = 1 and𝑀1 = −1,𝑀2 = 3 so that

the system should display a long-wavelength instability followed by a localization, as explained in the

discrete analysis section.

Results corresponding to the numerical computation of the problem on the discrete system are

displayed in Figure 8. The systems shows a non-monotonic up-down-up principal branch (Figure 8(a))

in plain black line which comes to a limit point at (Δ𝜖 , 𝐹 ) = (0.525731, 0.9711368291). According to

Triantafyllidis et al. (1993), the up-down-up behavior ensures a localization phenomenon appearing after

the first turning point. A series of very close bifurcation points appear indeed right after the turning point.

The first bifurcation point corresponds to (Δ𝜖 , 𝐹 ) = (0.525852, 0.9711376579). From that point, a bifurcated

branch in plain green line emerges that an almost horizontal line (called the Maxwell line (Le 2011)). This

branch actually contains oscillations (see the zoom in Figure 8(b) corresponding to propagation of the

localized mode across the springs (Figure 8(d)) to finally reach the almost entire length of the system ??.
The predicted long-wavelength instability followed by a localization is thus confirmed. Author would

like to emphasize that the more springs are present in the system, the smaller are the amplitudes of the

observed oscillations but this amplitude also depends on the system’s stiffness parameters (𝐾𝑖 ,𝑀𝑖 , 𝑁𝑖
𝑖 = 1, 2). This oscillating feature has been observed also experimentally and numerically in the literature

(Forest et al. 2005; Findeisen et al. 2020).The localization starts at one end of the system due to imperfect

boundary conditions that break the periodicity.
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Figure 8: Numerical results of computation on the discrete system. (a) End force-displacement graph with principal

path in black and first bifurcated branch in green. Empty squares mark the location of bifurcation points and the plain

circles the computation points for which bifurcated modes are outputted. (b) and (c) bifurcation modes represented in

terms of deformation corresponding to the plain circle output points.

When using the micromorphic equivalent medium, the principal path is appropriately captured and

the limit point corresponds to point (Δ𝐸, 𝐹 ) = (0.525731, 0.9711376579) with relative error of the order

of magnitude of the computer’s accuracy on both displacement and force values. Figure 9(a) presents

the End force-displacement curve for the micromorphic equivalent medium. No bifurcation point is

detected after the limit point using a perfect system. As a consequence the localization phenomenon

cannot be captured this way. Using an imperfection of 0.1% on the stiffness of the first element, the

beginning of the discrete bifurcation branch is captured but the plateau cannot be reached. Addition-
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ally, no bifurcation point can be identified because of imperfection. The point where the imperfect

curve diverges from the perfect one happens (Δ𝐸, 𝐹 ) = (0.511623, 0.9704268022), with relative error

of 2.7 .10−2 on the displacement and 7.10−4 on the force value. Modifying the imperfection amplitude

leads to a modification of the "bifurcation point" whereas changing the number of elements in the

computation implies a change in the proximity of the branch to the principal path. As so, a higher

number of elements leads to a branch closer to the principal path and a larger imperfection leads to

an increasing value for the bifurcation point displacement force value. If one plots the value of the

deformation and deformation shift across the elements (cf Figure 9(c)), the localized mode does not

appear. The micromorphic medium seems to lack, in essence, the ability to appropriately capture lo-

calization as it can capture the onset, if imperfections are introduced, but cannot reproduce the Maxwell line.
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Figure 9: End force-displacement graphs for computations using the micromorphic equivalent medium. (a) perfect

model, (b) imperfection of 0.1% in the model on the stiffness of first element. (c) values of deformation and deformation

shift for the micromorphic model at the output points

When using the strain-gradient equivalent medium, the principal path is appropriately captured with a

limit point located at (Δ𝐸, 𝐹 ) = (0.525731, 0.9711376579) with relative error of the order of magnitude of the

computer’s accuracy on both displacement and force values. Right after this limit point, a bifurcation point

is detected at point (Δ𝐸, 𝐹 ) = (0.5262165, 0.9711368274) with relative error of 7.10−4 on the displacement

and of the order of magnitude of the computer’s accuracy on the force value. The subsequent bifurcating

branch seems to be in very good agreement with the reference discrete branch but does not display any

oscillations (cf. Figure 10(b)). The associated deformation mode corresponds to a localization propagating

along the system’s length with values agreeing with those of the discrete model. It can thus be concluded

that the strain gradient model is able to capture in a satisfactory manner the localization behavior and

reproduces accurately the Maxwell line but not the oscillations appearing along this line.

From this second numerical study of a long-wavelength bifurcating system, it appears that both

models are able to capture de limit point accuratelry but only the strain-gradient model can capture the

bifurcation point and subsequent localization that appear afterwards. An imperfect micromorphic model

has been proposed to try to capture the bifurcated branch. This model could propose an equilibrium

path that is different from the perfect principal path but this path does not corresponds to the discrete

bifurcated branch and especially failed to capture the Maxwell line. This second numerical study is of

great importance as it shows the benefits of using strain-gradient equivalent medium when localization

phenomena are to be modelled.
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Figure 10: End force-displacement graphs for computations using the strain-gradient equivalent medium. (a) perfect

model, (b) imperfection of 0.1% in the model on the stiffness of first element. (c) values of deformation and deformation

shift for the micromorphic model at the output points

Conclusion
The objective of this paper was to question the ability of two families of generalized continua (namely

micromorphic of strain-gradient) in capturing appropriately onset and post-bifurcated behavior of systems

displaying either a patterning type of bifurcation (meaning short-wavelength instability) or a localization

phenomenon following a long-wavelength instability. The studied system is an assembly of non-linear

springs attached to direct and next-to-neighbor nodes and with stiffness parameters adjusted to display one

or the other type of instability. The equivalent media energy are built analytically by microscopic analysis

for the micromorphic medium or by Taylor expansion for the strain-gradient medium. A numerical study

has been carried out to compare quantitatively the results with a reference computation on a discrete

system. It appears that the micromorphic equivalent medium is the only one able to appropriately capture

the onset and the post-bifurcation regime when a short-wavelength instability appears, creating a pattern

of deformation, while the strain-gradient equivalent medium is the only one able to appropriately capture

the localization phenomenon appearing after a long-wavelength instability.

This study, on a very simple system, allows us to build models analytically and thus avoiding possible

errors stemming from numerical approximations. Moreover, the conclusions drawn out in this paper

explain the choice made by Rokoš et al. 2019 to use a micromorphic model at the macroscopic scale in their

numerical homogenization. Indeed, the objective of their work was to capture the patterning instability

that spreads on two unit cells and it appears that this can only be done via micromorphic type models.

Of course, the two types of models compared in this study could be combined and this is the authors

recommendation if both localization and patterning are expected to happen in the modelled system.

This work is currently under investigation, along with studying the ability of each model to capture

non-commensurate instabilities that would appear if mode complex models are at stake, as suggested in

Truskinovsky et al. (2005)
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6 Back matter Information
The following subsections will be added to the accepted version of the paper.
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