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THE 3D NONLINEAR SCHRÖDINGER EQUATION WITH A CONSTANT MAGNETIC
FIELD REVISITED

VAN DUONG DINH

Abstract. In this paper, we revisit the Cauchy problem for the three dimensional nonlinear Schrödinger
equation with a constant magnetic field. We first establish sufficient conditions that ensure the ex-
istence of global in time and finite time blow-up solutions. In particular, we derive sharp thresholds
for global existence versus blow-up for the equation with mass-critical and mass-supercritical nonlin-
earities. We next prove the existence and orbital stability of normalized standing waves which extend
the previous known results to the mass-critical and mass-supercritical cases. To show the existence
of normalized solitary waves, we present a new approach that avoids the celebrated concentration-
compactness principle. Finally, we study the existence and strong instability of ground state standing
waves which greatly improve the previous literature.

1. Introduction

The present paper concerns with the Cauchy problem for nonlinear Schrödinger equations with a
constant magnetic field in three dimensions{

i∂tu+ (∇+ iA)2u = −|u|αu,
u|t=0 = u0,

(t, x) ∈ R+ × R3, (1.1)

where

A(x) = b

2(−x2, x1, 0), x = (x1, x2, x3) ∈ R3 (1.2)

is a vector-valued potential modeling the effect of an external magnetic field
B = curl(A) = (0, 0, b), b 6= 0. (1.3)

The Schrödinger equation with a constant magnetic field is an effective model describing properties
of a single non-relativistic quantum particle in the presence of an electromagnetic field (see e.g., [26]).
A rigorous mathematical investigation of the linear Schrödinger operator with a constant magnetic field
was studied by J. Avron, I. Herbst, and B. Simon [2–4].

The nonlinear Schrödinger equation with a constant magnetic field (1.1) can be regarded as a special
case of the Gross-Pitaevskii equation describing the Bose-Einstein condensation with a critical rotational
speed and a partial harmonic confinement potential (see e.g., [6]), namely

i∂tu+ ∆u− bLzu−
b2

4 (x2
1 + x2

2)u = −|u|2u, (t, x) ∈ R+ × R3,

where
Lz := i(x2∂x1 − x1∂x2) (1.4)

is the third component of the angular momentum vector
−ix ∧∇ = (Lx, Ly, Lz) = i (x3∂x2 − x2∂x3 , x1∂x3 − x3∂x1 , x2∂x1 − x1∂x2) .

To our knowledge, the first paper addressed (1.1) belongs to M. J. Esteban and P.-L. Lions [18],
where the existence of normalized standing waves related to (1.1) was proved. T. Cazenave and M. J.
Esteban [9] later established the local well-posedness for (1.1). As a consequence, they showed that
normalized standing waves obtained in [18] are indeed orbitally stable under the flow of (1.1). Note
that these existence and stability results hold with a mass-subcritical nonlinearity, i.e., 0 < α < 4

3 . In
the mass-(super)critical case, i.e., 4

3 ≤ α < 4, J. M. Gonçalves Ribeiro [30] proved the existence of
finite time blow-up solutions to (1.1) with negative energy. Also with this regime of nonlinearity, the
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orbital instability of (rotational invariant) ground state standing waves was studied by J. M. Gonçalves
Ribeiro [31] and R. Fukuizumi and M. Ohta [21]. Recently, a new blow-up result for (1.1) was found
by T. F. Kieffer and M. Loss [24].

The main purposes of this paper are three folds:
• First, we investigate sufficient conditions for the existence of global in time and finite time
blow-up solutions. In particular, we derive sharp thresholds for global existence versus blow-up
for the equation with mass-(super)critical nonlinearities.
• Second, we study the existence and orbital stability of normalized standing waves.
• Finally, we address the existence and strong instability of ground state standing waves.

1.1. Global existence and finite blow-up. Before stating our results in this direction, let us recall the
local theory for (1.1). The local well-posedness for (1.1) with initial data in H1

A(R3) was established
by T. Cazenave and M. J. Esteban [9] (see also [10, Section 9.1]), where

H1
A(R3) :=

{
f ∈ L2(R3) : |(∇+ iA)f | ∈ L2(R3)

}
is a Hilbert space equipped the norm

‖f‖2H1
A

= ‖(∇+ iA)f‖2L2 + ‖f‖2L2 .

Proposition 1.1 (LWP [9]). Let 0 < α < 4 and u0 ∈ H1
A(R3). Then there exist T ∗ ∈ (0,∞] and a

unique maximal solution
u ∈ C([0, T ∗), H1

A(R3)) ∩ C1([0, T ∗), H−1
A (R3)),

where H−1
A (R3) is the dual space of H1

A(R3). The maximal time of existence satisfies the blow-up
alternative: if T ∗ <∞, then limt↗T∗ ‖u(t)‖H1

A
=∞. In addition, there are conservation laws of mass

and energy, namely
M(u(t)) = ‖u(t)‖2L2 = M(u0), (Mass)

E(u(t)) = 1
2‖(∇+ iA)u(t)‖2L2 −

1
α+ 2‖u(t)‖α+2

Lα+2 = E(u0), (Energy)

for all t ∈ [0, T ∗).

In the mass-subcritical case, it was proved in [9] that solutions to (1.1) exist globally in time, i.e.,
T ∗ =∞. In the mass-(super)critical cases, there exist solutions to (1.1) which blow up in finite time,
i.e., T ∗ < ∞ (see e.g., [19, 24, 30]). To state blow-up results for (1.1), let us introduce the following
Hilbert space

ΣA(R3) :=
{
f ∈ H1

A(R3) : |x|f ∈ L2(R3)
}

(1.5)
endowed with the norm

‖f‖2ΣA := ‖(∇+ iA)f‖2L2 + ‖xf‖2L2 + ‖f‖2L2 .

We will see in Remark 3.1 that ΣA(R3) ≡ Σ(R3), where
Σ(R3) :=

{
f ∈ H1(R3) : |x|f ∈ L2(R3)

}
(1.6)

equipped with the norm
‖f‖2Σ := ‖∇f‖2L2 + ‖xf‖2L2 + ‖f‖2L2 .

Thanks to this fact, we have the following useful identity

‖(∇+ iA)f‖2L2 = ‖∇f‖2L2 + bR(f) + b2

4 ‖ρf‖
2
L2 , (1.7)

where ρ :=
√
x2

1 + x2
2 and

R(f) := i

ˆ
(x2∂x1f − x1∂x2f)fdx =

ˆ
Lzffdx, (1.8)

where Lz is as in (1.4). Note that, by Hölder’s inequality, it is straightforward to see that the functional
R is well-defined on Σ(R3).

By making use of virial identity related to (1.1) (see Lemma 3.1), the existence of finite time blow-up
solutions to (1.1) was showed by J. M. Gonçalves Ribeiro [30] (see also [19] for a more general magnetic
potential).
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Proposition 1.2 ( [30]). Let 4
3 ≤ α < 4. Let u0 ∈ ΣA(R3) be such that E(u0) < 0. Then the

corresponding solution to (1.1) blows up in finite time, i.e., T ∗ <∞.

Recently, T. F. Kieffer and M. Loss [24] showed the following blow-up result for (1.1).

Proposition 1.3 ( [24]). Let 4
3 ≤ α < 4. Let u0 ∈ ΣA(R3) and u : [0, T ∗) × R3 → C be the

corresponding solution to (1.1). Then the solution blows up in finite time, i.e., T ∗ <∞ provided that
one of the following conditions holds:
(1) E0(u0) < 0;
(2) E0(u0) = 0 and Im

ˆ
x · ∇u0(x)u0(x)dx < 0;

(3) E0(u0) > 0 and Im
ˆ
x · ∇u0(x)u0(x)dx < −

√
2E0(u0)‖xu0‖L2 .

Here

E0(f) := 1
2‖∇f‖

2
L2 + b2

8 ‖ρf‖
2
L2 −

1
α+ 2‖f‖

α+2
Lα+2 . (1.9)

The proof of this blow-up result is based on the virial identity and the following observation.

Lemma 1.4. Let 0 < α < 4 and u0 ∈ ΣA(R3). Let u : [0, T ∗) × R3 → C be the corresponding
solution to (1.1). Then the angular momentum R(u(t)) is real-valued and conserved along the flow of
(1.1), i.e.,

R(u(t)) = R(u0), ∀t ∈ [0, T ∗).
In particular, we have

E0(u(t)) = E0(u0), ∀t ∈ [0, T ∗),
where E0 is as in (1.9).

For the reader’s convenience, we give a proof of this result in Section 3.

Remark 1.1. In [24], a relationship between E(u0) and E0(u0) has been analyzed. In particular, for a
magnetic field with the strength b > 0, we have E(u0) > E0(u0) if R(u0) > 0,

E(u0) < E0(u0) if R(u0) < 0,
E(u0) = E0(u0) if R(u0) = 0.

Depending on the sign of the magnetic strength and the angular momentum, the blow-up condition
given in Proposition 1.2 may be better or weaker than the one of Proposition 1.3 and vice versa.

Our first result is the following sharp threshold for global existence versus finite time blow-up in the
mass-critical case.

Proposition 1.5. Let α = 4
3 .

(1) If u0 ∈ H1
A(R3) satisfies ‖u0‖L2 < ‖Q‖L2 , where Q is the unique positive radial solution to

−∆Q+Q− |Q|αQ = 0, (1.10)
then the corresponding solution to (1.1) exists globally in time, i.e., T ∗ =∞.

(2) For c > ‖Q‖L2 , there exists u0 ∈ ΣA(R3) such that the corresponding solution to (1.1) with initial
data u|t=0 = u0 blows up in finite time, i.e., T ∗ <∞.

Remark 1.2. It is not clear to us at the moment that whether or not there exists a blow-up solution
to the mass-critical (1.1) with the minimal mass ‖u0‖L2 = ‖Q‖L2 .

Our next results are the following global existence in the mass-supercritical case.

Proposition 1.6. Let 4
3 < α < 4. Let u0 ∈ H1

A(R3) be such that E(u0) ≥ 0 and

E(u0)[M(u0)]σc < E0(Q)[M(Q)]σc , (1.11)
‖(∇+ iA)u0‖L2‖u0‖σc

L2 < ‖∇Q‖L2‖Q‖σc
L2 , (1.12)

where

E0(f) := 1
2‖∇f‖

2
L2 −

1
α+ 2‖f‖

α+2
Lα+2 , σc := 4− α

3α− 4 . (1.13)
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Then the corresponding solution to (1.1) exists globally in time, i.e., T ∗ =∞, and satisfies

‖(∇+ iA)u(t)‖L2‖u(t)‖σc
L2 < ‖∇Q‖L2‖Q‖σc

L2

for all t ∈ [0,∞).

Proposition 1.7. Let 4
3 < α < 4. Let u0 ∈ H1

A(R3) be such that

E(u0)[M(u0)]σc = E0(Q)[M(Q)]σc , (1.14)
‖(∇+ iA)u0‖L2‖u0‖σc

L2 < ‖∇Q‖L2‖Q‖σc
L2 . (1.15)

Then the corresponding solution to (1.1) exists globally in time, i.e., T ∗ =∞ and satisfies

‖(∇+ iA)u(t)‖L2‖u(t)‖σc
L2 < ‖∇Q‖L2‖Q‖σc

L2

for all t ∈ [0,∞).

The following result gives a sharp threshold for global existence versus finite time blow-up in the
mass-supercritical case.

Theorem 1.8. Let 4
3 < α < 4. Let u0 ∈ ΣA(R3) be such that E0(u0) ≥ 0 and

E0(u0)[M(u0)]σc < E0(Q)[M(Q)]σc , (1.16)

where E0 and E0 are as in (1.9) and (1.13) respectively.
(1) If

‖∇u0‖L2‖u0‖σc
L2 < ‖∇Q‖L2‖Q‖σc

L2 , (1.17)

then the corresponding solution to (1.1) exists globally in time, i.e., T ∗ =∞, and satisfies

‖∇u(t)‖L2‖u(t)‖σc
L2 < ‖∇Q‖L2‖Q‖σc

L2

for all t ∈ [0,∞).
(2) If

‖∇u0‖L2‖u0‖σc
L2 > ‖∇Q‖L2‖Q‖σc

L2 , (1.18)

then the corresponding solution to (1.1) satisfies

‖∇u(t)‖L2‖u(t)‖σc
L2 > ‖∇Q‖L2‖Q‖σc

L2

for all t ∈ [0, T ∗). Moreover, the solution blows up in finite time, i.e., T ∗ <∞.

Remark 1.3. Here we only consider data with E0(u0) ≥ 0 since solutions to (1.1) with E0(u0) < 0
blow up in finite time according to Proposition 1.3. Moreover, as we see from (3.13), there is no
u0 ∈ ΣA(R3) satisfying (1.16) and

‖∇u0‖L2‖u0‖σc
L2 = ‖∇Q‖L2‖Q‖σc

L2 .

Hence Theorem 1.8 indeed gives a sharp threshold for global existence versus finite time blow-up for
(1.1).

Remark 1.4. In the case of no magnetic potential, this type of result was proved by J. Holmer and
S. Roudenko [22]. They also proved that global solutions scatter to the linear ones as time tends to
infinity. The later result on the scattering is not expected to hold in the presence of a constant magnetic
field since Strichartz estimates associated to the magnetic Schrödinger operator are available only for
finite times (see e.g., [9]).

Theorem 1.9. Let 4
3 < α < 4. Let u0 ∈ ΣA(R3) be such that

E0(u0)[M(u0)]σc = E0(Q)[M(Q)]σc . (1.19)

(1) If

‖∇u0‖L2‖u0‖σc
L2 < ‖∇Q‖L2‖Q‖σc

L2 , (1.20)

then the corresponding solution to (1.1) exists globally in time.
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(2) If

‖∇u0‖L2‖u0‖σc
L2 > ‖∇Q‖L2‖Q‖σc

L2 , (1.21)

then the corresponding solution to (1.1) either blows up in finite time, i.e., T ∗ <∞, or there exist
a time sequence tn →∞ and (yn)n≥1 ⊂ R3 such that

u(tn, ·+ yn)→ eiθλQ strongly in H1(R3)

for some θ ∈ R and λ = ‖u0‖L2
‖Q‖L2

as n→∞.

Remark 1.5. It was proved in Observation 3.1 that there is no data u0 ∈ ΣA(R3) satisfying (1.19) and

‖∇u0‖L2‖u0‖σc
L2 = ‖∇Q‖L2‖Q‖σc

L2 .

Thus Theorem 1.9 give a description on long time behaviors of solutions to (1.1) with initial data lying
at the mass-energy threshold.

Theorem 1.10. Let 4
3 < α < 4. Let u0 ∈ ΣA(R3) be such that

E0(u0)[M(u0)]σc ≥ E0(Q)[M(Q)]σc , (1.22)
E0(u0)[M(u0)]σc

E0(Q)[M(Q)]σc

(
1− (F ′(u0))2

8E0(u0)F (u0)

)
≤ 1, (1.23)

and

‖u0‖α+2
Lα+2‖u0‖2σc

L2 > ‖Q‖α+2
Lα+2‖Q‖2σc

L2 , (1.24)

Im
ˆ
x · ∇u0(x)u0(x)dx ≤ 0. (1.25)

Then the corresponding solution to (1.1) blows up in finite time, i.e., T ∗ <∞.

Remark 1.6. In Theorems 1.8, 1.9, and (1.10), we show the existence of finite time blow-up solutions
to (1.1) having E0(u0) ≥ 0. Hence our results do not fall into the framework of the blow-up result
proven recently by T. F. Kieffer and M. Loss (see Proposition 1.3).

1.2. Normalized standing waves. Next we are interested in the existence and stability of prescribed
mass standing waves for (1.1). By standing waves, we mean solutions to (1.1) of the form u(t, x) =
eiωtφ(x), where ω ∈ R and φ is a solution to

−(∇+ iA)2φ+ ωφ− |φ|αφ = 0. (1.26)

The existence of standing waves for (1.1) can be obtained by minimizing the energy functional E(f)
over the mass-constraint

S(c) :=
{
f ∈ H1

A(R3) : M(f) = c
}

with c > 0. More precisely, we consider the minimization problem

I(c) := inf {E(f) : f ∈ S(c)} .

In the mass-subcritical case, the existence of minimizers for I(c) was proved by M. J. Esteban and
P.-L. Lions [18]. Moreover, the orbital stability of standing waves was showed by T. Cazenave and M.
J. Esteban [9].

Proposition 1.11 ( [9, 18]). Let 0 < α < 4
3 . Then for any c > 0, there exists a minimizer for I(c).

Moreover, the set
M(c) := {φ ∈ S(c) : E(φ) = I(c)}

is orbitally stable under the flow of (1.1) in the sense that for any ε > 0, there exists δ > 0 such that
for any initial data u0 ∈ H1

A(R3) satisfying

inf
φ∈M(c)

‖u0 − φ‖H1
A
≤ δ,

then the corresponding solution to (1.1) exists globally in time and satisfies

inf
φ∈M(c)

inf
y∈R3

‖eiA(y)··u(t, · + y)− φ‖H1
A
≤ ε, ∀t ≥ 0.
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In [18], the existence of minimizers for I(c) was claimed without proof and the proof was referred
to [27] for a similar argument using the concentration-compactness principle. However, an important
point seems to be missing in order to preclude the vanishing scenario. In fact, if the vanishing occurs,
then it is well-known (see [27]) that the minimizing sequence fn → 0 strongly in Lr(R3) for all
2 < r < 6. Thus the mass-constraint, namely M(fn) = c > 0 for all n ≥ 1, is not enough to rule
out the vanishing. In the case of non magnetic potential, i.e., A = 0, the vanishing can be precluded
by using the fact that I(c) < 0 for all c > 0, which can be proved easily using a scaling argument.
However, due to the appearance of the magnetic potential, this scaling argument does not work to
show the negativity of I(c). Indeed, it may happen that I(c) is non-negative.

In this paper, we present an alternative simple method that avoids the concentration-compactness
argument. Our main contributions in this direction are the following existence and stability in the
mass-critical and mass-supercritical cases.

Theorem 1.12. Let α = 4
3 . Then for any 0 < c < M(Q), where Q is the unique positive radial

solution to (1.10), there exists a minimizer for I(c). Moreover, the set of minimizers for I(c) is orbitally
stable in the sense of Proposition 1.11.

Remark 1.7. The main difficulty in showing the existence of minimizers for I(c) is the lack of com-
pactness. To overcome it, the authors in [18] made use of a variant of the celebrated concentration-
compactness principle adapted to the magnetic Sobolev space H1

A(R3). However, due to the non-
negativity of I(c), it is not clear from [18] how to exclude the vanishing possibility. Here we rule out
the vanishing scenario by showing that every minimizing sequence for I(c) has Lα+2-norm bounded
away from zero (see Lemma 4.1). This is done by using an L2-bound of the magnetic-Sobolev norm
(see (2.2)) and a suitable scaling argument. We refer to Section 4 for more details.

We also have the following non-existence results.

Proposition 1.13. (1) Let α = 4
3 . If c ≥ M(Q), where Q is the unique positive radial solution to

(1.10), then there is no minimizer for I(c).
(2) Let 4

3 < α < 4. Then for any c > 0, there is no minimizer for I(c).

We are next interested in finding normalized solutions to (1.26) in the mass-supercritical case. By
Proposition 1.13, we are not able to find minimizers for the energy functional under the mass-constraint
S(c). Inspired by a recent work of J. Bellazzini, N. Boussaïd, L. Jeanjean, and N. Visciglia [7], we
consider the minimizing problem

Im(c) := inf {E(f) : f ∈ S(c) ∩D(m)} ,

where
D(m) :=

{
f ∈ H1

A(R3) : ‖(∇+ iA)f‖2L2 ≤ m
}
.

Theorem 1.14. Let 4
3 < α < 4. Then for any m > 0, there exists c0 = c0(m) > 0 sufficiently small

such that:
(1) There exists a minimizer for Im(c) for all 0 < c < c0. Moreover, the set of minimizers for Im(c)

defined by
Mm(c) := {φ ∈ S(c) ∩D(m) : E(φ) = Im(c)}

satisfies
∅ 6=Mm(c) ⊂ D(m/2).

In particular, φ is a solution to (1.26) with ω the corresponding Lagrange multiplier. In addition,
we have

−|b| < ω ≤ −|b|
(

1−Kc
4−α

4 m
3α−4

4

)
(1.27)

for some constant K > 0 independent of c and m.
(2) The setMm(c) with 0 < c < c0 is orbitally stable under the flow of (1.1) in the sense of Proposition

1.11.

Remark 1.8. The proof of Theorem 1.14 is inspired by an idea of [7]. However, comparing to [7], there
are two main different points:
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(1) In [7], the existence of minimizers for Im(c) relies on the following inequality
inf {E(f) : f ∈ S(c) ∩D(mc/2)} < inf {E(f) : f ∈ S(c) ∩ (D(m)\D(mc))} .

Here the notation has been modified according to our definitions. If we use the above inequality,
then for f ∈ S(c) ∩D(mc/2), it follows from (2.2) that

c = M(f) ≤ 1
|b|
‖(∇+ iA)f‖2L2 ≤

mc

2|b|
which yields m ≥ 2|b|. Thus the argument of [7] does not apply to all m > 0. Here our proof relies
instead on the following inequality:

inf {E(f) : f ∈ S(c) ∩D(m/4)} < inf {E(f) : f ∈ S(c) ∩ (D(m)\D(m/2))} . (1.28)
We prove in Lemma 4.2 that for any m > 0, there exists c0 = c0(m) > 0 sufficiently small such
that for all 0 < c < c0, both

{f : f ∈ S(c) ∩D(m/4)} , {f : f ∈ S(c) ∩ (D(m)\D(m/2))}
are not empty and (1.28) holds.

(2) The orbital stability of normalized standing waves implicitly requires the solution exists globally in
time. This global existence result was not showed in [7]. In Lemma 4.4, we show a global existence
result that supports the orbital stability given in Theorem 1.14. The proof of this result is based on
a standard continuity argument.
Our next result shows that for a fixed constant m > 0 and c > 0 sufficiently small, minimizers of

Im(c) are indeed normalized ground states related to (1.26).
Proposition 1.15. Let 4

3 < α < 4. Let m > 0 be a fixed constant, c > 0 sufficiently small, and
φ ∈Mm(c). Then φ is a normalized ground state related to (1.26), i.e.,

E′|S(c) (φ) = 0, E(φ) = inf
{
E(f) : f ∈ S(c), E′|S(c) (f) = 0

}
.

1.3. Ground state standing waves. We are also interested in the existence and stability of ground
state standing waves related to (1.1). Recall that a non-zero solution φ to (1.26) is called a ground
state related to (1.26) if it minimizes the action functional

Sω(f) := E(f) + ω

2M(f) = 1
2‖(∇+ iA)f‖2L2 + ω

2 ‖f‖
2
L2 −

1
α+ 2‖f‖

α+2
Lα+2

over all non-trivial solutions to (1.26). Note that (1.26) can be written as S′ω(φ) = 0. Thus we denote
the set of non-trivial solutions to (1.26) by

A(ω) :=
{
f ∈ H1

A(R3) : S′ω(f) = 0
}

and the set of ground states related to (1.26) by
G(ω) := {φ ∈ A(ω) : Sω(φ) ≤ Sω(f),∀f ∈ A(ω)} .

Our last results concern with the existence of ground states related to (1.1) and the strong instability
of ground state standing waves in the mass-supercritical case.
Theorem 1.16. Let 0 < α < 4 and ω > −|b|. Then there exists a ground state related to (1.26).
Moreover, the set of ground states G(ω) is characterized by

G(ω) =
{
φ ∈ H1

A(R3)\{0} : Sω(φ) = d(ω),Kω(φ) = 0
}
,

where
d(ω) := inf

{
Sω(f) : f ∈ H1

A(R3)\{0},Kω(f) = 0
}

(1.29)
with

Kω(f) := ‖(∇+ iA)f‖2L2 + ω‖f‖2L2 − ‖f‖α+2
Lα+2 . (1.30)

Remark 1.9. In [21, Section 4], R. Fukuizumi and M. Ohta proved the existence of ground states
related to (1.1) in a subspace H1

A,0(R3) of H1
A(R3), namely

H1
A,0(R3) =

{
f ∈ H1(R3) : ρf ∈ L2(R3), f = f(ρ, z) does not depend on θ

}
, (1.31)

where (ρ, θ, z) is the cylindrical coordinates in R3, i.e., x1 = ρ cos θ, x2 = ρ sin θ, and x3 = z. Our
result extends the one in [21, Section 4] to the whole energy space H1

A(R3).
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Theorem 1.17. Let 4
3 < α < 4, ω > −|b|, and φ ∈ G(ω). If ∂2

λSω(φλ)
∣∣
λ=1 ≤ 0, where

φλ(x) = λ
3
2φ(λx), (1.32)

then the ground state standing wave eiωtφ(x) is strongly unstable by blow-up in the sense that for any
ε > 0, there exists u0 ∈ ΣA(R3) such that ‖u0 − φ‖ΣA < ε and the corresponding solution to (1.1)
with initial data u|t=0 = u0 blows up in finite time.

Remark 1.10. In [21], the orbital instability of ground state standing waves for (1.1) in the subspace
H1
A,0(R3) (see (1.31)) was proven (see also [31] for an earlier similar result). Here we extend their

results and show the strong instability of ground state standing waves for (1.1).

We end the introduction by reporting some recent results related to magnetic nonlinear Schrödinger
equations. After the pioneering works of M. J. Esteban and P.-L. Lions [18] and T. Cazenave and M.
J. Esteban [9], the nonlinear Schrödinger equations (NLS) with magnetic potential has attracted much
of interest in the last decades. For the time-dependent magnetic NLS with an external potential, we
mention the works of L. Fanelli and L. Vega [20] and P. D’Ancona, L. Fanelli, and L. Vega [16] on virial
identities and Strichartz estimates; A. Garcia [19] for the existence of finite time blow-up solutions; J.
Colliander, M. Czubak, and J. Lee [15] for the interaction Morawetz estimate and its application to the
global existence theory. For the time-independent magnetic NLS with potential, we refer to the works
of G. Arioli and A. Szulkin [5] and J. Chabrowski and A. Szulkin [13] for the existence and qualitative
properties of ground state solutions; K. Kurata [23], S. Cingolani [12], S. Cingolani and S. Secchi [13],
S. Cingolani, L. Jeanjean, and S. Secchi [14], and C. O. Alves, G. M. Figueiredo, and M. F. Furtado [1]
for the existence of semiclassical solutions.

This paper is organized as follows. In Section 2, we recall some basic properties of the magnetic
Sobolev space H1

A(R3) and prove some preliminary results which are needed in the sequel. Section
3 is devoted to long time dynamics such as global existence and finite time blow-up of solutions to
(1.1). In Section 4, we study the existence and orbital stability of normalized standing waves related to
(1.1). Finally, the existence and strong instability of ground state standing waves will be investigated
in Section 5.

2. Preliminaries

In this section, we recall some basic properties of the magnetic Sobolev space H1
A(R3) and prove

some preliminary results which are needed in the sequel.

Lemma 2.1 ( [18]). Let A ∈ L2
loc(R3,R3). Then H1

A(R3) equipped with the inner product

〈f, g〉H1
A

:=
ˆ
fgdx+

ˆ
(∇+ iA)f · (∇+ iA)gdx

is a Hilbert space.

Lemma 2.2 (Diamagnetic inequality [25]). Let A ∈ L2
loc(R3,R3) and f ∈ H1

A(R3). Then |f | ∈
H1(R3). In particular, we have

|∇|f |(x)| ≤ |(∇+ iA)f(x)| a.e. x ∈ R3. (2.1)

Lemma 2.3 ( [18]). Let A ∈ L2
loc(R3,R3). Then the following properties hold:

(1) C∞0 (R3) is dense in H1
A(R3).

(2) H1
A(R3) is continuously embedded in Lr(R3) for all 2 ≤ r ≤ 6.

(3) Assume that A is linear, i.e., A(x+ y) = A(x) +A(y) for all x, y ∈ R3. Let y ∈ R3, f ∈ H1
A(R3),

and set
f̃(x) := eiA(y)·xf(x+ y), x ∈ R3.

Then (∇+ iA)f̃(x) = eiA(y)·x(∇+ iA)f(x+ y). In particular,

‖(∇+ iA)f̃‖L2 = ‖(∇+ iA)f‖L2 .

(4) If A ∈ L3
loc(R3,R3), then H1

A(R3) is continuously embedded in H1
loc(R3). In particular, H1

A(R3) is
compactly embedded in Lrloc(R3) for all 2 ≤ r < 6.
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Lemma 2.4 ( [2]). Let A ∈W 1,∞
loc (R3,R3) and j, k ∈ {1, · · · , 3}. Then for any f ∈ C∞0 (R3), we have∣∣∣∣ˆ (∂jAk − ∂kAj)ffdx

∣∣∣∣ ≤ ‖(∂j + iAj)f‖2L2 + ‖(∂k + iAk)f‖2L2 .

In particular, if A is as in (1.2), then

|b|‖f‖2L2 ≤ ‖(∇+ iA)f‖2L2 . (2.2)

Lemma 2.5. Let A ∈ L2
loc(R3,R3) and (fn)n≥1 be a bounded sequence in H1

A(R3). Assume that
fn ⇀ f weakly in H1

A(R3). Then we have

‖(∇+ iA)fn‖2L2 = ‖(∇+ iA)f‖2L2 + ‖(∇+ iA)(fn − f)‖2L2 + on(1),
‖fn‖rLr = ‖f‖rLr + ‖fn − f‖rLr + on(1), 2 ≤ r ≤ 6.

Proof. As H1
A(R3) is continuously embedding in Lr(R3) for all 2 ≤ r ≤ 6. The second identity is a

direct consequence of the refined Fatou’s lemma due to H. Brézis and E. H. Lieb [8]. Let us prove the
first identity. Set gn := fn − f . We see that gn ⇀ 0 weakly in H1

A(R3). We compute

‖(∇+ iA)fn‖2L2 = ‖(∇+ iA)(f + gn)‖2L2

= ‖(∇+ iA)f‖2L2 + ‖(∇+ iA)gn‖2L2 + 2 Re
ˆ

(∇+ iA)f · (∇+ iA)gndx.

Let ε > 0. Since C∞0 (R3) is dense in H1
A(R3), we take ϕ ∈ C∞0 (R3) so that ‖(∇+ iA)(f − ϕ)‖L2 <

ε/2C, where C := supn≥1 ‖gn‖H1
A
<∞. Since gn ⇀ 0 weakly in H1

A(R3), we see that∣∣∣∣ˆ (∇+ iA)ϕ · (∇+ iA)gndx
∣∣∣∣→ 0 as n→∞.

Thus there exists n0 ∈ N such that for n ≥ n0,∣∣∣ ˆ (∇+ iA)f · (∇+ iA)gndx
∣∣∣

≤
∣∣∣∣ˆ (∇+ iA)(f − ϕ) · (∇+ iA)gndx

∣∣∣∣+
∣∣∣∣ˆ (∇+ iA)ϕ · (∇+ iA)gndx

∣∣∣∣
≤ ‖(∇+ iA)(f − ϕ)‖L2‖(∇+ iA)gn‖L2 + ε/2 < ε.

The proof is complete. �

Lemma 2.6. Let A ∈ L3
loc(R3,R3) be linear. Let (fn)n≥1 be a bounded sequence in H1

A(R3), i.e.,
supn≥1 ‖fn‖H1

A
<∞. Assume that there exists ε0 > 0 such that

inf
n≥1
‖fn‖Lr ≥ ε0 (2.3)

for some 2 < r < 6. Then up to a subsequence, there exist f ∈ H1
A(R3)\{0} and (yn)n≥1 ⊂ R3 such

that
eiA(yn)·xfn(x+ yn) ⇀ f weakly in H1

A(R3).

Proof. The proof is based on an argument of [7, Lemma 3.4]. By interpolation, we infer from (2.3)
that

inf
n≥1
‖fn‖

L
10
3
≥ ε1 > 0. (2.4)

By the Sobolev embedding
‖f‖

10
3

L
10
3 (Qk)

≤ C‖f‖
4
3
L2(Qk)‖f‖

2
H1(Qk),

where
Qk := (k, k + 1)3, k ∈ Z

and taking the sum over k ∈ Z, we get

‖f‖
10
3

L
10
3
≤ C

(
sup
k∈Z
‖f‖L2(Qk)

) 4
3

‖f‖2H1 .
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Replacing f by |f | and using the diamagnetic inequality (2.1), we have

‖f‖
10
3

L
10
3
≤ C

(
sup
k∈Z
‖f‖L2(Qk)

) 4
3 (
‖∇|f |‖2L2 + ‖f‖2L2

)
≤ C

(
sup
k∈Z
‖f‖L2(Qk)

) 4
3 (
‖(∇+ iA)f‖2L2 + ‖f‖2L2

)
.

Applying the above inequality to fn and using (2.4) together with the fact that supn≥1 ‖fn‖H1
A
<∞,

there exists (kn)n≥1 ⊂ Z such that
inf
n≥1
‖fn‖L2(Qkn ) ≥ C

for some constant C > 0. Set yn = (−kn,−kn,−kn) and

f̃n(x) := eiA(yn)·xfn(x+ yn).

By Lemma 2.3, we have

‖f̃n‖2L2 = ‖fn‖2L2 , ‖(∇+ iA)f̃n‖2L2 = ‖(∇+ iA)fn‖2L2 .

Thus we get supn≥1 ‖f̃n‖H1
A
<∞ and

inf
n≥1
‖f̃n‖2L2(Q0) ≥ C > 0. (2.5)

Since the embedding H1
A(R3) ↪→ L2(Q0) is compact (see again Lemma 2.3), there exist f ∈ H1

A(R3)
and a subsequence still denoted by (f̃n)n≥1 such that f̃n ⇀ f weakly in H1

A(R3) and f̃n → f strongly
in L2(Q0). By (2.5), we have f 6= 0. The proof is complete. �

3. Global existence and finite time blow-up

In this section, we study the existence of global in time and finite time blow-up solutions to (1.1).
Let us start with the following result.

Remark 3.1. Let A be as in (1.2). Then ΣA(R3) ≡ Σ(R3), where ΣA(R3) and Σ(R3) are defined as
in (1.5) and (1.5) respectively.

Proof. We first recall the following identity due to [30]:

‖(∇+ iA)f‖2L2 = ‖∇f‖2L2 − 2 Re
ˆ

(∇+ iA)f · iAfdx− ‖Af‖2L2 , (3.1)

From (3.1), we have from Hölder’s and Cauchy-Schwarz’ inequalities that

‖∇f‖2L2 ≤ 2
(
‖(∇+ iA)f‖2L2 + ‖Af‖2L2

)
≤ C(b)‖f‖2ΣA ,

hence ΣA(R3) ⊂ Σ(R3). On the other hand, by (3.1), we have

‖(∇+ iA)f‖2L2 ≤ ‖∇f‖2L2 + 2‖(∇+ iA)f‖L2‖Af‖L2 + ‖Af‖2L2

≤ ‖∇f‖2L2 + 1
2‖(∇+ iA)f‖2L2 + 3‖Af‖2L2

which implies that
‖(∇+ iA)f‖2L2 ≤ 2‖∇f‖2L2 + 6‖Af‖2L2 ≤ C(b)‖f‖2Σ,

so Σ(R3) ⊂ ΣA(R3). The proof is complete. �

We next prove the angular momentum conservation given in Lemma 1.4.

Proof of Lemma 1.4. The proof is essentially given in [24]. For the reader’s convenience, we recall
some details. We first observe thatˆ

Lzfgdx = −
ˆ
Lzgfdx, Lzf = −Lzf (3.2)

which yields

R(f) =
ˆ
Lzffdx = −

ˆ
fLzfdx =

ˆ
fLzfdx = R(f)
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or R(f) is real-valued. We next give formal computations to show the conservation of angular mo-
mentum. The rigorous proof needs the standard approximation argument (see [30]) and we omit the
details. From (1.7), (1.8), and (3.2), we have

(∇+ iA)2 = ∆− bLz −
b2

4 ρ
2 (3.3)

and [∆, Lz] = 0. It follows that
d

dt
R(u(t)) =

ˆ
Lz∂tu(t)u(t)dx+ i

ˆ
Lzu(t)∂tu(t)dx

=
ˆ
Lz(i∆u− ibLzu− i

b2

4 ρ
2u+ i|u|αu)udx

+
ˆ
Lzu(−i∆u− ibLzu+ i

b2

4 ρ
2u− i|u|αu)dx

= i

ˆ
Lz∆uu− Lzu∆udx− ib

ˆ
L2
zuu+ LzuLzudx

−i b
2

4

ˆ
Lz(ρ2u)u− Lzuρ2udx+ i

ˆ
Lz(|u|αu)u− Lzu|u|αudx

= (1) + (2) + (3) + (4).

We see that
(1) = i

ˆ
Lz∆uu−∆Lzuudx = i

ˆ
[Lz,∆]uudx = 0

and
(2) = ib

ˆ
L2
zuu+ LzuLzudx = ib

ˆ
LzuLzu− LzuLzudx = 0.

As Lz(ρ2u) = ρ2Lzu, we readily see that (3) = 0. Here we have used the fact that Lz = −i∂θ, where
where x1 = ρ cos θ and x2 = ρ sin θ with ρ =

√
x2

1 + x2
2 and θ ∈ [0, 2π). Finally, we have

Lz(|u|α+2) = −i∂θ(|u|αuu) = −i∂θ(|u|αu)u− i|u|αu∂θu = Lz(|u|αu)u+ |u|αuLzu
which shows that

(4) = i

ˆ
Lz(|u|α+2)− |u|αuLzu− Lzu|u|αudx = −i

ˆ
|u|α(uLzu+ uLzu)dx.

On the other hand, we have

Lz(|u|α+2) = (α+ 2)|u|α+1Lz(|u|) = α+ 2
2 |u|α(uLzu+ uLzu),

where Lz(|u|2) = 2|u|Lz(|u|) = uLzu+ uLzu. It follows that

(4) = −2i
α+ 2

ˆ
Lz(|u|α+2)dx = −2

α+ 2

ˆ
∂θ(|u|α+2)dx = 0.

The proof is complete. �

We next recall the following virial identity related to (1.1) (see e.g., [30, Theorem 1.2]) which plays
an important role in proving the existence of finite time blow-up solutions.

Lemma 3.1 ( [30]). Let 0 < α < 4 and u0 ∈ ΣA(R3). Let u : [0, T ∗)×R3 → C be the corresponding
solution to (1.1). Set

F (u(t)) :=
ˆ
|x|2|u(t, x)|2dx. (3.4)

Then the function [0, T ∗) 3 t 7→ F (u(t)) is in C2([0, T ∗)) and

F ′(u(t)) = 4 Im
ˆ
x · ∇u(t, x)u(t, x)dx,

F ′′(u(t)) = 8‖∇u(t)‖2L2 − 2b2‖ρu(t)‖2L2 −
12α
α+ 2‖u(t)‖α+2

Lα+2 ,

for all t ∈ [0, T ∗).
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Proof of Proposition 1.3. Let F (u(t)) is as in (3.4). By Lemma 3.1, we have

F ′′(u(t)) = 8‖∇u(t)‖2L2 − 2b2‖ρu(t)‖2L2 −
12α
α+ 2‖u(t)‖α+2

Lα+2

= 16E0(u(t))− 4b2‖ρu(t)‖2L2 −
4(3α− 4)
α+ 2 ‖u(t)‖α+2

Lα+2

for all t ∈ [0, T ∗). By Lemma 1.4, we infer that
F ′′(u(t)) ≤ 16E0(u0), ∀t ∈ [0, T ∗).

Integrating this inequality, we get

F (u(t)) ≤ ‖xu0‖2L2 + 4
(

Im
ˆ
x · ∇u0(x)u0(x)dx

)
t+ 8E0(u0)t2, ∀t ∈ [0, T ∗).

If one of the conditions given in Proposition 1.3 holds, then there exists t1 > 0 such that F (u(t1)) < 0
which is a contradiction. The proof is complete. �

Now we prove the sharp threshold for global existence versus blow-up for (1.1) in the mass-critical
case given in Proposition 1.5.

Proof of Proposition 1.5. (1) By the Gagliardo-Nirenberg inequality and the diamagnetic inequality
(2.1), we have

‖f‖
10
3

L
10
3
≤ 5

3

(
‖f‖L2

‖Q‖L2

) 4
3

‖∇|f |‖2L2 ≤
5
3

(
‖f‖L2

‖Q‖L2

) 4
3

‖(∇+ iA)f‖2L2 , (3.5)

where Q is the unique positive radial solution to (1.10) with α = 4
3 . From this inequality and the

conservation laws of mass and energy, we infer that

E(u0) = E(u(t)) ≥ 1
2‖(∇+ iA)u(t)‖2L2 −

1
2

(
‖u(t)‖L2

‖Q‖L2

) 4
3

‖(∇+ iA)u(t)‖2L2

= 1
2

(
1−

(
‖u0‖L2

‖Q‖L2

) 4
3
)
‖(∇+ iA)u(t)‖2L2

for all t ∈ [0, T ∗). As ‖u0‖L2 < ‖Q‖L2 , we have supt∈[0,T∗) ‖(∇ + iA)u(t)‖L2 ≤ C which, by the
blow-up alternative, implies that T ∗ =∞.

(2) Let c > ‖Q‖L2 . We define
u0(x) := aλ

3
2Q(λx),

where a := c
‖Q‖L2

> 1 and λ > 0 will be chosen later. As Q decays exponentially at infinity, it is clear
that Q ∈ ΣA(R3) (see also Remark 3.1). Moreover, we have

‖u0‖2L2 = a2‖Q‖2L2 = c2, ‖∇u0‖2L2 = a2λ2‖∇Q‖2L2 ,

‖u0‖
10
3

L
10
3

= a
10
3 λ2‖Q‖

10
3

L
10
3
, ‖ρu0‖2L2 = a2λ−2‖ρQ‖2L2 .

It follows that

E0(u0) = 1
2‖∇u0‖2L2 + b2

8 ‖ρu0‖2L2 −
3
10‖u0‖

10
3

L
10
3

= a2λ2
(

1
2‖∇Q‖

2
L2 + b2

2 λ
−4‖ρQ‖2L2 −

3
10a

4
3 ‖Q‖

10
3

L
10
3

)
.

Using the Pohozaev’s identity (see e.g., [10]):

‖∇Q‖2L2 = 3
5‖Q‖

10
3

L
10
3

= 3
2‖Q‖

2
L2 , (3.6)

we infer that
E0(u0) = a2λ2

(
b2

2 λ
−4‖ρQ‖2L2 −

3
10

(
a

4
3 − 1

)
‖Q‖

10
3

L
10
3

)
.

Taking λ > 0 sufficiently large, we have E0(u0) < 0. By Proposition 1.3, the corresponding solution
to (1.1) with initial data u|t=0 = u0 blows up in finite time. The proof is complete. �
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Before studying the global existence and finite time blow-up for (1.1) in the mass-supercritical case,
let us recall the following properties of the unique positive radial solution Q to (1.10).

Remark 3.2. Let 4
3 < α < 4 and Q be the unique positive radial solution to (1.10). It is well-known

that Q optimizes the Gagliardo-Nirenberg inequality

‖f‖α+2
Lα+2 ≤ Copt‖∇f‖

3α
2
L2 ‖f‖

4−α
2

L2 , ∀f ∈ H1(R3). (3.7)
In particular, we have

Copt = ‖Q‖α+2
Lα+2 ÷

[
‖∇Q‖

3α
2
L2 ‖Q‖

4−α
2

L2

]
.

Thanks to the following Pohozaev’s identities (see e.g., [10]):

‖Q‖2L2 = 4− α
3α ‖∇Q‖

2
L2 = 4− α

2(α+ 2)‖Q‖
α+2
Lα+2 , (3.8)

we have

E0(Q)[M(Q)]σc = 3α− 4
6α

(
‖∇Q‖L2‖Q‖σc

L2

)2
, Copt = 2(α+ 2)

3α
(
‖∇Q‖L2‖Q‖σc

L2

)− 3α−4
2 . (3.9)

We are now able to prove the global existence given in Propositions 1.6 and 1.7.

Proof of Proposition 1.6. Let u : [0, T ∗) × R3 → C be the corresponding solution to (1.1). By the
Gagliardo-Nirenberg inequality (3.7) and the diamagnetic inequality (2.1), we have

‖f‖α+2
Lα+2 ≤ Copt‖∇|f |‖

3α
2
L2 ‖f‖

4−α
2

L2 ≤ Copt‖(∇+ iA)f‖
3α
2
L2 ‖f‖

4−α
2

L2 , ∀f ∈ H1
A(R3).

It follows that
E(u(t))[M(u(t))]σc

≥ 1
2
(
‖(∇+ iA)u(t)‖L2‖u(t)‖σc

L2

)2 − Copt

α+ 2‖(∇+ iA)u(t)‖
3α
2
L2 ‖u(t)‖

4−α
2 +2σc

L2

= G
(
‖(∇+ iA)u(t)‖L2‖u(t)‖σc

L2

)
for all t ∈ [0, T ∗), where

G(λ) := 1
2λ

2 − Copt

α+ 2λ
3α
2 . (3.10)

Using (3.8) and (3.9), we see that

G
(
‖∇Q‖L2‖Q‖σc

L2

)
= 3α− 4

6α
(
‖∇Q‖L2‖Q‖σc

L2

)2 = E0(Q)[M(Q)]σc . (3.11)

By the conservation of energy and (1.16), we have
G
(
‖(∇+ iA)u(t)‖L2‖u(t)‖σc

L2

)
≤ E(u0)[M(u0)]σc

< E0(Q)[M(Q)]σc = G
(
‖∇Q‖L2‖Q‖σc

L2

)
(3.12)

for all t ∈ [0, T ∗). By (1.17), the continuity argument implies
‖(∇+ iA)u(t)‖L2‖u(t)‖σc

L2 < ‖∇Q‖L2‖Q‖σc
L2

for all t ∈ [0, T ∗). This estimate together with the blow-up alternative and the conservation of mass
yield T ∗ =∞. �

Proof of Proposition 1.7. It suffices to prove that
‖(∇+ iA)u(t)‖L2‖u(t)‖σc

L2 < ‖∇Q‖L2‖Q‖σc
L2

for all t ∈ [0, T ∗). This together with the blow-up alternative shows that T ∗ = ∞. Assume by
contradiction that there exists t0 > 0 such that

‖(∇+ iA)u(t0)‖L2‖u(t0)‖σc
L2 ≥ ‖∇Q‖L2‖Q‖σc

L2 .

By (1.15) and the continuity argument, there exists t1 ∈ (0, t0] such that
‖(∇+ iA)u(t1)‖L2‖u(t1)‖σc

L2 = ‖∇Q‖L2‖Q‖σc
L2 .

Denote f = u(t1). We have from (1.14) and the conservation laws of mass and energy that
E(f)[M(f)]σc = E0(Q)[M(Q)]σc , ‖(∇+ iA)f‖L2‖f‖σc

L2 = ‖∇Q‖L2‖Q‖σc
L2 .
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We take λ > 0 such that ‖f‖L2 = λ‖Q‖L2 . It follows that

E(f) = λ−2σcE0(Q), ‖(∇+ iA)f‖L2 = λ−σc‖∇Q‖L2

which yields

‖f‖α+2
Lα+2 = (α+ 2)

(
1
2‖(∇+ iA)f‖2L2 − E(f)

)
= (α+ 2)

(
λ−2σc

2 ‖∇Q‖2L2 − λ−2σcE0(Q)
)

= λ−2σc‖Q‖α+2
Lα+2 .

Thus we get [
‖f‖α+2

Lα+2

]
÷
[
‖(∇+ iA)f‖

3α
2
L2 ‖f‖

4−α
2

L2

]
=
[
λ−2σc‖Q‖α+2

Lα+2

]
÷
[(
λ−σc‖∇Q‖L2

) 3α
2 (λ‖Q‖L2)

4−α
2
]

=
[
‖Q‖α+2

Lα+2

]
÷
[
‖∇Q‖

3α
2
L2 ‖Q‖

4−α
2

L2

]
= Copt,

where Copt is as in (3.7). From this, the diamagnetic inequality, and (3.7), we see that

‖f‖α+2
Lα+2 = Copt‖(∇+ iA)f‖

3α
2
L2 ‖f‖

4−α
2

L2 ≥ Copt‖∇|f |‖
3α
2
L2 ‖f‖

4−α
2

L2 ≥ ‖f‖α+2
Lα+2 .

In particular, we have
‖(∇+ iA)f‖L2 = ‖∇|f |‖L2 .

Using the fact (see e.g., [25, Theorem 7.21]) that

|∇|f || =
∣∣∣∣Re

(
∇f f

|f |

)∣∣∣∣ =
∣∣∣∣Re

(
(∇+ iA)f f

|f |

)∣∣∣∣ ≤ |(∇+ iA)f |,

we infer that

Im
(

(∇+ iA)f f

|f |

)
= 0⇐⇒ A = − Im

(
∇f
f

)
a.e. in R3,

hence curlA = (0, 0, 0) which contradicts (1.3). �

We next give the proof of the sharp threshold for global existence and blow-up for (1.1) in the
mass-supercritical case given in Theorem 1.8.

Proof of Theorem 1.8. (1) Let us consider u0 ∈ ΣA(R3) satisfying (1.16) and (1.17). Let u : [0, T ∗)×
R3 → C be the corresponding solution to (1.1). By the Gagliardo-Nirenberg inequality (3.7), we have

E0(u(t))[M(u(t))]σc ≥ 1
2
(
‖∇u(t)‖L2‖u(t)‖σc

L2

)2 + b2

8 ‖ρu(t)‖L2‖u(t)‖2σc
L2

− Copt

α+ 2‖∇u(t)‖
3α
2
L2 ‖u(t)‖

4−α
2 +2σc

L2

≥ G
(
‖∇u(t)‖L2‖u(t)‖σc

L2

)
for all t ∈ [0, T ∗), where G is as in (3.10). Using (3.11), Lemma 1.4, and (1.16), we have

G
(
‖∇u(t)‖L2‖u(t)‖σc

L2

)
≤ E0(u0)[M(u0)]σc

< E0(Q)[M(Q)]σc = G
(
‖∇Q‖L2‖Q‖σc

L2

)
(3.13)

for all t ∈ [0, T ∗). By (1.17), the continuity argument implies

‖∇u(t)‖L2‖u(t)‖σc
L2 < ‖∇Q‖L2‖Q‖σc

L2

for all t ∈ [0, T ∗). By the conservation of mass, we infer that

sup
t∈[0,T∗)

‖∇u(t)‖L2 ≤ C(‖u0‖L2 , ‖Q‖L2 , ‖∇Q‖L2).
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On the other hand, by Lemma 1.4 and (3.7), we have
b2

8 ‖ρu(t)‖2L2 ≤ E0(u(t)) + 1
α+ 2‖u(t)‖α+2

Lα+2

≤ E0(u0) + Copt

α+ 2‖∇u(t)‖
3α
2
L2 ‖u(t)‖

4−α
2

L2 ≤ C(E0(u0),M(u0), ‖Q‖L2 , ‖∇Q‖L2)

for all t ∈ [0, T ∗). From (1.7), Remark 3.1, and Lemma 1.4, we have
sup

t∈[0,T∗)
‖(∇+ iA)u(t)‖L2 ≤ C(E0(u0),M(u0), ‖Q‖L2 , ‖∇Q‖L2)

which, by the blow-up alternative, implies that T ∗ =∞.
(2) Let us now consider u0 ∈ ΣA(R3) satisfying (1.16) and (1.18). By the same argument as above,

we see that
‖∇u(t)‖L2‖u(t)‖σc

L2 > ‖∇Q‖L2‖Q‖σc
L2 (3.14)

for all t ∈ [0, T ∗). We next show that the solution blows up in finite time. From (1.16), we take
ϑ = ϑ(u0, Q) > 0 such that

E0(u0)[M(u0)]σc ≤ (1− ϑ)E0(Q)[M(Q)]σc .

We also denote

H(f) : = ‖∇f‖2L2 −
b2

4 ‖ρf‖
2
L2 −

3α
2(α+ 2)‖f‖

α+2
Lα+2

= 3α
2 E0(f)− 3α− 4

4 ‖∇f‖2L2 −
(3α+ 4)b2

16 ‖ρf‖2L2 .

(3.15)

By Lemma 1.4, (3.14), and the conservation of mass, we see that

H(u(t))[M(u(t))]σc ≤ 3α
2 E0(u(t))[M(u(t))]σc − 3α− 4

4
(
‖∇u(t)‖L2‖u(t)‖σc

L2

)2
≤ 3α

2 E0(u0)[M(u0)]σc − 3(p− 1)− 4
4

(
‖∇Q‖L2‖Q‖σc

L2

)2
≤ 3α

2 (1− ϑ)E0(Q)[M(Q)]σc − 3α− 4
4

(
‖∇Q‖L2‖Q‖σc

L2

)2
= −3α− 4

4 ϑ
(
‖∇Q‖L2‖Q‖σc

L2

)2
for all t ∈ [0, T ∗). It follows from Lemma 3.1 that

F ′′(u(t)) = 8H(u(t)) ≤ −2(3α− 4)ϑ
(
‖Q‖L2

‖u0‖L2

)2σc

‖∇Q‖2L2 < 0

for all t ∈ [0, T ∗). This shows that T ∗ <∞. The proof is complete. �

Next we study the long time behaviors of solutions to (1.1) with data lying at the mass-energy
threshold given in Theorem 1.9.

Proof of Theorem 1.9. Let us start with the following observation.

Observation 3.1. There is no f ∈ ΣA(R3) satisfying
E0(f)[M(f)]σc = E0(Q)[M(Q)]σc , ‖∇f‖L2‖f‖σc

L2 = ‖∇Q‖L2‖Q‖σc
L2 .

In fact, we take λ > 0 such that ‖f‖L2 = λ‖Q‖L2 . It follows that
E0(f) = λ−2σcE0(Q), ‖∇f‖L2 = λ−σc‖∇Q‖L2 . (3.16)

Using the Gagliardo-Nirenberg inequality (3.7) and (3.9), we see that

‖f‖α+2
Lα+2‖f‖2σc

L2 ≤ Copt‖∇f‖
3α
2
L2 ‖f‖

2σc + 4−α
2

L2

= 2(α+ 2)
3α

(
‖∇Q‖L2‖Q‖σc

L2

)− 3α−4
2
(
‖∇f‖L2‖f‖σc

L2

) 3α
2

= 2(α+ 2)
3α

(
‖∇Q‖L2‖Q‖σc

L2

)2
.
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This implies

‖f‖α+2
Lα+2 ≤

2(α+ 2)
3α λ−2σc‖∇Q‖2L2 = λ−2σc‖Q‖α+2

Lα+2 .

Using (3.16), we infer that

0 ≤ b2

2 ‖ρf‖
2
L2 = E0(f)− 1

2‖∇f‖
2
L2 + 1

α+ 2‖f‖
α+2
Lα+2

≤ 1
α+ 2‖f‖

α+2
Lα+2 −

1
α+ 2λ

−2σc‖Q‖α+2
Lα+2 ≤ 0.

This shows that f = 0 which is a contradiction.
(1) Let u0 ∈ ΣA(R3) satisfy (1.19) and (1.20). Let u : [0, T ∗) × R3 → C be the corresponding

solution to (1.1). We will show that
‖∇u(t)‖L2‖u(t)‖σc

L2 < ‖∇Q‖L2‖Q‖σc
L2

for all t ∈ [0, T ∗). Assume by contradiction that there exists t0 ∈ [0, T ∗) such that
‖∇u(t0)‖L2‖u(t0)‖σc

L2 ≥ ‖∇Q‖L2‖Q‖σc
L2 .

By the continuity using (1.20), there exists t1 ∈ (0, t0] such that
‖∇u(t1)‖L2‖u(t1)‖σc

L2 = ‖∇Q‖L2‖Q‖σc
L2 .

By Lemma 1.4 and (1.19), we have
E0(u(t1))[M(u(t1))]σc = E0(Q)[M(Q)]σc

which contradicts Observation 3.1.
(2) Let u0 ∈ ΣA(R3) satisfy (1.19) and (1.21). By the same argument as above, we prove that

‖∇u(t)‖L2‖u(t)‖σc
L2 > ‖∇Q‖L2‖Q‖σc

L2

for all t ∈ [0, T ∗). If T ∗ <∞, then we are done. If T ∗ =∞, then we consider two cases.
Case 1. If

sup
t∈[0,∞)

‖∇u(t)‖L2‖u(t)‖σc
L2 > ‖∇Q‖L2‖Q‖σc

L2 ,

then there exists η > 0 such that for all t ∈ [0,∞),
‖∇u(t)‖L2‖u(t)‖σc

L2 ≥ (1 + η)‖∇Q‖L2‖Q‖σc
L2 .

It follows that

H(u(t))[M(u(t))]σc ≤ 3α
2 E0(u(t))[M(u(t))]σc − 3α− 4

4
(
‖∇u(t)‖L2‖u(t)‖σc

L2

)2
≤ 3α

2 E0(u0)[M(u0)]σc − 3α− 4
4 (1 + η)2 (‖∇Q‖L2‖Q‖σc

L2

)2
= 3α

2 E0(Q)[M(Q)]σc − 3α− 4
4 (1 + η)2 (‖∇Q‖L2‖Q‖σc

L2

)2
= 3α− 4

4
(
1− (1 + η)2) (‖∇Q‖L2‖Q‖σc

L2

)2
< 0

for all t ∈ [0,∞), where the functional H is as in (3.15). Thus we have

F ′′(u(t)) = 8H(u(t)) ≤ −2(3α− 4)
(
(1 + η)2 − 1

)( ‖Q‖L2

‖u0‖L2

)2σc

‖∇Q‖2L2

for all t ∈ [0,∞). Integrating this inequality, there exists t0 > 0 such that F (t0) < 0 which is a
contradiction.

Case 2. We must have
sup

t∈[0,∞)
‖∇u(t)‖L2‖u(t)‖σc

L2 = ‖∇Q‖L2‖Q‖σc
L2 .

Thus there exists (tn)n≥1 ⊂ [0,∞) such that
lim
n→∞

‖∇u(tn)‖L2‖u(tn)‖σc
L2 = ‖∇Q‖L2‖Q‖σc

L2 .

By the conservation laws of mass and Lemma 1.4, we have
E0(u(tn))[M(u(tn))]σc = E0(Q)[M(Q)]σc .
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Note that tn must tend to infinity. Otherwise, there exists t0 ∈ [0,∞) such that up to a subsequence,
tn → t0 as n → ∞. By continuity of the solution maps t 3 [0,∞) 7→ u(t) ∈ ΣA(R3) and ΣA(R3) ⊂
H1(R3), we have

E0(u(t0))[M(u(t0))]σc = E0(Q)[M(Q)]σc , ‖∇u(t0)‖L2‖u(t0)‖σc
L2 = ‖∇Q‖L2‖Q‖σc

L2

which is impossible due to Observation 3.1. Now, we take λ > 0 so that ‖u(tn)‖L2 = λ‖Q‖L2 . Note
that λ is independent of n due to the conservation of mass. It follows that

E0(u(tn)) = λ−2σcE0(Q), lim
n→∞

‖∇u(tn)‖L2 = λ−σc‖∇Q‖L2 .

By the Gagliardo-Nirenberg inequality (3.7), we see that

‖u(tn)‖α+2
Lα+2 ≤ Copt‖∇u(tn)‖

3α
2
L2 ‖u(tn)‖

4−α
2

L2

= 2(α+ 2)
3α

(
‖∇Q‖L2‖Q‖σc

L2

)− 3α−4
2 ‖∇u(tn)‖

3α
2
L2 (λ‖Q‖L2)

4−α
2

which implies

lim
n→∞

‖u(tn)‖α+2
Lα+2 ≤

2(α+ 2)
3α λ−2σc‖∇Q‖2L2 = λ−2σc‖Q‖α+2

Lα+2 .

Thus we have

λ−2σcE0(Q) ≤ lim
n→∞

E0(u(tn)) ≤ E0(u(tn)) = λ−2σcE0(Q)

which implies

lim
n→∞

E0(u(tn)) = λ−2σcE0(Q).

We have proved that there exists a time sequence tn →∞ such that

‖u(tn)‖L2 = λ‖Q‖L2 , lim
n→∞

‖∇u(tn)‖L2 = λ−σc‖∇Q‖L2 , lim
n→∞

E0(u(tn)) = λ−2σcE0(Q)

for some λ > 0. By the concentration-compactness lemma of P.-L. Lions [27], there exists a subsequence
still denoted by (u(tn))n≥1 satisfying one of the following three possibilities: vanishing, dichotomy and
compactness.

The vanishing cannot occur. In fact, suppose that the vanishing occurs. Then it was shown in [27]
that u(tn)→ 0 strongly in Lr(R3) for any 2 < r < 6. This however contradicts to the fact that

lim
n→∞

‖u(tn)‖α+2
Lα+2 = λ−2σc‖Q‖α+2

Lα+2 > 0.

The dichotomy cannot occur. Indeed, suppose the dichotomy occurs, then there exist µ ∈ (0, λ‖Q‖L2)
and sequences (f1

n)n≥1, (f2
n)n≥1 bounded in H1(R3) such that

‖u(tn)− f1
n − f2

n‖Lr → 0 as n→∞ for any 2 ≤ r < 6,
‖f1
n‖L2 → µ, ‖f2

n‖L2 → λ‖Q‖L2 − µ as n→∞,
dist(supp(f1

n), supp(f2
n))→∞ as n→∞,

lim infn→∞ ‖∇u(tn)‖2L2 − ‖∇f1
n‖2L2 − ‖∇f2

n‖2L2 ≥ 0.

By the Gagliardo-Nirenberg inequality, we have

‖f1
n‖α+2
Lα+2 ≤ Copt‖∇f1

n‖
3α
2
L2 ‖f1

n‖
4−α

2
L2 < Copt‖∇f1

n‖
3α
2
L2 ‖u(tn)‖

4−α
2

L2

for n sufficiently large. Similarly, we have for n large enough,

‖f2
n‖α+2
Lα+2 < Copt‖∇f2

n‖
3α
2
L2 ‖u(tn)‖

4−α
2

L2 .
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It follows that

λ−2σc‖Q‖α+2
Lα+2 = lim

n→∞
‖u(tn)‖α+2

Lα+2 = lim
n→∞

‖f1
n‖α+2
Lα+2 + ‖f2

n‖α+2
Lα+2

< Copt lim
n→∞

(
‖∇f1

n‖
3α
2
L2 + ‖∇f2

n‖
3α
2
L2

)
‖u(tn)‖

4−α
2

L2

≤ Copt lim
n→∞

(
‖∇f1

n‖2L2 + ‖∇f2
n‖2
) 3α

4 ‖u(tn)‖
4−α

2
L2

≤ Copt lim
n→∞

‖∇u(tn)‖
3α
2
L2 ‖u(tn)‖

4−α
2

L2

= Copt
(
λ−σc‖∇Q‖L2

) 3α
2 (λ‖Q‖L2)

4−α
2

= λ−2σc‖Q‖α+2
Lα+2

which is a contradiction.
Therefore, the compactness must occur. By [27], there exist a subsequence still denoted by (u(tn))n≥1,

a function f ∈ H1(R3) and a sequence (yn)n≥1 ⊂ R3 such that u(tn, ·+ yn)→ f strongly in Lr(R3)
for any 2 ≤ r < 6 and weakly in H1(R3). We have

‖f‖L2 = lim
n→∞

‖u(tn, ·+ yn)‖L2 = λ‖Q‖L2

and
‖f‖α+2

Lα+2 = lim
n→∞

‖u(tn, ·+ yn)‖α+2
Lα+2 = λ−2σc‖Q‖α+2

Lα+2

and
‖∇f‖L2 ≤ lim inf

n→∞
‖∇u(tn, ·+ yn)‖L2 = λ−σc‖∇Q‖L2 .

On the other hand, by the Gagliardo-Nirenberg inequality (3.7), we have

‖∇f‖
3α
2
L2 ≥

‖f‖α+2
Lα+2

Copt‖f‖
4−α

2
L2

=
λ−2σc‖Q‖α+2

Lα+2

Copt (λ‖Q‖L2)
4−α

2
=
(
λ−σc‖∇Q‖L2

) 3α
2

hence ‖∇f‖L2 = limn→∞ ‖∇u(tn, ·+yn)‖L2 = λ−σc‖∇Q‖L2 . In particular, u(tn, ·+yn)→ f strongly
in H1(R3). It is easy to see that

‖f‖α+2
Lα+2

‖∇f‖
3α
2
L2 ‖f‖

4−α
2

L2

=
‖Q‖α+2

Lα+2

‖∇Q‖
3α
2
L2 ‖Q‖

4−α
2

L2

= Copt.

This shows that f is an optimizer for the Gagliardo-Nirenberg inequality (3.7). By the characterization
of ground state (see e.g., [27]) with the fact ‖f‖L2 = λ‖Q‖L2 , we have f(x) = eiθλQ(x − x0) for
some θ ∈ R, µ > 0 and x0 ∈ R3. Redefining the variable, we prove that there exists a sequence
(yn)n≥1 ⊂ R3 such that

u(tn, ·+ yn)→ eiθλQ strongly in H1(R3)
as n→∞. The proof is complete. �

We end this section by giving the proof of the blow-up above the mass-energy threshold given in
Theorem 1.10.

Proof of Theorem 1.10. We follow an argument of T. Duyckaerts and S. Roudenko [17]. Let u :
[0, T ∗)× R3 → C be the corresponding solution to (1.1). We will proceed in two steps.

Step 1. Reduction of conditions. Let us start with the following Cauchy-Schwarz inequality:(
Im
ˆ
fx · ∇fdx

)2
≤ ‖xf‖2L2

‖∇f‖2L2 −

 ‖f‖α+2
Lα+2

Copt‖f‖
4−α

2
L2

 4
3α
 (3.17)

for all f ∈ H1(R3). To see it, we have from (3.7) that

‖∇f‖2L2 ≥

 ‖f‖α+2
Lα+2

Copt‖f‖
4−α

2
L2

 4
3α

.
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This implies that

4λ2‖xf‖2L2 − 4λ Im
ˆ
fx · ∇fdx+ ‖∇f‖2L2 = ‖∇(eiλ|x|

2
f)‖2L2 ≥

 ‖f‖α+2
Lα+2

Copt‖f‖
4−α

2
L2

 4
3α

for all λ ∈ R. This shows (3.17). We also recall the following identities:

F ′′(u(t)) = 8‖∇u(t)‖2L2 − 2b2‖ρu(t)‖2L2 −
12α
α+ 2‖u(t)‖α+2

Lα+2

= 16E0(u(t))− 4b2‖ρu(t)‖2L2 −
4(3α− 4)
α+ 2 ‖u(t)‖α+2

Lα+2

= 12αE0(u(t))− 2(3α− 4)‖∇u(t)‖2L2 −
(3α+ 4)b2

2 ‖ρu(t)‖2L2 ,

where F (u(t)) is as in (3.4). In particular, we have

‖u(t)‖α+2
Lα+2 = α+ 2

4(3α− 4)
(
16E0(u(t))− 4b2‖ρu(t)‖2L2 − F ′′(u(t))

)
,

‖∇u(t)‖2L2 = 1
2(3α− 4)

(
12αE0(v(t))− (3α+ 4)b2

2 ‖ρu(t)‖2L2 − F ′′(u(t))
)
.

Note that since ‖u(t)‖Lα+2 ≥ 0, we have
F ′′(u(t)) + 4b2‖ρu(t)‖2L2 ≤ 16E0(u(t)).

Moreover, inserting the above identities into (3.17), we get(
F ′(u(t))

4

)2
≤ F (u(t))

[ 1
2(3α− 4)

(
12αE0(u(t))− (3α+ 4)b2

2 ‖ρu(t)‖2L2 − F ′′(u(t))
)

−

 (α+ 2)
(

16E0(u(t))− 4b2‖ρu(t)‖2L2 − F ′′(u(t))
)

4(3α− 4)Copt‖u(t)‖
4−α

2
L2


4

3α ]
Since 3α > 4, we infer that

(z′(t))2 ≤ 4K
(
F ′′(u(t)) + 4b2‖ρu(t)‖2L2

)
, (3.18)

where
z(t) :=

√
F (v(t))

and

K(λ) := 1
2(3α− 4) (12αE0 − λ)−

(
(α+ 2) (16E0 − λ)

4(3α− 4)CoptM
4−α

4

) 4
3α

with λ ≤ 16E0, E0 = E0(u(t)) = E0(u0) and M = M(u(t)) = M(u0). Since 3α > 4, we readily
check that K(λ) is decreasing on (−∞, λ0) and increasing on (λ0, 16E0), where λ0 satisfies

3αCoptM
4−α

4

2(α+ 2) =
(

(α+ 2)(16E0 − λ0)
4(3α− 4)CoptM

4−α
4

) 4−3α
3α

. (3.19)

This implies that

K(λ0) = 1
2(3α− 4)(12αE0 − λ0)− 3α(16E0 − λ0)

8(3α− 4) = λ0

8 .

Note that (3.19) can be rewritten as(
3αCopt

2(α+ 2)

) 4
3α

=
(

8(3α− 4)
3α(16E0 − λ0)Mσc

) 3α−4
3α

which together with the fact (see (3.9))

Copt = 2(α+ 2)
3α

(
6α

3α− 4E
0(Q)[M(Q)]σc

)− 3α−4
4
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imply
(16E0 − λ0)Mσc

16E0(Q)[M(Q)]σc
= 1

or
E0M

σc

E0(Q)[M(Q)]σc

(
1− λ0

16E0

)
= 1. (3.20)

As a result, we see that (1.22) is equivalent to
λ0 ≥ 0 (3.21)

and (1.23) is equivalent to (F ′(u0))2 ≥ 2F (u0)λ0 or

(z′(0))2 ≥ λ0

2 = 4K(λ0). (3.22)

Moreover, (1.25) is equivalent to z′(0) ≤ 0. Finally, (1.24) is equivalent to
F ′′(u0) + 4b2‖ρu0‖2L2 < λ0.

Indeed, if (1.24) holds, then

F ′′(u0) + 4b2‖ρu0‖2L2 = 16E0 −
4(3α− 4)
α+ 2 ‖u0‖α+2

Lα+2

< 16E0 −
4(3α− 4)
α+ 2

‖Q‖α+2
Lα+2 [M(Q)]σc

Mσc

= 16
(
E0 −

E0(Q)[M(Q)]σc

Mσc

)
= 16E0

(
1− E0(Q)[M(Q)]σc

E0Mσc

)
= λ0,

where the last equality comes from (3.20).
Step 2. Finite time blow-up. Let u0 ∈ ΣA(R3) satisfy (1.22), (1.23), (1.24), and (1.25). By Step

1, we have

λ0 ≥ 0, (z′(0))2 ≥ λ0

2 = 4K(λ0), z′(0) ≤ 0, F ′′(u0) + 4b2‖ρu0‖2L2 < λ0. (3.23)

We claim that
z′′(t) < 0, ∀t ∈ [0, T ∗). (3.24)

Using the fact

z′′(t) = 1
z(t)

(
F ′′(u(t))

2 − (z′(t))2
)
, (3.25)

we have z′′(0) < 0. Assume that (3.24) does not hold. Then there exists t0 ∈ (0, T ∗) such that
z′′(t) < 0, ∀t ∈ [0, t0), z′′(t0) = 0.

By (3.23), we have
z′(t) < z′(0) ≤ −2

√
K(λ0), ∀t ∈ (0, t0].

Hence (z′(t))2 > 4K(λ0) which together with (3.18) imply
K
(
F ′′(u(t)) + 4b2‖ρu(t)‖2L2

)
> K(λ0), ∀t ∈ (0, t0].

It follows that
F ′′(u(t)) + 4b2‖ρu(t)‖2L2 6= λ0, ∀t ∈ (0, t0]

which, by continuity, implies
F ′′(u(t)) + 4b2‖ρu(t)‖2L2 < λ0, ∀t ∈ [0, t0].

By (3.25), we obtain

z′′(t0) = 1
z(t0)

(
F ′′(u(t0))

2 − (z′(t0))2
)
<

1
z(t0)

(
λ0

2 −
λ0

2

)
= 0
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which is a contradiction. This proves (3.24). Now we assume by contradiction that T ∗ =∞. Then by
(3.24), we have

z′(t) ≤ z′(1) < z′(0) ≤ 0, ∀t ∈ [1,∞).
This contradicts with the fact z(t) is positive for all t ∈ [0,∞). The proof is complete. �

4. Existence and stability of normalized standing waves

In this section, we prove the existence and orbital stability of normalized standing waves related to
(1.1). To this end, we need the following result which plays a crucial role in ruling out the vanishing
possibility.

Lemma 4.1. Let A be as in (1.2) and 0 < α < 4. Let c > 0 and (fn)n≥1 be a minimizing sequence
for I(c). Then there exists C > 0 such that

lim inf
n→∞

‖fn‖Lα+2 ≥ C > 0.

Proof. Assume by contradiction that there exists a subsequence still denoted by (fn)n≥1 satisfying
limn→∞ ‖fn‖Lα+2 = 0. Thanks to (2.2), we see that

I(c) = lim
n→∞

E(fn) = lim
n→∞

1
2‖(∇+ iA)fn‖2L2 ≥ lim

n→∞

|b|
2 ‖fn‖

2
L2 = |b|c2 . (4.1)

Denote x = (x⊥, x3) with x⊥ = (x1, x2) ∈ R2 and x3 ∈ R, and set g(x⊥) :=
√
|b|
2π e
− |b|4 |x⊥|

2 . One
can readily check that

‖g‖L2(R2) = 1, ‖∇⊥g‖2L2(R2) + b2

4 ‖ρg‖
2
L2(R2) = |b|.

Let h ∈ C∞0 (R) be such that ‖h‖2L2(R) = c and set

fλ(x) = g(x⊥)hλ(x3), hλ(x3) = λ
1
2h(λx3) (4.2)

with λ > 0 to be chosen later. We have ‖fλ‖2L2 = c for all λ > 0. Using (1.7), we see that

‖(∇+ iA)fλ‖2L2 = ‖∇fλ‖2L2 + bR(fλ) + b2

4 ‖ρfλ‖
2
L2

= ‖∇⊥g‖2L2(R2)‖hλ‖
2
L2(R) + ‖g‖2L2(R2)‖∂3hλ‖2L2(R)

+b
(ˆ

R2
Lzggdx⊥

)
‖hλ‖2L2(R) + b2

4 ‖ρg‖
2
L2(R2)‖hλ‖

2
L2(R)

= c

(
‖∇⊥g‖2L2(R2) + b2

4 ‖ρg‖
2
L2(R2)

)
+ λ2‖∂3h‖2L2(R)

= c|b|+ λ2‖∂3h‖2L2(R).

Here we note that
ˆ
R2
Lzggdx⊥ = 0 as g is radially symmetric. It follows that

E(fλ) = |b|c2 + λ2

2 ‖∂3h‖2L2(R) −
λ
α
2

α+ 2‖g‖
α+2
Lα+2(R2)‖h‖

α+2
Lα+2(R).

As α < 4, by taking λ > 0 sufficiently small, we have E(fλ) < |b|c
2 . In particular, I(c) < |b|c

2 which
contradicts (4.1). The proof is complete. �

Proof of Theorem 1.12. We proceed in two steps.
Step 1. Existence of minimizers. Let 0 < c < M(Q). We first show that I(c) is well-defined,

i.e., I(c) > −∞. Let f ∈ S(c). By the Gagliardo-Nirenberg inequality (3.5), we have

E(f) ≥ 1
2‖(∇+ iA)f‖2L2 −

1
2

(
M(f)
M(Q)

) 2
3

‖(∇+ iA)f‖2L2

= 1
2

(
1−

(
c

M(Q)

) 2
3
)
‖(∇+ iA)f‖2L2 ≥ 0

for all f ∈ S(c). This shows that I(c) ≥ 0.
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Now let (fn)n≥1 be a minimizing sequence for I(c). From the above estimate, we have

1
2

(
1−

(
c

M(Q)

) 2
3
)
‖(∇+ iA)fn‖2L2 ≤ E(fn)→ I(c) as n→∞.

This shows that (fn)n≥1 is a bounded sequence in H1
A(R3). Moreover, by Lemma 4.1, we see that up

to a subsequence,
inf
n≥1
‖fn‖

L
10
3
≥ C > 0.

By Lemma 2.6, up to a subsequence, there exist f ∈ H1
A(R3)\{0} and (yn)n≥1 ⊂ R3 such that

f̃n(x) := eiA(yn)·xfn(x+ yn) ⇀ f weakly in H1
A(R3).

By the weak convergence in H1
A(R3), we have

0 < ‖f‖2L2 ≤ lim inf
n→∞

‖f̃n‖2L2 = lim inf
n→∞

‖fn‖2L2 = c

and
‖(∇+ iA)f‖2L2 ≤ lim inf

n→∞
‖(∇+ iA)f̃n‖2L2 = lim inf

n→∞
‖(∇+ iA)fn‖2L2 .

Next we claim that
‖f‖2L2 = c. (4.3)

Let us postpone the verification of (4.3) for the moment and finish the proof of Theorem 1.12. By the
weak convergence in H1

A(R3) and (4.3), we infer that f̃n → f strongly in L2(R3). Using this strong
convergence and the magnetic Gagliardo-Nirenberg inequality

‖f‖
10
3

L
10
3
≤ Copt‖(∇+ iA)f‖2L2‖f‖

4
3
L2 ,

we see that f̃n → f strongly in L 10
3 (R3). Thus we get

I(c) ≤ E(f) ≤ lim inf
n→∞

E(f̃n) = lim inf
n→∞

E(fn) = I(c),

hence E(f) = I(c) or f is a minimizer for I(c). This also implies that f̃n → f strongly in H1
A(R3).

It remains to prove (4.3). Assume by contradiction that it is not true, i.e., 0 < ‖f‖2L2 < c. We have
for any λ > 0,

E(λf) = λ2E(f) + λ2(1− λα)
α+ 2 ‖f‖α+2

Lα+2

or
E(f) = 1

λ2E(λf) + λα − 1
α+ 2 ‖f‖

α+2
Lα+2 .

Set λ0 =
√
c

‖f‖L2
> 1. We have ‖λ0f‖2L2 = c and

E(f) =
‖f‖2L2

c
E(λ0f) + λα0 − 1

α+ 2 ‖f‖
α+2
Lα+2 >

‖f‖2L2

c
I(c)

as f 6= 0 and λ0 > 1. Similarly, set λn :=
√
c

‖f̃n−f‖L2
. By Lemma 2.5, we have ‖f̃n−f‖2L2 → c−‖f‖2L2

as n→∞, hence λn →
√
c√

c−‖f‖2
L2

> 1 as n→∞. In particular, we have

lim
n→∞

E(f̃n − f) = lim
n→∞

1
λ2
n

E(λn(f̃n − f)) + λαn − 1
α+ 2 ‖f̃n − f‖

α+2
Lα+2 ≥

c− ‖f‖2L2

c
I(c).

Using the refined Fatou’s lemma (see Lemma 2.5), we get

I(c) = lim
n→∞

E(fn) = lim
n→∞

E(f̃n) = E(f) + lim
n→∞

E(f̃n − f) >
‖f‖2L2

c
I(c) +

c− ‖f‖2L2

c
I(c) = I(c)

which is a contradiction. This proves (4.3) and the existence of minimizers for I(c).
Step 2. Orbital stability. Let us now show that the set of minimizers M(c) is orbitally stable in

the sense of Proposition 1.11. We follow an argument of [9]. Assume by contradiction that it is not
true. Then there exist ε0 > 0, φ0 ∈ M(c), and a sequence of initial data (u0,n)n≥1 ⊂ H1

A(R3) such
that

lim
n→∞

‖u0,n − φ0‖H1
A

= 0 (4.4)
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and a sequence of time (tn)n≥1 ⊂ [0,∞) such that

inf
φ∈M(c)

inf
y∈R3

‖eiA(y)··un(tn, · + y)− φ‖H1
A
≥ ε0, (4.5)

where un is the solution to (1.1) with initial data un|t=0 = u0,n. Note that the solutions exist globally
in time by Proposition 1.5.

Since φ0 ∈M(c), we have E(φ0) = I(c). From (4.4) and the Sobolev embedding, we infer that

‖u0,n‖2L2 → ‖φ0‖2L2 = c, E(u0,n)→ E(φ0) = I(c) as n→∞.

By the conservation laws of mass and energy, we have

‖un(tn)‖2L2 → c, E(un(tn))→ I(c) as n→∞.

In particular, (un(tn))n≥1 is a minimizing sequence for I(c). Arguing as in Step 1, we see that up to
a subsequence, there exist φ ∈M(c) and (yn)n≥1 ⊂ R3 such that

‖eiA(yn)··un(tn, · + yn)− φ‖H1
A
→ 0 as n→∞.

This however contradicts (4.5). The proof is complete. �

Proof of Proposition 1.13. (1) We first consider the case α = 4
3 . Let ϕ ∈ C∞0 (R3) be radially sym-

metric satisfying ϕ(x) = 1 for |x| ≤ 1. We define

fλ(x) := Bλλ
3
2ϕ(x)Q0(λx), λ > 0,

where Q0(x) = Q(x)
‖Q‖L2

and Bλ > 0 is such that ‖fλ‖2L2 = c for all λ > 0. By the definition, we have

B−2
λ = 1

c

ˆ
ϕ2(λ−1x)Q2

0(x)dx.

Since Q0 decays exponentially at infinity, we see that for λ > 0 sufficiently large and any δ > 0,∣∣∣∣ˆ (1− ϕ2(λ−1x)
)
Q2

0(x)dx
∣∣∣∣ . ˆ

|x|≥λ
e−C|x|dx .

ˆ
|x|≥λ

|x|−3−δdx . λ−δ.

In particular, we have B2
λ = c+O(λ−∞) as λ→∞, where Dλ = O(λ−∞) means that |Dλ| ≤ Cλ−δ

for any δ > 0 with some constant C > 0 independent of λ. Using (1.7), we have

‖(∇+ iA)fλ‖2L2 = ‖∇fλ‖2L2 + bR(fλ) + b2

4 ‖ρfλ‖
2
L2 = ‖∇fλ‖2L2 + b2

4 ‖ρfλ‖
2
L2 ,

where R(fλ) = 0 as fλ is radially symmetric. We have

‖∇fλ‖2L2 = B2
λ

( ˆ
|∇ϕ(λ−1x)|2Q2

0(x)dx+ λ2
ˆ
ϕ2(λ−1x)|∇Q0(x)|2dx

+ 2λRe
ˆ
ϕ(λ−1x)Q0(x)∇ϕ(λ−1x) · ∇Q0(x)dx

)
.

As |∇Q0| also decays exponentially at infinity and B2
λ = c+O(λ−∞) as λ→∞, we infer that

‖∇fλ‖2L2 = cλ2‖∇Q0‖2L2 +O(λ−∞)

as λ → ∞. On the other hand, since λ3Q2
0(λx) converges weakly to the Dirac delta function at zero

when λ→∞, we infer thatˆ
ρ2(x)|fλ(x)|2dx = B2

λ

ˆ
ρ2(x)ϕ2(x)λ3Q2

0(λx)dx→ 0

as λ→∞, where ρ(x) =
√
x2

1 + x2
2. We also have

‖fλ‖
10
3

L
10
3

= c
5
3λ2‖Q0‖

10
3

L
10
3

+O(λ−∞)
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as λ→∞. It follows that

I(c) ≤ E(fλ) = 1
2‖(∇+ iA)fλ‖2L2 −

3
10‖fλ‖

10
3

L
10
3

= 1
2‖∇fλ‖

2
L2 + b2

8 ‖ρfλ‖
2
L2 −

3
10‖fλ‖

10
3

L
10
3

= c

2λ
2
(
‖∇Q0‖2L2 −

3
5c

2
3 ‖Q0‖

10
3

L
10
3

)
+ oλ(1)

= c

2λ
2‖∇Q0‖2L2

(
1−

(
c

M(Q)

) 2
3
)

+ oλ(1) (4.6)

as λ→∞, where Dλ = oλ(1) means that |Dλ| → 0 as λ→∞. Here we have used (3.6) to get

3
5‖Q0‖

10
3

L
10
3

=
‖∇Q0‖2L2

‖Q‖
4
3
L2

.

In the case c > M(Q), letting λ→∞ in (4.6), we get I(c) = −∞, hence there is no minimizer for
I(c).

In the case c = M(Q), it follows from (4.6) that I(M(Q)) ≤ 0. On the other hand, by the magnetic
Gagliardo-Nirenberg inequality (3.5), we have for any f ∈ H1

A satisfying ‖f‖2L2 = c = M(Q),

E(f) ≥ 1
2‖(∇+ iA)f‖2L2 −

1
2

(
‖f‖L2

‖Q‖L2

) 4
3

‖(∇+ iA)f‖2L2 = 0.

This shows that I(M(Q)) ≥ 0, hence I(M(Q)) = 0. We will show that there is no minimizer for
I(M(Q)). Assume by contradiction that there exists a minimizer for I(M(Q)), says φ. We have

0 = I(‖Q‖2L2) = E(φ) = 1
2‖(∇+ iA)φ‖2L2 −

3
10‖φ‖

10
3

L
10
3

In particular, φ is an optimizer to the magnetic Gagliardo-Nirenberg inequality (3.5). Arguing as in the
proof of Proposition 1.7, we get a contradiction. Thus there is no minimizer for I(M(Q)).

(2) Let us consider the case 4
3 < α < 4. Let f ∈ C∞0 (R3) be radially symmetric and satisfy

‖f‖2L2 = c. Denote
fλ(x) := λ

3
2 f(λx), λ > 0.

We see that ‖fλ‖2L2 = ‖f‖2L2 = c for all λ > 0. We also have

E(fλ) = 1
2‖(∇+ iA)fλ‖2L2 −

1
α+ 2‖fλ‖

α+2
Lα+2

= 1
2‖∇fλ‖

2
L2 + b2

8 ‖ρfλ‖
2
L2 −

1
α+ 2‖fλ‖

α+2
Lα+2

= λ2

2 ‖∇f‖
2
L2 + b2λ−2

8 ‖ρf‖2L2 −
λ

3α
2

α+ 2‖f‖
α+2
Lα+2 .

As α > 4
3 or 3α

2 > 2, we see that E(fλ)→ −∞ as λ→∞. In particular, I(c) = −∞. �

Before giving the proof of Theorem 1.14, we prepare some lemmas.

Lemma 4.2. Let 4
3 < α < 4. Then for any m > 0, there exists c0 = c0(m) > 0 sufficiently small such

that for all 0 < c < c0,

S(c) ∩D(m) 6= ∅, (4.7)
inf {E(f) : f ∈ S(c) ∩D(m/4)} < inf {E(f) : f ∈ S(c) ∩ (D(m)\D(m/2))} . (4.8)

Proof. We take f0 ∈ C∞0 (R3) satisfying ‖(∇+ iA)f0‖2L2 = m. Denote c0 = c0(m) := ‖f0‖2L2 and set
f(x) :=

√
c
c0
f0(x). It follows that ‖f‖2L2 = c and ‖(∇ + iA)f‖2L2 = mc

c0
< m for all 0 < c < c0. In

particular, f ∈ S(c) ∩D(m), hence (4.7) is proved.
To prove (4.8), we first observe that S(c)∩(D(m)\D(m/2)) 6= ∅ for c > 0 sufficiently small. Indeed

let ϕ ∈ C∞0 (R3) be radially symmetric and satisfy ‖ϕ‖2L2 = 1. Denote fλ(x) :=
√
cλ

3
2ϕ(λx) with
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λ > 0 to be chosen later. We have ‖fλ‖2L2 = c and

‖(∇+ iA)fλ‖2L2 = ‖∇fλ‖2L2 + b2

4 ‖ρf
λ‖2L2 = c

(
λ2‖∇ϕ‖2L2 + b2λ−2

4 ‖ρϕ‖2L2

)
.

For each m > 0, by reducing c0 = c0(m) > 0 if necessary, there exists λ0 > 0 such that

‖(∇+ iA)fλ0‖2L2 = 3m
4 . (4.9)

In particular, fλ0 ∈ S(c) ∩ (D(m)\D(m/2)). In fact, we observe that (4.9) is equivalent to

λ2‖∇ϕ‖2L2 + b2λ−2

4 ‖ρϕ‖2L2 = 3m
4c . (4.10)

As a function of λ, the left hand side of (4.10) takes values on [|b|‖∇ϕ‖L2‖ρϕ‖L2 ,∞). Thus if we
take c0 = c0(m) > 0 sufficiently small so that 3m

4c0
≥ |b|‖∇ϕ‖L2‖ρϕ‖L2 , there exists λ0 > 0 such that

(4.10) holds.
Now we prove (4.8). By the Gagliardo-Nirenberg inequality (3.7) and the diamagnetic inequality, we

have
E(f) ≥ 1

2‖(∇+ iA)f‖2L2 −K‖(∇+ iA)f‖
3α
2
L2 ‖f‖

4−α
2

L2

for some constant K > 0. In particular, we have

gc
(
‖(∇+ iA)f‖2L2

)
≤ E(f) ≤ hc

(
‖(∇+ iA)f‖2L2

)
, ∀f ∈ S(c), (4.11)

where
gc(λ) := 1

2λ−Kc
4−α

4 λ
3α
4 , hc(λ) = 1

2λ.

Thanks to (4.11), (4.8) is proved provided that there exists c0 = c0(m) > 0 sufficiently small such that
for each 0 < c < c0,

hc(m/4) < inf
λ∈(m/2,m)

gc(λ). (4.12)

Notice that
gc(λ) = 1

2λ
(

1− 2Kc
4−α

4 λ
3α−4

4

)
>

1
3λ

for λ ∈ (0,m) and for 0 < c < c0. We infer that

inf
λ∈(m/2,m)

gc(λ) ≥ m

6 >
m

8 = hc(m/4).

This proves (4.12), hence (4.8). �

Lemma 4.3. Let A be as in (1.2), 4
3 < α < 4, and m > 0. Then there exists c0 = c0(m) > 0

sufficiently small such that for all 0 < c < c0 and any minimizing sequence (fn)n≥1 of Im(c), there
exists C > 0 such that

lim inf
n→∞

‖fn‖Lα+2 ≥ C > 0.

Proof. The proof is similar to that of Lemma 4.1. Suppose that there exists a subsequence still denoted
by (fn)n≥1 such that limn→∞ ‖fn‖Lα+2 = 0. By (2.2), we have

Im(c) = lim
n→∞

E(fn) ≥ |b|c2 .

Let fλ be as in (4.2) with λ > 0 to be chosen shortly. We have ‖fλ‖2L2 = c for all λ > 0 and

‖(∇+ iA)fλ‖2L2 = c|b|+ λ2‖∂3h‖2L2(R) ≤ m

provided 0 < c < c0(m)� 1 and 0 < λ� 1. On the other hand, we have

E(fλ) = |b|c2 + λ2

2 ‖∂3h‖2L2 −
λ
α
2

α+ 2‖g‖
α+2
Lα+2‖h‖α+2

Lα+2 <
|b|c
2 (4.13)

for λ > 0 sufficiently small. This shows that Im(c) < |b|c
2 which is a contradiction. �
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Lemma 4.4. Let 4
3 < α < 4. Let m > 0 and u0 ∈ H1

A(R3) be such that
‖(∇+ iA)u0‖2L2 ≤ m.

Then there exists c0 = c0(m) > 0 sufficiently small such that for all 0 < c < c0, if M(u0) = c, then
the corresponding solution to (1.1) exists globally in time, i.e., T ∗ =∞.

To prove this result, we recall the following simple continuity argument.

Lemma 4.5 (Continuity argument). Let I ⊂ R be an interval and X : I → [0,∞) be a continuous
function satisfying for every t ∈ I,

X(t) ≤ α+ β[X(t)]θ,
where α, β > 0 and θ > 0 are constants. Assume that

X(t0) ≤ 2α, β < 2−θα1−θ

for some t0 ∈ I. Then for every t ∈ I, we have
X(t) ≤ 2α.

Proof of Lemma 4.4. Let u : [0, T ∗) × R3 → C be the corresponding solution to (1.1). Using (2.2),
we have

‖u0‖2L2 ≤
1
|b|
‖(∇+ iA)u0‖2L2 ≤

m

|b|
.

By (3.7) and the diamagnetic inequality, we have

|E(u0)| ≤ 1
2‖(∇+ iA)u0‖2L2 + C

α+ 2‖(∇+ iA)u0‖
3α
2
L2 ‖u0‖

4−α
2

L2 ≤ m

2 + C

α+ 2
m

α+2
2

|b| 4−α4
.

Similarly, by the conservation of mass and energy, we have for all t ∈ [0, T ∗),

‖(∇+ iA)u(t)‖2L2 = 2E(u(t) + 2
α+ 2‖u(t)‖α+2

Lα+2

≤ 2E(u(t)) + 2C
α+ 2‖(∇+ iA)u(t)‖

3α
2
L2 ‖u(t)‖

4−α
2

L2

≤ 2|E(u0)|+ 2C
α+ 2‖(∇+ iA)u(t)‖

3α
2
L2 (M(u0))

4−α
4 .

Set X(t) := ‖(∇+ iA)u(t)‖2L2 and

α := 2|E(u0)|+ 1
2‖(∇+ iA)u0‖2L2 , β := C

α+ 2(M(u0))
4−α

4 , θ := 3α
4 .

It follows that
X(t) ≤ α+ β[X(t)]θ, ∀t ∈ [0, T ∗).

Since X(0) ≤ 2α, we have from Lemma 4.5 that
X(t) ≤ 2α, ∀t ∈ [0, T ∗)

provided that β < 2−θα1−θ. As θ > 1 and α is bounded from above by a constant depending only
on m, we see that 2−θα1−θ is bounded from below by some constant depending on m. Therefore, if
M(u0) is sufficiently small depending on m, then supt∈[0,T∗) ‖(∇ + iA)u(t)‖L2 < ∞. The blow-up
alternative yields T ∗ =∞. The proof is complete. �

Proof of Theorem 1.14. The proof is done in two steps.
Step 1. Existence of minimizers. Let (fn)n≥1 be a minimizing sequence for Im(c) with 0 < c <

c0 = c0(m) � 1. We see that (fn)n≥1 is a bounded sequence in H1
A(R3). By Lemma 4.3, we have

lim infn→∞ ‖fn‖Lα+2 ≥ C > 0. From Lemma 2.6, up to a subsequence, there exist f ∈ H1
A(R3)\{0}

and a sequence (yn)n≥1 ⊂ R3 such that

f̃n(x) := eiA(yn)·xfn(x+ yn) ⇀ f weakly in H1
A(R3).

By the weak convergence, we have
0 < ‖f‖2L2 ≤ lim inf

n→∞
‖f̃n‖2L2 = lim inf

n→∞
‖fn‖2L2 = c

and
‖(∇+ iA)f‖2L2 ≤ lim inf

n→∞
‖(∇+ iA)f̃n‖2L2 = lim inf

n→∞
‖(∇+ iA)fn‖2L2 ≤ m.
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Arguing as in the proof of Theorem 1.12, we have ‖f‖2L2 = c, hence f ∈ S(c) ∩D(m). We also have
E(f) = Im(c) or f is a minimizer for Im(c). Moreover, f̃n → f strongly in H1

A(R3).
We next prove that f ∈ D(m/2). Indeed, suppose that it is not true. By (4.8), we have

Im(c) ≤ inf {E(f) : f ∈ S(c) ∩D(m/4)}
< inf {E(f) : f ∈ S(c) ∩ (D(m)\D(m/2))}
≤ E(f) = Im(c)

which is a contradiction. This shows that ∅ 6= Mm(c) ⊂ D(m/2). As f does not belong to the
boundary of D(m), there exists a Lagrange multiplier ω ∈ R such that S′ω(f)[ϕ] = 0 for all ϕ ∈
C∞0 (R3), where Sω(f) := E(f) + ω

2M(f). A direct computation shows that f is a solution to

−(∇+ iA)2f + ωf − |f |αf = 0
in the weak sense. From this, we infer that

ω‖f‖2L2 = −‖(∇+ iA)f‖2L2 + ‖f‖α+2
Lα+2 = −2E(f) + α

α+ 2‖f‖
α+2
Lα+2 > −2E(f).

Thus we get

ω > −2E(f)
‖f‖2L2

= −2Im(c)
c

> −|b|,

where the last inequality follows from (4.13). On the other hand, by (3.7) and (2.1), we have

ω‖f‖2L2 ≤ −‖(∇+ iA)f‖2L2 +K‖(∇+ iA)f‖
3α
2
L2 ‖f‖

4−α
2

L2

≤ −‖(∇+ iA)f‖2L2

(
1−K‖(∇+ iA)f‖

3α−4
2

L2 ‖f‖
4−α

2
L2

)
for some constant K > 0. As ‖f‖2L2 = c and f ∈ D(m/2) or ‖(∇+ iA)f‖2L2 ≤ m/2, we get

ω‖f‖2L2 ≤ −‖(∇+ iA)f‖2L2

(
1−Kc

4−α
4 m

3α−4
4

)
,

where the constant K may vary from line to line. Reducing the value of c if necessary, we infer from
(2.2) that

ω ≤ −|b|
(

1−Kc
4−α

4 m
3α−4

4

)
.

This shows (1.27). It completes the proof of Item (1).
Step 2. Orbital stability. As in the proof of Theorem 1.12, we argue by contradiction. Suppose

that Mm(c) is not orbitally stable. There exist ε0 > 0, φ0 ∈ Mm(c), a sequence of initial data
u0,n ∈ H1

A(R3) satisfying
lim
n→∞

‖u0,n − φ0‖H1
A

= 0 (4.14)

and a sequence of time (tn)n≥1 ⊂ [0,∞) such that

inf
φ∈Mm(c)

inf
y∈R3

‖eiA(yn)··un(tn, · + y)− φ‖H1
A
≥ ε0, (4.15)

where un is the solution to (1.1) with initial data un|t=0 = u0,n. Note that the solutions exist globally
in time by Lemma 4.4.

Since φ0 ∈ Mm(c), we have E(φ0) = Im(c). By (4.14) and the Sobolev embedding, we have
‖u0,n‖2L2 → ‖φ0‖2L2 = c and

‖(∇+ iA)u0,n‖2L2 → ‖(∇+ iA)φ0‖2L2 ≤ m, E(u0,n)→ E(φ0) = Im(c).
By conservation laws of mass and energy, we have

‖un(tn)‖2L2 → c, E(un(tn))→ Im(c)
as n → ∞. We next claim that (up to a subsequence) ‖(∇ + iA)un(tn)‖2L2 ≤ m. Suppose that
there exists N ≥ 1 such that ‖(∇ + iA)un(tn)‖2L2 > m for every n ≥ N . By continuity, there exists
t∗n ∈ (0, tn) such that ‖(∇+ iA)un(t∗n)‖2L2 = m. Since

‖un(t∗n)‖2L2 → c, ‖(∇+ iA)un(t∗n)‖2L2 = m, E(un(t∗n))→ Im(c)
as n→∞, we see that un(t∗n) is a minimizing sequence for Im(c). By Step 1, there exist φ ∈Mm(c)
and a sequence (yn)n≥1 ⊂ R3 such that eiA(yn)··un(t∗n, · + yn) → φ strongly in H1

A(R3). This is
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not possible since minimizers for Im(c) does not belong to the boundary of S(c) ∩D(m). Thus there
exists a subsequence (tnk)k≥1 such that ‖(∇ + iA)unk(tnk)‖2L2 ≤ m for all k ≥ 1. This shows that
(unk(tnk))k≥1 is a minimizing sequence for Im(c). Again, by Step 1, there exist φ ∈ Mm(c) and a
sequence (yk)k≥1 ⊂ R3 such that

‖eiA(yk)··unk(tnk , · + yk)− φ‖H1
A
→ 0

as k →∞. This contradicts (4.15), and the proof is complete. �

Proof of Proposition 1.15. The first point follows directly from Theorem 1.14. Let us prove the second
point. Assume by contradiction that there exists f ∈ S(c) with E′|S(c) (f) = 0 such that E(f) <
E(φ) = Im(c). As E′|S(c) (f) = 0, there exists a Lagrange multiplier ω ∈ R such that f is a solution
to (1.26). It follows that

‖(∇+ iA)f‖2L2 + ω‖f‖2L2 − ‖f‖α+2
Lα+2 = 0.

In particular, we have
α

2(α+ 2)
(
‖(∇+ iA)f‖2L2 + ω‖f‖2L2

)
= E(f) + ω

2 ‖f‖
2
L2 < Im(c) + ω

2 c.

We infer that
‖(∇+ iA)f‖2L2 <

2(α+ 2)
α

(
Im(c) + ω

2 c
)
− ωc.

Using (4.13), we see that

‖(∇+ iA)f‖2L2 <
α+ 2
α

(|b|+ ω)c− ωc

which, by (1.27), implies ‖(∇ + iA)f‖2L2 → 0 as c → 0. Thus for c > 0 sufficiently small, we have
f ∈ S(c) ∩ D(m). By the definition of Im(c), we get Im(c) ≤ E(f) which is a contradiction. The
proof is complete. �

5. Existence and instability of ground state standing waves

This section is devoted to the existence of ground states related to (1.26) and the strong instability
of ground state standing waves related to (1.1) in the mass-supercritical case.

Before giving the proof of Theorem 1.16, we need the following observations.

Observation 5.1. Let A be as in (1.2) and ω > −|b|. Then

Hω(f) := ‖(∇+ iA)f‖2L2 + ω‖f‖2L2 ' ‖(∇+ iA)f‖2L2 + ‖f‖2L2 . (5.1)

In fact, we have

‖(∇+ iA)f‖2L2 + ω‖f‖2L2 ≤ (1 + |ω|)
(
‖(∇+ iA)f‖2L2 + ‖f‖2L2

)
.

On the other hand, by (2.2), we see that

‖(∇+ iA)f‖2L2 + ω‖f‖2L2 ≥ (ω + |b|)‖f‖2L2 .

It follows that

‖(∇+ iA)f‖2L2 + ‖f‖2L2 ≤ ‖(∇+ iA)f‖2L2 + ω‖f‖2L2 + |1− ω|‖f‖2L2

≤
(

1 + |1− ω|
ω + |b|

)(
‖(∇+ iA)f‖2L2 + ω‖f‖2L2

)
.

Observation 5.2. Let A be as in (1.2), 0 < α < 4, and ω > −|b|. Then there exists f ∈ H1
A(R3) such

that Kω(f) = 0.

Indeed, for f ∈ C∞0 (R3), we have

Kω(λf) = λ2Hω(f)− λα+2‖f‖α+2
Lα+2 , λ > 0.

It follows that Kω(λ0f) = 0 with λ0 =
(

Hω(f)
‖f‖α+2

Lα+2

) 1
α

.

Lemma 5.1. Let A be as in (1.2), 0 < α < 4, and ω > −|b|. Then there exists a minimizer for d(ω).
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Proof. The proof is done by several steps.
Step 1. We first show that d(ω) > 0. Let f ∈ H1

A(R3) be such that Kω(f) = 0. By the
Gagliardo-Nirenberg inequality, the diamagnetic inequality, and (5.1), we have

Hω(f) = ‖f‖α+2
Lα+2 . ‖(∇+ iA)f‖

3α
2
L2 ‖f‖

4−α
2

L2

.
(
‖(∇+ iA)f‖2L2 + ‖f‖2L2

)α
2 +1
. (Hω(f))α2 +1.

Thus we get Hω(f) ≥ C > 0. It follows that

Sω(f) = α

2(α+ 2)Hω(f) ≥ α

2(α+ 2)C > 0.

Taking the infimum over all f ∈ H1
A(R3)\{0} satisfying Kω(f) = 0, we obtain d(ω) > 0.

Step 2. We next show that there exists a minimizer for d(ω). Let (fn)n≥1 be a minimizing sequence
for d(ω). We have

α

2(α+ 2)Hω(fn) = Sω(fn)→ d(ω) > 0 as n→∞

which, by (5.1), implies that (fn)n≥1 is a bounded sequence in H1
A(R3). As Kω(fn) = 0, we have

‖fn‖α+2
Lα+2 = Hω(fn)→ 2(α+ 2)

α
d(ω) > 0 as n→∞.

Thus up to a subsequence, we have infn≥1 ‖fn‖Lα+2 ≥ C > 0. Here the constant C may vary from
line to line. Applying Lemma 2.6, there exist f ∈ H1

A(R3)\{0} and (yn)n≥1 ⊂ R3 such that

f̃n(x) := eiA(yn)·xfn(x+ yn) ⇀ f weakly in H1
A(R3).

Thanks to Lemma 2.5, we have

Hω(f̃n) = Hω(f) +Hω(f̃n − f) + on(1), (5.2)
Kω(f̃n) = Kω(f) +Kω(f̃n − f) + on(1). (5.3)

We will show that Kω(f) = 0. Indeed, if Kω(f) < 0, then there exists λ0 ∈ (0, 1) such that
Kω(λ0f) = 0. From the definition of d(ω), we have

d(ω) ≤ Sω(λ0f) = α

2(α+ 2)Hω(λ0f) = αλ2
0

2(α+ 2)Hω(f)

<
α

2(α+ 2)Hω(f)

≤ α

2(α+ 2) lim inf
n→∞

Hω(f̃n) = lim inf
n→∞

Hω(fn) = d(ω)

which is a contradiction. If Kω(f) > 0, then, by (5.3) and the fact that Kω(f̃n) = Kω(fn) = 0,
we have Kω(f̃n − f) < 0 for n sufficiently large. Thus there exists (λn)n≥1 ⊂ (0, 1) such that
Kω(λn(f̃n − f)) = 0. It follows that

d(ω) ≤ Sω(λn(f̃n − f)) = α

2(α+ 2) lim
n→∞

Hω(λn(f̃n − f))

= α

2(α+ 2) lim
n→∞

λ2
nHω(f̃n − f)

≤ α

2(α+ 2) lim
n→∞

Hω(f̃n − f)

= α

2(α+ 2)

(
lim
n→∞

Hω(f̃n)−Hω(f)
)

= α

2(α+ 2) lim
n→∞

Hω(fn)− α

2(α+ 2)Hω(f)

= d(ω)− α

2(α+ 2)Hω(f) < d(ω)

which is also a contradiction. Here the fourth line follows from (5.2). Thus we have Kω(f) = 0.



30 V. D. DINH

By the definition of d(ω), we have

d(ω) ≤ Sω(f) = α

2(α+ 2)Hω(f) ≤ α

2(α+ 2) lim inf
n→∞

Hω(f̃n)

= α

2(α+ 2) lim inf
n→∞

Hω(fn) = d(ω).

This shows that Sω(f) = d(ω) or f is a minimizer for d(ω). The proof is complete. �

Proof of Theorem 1.16. We set
D(ω) :=

{
φ ∈ H1

A(R3)\{0} : Sω(φ) = d(ω),Kω(φ) = 0
}
.

By Lemma 5.1, we have D(ω) 6= ∅. We will show that D(ω) ≡ G(ω).
To see this, let φ ∈ D(ω). There exists a Lagrange multiplier λ ∈ R such that S′ω(φ) = λK ′ω(φ). It

follows that
Kω(φ) = 〈S′ω(φ), φ〉L2 = λ 〈K ′ω(φ), φ〉L2 = λ

(
2Kω(φ)− α‖f‖α+2

Lα+2

)
.

As Kω(f) = 0 and φ 6= 0, we have λ = 0 or S′ω(φ) = 0 or φ ∈ A(ω). Let f ∈ A(ω). As Kω(f) = 0,
we have Sω(f) ≥ d(ω) = Sω(φ). This shows that Sω(φ) ≤ Sω(f) for all f ∈ A(ω) or φ ∈ G(ω). Thus
D(ω) ⊂ G(ω).

Finally we show that G(ω) ⊂ D(ω). Indeed, let φ ∈ G(ω) and take f ∈ D(ω) ⊂ G(ω). We have
Sω(f) = Sω(φ) = d(ω). Since φ ∈ A(ω), we have Kω(φ) = 0. Thus φ ∈ D(ω). The proof is
complete. �

Proposition 5.2. Let A be as in (1.2), 0 < α <, ω > −|b|, and φ ∈ G(ω). Then φ ∈ Lr(R3) for
all 2 ≤ r ≤ ∞ and lim|x|→∞ φ(x) = 0. Moreover, there exists δ > 0 such that eδ|x|φ ∈ L2(R3). In
particular, φ ∈ ΣA(R3).

The proof of Proposition 5.2 is based on the following results of Chabrowski and A. Szulkin [13] and
N. Raymond [29].

Lemma 5.3 ( [13]). Let A ∈ L2
loc(R3,R3). Let φ ∈ H1

A(R3) be a solution to (1.26). Then φ ∈ Lr(R3)
for all 2 ≤ r ≤ ∞. Moreover,

lim
|x|→∞

φ(x) = 0.

Lemma 5.4 ( [29, Proposition 4.9]). Let V ∈ C0(R3,R) be bounded from below and A ∈ C1(R3,R3).
Assume that there exist R0 > 0 and µ∗ ∈ R such that for all f ∈ H1

A(R3) with supp(f) ⊂ R3\B(0, R0),
we have ˆ

|(∇+ iA)f |2dx+
ˆ
V |f |2dx ≥ µ∗‖f‖2L2 . (5.4)

Then we have inf spec(−(∇+ iA)2 +V ) ≥ µ∗. Moreover, if φ is an eigenfunction for −(∇+ iA)2 +V
with eigenvalue µ < µ∗, then for all δ ∈ (0,

√
µ∗ − µ), we have eδ|x|φ ∈ L2(R3).

Proof of Proposition 5.2. By Lemma 5.3, it remains to show the exponential decay of the ground state.
Let us start with the following observation.

Observation 5.3. Let A be as in (1.2) and V ∈ Lr(R3) for some r > 3
2 . Then for every ε > 0, there

exists R = R(ε) > 0 such thatˆ
|(∇+ iA)f |2dx+

ˆ
V |f |2dx ≥ (1− ε)|b|‖f‖2L2 (5.5)

for all f ∈ H1
A(R3) with supp(f) ⊂ R3\B(0, R).

Proof. By the Hölder inequality and Sobolev embedding, we have∣∣∣∣ˆ V |f |2dx
∣∣∣∣ ≤ ‖V ‖Lr‖f‖2L 2r

r−1
≤ ‖V ‖Lr‖|f |‖2H1 ,

where 2 < 2r
r−1 < 6 as r > 3

2 . By the diamagnetic inequality (2.1) and (2.2), we have

‖|f |‖2H1 = ‖∇|f |‖2L2 + ‖f‖2L2 ≤
(

1 + 1
|b|

)
‖(∇+ iA)f‖2L2 .
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It follows thatˆ
|(∇+ iA)f |2dx+

ˆ
V |f |2dx ≥

(
1− ‖V ‖Lr

(
1 + 1
|b|

))
‖(∇+ iA)f‖2L2 .

In particular, for any f ∈ H1
A(R3) with supp(f) ⊂ R3\B(0, R), we haveˆ

|(∇+ iA)f |2dx+
ˆ
V |f |2dx ≥

(
1− ‖V ‖Lr(|x|≥R)

(
1 + 1
|b|

))
‖(∇+ iA)f‖2L2 .

As V ∈ Lr(R3), we have ‖V ‖Lr(|x|≥R) → 0 as R → ∞. Thus for every ε > 0, there exists R =
R(ε) > 0 such that

‖V ‖Lr(|x|≥R)

(
1 + 1
|b|

)
≤ ε

which proves (5.5). �

Now we prove the exponential decay of the ground state by applying Lemma 5.4 to V = −|φ|α.
By Lemma 5.3, we see that V is bounded from below. To see V ∈ C0(R3,R), it suffices to show
V ∈ C0(B(0, R),R) for any R > 0. On B(0, R), the equation (1.26) can be written as

−∆φ = −bLzφ−
b2

4 ρ
2φ− ωφ+ |φ|αφ, x ∈ B(0, R).

Since the right hand side belongs to L2(B(0, R)), the regularity argument (see e.g., [25, Theorem
10.2]) shows that φ ∈ C0,α(B(0, R)) for some α > 0.

For ω > −|b| being given, there exists ε > 0 such that ω > −(1 − ε)|b|. As φ ∈ Lr(R3) for all
2 ≤ r ≤ ∞, by Observation 5.3, we see that (5.4) holds with µ∗ = (1 − ε)|b|. Applying Lemma 5.4
with µ = −ω the eigenvalue of −(∇+ iA)2 + V associated to the eigenfunction φ, namely

−(∇+ iA)2φ− |φ|αφ = −ωφ,

there exists δ > 0 such that eδ|x|φ ∈ L2(R3). The proof is complete. �

Lemma 5.5. Let A be as in (1.2), 0 < α < 4, ω > −|b|, and φ ∈ G(ω). Then we have
Kω(φ) = H(φ) = 0,

where H and Kω are as in (3.15) and (1.30) respectively.

Proof. Since φ ∈ G(ω), we see that φ is a solution to (1.26). By multiplying both sides of (1.26) with
φ and integrating over R3, we have Kω(φ) = 0. As φ ∈ ΣA(R3) (see Proposition 5.2), we have from
(1.7) that

‖∇φ‖2L2 + bR(φ) + b2

4 ‖ρφ‖
2
L2 + ω‖φ‖2L2 − ‖φ‖α+2

Lα+2 = 0. (5.6)

On the other hand, by (3.3), we rewrite (1.26) as

−∆φ+ bLzφ+ b2

4 ρ
2φ+ ωφ− |φ|αφ = 0. (5.7)

Multiplying both sides of (5.7) with x · ∇φ, integrating over R3, and taking the real part, we get

−1
2‖∇φ‖

2
L2 −

3
2bR(φ)− 5b2

8 ‖ρφ‖
2
L2 −

3ω
2 ‖φ‖

2
L2 + 3

α+ 2‖φ‖
α+2
Lα+2 = 0. (5.8)

Here we have used the following identities which can be showed by integration by parts:

Re
(ˆ

x · ∇φ∆φdx
)

= 1
2‖∇φ‖

2
L2 ,

Re
(ˆ

x · ∇φρ2φdx

)
= −5

2‖ρφ‖
2
L2 ,

Re
(ˆ

x · ∇φLzφdx
)

= −3
2R(φ),

Re
(ˆ

x · ∇φ|φ|αφdx
)

= − 3
α+ 2‖φ‖

α+2
Lα+2 .
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From (5.6) and (5.8), we infer that

‖∇φ‖2L2 −
b2

4 ‖ρφ‖
2
L2 −

3α
2(α+ 2)‖φ‖

α+2
Lα+2 = 0

or H(φ) = 0. The proof is complete. �

Lemma 5.6. Let A be as in (1.2), 4
3 < α < 4, ω > −|b|, and φ ∈ G(ω). Assume that ∂2

λSω(φλ)
∣∣
λ=1 ≤

0, where φλ is as in (1.32). Let f ∈ ΣA(R3) be such that
M(f) = M(φ), R(f) = R(φ), Kω(f) ≤ 0, H(f) ≤ 0. (5.9)

Then
H(f) ≤ 2 (Sω(f)− d(ω)) , (5.10)

where d(ω) is as in (1.29).

Proof. The proof is inspired by an idea of M. Ohta [28]. We first consider the case Kω(f) = 0. By
the definition of d(ω) and H(f) ≤ 0, we have

d(ω) ≤ Sω(f) ≤ Sω(f)− 1
2H(f)

which shows (5.10).
We now consider the case Kω(f) < 0. As f ∈ ΣA(R3), we have from (1.7) that

Kω(fλ) = λ2‖∇f‖2L2 + bR(f) + b2

4 λ
−2‖ρf‖2L2 + ω‖f‖2L2 − λ

3α
2 ‖f‖α+2

Lα+2 ,

where fλ(x) := λ
3
2 f(λx). As Kω(f) < 0 and Kω(fλ) > 0 for λ > 0 sufficiently small, there exists

λ0 ∈ (0, 1) such that Kω(fλ0) = 0. It follows that
α

2(α+ 2)‖φ‖
α+2
Lα+2 = Sω(φ) = d(ω) ≤ Sω(fλ0) = α

2(α+ 2)‖fλ0‖α+2
Lα+2 = α

2(α+ 2)λ
3α
2

0 ‖f‖
α+2
Lα+2

which yields

‖φ‖α+2
Lα+2 ≤ λ

3α
2

0 ‖f‖
α+2
Lα+2 . (5.11)

If ‖ρf‖L2 ≥ ‖ρφ‖L2 , then we infer from (5.9) and (5.11) that

d(ω) = Sω(φ) = Sω(φ)− 1
2H(φ)

= ω

2 ‖φ‖
2
L2 + b

2R(φ) + b2

4 ‖ρφ‖
2
L2 + 3α− 4

4(α+ 2)‖φ‖
α+2
Lα+2

≤ ω

2 ‖f‖
2
L2 + b

2R(f) + b2

4 ‖ρf‖
2
L2 + 3α− 4

4(α+ 2)λ
3α
2

0 ‖f‖
α+2
Lα+2

≤ ω

2 ‖f‖
2
L2 + b

2R(f) + b2

4 ‖ρf‖
2
L2 + 3α− 4

4(α+ 2)‖f‖
α+2
Lα+2

= Sω(f)− 1
2H(f)

which shows (5.10).
Finally we assume that ‖ρf‖L2 < ‖ρφ‖L2 . We consider

J(λ) : = Sω(fλ)− λ2

2 H(f)

= ω

2 ‖f‖
2
L2 + b

2R(f) + b2

8
(
λ−2 + λ2) ‖ρf‖2L2 −

1
α+ 2

(
λ

3α
2 − 3α

4 λ2
)
‖f‖α+2

Lα+2 .

We claim that
J(λ0) ≤ J(1). (5.12)

Let us assume (5.12) for the moment and complete the proof of Lemma 5.6. Indeed, we have

d(ω) = Sω(fλ0) ≤ Sω(fλ0)− λ2
0

2 H(f) = J(λ0) ≤ J(1) = Sω(f)− 1
2H(f)
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which implies (5.10).
It remains to show (5.12) which is in turn equivalent to show

b2

8
(
λ−2

0 + λ2
0 − 2

)
‖ρf‖2L2 ≤

1
α+ 2

(
λ

3α
2

0 − 3α
4 λ2

0 + 3α
4 − 1

)
‖f‖α+2

Lα+2 . (5.13)

Since ∂2
λSω(φλ)

∣∣
λ=1 ≤ 0 and H(φ) = 0, we see that

b2‖ρφ‖2L2 ≤
3α(3α− 4)

4(α+ 2) ‖φ‖
α+2
Lα+2 .

Using (5.11), we infer that

b2‖ρf‖2L2 < b2‖ρφ‖2L2 ≤
3α(3α− 4)

4(α+ 2) ‖φ‖
α+2
Lα+2 ≤

3α(3α− 4)
4(α+ 2) λ

3α
2

0 ‖f‖
α+2
Lα+2 . (5.14)

From (5.14), (5.13) holds provided that
3α(3α− 4)
32(α+ 2)

(
λ−2

0 + λ2
0 − 2

)
λ

3α
2

0 ≤ 1
α+ 2

(
λ

3α
2

0 − 3α
4 λ2

0 + 3α
4 − 1

)
.

The above inequality is equivalent to

β(β − 1)(λ−1
0 − λ0)2λ2β

0 ≤ 2
(
λ2β

0 − βλ2
0 + β − 1

)
which is P (λ2

0) ≥ 0, where

P (s) := sβ − 1− β(s− 1)− 1
2β(β − 1)sβ−1(s− 1)2.

We take the Taylor expansion of sβ at s = 1 to get

sβ = 1 + β(s− 1) + 1
2β(β − 1)(s− 1)2sβ−2

0

for some s0 ∈ [s, 1]. This shows that

P (λ2
0) = 1

2β(β − 1)(λ2
0 − 1)2

(
sβ−2

0 − λ2β−2
0

)
with λ2

0 ≤ s0 ≤ 1. Since λ2β−2
0 ≤ sβ−1

0 ≤ sβ−2
0 , we have P (λ2

0) ≥ 0. This proves (5.13), hence (5.12).
The proof is complete. �

We are now able to prove Theorem 1.17.

Proof of Theorem 1.17. We define the set
B(ω) :=

{
f ∈ ΣA(R3) : M(f) = M(φ), R(f) = R(φ), Sω(f) < d(ω),Kω(f) < 0, H(f) < 0

}
.

Observation 5.4. The set B(ω) is invariant under the flow of (1.1), i.e., if u0 ∈ B(ω), then u(t) ∈ B(ω)
for all t ∈ [0, T ∗).

Proof. In fact, let u0 ∈ B(ω) and u : [0, T ∗)×R3 → C be the corresponding solution to (1.1). By the
conservation of mass and energy, we have M(u(t)) = M(u0) = M(φ) and Sω(u(t)) = Sω(u0) < d(ω)
for all t ∈ [0, T ∗). Thanks to Lemma 1.4, we see that R(u(t)) = R(u0) = R(φ) for all t ∈ [0, T ∗).
We will show that Kω(u(t)) < 0 for all t ∈ [0, T ∗). Suppose that it does not hold, then there exists
t0 ∈ [0, T ∗) such that Kω(u(t0)) ≥ 0. By the continuity of t 7→ Kω(u(t)), there exists t1 ∈ (0, t0] such
that Kω(u(t1)) = 0. From the definition of d(ω), we get d(ω) ≤ Sω(u(t1)) = Sω(u0) < d(ω) which is
a contradiction. Finally we prove that H(u(t)) < 0 for all t ∈ [0, T ∗). If it is not true, then arguing as
above, there exists t2 ∈ [0, T ∗) such that H(u(t2)) = 0. Applying Lemma 5.6 to f = u(t2), we get

0 = H(u(t2)) ≤ 2 (Sω(u(t2))− d(ω))
which implies

d(ω) ≤ Sω(u(t2)) = Sω(u0) < d(ω).
This is again a contradiction. Thus we have

M(u(t)) = M(u0) = M(φ), R(u(t)) = R(u0) = R(φ), Sω(u(t)) = Sω(u0) < d(ω)
and Kω(u(t)) < 0, H(u(t)) < 0 for all t ∈ [0, T ∗). This shows Observation 5.4. �

Observation 5.5. We have φλ ∈ B(ω) for all λ > 1, where φλ is as in (1.32).
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Proof. A straightforward computation shows
M(φλ) = M(φ), R(φλ) = M(φ), ∀λ > 0.

Next we have

∂2
λSω(φλ) = ‖∇φ‖2L2 + 3b2

4 λ−4‖ρφ‖2L2 −
3α

2(α+ 2)

(
3α
2 − 1

)
λ

3α−4
2 ‖φ‖α+2

Lα+2

< ‖∇φ‖2L2 + 3b2

4 ‖ρφ‖
2
L2 −

3α
2(α+ 2)

(
3α
2 − 1

)
‖φ‖α+2

Lα+2

= ∂2
λSω(φλ)

∣∣
λ=1 ≤ 0, ∀λ > 1.

It yields that
∂λSω(φλ) < ∂λSω(φλ)

∣∣
λ=1 = H(φ) = 0, ∀λ > 1

which shows
Sω(φλ) < Sω(φ), ∀λ > 1.

We also have
H(φλ) = λ∂λSω(φλ) < 0, ∀λ > 1.

It remains to show that Kω(φλ) < 0 for all λ > 1. We have

∂3
λKω(φλ) = −6b2λ−5‖ρφ‖2L2 −

3α
2

(
3α
2 − 1

)(
3α
2 − 2

)
λ

3α
2 −3‖φ‖α+2

Lα+2 < 0, ∀λ > 0.

It follows that

∂2
λKω(φλ) < ∂2

λKω(φλ)
∣∣
λ=1 = 2‖∇φ‖2L2 + 3b2

2 ‖ρφ‖
2
L2 −

3α
2

(
3α
2 − 1

)
‖φ‖α+2

Lα+2 , ∀λ > 1.

By the assumption ∂2
λSω(φλ)

∣∣
λ=1 ≤ 0 which is equivalent to

‖∇φ‖2L2 + 3b2

4 ‖ρφ‖
2
L2 −

3α
2(α+ 2)

(
3α
2 − 1

)
‖φ‖α+2

Lα+2 ≤ 0,

we infer that
∂2
λKω(φλ) ≤ − 3α2

2(α+ 2)

(
3α
2 − 1

)
‖φ‖α+2

Lα+2 < 0, ∀λ > 1.

This shows that

∂λKω(φλ) < ∂λKω(φλ)
∣∣
λ=1 = 2‖∇φ‖2L2 −

b2

2 ‖ρφ‖
2
L2 −

3α
2 ‖φ‖

α+2
Lα+2 , ∀λ > 1.

Using the fact that H(φ) = 0, we obtain

∂λKω(φλ) < − 3α2

2(α+ 2)‖φ‖
α+2
Lα+2 , ∀λ > 1.

This shows that Kω(φλ) < Kω(φ) = 0 for all λ > 1. Therefore we prove that φλ ∈ B(ω) for all
λ > 1. �

Now let ε > 0. As φλ → φ strongly in ΣA(R3) as λ → 1, there exists λ0 > 1 such that
‖φλ0 − φ‖ΣA < ε. Set u0 = φλ0 ∈ B(ω) and let u : [0, T ∗) × R3 → C be the corresponding solution
to (1.1). By Observation 5.5 and Observation 5.4, u(t) ∈ B(ω) for all t ∈ [0, T ∗). Applying Lemma
5.6 to f = u(t) and using the conservation laws of mass and energy, we get

H(u(t)) ≤ 2 (Sω(u(t))− d(ω)) = 2 (Sω(u0)− d(ω)) < 0, ∀t ∈ [0, T ∗).
Thanks to Lemma 3.1, we have

F ′′(u(t)) = 8H(u(t)) ≤ −16 (Sω(u0)− d(ω)) < 0, ∀t ∈ [0, T ∗),
where F is as in (3.4). The convexity argument shows that T ∗ <∞. The proof is complete. �
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