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We study the existence and stability of standing waves associated to the Cauchy problem for the nonlinear Schrödinger equation (NLS) with a critical rotational speed and an axially symmetric harmonic potential. This equation arises as an effective model describing the attractive Bose-Einstein condensation in a magnetic trap rotating with an angular velocity. By viewing the equation as NLS with a constant magnetic field and with (or without) a partial harmonic confinement, we establish the existence and orbital stability of prescribed mass standing waves for the equation with masssubcritical, mass-critical, and mass-supercritical nonlinearities. Our result extends a recent work of [Bellazzini-Boussaïd-Jeanjean-Visciglia, Comm. Math. Phys. 353 (2017), no. 1, 229-251], where the existence and stability of standing waves for the supercritical NLS with a partial confinement were established.

1. Introduction 1.1. Physical motivation. Bose-Einstein condensate (BEC) is a state of matter which describes a phenomenon that near absolute zero temperature all atoms lose their individual properties and condense into a macroscopic coherent super atom wave. This phenomenon was predicted by Bose and Einstein in 1925, but the experimental realization was not possible until 1995 by JILA [START_REF] Anderson | Observation of Bose-Einstein condensation in a dilute atomic vapor[END_REF] and MIT [START_REF] Davis | Bose-Einstein Condensation in a Gas of Sodium Atoms[END_REF] groups (2001 Nobel Prize in physics attributed to Cornell, Wieman, and Ketterle). Since 1995, the study of Bose-Einstein condensation has become one of the most active areas not only in physics but also in mathematics. An interesting application of Bose-Einstein condensates (BEC) is its application to the superfluidity and superconductivity. The key issue is to study the existence of quantized vortices which are well-known signatures of superfluidity (see e.g., [START_REF] Dinh | Vortices in Bose-Einstein condensates[END_REF] for a broad introduction on these phenomena). Currently, the most popular way to generate quantized vortices from BEC is to impose a laser beam rotating with an angular velocity on the magnetic trap holding the atoms to create a harmonic anisotropic potential (see e.g., [START_REF] Madison | Vortex formation in a stirred Bose-Einstein condensate[END_REF][START_REF] Williams | Preparing topological states of a Bose-Einstein condensate[END_REF]).

In the mean-field approximation, the rotational trapped BEC is well described by the macroscopic wave function ψ(t, x) whose evolution is governed by the Gross-Pitaevskii equation (GPE) with an angular momentum rotational term (see e.g., [START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Castin | Bose-Einstein condensates with vortices in rotating traps[END_REF][START_REF] Feder | Nucleation of vortex arrays in rotating anisotropic Bose-Einstein condensates[END_REF][START_REF] Fetter | Rotating trapped Bose-Einstein condensates[END_REF][START_REF] García-Ripoll | Stability of vortices in inhomogeneous Bose condensates subject to rotation: A three-dimensional analysis[END_REF]), namely

i ∂ t ψ(t, x) = - 2 2m ∆ + V (x) -ΩL z + M g|ψ(t, x)| 2 ψ(t, x)
where t is the time variable, x = (x 1 , x 2 , x 3 ) ∈ R 3 is the spatial coordinate vector, is the Planck constant, M is the number of atoms in the condensate, m is the atomic mass, and g = 4π 2 as m with the s-wave scattering length a s (positive for repulsive interactions and negative for attractive interactions). The external potential

V (x) = m 2 3 j=1 γ 2 j x 2 j
is the harmonic potential with trap frequencies γ j > 0 for j = 1, 2, 3. The angular momentum operator

L z = i (x 2 ∂ x1 -x 1 ∂ x2 )
with a rotational speed Ω > 0.

1.2. Mathematical framework. The mathematical study of the rotating GPE with repulsive interactions has been extensively studied in many works (see e.g., [26-28, 30, 35] and references therein).

In this paper, we are interested in the rotating GPE with attractive interactions. For the mathematical analysis, it is convenient to consider the Cauchy problem for the following more general nonlinear Schrödinger equation (NLS) with rotation in the dimensionless form

i∂ t u + 1 2 ∆u = V u -ΩL z u -|u| p-1 u, (t, x) ∈ R × R N , u| t=0 = u 0 , ( 1.1) 
where N ≥ 2, p > 1, V is a harmonic potential of the form

V (x) = 1 2 N j=1 γ 2 j x 2 j , γ j > 0, j = 1, • • • , N (1.2)
and

L z := i(x 2 ∂ x1 -x 1 ∂ x2 )
is the rotational operator, and Ω > 0 is the rotational speed.

There are two important physical quantities which are formally conserved by the time-evolution associated to (1.1):

M (u(t)) := u(t) 2 L 2 = M (u 0 ), (Mass) 
E Ω (u(t)) := 1 2 ∇u(t) 2 L 2 + V(u(t)) -L Ω (u(t)) -

2 p + 1 u(t) p+1 L p+1 = E Ω (u 0 ), (Energy) 
where

V(f ) := ˆRN V (x)|f (x)| 2 dx (1.3)
is the potential energy and

L Ω (f ) := Ω ˆRN f (x)L z f (x)dx (1.4)
is the angular momentum. Motivated by the fact that physicists are often interested in normalized standing waves for (1.1), we study prescribed mass standing waves for (1.1), i.e., solutions to (1.1) of the form u(t, x) = e iωt φ(x) having a given mass, where ω ∈ R is a frequency and φ is a non-trivial solution to the time independent equation

- 1 2 ∆φ + V φ -|φ| p-1 φ -ΩL z φ + ωφ = 0. (1.5) 
To show the existence of prescribed mass standing waves, we look for critical points of the energy functional under a mass constraint. More precisely, we consider the minimizing problem: for c > 0,

I Ω (c) := inf {E Ω (f ) : f ∈ S(c)} , ( 1.6) 
where S(c) := {f ∈ X : M (f ) = c}. Here X is the functional space in which the energy is welldefined.

To our knowledge, there are several works devoted to the existence and stability of prescribed mass standing waves for (1.1) with low rotational speed 1 , i.e., 0 < Ω < min{γ 1 , γ 2 }. In this setting, the energy functional is well-defined for f ∈ Σ, where

Σ := f ∈ H 1 (R N ) : |x|f ∈ L 2 (R N ) , ( 1.7) 
hence X ≡ Σ. It was proved by Antonelli-Marahrens-Sparber [3, Lemma 3.1] that (1.1) is locally well-posed in Σ. More precisely, for

N ≥ 2, 1 < p < 1 + 4 N -2
, Ω > 0, u 0 ∈ Σ, there exist T * , T * ∈ (0, ∞] and a unique maximal solution u ∈ C((-T * , T * ), Σ) to (1.1). The maximal time of existence satisfies the blow-up alternative: if

T * < ∞ (resp. T * < ∞), then lim t T * ∇u(t) L 2 = ∞ resp. lim t -T * ∇u(t) L 2 = ∞ .
Moreover, there are conservation laws of mass and energy, i.e., M (u(t)) = M (u 0 ) and E Ω (u(t)) = E Ω (u(t)) for all t ∈ (-T * , T * ). In addition, the angular momentum L Ω (u(t)) is real-valued and satisfies

L Ω (u(t)) + Ω ˆt 0 ˆRN i|u(s, x)| 2 L z V (x)dxds = L Ω (u 0 ) (1.8)
for all t ∈ (-T * , T * ).

In [START_REF] Arbunich | Stability and instability properties of rotating Bose-Einstein condensates[END_REF], Arbunich-Nenciu-Sparber showed the existence and stability of prescribed mass standing waves for (1.1) with mass-subcritical nonlinearity. In particular, they proved that for

0 < Ω < min{γ 1 , γ 2 }, 1 < p < 1 + 4 N , c > 0,
there exists a minimizer for I Ω (c). Moreover, the set of minimizers for I Ω (c) denoted by

M Ω (c) := {φ ∈ S(c) : E Ω (φ) = I Ω (c)}
is orbitally stable under the flow of (1.1) in the sense that for any ε > 0, there exists δ > 0 such that for any initial data u 0 ∈ Σ satisfying

inf φ∈M Ω (c) u 0 -φ Σ < δ,
the corresponding solution to (1.1) exists globally in time and satisfies

inf φ∈M Ω (c) u(t) -φ Σ < ε, ∀t ∈ R. (1.9) 
In the mass-critical case, i.e., p = 1 + 4 N and isotropic harmonic potential, i.e., γ 1 = • • • = γ N = γ, the existence and stability of prescribed mass standing waves for (1.1) were established in [START_REF] Basharat | Threshold for blowup and stability for nonlinear Schrödinger equation with rotation[END_REF][START_REF] Lü | Sharp thresholds of Bose-Einstein condensates with an angular momentum rotational term[END_REF]. More precisely, they proved that for

0 < Ω < γ, p = 1 + 4 N , 0 < c < M (Q),
where Q is the unique positive radial solution to

- 1 2 ∆Q + Q -|Q| 4 N Q = 0, (1.10) 
then there exists a minimizer for I Ω (c). In addition, the set of minimizers M Ω (c) is orbitally stable under the flow of (1.1) in the sense of (1.9). We also mention recent works [START_REF] Guo | The nonexistence of vortices for rotating Bose-Einstein condensates with attractive interactions[END_REF][START_REF] Guo | The nonexistence of vortices for rotating Bose-Einstein condensates in non-radially symmetric traps[END_REF][START_REF] Guo | Local uniqueness of ground states for rotating Bose-Einstein condensates with attractive interactions[END_REF][START_REF] Lewin | Blow-up profile of rotating 2D focusing Bose gases[END_REF] for the limiting behavior of minimizers for I Ω (c) when c M (Q). In the mass-supercritical case, i.e., 1 + 4 N < p < 1 + 4 N -2 , a standard scaling argument shows that the energy functional is no longer bounded from below on S(c). Inspired by an idea of Bellazzini-Boussaïd-Jeanjean-Visciglia [START_REF] Bellazzini | Existence and stability of standing waves for supercritical NLS with a partial confinement[END_REF], recent works [START_REF] Ardila | Global well-posedness, blow-up and stability of standing waves for supercritical NLS with rotation[END_REF][START_REF] Luo | Multiplicity, asymptotics and stability of standing waves for nonlinear Schrödinger equation with rotation[END_REF] study the local minimization problem: for c, m > 0,

I m Ω (c) := inf {E Ω (f ) : f ∈ S(c) ∩ B Ω (m)} , ( 1.11) 
where

B Ω (m) := f ∈ Σ : ∇f 2 L 2 + 2V(f ) -2L Ω (f ) ≤ m . They proved that for 0 < Ω < min{γ 1 , γ 2 }, 1 + 4 N < p < 1 + 4 N -2 , m > 0,
there exists c 0 = c 0 (m) > 0 sufficiently small such that for all 0 < c < c 0 , there exists a minimizer for I m Ω (c) and the set of minimizers for I m Ω (c) is orbitally stable under the flow of (1.1) in the sense of (1.9).

Remark 1.1. The results in [START_REF] Arbunich | Stability and instability properties of rotating Bose-Einstein condensates[END_REF][START_REF] Ardila | Global well-posedness, blow-up and stability of standing waves for supercritical NLS with rotation[END_REF][START_REF] Basharat | Threshold for blowup and stability for nonlinear Schrödinger equation with rotation[END_REF][START_REF] Lü | Sharp thresholds of Bose-Einstein condensates with an angular momentum rotational term[END_REF][START_REF] Luo | Multiplicity, asymptotics and stability of standing waves for nonlinear Schrödinger equation with rotation[END_REF] were stated for 0 < Ω < min 1≤j≤N γ j . However, after a careful look (see Lemma 2.1), we can prove the following equivalent norm

∇f 2 L 2 + 2V(f ) -2L Ω (f ) ∇f 2 L 2 + xf 2 L 2
(1.12) for all 0 < Ω < min{γ 1 , γ 2 }. Thanks to this norm equivalence and the compact embedding

H 1 → L r , ∀2 ≤ r < 2N N -2 , ( 1.13) 
the above-mentioned results of [START_REF] Arbunich | Stability and instability properties of rotating Bose-Einstein condensates[END_REF][START_REF] Ardila | Global well-posedness, blow-up and stability of standing waves for supercritical NLS with rotation[END_REF][START_REF] Basharat | Threshold for blowup and stability for nonlinear Schrödinger equation with rotation[END_REF][START_REF] Lü | Sharp thresholds of Bose-Einstein condensates with an angular momentum rotational term[END_REF][START_REF] Luo | Multiplicity, asymptotics and stability of standing waves for nonlinear Schrödinger equation with rotation[END_REF] actually holds for all 0 < Ω < min{γ 1 , γ 2 }.

In the case of high rotational speed, we are only aware of a non-existence of minimizers for I Ω (c) due to Bao-Wang-Markowich [START_REF] Bao | Ground, symmetric and central vortex states in rotating Bose-Einstein condensates[END_REF] and Cai [START_REF] Cai | Mathematical theory and numerical methods for the Gross-Piatevskii equations and applications[END_REF]Theorem 4.1] (see also [START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF]Theorem 5.2]). In particular, they proved that for

Ω > min{γ 1 , γ 2 }, 1 < p < 1 + 4 N -2 , c > 0,
there is no minimizer for I Ω (c), i.e., I Ω (c) = -∞.

Main results.

To the best of our knowledge, there is no result concerning the existence and stability of prescribed mass standing waves for (1.1) with the critical rotational speed Ω = min{γ 1 , γ 2 }.

In the present paper, we focus our attention to the case of axially symmetric harmonic potential, namely

γ 1 = γ 2 =: γ (1.14)
and our main purpose is to study the existence and stability of prescribed mass standing waves for (1.1) with the critical rotational speed Ω = γ.

In the presence of critical rotational speed Ω = γ, the main difficulty in proving the existence and stability of prescribed mass standing waves for (1.1) comes from the fact that there is no equivalent norm between ∇f 2

L 2 + 2V(f ) -2L γ (f ) and ∇f 2 L 2 + xf 2 L 2 .
Thus the compact embedding (1.13) does not help to show the existence of minimizers for I γ (c). To overcome the difficulty, we rewrite (1.1) as

i∂ t u + 1 2 (∇ -iA) 2 u = V γ u -|u| p-1 u, (t, x) ∈ R × R N , u| t=0 = u 0 , ( 1.15) 
where

A(x) = γ(-x 2 , x 1 , 0, • • • , 0), V γ (x) := 1 2 N j=3 γ 2 j x 2 j .
(1.16)

When N = 2 or V γ ≡ 0, it is the magnetic Schrödinger equation with no external potential which has been studied in [START_REF] Cazenave | On the stability of stationary states for nonlinear Schrödinger equations with an external magnetic field[END_REF][START_REF] Esteban | Stationary solutions of nonlinear Schrödinger equations with an external magnetic field, Partial differential equations and the calculus of variations[END_REF][START_REF] Gonçalves Ribeiro | Finite time blow-up for some nonlinear Schrödinger equations with an external magnetic field[END_REF]. When N ≥ 3, (1.15) can be viewed as NLS with a constant magnetic field and a partial harmonic confinement in x 3 , • • • , x N directions. Note that when A ≡ 0 and N = 3, this equation has been studied recently in [START_REF] Bellazzini | Existence and stability of standing waves for supercritical NLS with a partial confinement[END_REF]. Under this setting, the energy functional now becomes

E γ (u(t)) = 1 2 (∇ -iA)u(t) 2 L 2 + ˆRN V γ (x)|u(t, x)| 2 dx - 2 p + 1 u(t) p+1 L p+1 = E γ (u 0 )
and it is well-defined on X = Σ γ , where

Σ γ := f ∈ H 1 A (R N ) : ˆRN V γ (x)|f (x)| 2 dx < ∞ (1.17)
is equipped with the norm

f 2 Σγ := (∇ -iA)f 2 L 2 + ˆRN V γ (x)|f (x)| 2 dx + f 2 L 2 . (1.18)
Here H 1 A (R N ) is the magnetic Sobolev space defined by

H 1 A := f ∈ L 2 (R N ) : |(∇ -iA)f | ∈ L 2 (R N
) . It was proved by Yajima [37] that the linear Schrödinger operator e itH with H := 1 2 (∇ -iA) 2 -V γ can be expressed, for |t| < δ with some δ > 0, in terms of a Fourier integral operator of the form

e itH f (x) = (2πit) -N 2 ˆeiS(t,x,y) a(t, x, y)f (y)dy,
where S and a are C 1 in (t, x, y) and C ∞ in (x, y), and |∂ α x ∂ β y a(t, x, y)| ≤ C αβ for all multi-indices α, β. From this, we obtain the dispersive estimate for e itH for every |t| < δ. Thanks to this dispersive estimate, the standard argument (see [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]Chapter 9]) yields the local well-posedness for (1.15) with initial data in Σ γ . In particular, we have that for

N ≥ 2, 1 < p < 1 + 4 N -2 , u 0 ∈ Σ γ ,
there exists a unique maximal solution u ∈ C((-T * , T * ), Σ γ ) to (1.15). The local solution satisfies the conservation of mass and energy, i.e., M (u(t)) = M (u 0 ) and E γ (u(t)) = E γ (u 0 ) for all t ∈ (-T * , T * ).

In addition, the maximal time of existence satisfies the blow-up alternative: if T * < ∞ (resp. T * < ∞), then 

lim t T * u(t) Σγ = ∞ resp. lim t -T * u(t) Σγ = ∞ . ( 1 
i∂ t v + 1 2 ∆v = V v -|v| p-1 v, (t, x) ∈ R × R N , v| t=0 = u 0 , (1.21)
where V is as in (1.2). The transformation (1.20) preserves the Lebesgue norms as well as the kinetic energy. Thus dynamics of solutions to (1.1) with data in Σ can be inferred from that of (1.21). However, since Σ is only a subspace of Σ γ (see Lemma 2.2) and (1.21) is not well-posed in Σ γ , dynamics of solutions to (1.1) with data in Σ γ do not simply follow from that of (1.21).

Our first result is the following existence and stability of prescribed mass standing waves for (1.15) in the mass-subcritical case. N , and V be as in (1.2) satisfying (1.14). Assume that Ω = γ. Then for any c > 0, there exists φ ∈ Σ γ such that E γ (φ) = I γ (c) and M (φ) = c. In particular, u(t, x) = e iωt φ(x) is a solution to (1.1) with ω the corresponding Lagrange multiplier. Moreover, the set of minimizers for I γ (c) denoted by

M γ (c) := {φ ∈ S(c) : E γ (φ) = I γ (c)}
is orbitally stable under the flow of (1.1) in the sense that for any ε > 0, there exists δ > 0 such that for any initial data u 0 ∈ H 1 satisfying inf φ∈Gγ (c) u 0 -φ Σγ < δ, the corresponding solution to (1.1) exists globally in time and satisfies

inf φ∈Gγ (c) inf y∈Θ e iA(y)•• u(t, • + y) -φ Σγ < ε, ∀t ∈ R, where Θ := R 2 × {0} R N -2 .
When N = 2, i.e., V γ = 0, the existence of minimizers for I γ (c) was proved by Esteban-Lions [START_REF] Esteban | Stationary solutions of nonlinear Schrödinger equations with an external magnetic field, Partial differential equations and the calculus of variations[END_REF] and the orbital stability of M γ (c) was showed by Cazenave-Esteban [START_REF] Cazenave | On the stability of stationary states for nonlinear Schrödinger equations with an external magnetic field[END_REF]. The proof of the existence result in [START_REF] Esteban | Stationary solutions of nonlinear Schrödinger equations with an external magnetic field, Partial differential equations and the calculus of variations[END_REF] is based on a variant of the celebrated concentration-compactness principle adapted to the magnetic Sobolev space H 1 A . See also a recent paper [START_REF] Carles | On stability of rotational 2D binary Bose-Einstein condensates[END_REF] for another usage of this magnetic concentration-compactness principle. In [START_REF] Carles | On stability of rotational 2D binary Bose-Einstein condensates[END_REF][START_REF] Esteban | Stationary solutions of nonlinear Schrödinger equations with an external magnetic field, Partial differential equations and the calculus of variations[END_REF], the exclusion of the vanishing scenario is based on the negativity of the minimization. When there is no external potential, this negativity can be achieved by using a suitable scaling argument. However, in our setting (especially when N ≥ 3), this scaling argument does not work due to the presence of a partial harmonic confinement V γ and it may happen that I γ (c) is non-negative. Thus the argument given in [START_REF] Cazenave | On the stability of stationary states for nonlinear Schrödinger equations with an external magnetic field[END_REF] is not applicable to treat our problem. The proof of the existence part in Theorem 1.1 is based on an idea of [START_REF] Bellazzini | Existence and stability of standing waves for supercritical NLS with a partial confinement[END_REF] which does not use the concentration-compactness principle. More precisely, by making use of the diamagnetic inequality (see e.g., [START_REF] Lieb | Analysis[END_REF]), we shall prove in Lemma 2.6 a weak convergence result for bounded sequences in Σ γ having L p+1 -norm bounded away from zero. This allows us to rule out the vanishing possibility. To show the boundedness away from zero of the L p+1 -norm of every minimizing sequence for I γ (c), we proceed in two steps. First, we show (see Lemma 2.5) that

ω 0 γ = ω 0 = 1 2 N j=1 γ j ,
where

ω 0 := inf 1 2 ∇f 2 L 2 + V(f ) : f ∈ Σ, M (f ) = 1 (1.22)
and

ω 0 γ := inf 1 2 (∇ -iA)f 2 L 2 + ˆRN V γ (x)|f (x)| 2 dx : f ∈ Σ γ , M (f ) = 1 . (1.23)
This is done by using an argument of [START_REF] Bellazzini | Existence and stability of standing waves for supercritical NLS with a partial confinement[END_REF] and an estimate of the magnetic Sobolev norm due to [START_REF] Esteban | Stationary solutions of nonlinear Schrödinger equations with an external magnetic field, Partial differential equations and the calculus of variations[END_REF]. Second, we argue by contradiction that if there exists a minimizing sequence

(f n ) n for I γ (c) satisfying lim n→∞ f n L p+1 = 0, then we must have I γ (c) ≥ ω 0 γ c.
This, however, is a contradiction thanks to a suitable choice of test function. Once the vanishing is excluded, an application of the Brezis-Lieb's lemma (see e.g., [START_REF] Brézis | A relation between pointwise convergence of functions and convergence of functionals[END_REF]) shows the existence of minimizers for I γ (c). The proof of the orbital stability part in Theorem 1.1 relies on the contradiction argument due to [START_REF] Cazenave | On the stability of stationary states for nonlinear Schrödinger equations with an external magnetic field[END_REF]. We refer the reader to Section 2 for more details.

Our next result concerns the existence and stability of prescribed mass standing waves for (1.15) in the mass-critical case.

Theorem 1.2 (Standing waves in the mass

-critical case). Let N ≥ 2, p = 1 + 4
N , and V be as in

(1.2) satisfying (1.14). Assume that Ω = γ. Let 0 < c < M (Q), where Q is the unique positive radial solution to (1.10). Then there exists φ ∈ Σ γ such that E γ (φ) = I γ (c) and M (φ) = c. In particular, u(t, x) = e iωt φ(x) is a solution to (1.1)
with ω the corresponding Lagrange multiplier. Moreover, the set of minimizers for I γ (c) is orbitally stable under the flow of (1.1) in the sense of Theorem 1.1.

We also have the following non-existence of minimizers for I γ (c). Proposition 1.3. Let N ≥ 2 and V be as in (1.2) satisfying (1.14). Assume that Ω = γ. Then there is no minimizer for I γ (c) provided that one of the following conditions holds:

• p = 1 + 4 N and c ≥ Q 2 L 2
, where Q is the unique positive radial solution to (1.10).

• 1 + 4 N < p < 1 + 4 N -2
and c > 0. Remark 1.3. After finishing this manuscript, we learn that similar results as in Theorem 1.2 and Proposition 1.3 were proved recently by Guo-Luo-Peng [START_REF] Guo | Existence and asymptotic behavior of ground states for rotating Bose-Einstein condensates[END_REF] in two dimensions. Their proof is based on the concentration-compactness principle in the same spirit of [START_REF] Esteban | Stationary solutions of nonlinear Schrödinger equations with an external magnetic field, Partial differential equations and the calculus of variations[END_REF]. Here we give an alternative simple approach that not only avoids the concentration-compactness principle, but also is applicable for higher dimensions where there is a partial harmonic confinement.

In the mass-supercritical case, by Proposition 1.3, it is not possible to look for global minimizers for the energy functional over S(c). As in (1.11), we consider the following minimization problem

I m γ (c) := inf {E γ (f ) : f ∈ S γ (c) ∩ B γ (m)} , where B γ (m) := f ∈ Σ γ : (∇ -iA)f 2 L 2 + 2 ˆRN V γ (x)|f (x)| 2 dx ≤ m .
Our next result is the following existence and stability for prescribed mass standing waves for (1.15) in the mass-supercritical case.

Theorem 1.4 (Standing waves in the mass-supercritical case).

Let N ≥ 2, 1 + 4 N < p < 1 + 4 N -2
, and V be as in (1.2) satisfying (1.14). Assume that Ω = γ. Then for every m > 0, there exists c 0 = c 0 (m) > 0 sufficiently small such that for all 0 < c < c 0 : (1) There exists a minimizer φ for I m γ (c). Moreover, the set of minimizers for

I m γ (c) defined by M m γ (c) := φ ∈ S(c) ∩ B γ (m) : E γ (φ) = I m γ (c) satisfies ∅ = M m γ (c) ⊂ B γ (m/2).
In particular, u(t, x) = e iωt φ(x) is a solution to (1.1) with ω the corresponding Lagrange multiplier satisfying

-ω 0 γ < ω ≤ -ω 0 γ 1 -Bm N (p-1)-4 4 c 4-(N -2)(p-1) 4 
(1.24)

for some constant B > 0 independent of c and m. In addition, we have

sup φ∈M m γ (c) φ 2 Σγ = O c + m N (p-1) 4 c 4-(N -2)(p-1) 4 
.

(1.25)

(2) The set M m γ (c) is orbitally stable under the flow of (1.1) in the sense of Theorem 1.1. Remark 1.4. When A ≡ 0, the existence and stability of prescribed mass standing waves for (1.15) were studied in [START_REF] Bellazzini | Existence and stability of standing waves for supercritical NLS with a partial confinement[END_REF] with N = 3 and 7 3 < p < 5. Theorem 1.4 extends the result in [START_REF] Bellazzini | Existence and stability of standing waves for supercritical NLS with a partial confinement[END_REF] to the case of a constant magnetic field and a partial harmonic confinement.

The proof of Theorem 1.4 is based on an argument of [START_REF] Bellazzini | Existence and stability of standing waves for supercritical NLS with a partial confinement[END_REF]. We first show that for each m > 0 fixed, there exists c 0 = c 0 (m) > 0 sufficiently small such that for all

0 < c < c 0 , S(c) ∩ B γ (m) = ∅, so I m γ (c) > -∞.
Using this, we see that any minimizing sequence for I m γ (c) is bounded uniformly in Σ γ . By the same argument mentioned above, we shall prove that any minimizing sequence for I m γ (c) has L p+1 -norm bounded away from zero. This together with the Brezis-Lieb's lemma yield the existence of a minimizer for I m γ (c). To see that this minimizer is indeed a solution to (1.5) with ω the corresponding Lagrange multiplier, it suffices to show that this minimizer does not belong to the boundary of B γ (m). This is done by proving that for 0 < c < c 0 ,

inf {E γ (f ) : f ∈ S(c) ∩ B γ (m/4)} < inf {E γ (f ) : f ∈ S(c) ∩ (B γ (m)\B γ (m/2))} .
(1.26)

The estimate (1.26) is different to the one used in [START_REF] Bellazzini | Existence and stability of standing waves for supercritical NLS with a partial confinement[END_REF], namely

inf {E γ (f ) : f ∈ S(c) ∩ B γ (cm/2)} < inf {E γ (f ) : f ∈ S(c) ∩ (B γ (m)\B γ (cm))} . (1.27)
Here the notations have been changed to be consistent with ours. If we use (1.27), then for f ∈ S(c) ∩ B γ (cm/2), we have from (1.23) that

c = M (f ) ≤ 1 2ω 0 γ (∇ -iA)f 2 L 2 + 2 ˆRN V γ (x)|f (x)| 2 dx ≤ cm 4ω 0 γ or m ≥ 4ω 0 γ
hence the argument in [START_REF] Bellazzini | Existence and stability of standing waves for supercritical NLS with a partial confinement[END_REF] does not apply to all m > 0.

We also remark that the orbital stability given in Theorem 1.4 requires the solutions to (1.15) exist globally in time for c > 0 sufficiently small. This result was not showed in [START_REF] Bellazzini | Existence and stability of standing waves for supercritical NLS with a partial confinement[END_REF]. We shall prove this result in Lemma 4.3 and the proof is based on a standard continuity argument.

Our final result shows that for each m > 0 fixed and c > 0 sufficiently small, minimizers for I m γ (c) are prescribed mass ground states for (1.5). [START_REF] Cazenave | On the stability of stationary states for nonlinear Schrödinger equations with an external magnetic field[END_REF], and Ω = γ. Let m > 0 be a fixed constant, c > 0 sufficiently small, and φ ∈ M m γ (c). Then φ is a prescribed mass ground state related to (1.5), i.e.,

Theorem 1.5. Let N ≥ 2, 1 + 4 N < p < 1 + 4 N -2 , V be as in (1.2) satisfying (1.
E γ S(c) (φ) = 0, E γ (φ) = inf E γ (f ) : f ∈ S(c) E γ S(c) (f ) = 0 .
We end this paragraph by giving a remark on the rotational NLS with a general (non-axially symmetric) harmonic potential.

Remark 1.5. The axially symmetric condition (1.14) plays an essential role in our analysis. If we consider the general (non-axially symmetric) harmonic potential, i.e., γ 1 = γ 2 , then the arguments presented in the sequel do not work due to the lack of the gauge invariance in the first two variables. Thus the existence and stability of prescribed mass standing waves for (1.1) with

Ω = min{γ 1 , γ 2 }
are still open problems.

1.4. Outline of the paper. This paper is organized as follows. In Section 2, we give some preliminary results which are needed in the sequel. In Section 3, we show the existence, non-existence, and stability of prescribed mass standing waves for (1.1) with mass-subcritical and mass-critical nonlinearities. Finally, we study the existence, stability, and qualitative properties of prescribed mass standing waves for (1.1) with the mass-supercritical nonlinearity in Section 4.

Preliminaries

In this section, we recall and prove some preliminary results which are useful in our analysis. Let us start with the following equivalent norm in the case of low rotational speed mentioned in Remark 1.1.

Lemma 2.1. Let V be as in (1.2) satisfying (1.14). If 0 < Ω < γ, then ∇f 2 L 2 + 2V(f ) -2L Ω (f ) ∇f 2 L 2 + xf 2 L 2 (2.1)
for any f ∈ Σ.

Proof. We first observe from Hölder's inequality and Cauchy-Schwarz' inequality that for any δ > 0,

|L Ω (f )| ≤ Ω ( x 1 f L 2 ∂ x2 f L 2 + x 2 f L 2 ∂ x1 f L 2 ) ≤ Ω x 1 f 2 L 2 + x 2 f 2 L 2 1 2 ∂ x1 f 2 L 2 + ∂ x2 f 2 L 2 1 2 ≤ δ ∇f 2 L 2 + Ω 2 4δ ˆRN (x 2 1 + x 2 2 )|f (x)| 2 dx. (2.2)
Applying (2.2) with δ = 1 2 , we have

(I) := ∇f 2 L 2 + 2V(f ) -2L Ω (f ) ≤ 2 ∇f 2 L 2 + ˆRN 2V (x) + Ω 2 (x 2 1 + x 2 2 ) |f (x)| 2 dx ≤ C 1 ∇f 2 L 2 + xf 2 L 2
, where

C 1 := 2 + max γ 2 + Ω 2 , γ 2 3 , • • • , γ 2 N .
To see the reverse inequality, we use (2.2) to have for any δ > 0,

(I) ≥ (1 -2δ) ∇f 2 L 2 + ˆRN 2V (x) - Ω 2 2δ (x 2 1 + x 2 2 ) |f (x)| 2 dx = (1 -2δ) ∇f 2 L 2 + ˆRN γ 2 - Ω 2 2δ x 2 1 + γ 2 - Ω 2 2δ x 2 2 + N j=3 γ 2 j x 2 j |f (x)| 2 dx.
We choose δ > 0 such that

γ 2 - Ω 2 2δ = γ 2 -Ω 2 2 or δ = 1 2 - γ 2 -Ω 2 2(γ 2 + Ω 2 ) > 0.
It follows that

(I) ≥ γ 2 -Ω 2 γ 2 + Ω 2 ∇f 2 L 2 + min γ 2 -Ω 2 2 , γ 2 3 , • • • , γ 2 N xf 2 L 2 ≥ C 2 ∇f 2 L 2 + xf 2 L 2
, where

C 2 := min γ 2 -Ω 2 γ 2 + Ω 2 , γ 2 -Ω 2 2 , γ 2 3 , • • • , γ 2 N .
The proof is complete.

In the case of critical rotational speed Ω = γ, the equivalent norm (2.1) is no longer available. Thus working on Σ is not enough to study (1.15). In particular, we have the following result. Lemma 2.2. Let V be as in (1.2) satisfying (1.14) and Ω = γ. Then Σ ≡ Σ A , where

Σ A := f ∈ H 1 A (R N ) : |x|f ∈ L 2 (R N ) is equipped with the norm f 2 Σ A := (∇ -iA)f 2 L 2 + xf 2 L 2 + f 2 L 2 .
Proof. We first observe that

(∇ -iA)f 2 L 2 = ∇f 2 L 2 + 2 Re ˆ(∇ -iA) • iAf dx -Af 2 L 2 .
(2.3) By Hölder's and Cauchy-Schwarz' inequalities, we have

(∇ -iA)f 2 L 2 ≤ ∇f 2 L 2 + 1 2 (∇ -iA)f 2 L 2 + 3 Af 2 L 2
which implies

(∇ -iA)f 2 L 2 ≤ 2 ∇f 2 L 2 + 6 Af 2 L 2 ≤ 6 ∇f 2 L 2 + xf 2 L 2 .
On the other hand, by (2.3), we have

∇f 2 L 2 ≤ 2 (∇ -iA)f 2 L 2 + Af 2 L 2 ≤ 2 (∇ -iA)f 2 L 2 + xf 2 L 2 .
The proof is complete.

We next recall some basic properties of the magnetic Sobolev space H 1 A (R N ). Lemma 2.3 ([12, 17, 31]). Let N ≥ 2 and A be as in (1.16). We have the following properties:

• H 1 A (R N ) is a Hilbert space. • C ∞ 0 (R N ) is dense in H 1 A (R N ). • H 1 A (R N ) is continuously embedded in L r (R N ) for all 2 ≤ r ≤ 2N N -2 . • H 1 A (R N ) ⊂ H 1 loc (R N ) ⊂ L r loc (R N ) for all 2 ≤ r < 2N N -2 . • Diamagnetic inequality: ∇|f |(x)| ≤ |(∇ -iA)f (x)|, a.e. x ∈ R N .
(2.4)

• Magnetic Gagliardo-Nirenberg inequality: for 2 ≤ r < 2N N -2 , f r L r ≤ C r (∇ -iA)f N (r-2) 2 L 2 f N +2-(N -2)r 2 L 2 , ∀f ∈ H 1 A (R N ), (2.5) 
where the optimal constant C r is the same as the sharp constant in the standard Gagliardo-Nirenberg inequality

f r L r ≤ C r (∇ -iA)f N (r-2) 2 L 2 f N +2-(N -2)r 2 L 2 , ∀f ∈ H 1 (R N ).
Moreover, the equality in (2.5) cannot be achieved.

For the proof of the sharp magnetic Gagliardo-Nirenberg inequality (2.5) and its non-attainability, we refer the reader to [START_REF] Carles | On stability of rotational 2D binary Bose-Einstein condensates[END_REF]Lemma 3.2].

We next recall the following L 2 -bound of the magnetic Sobolev norm due to [17, Proposition 2.2].

Lemma 2.4 ([17]). Let

A = (A 1 , • • • , A N ) ∈ W 1,∞ loc (R N , R N ) and j, k ∈ {1, • • • , N }. Then for any f ∈ C ∞ 0 (R N ), we have ˆ(∂ j A k -∂ k A j )f f dx ≤ (∂ j -iA j )f 2 L 2 + (∂ k -iA k )f 2 L 2 .
In particular, if A is as in (1.16), then for any

f ∈ C ∞ 0 (R N ), we have 2γ f 2 L 2 ≤ (∂ 1 -iA 1 )f 2 L 2 + (∂ 2 -iA 2 )f 2 L 2 .
(2.6)

In addition, if N = 2, then (2.6) is achieved by f (x) = γ π e -γ 2 |x| 2 .
Thanks to (2.6), we have the following result.

Lemma 2.5. Let V be as in (1.2) satisfying (1.14). Let ω 0 and ω 0 γ be as in (1.22) and (1.23) respectively. Then we have

ω 0 γ = ω 0 = 1 2 N j=1 γ j . (2.7)
Proof. We first observe that ω 0 is the simple first eigenvalue of the multi-dimensional harmonic oscillator -1 2 ∆ + V . It is well-known that ω 0 = 1 2 N j=1 γ j and the corresponding eigenfunction to ω 0 is

Φ(x) := π -N 4   N j=1 √ γ j   1 2 e -1 2 N j=1 γj x 2 j . (2.8)
We have M (Φ) = 1 and as Φ is real-valued,

1 2 (∇ -iA)Φ 2 L 2 (R N ) + ˆRN V γ (x)|Φ(x)| 2 dx = 1 2 ∇Φ 2 L 2 (R N ) + ˆRN V (x)|Φ(x)| 2 dx = 1 2 N j=1 γ j which shows ω 0 γ ≤ 1 2 N j=1 γ j . To see the reverse inequality, we follow an argument of [9, Lemma 2.1]. Denote x = (x ⊥ , x ) with x ⊥ = (x 1 , x 2 ) ∈ R 2 and x = (x 3 , • • • , x N ) ∈ R N -2 and consider λ 0 := inf 1 2 ˆRN-2 |∇g(x )| 2 dx + ˆRN-2 V γ (x )|g(x )| 2 dx : g ∈ Σ(R N -2 ), g 2 L 2 (R N -2 ) = 1 .
We have

λ 0 = 1 2 N j=3 γ j . Let Φ k (x ) and λ k for k ≥ 0 be such that - 1 2 ∆ R N -2 + V γ Φ k = λ k Φ k , Φ k 2 L 2 (R N -2 ) = 1, λ k ≤ λ k+1 , ∀k ≥ 0.
(2.9)

Note that (Φ k ) k≥0 forms an orthonormal basis of L 2 (R N -2 ). For f ∈ Σ γ , we write

f (x) = k≥0 f k (x ⊥ )Φ k (x ). (2.10) If f 2 L 2 (R N ) = 1, then 1 = f 2 L 2 (R N ) = k≥0 ˆR2 |f k (x ⊥ )| 2 dx ⊥ × ˆRN-2 |Φ k (x )| 2 dx = k≥0 f k 2 L 2 (R 2 ) . (2.11)
It follows from (2.10), (2.11), and the integration by parts that

1 2 (∇ -iA)f 2 L 2 (R N ) + ˆRN V γ (x)|f (x)| 2 dx = 1 2 2 j=1 ˆRN |(∂ j -iA j )f (x)| 2 dx + 1 2 N j=3 ˆRN |∂ j f (x)| 2 dx + ˆRN V γ (x)|f (x)| 2 dx = 1 2 2 j=1 ˆRN |(∂ j -iA j )f (x)| 2 dx + ˆRN - 1 2 ∆ R N -2 + V γ f (x)f (x)dx = 1 2 k≥0 2 j=1 ˆR2 |(∂ j -iA j )f k (x ⊥ )| 2 dx ⊥ + k≥0 λ k ˆR2 |f k (x ⊥ )| 2 dx ⊥ ≥ (γ + λ 0 ) k≥0 f k 2 L 2 (R 2 ) = γ + λ 0 = 1 2 N j=1 γ j .
Here we have used (2.6) with N = 2 to get the last inequality. This shows that ω 0 γ ≥ 1 2 N j=1 γ j . The proof is complete.

We also need the following weak convergence result which is based on an idea of [9, Lemma 3.4]. Lemma 2.6. Let (f n ) n≥1 be a sequence of Σ γ -functions satisfying

sup n≥1 f n Σγ < ∞.
(2.12)

Assume that there exists ε 0 > 0 such that

inf n≥1 f n L p+1 ≥ ε 0 (2.13)
for some

1 < p < 1 + 4 N -2 . Then there exist f ∈ Σ γ \{0} and (y n ) n≥1 ⊂ R N with y n = (y 1 n , y 2 n , 0, • • • , 0) such that up to a subsequence, e iA(yn)•x f n (x + y n ) f weakly in Σ γ .
Proof. By interpolation, it follows from (2.13) that

inf n≥1 f n L 2+ 4 N ≥ ε 1 > 0.
In fact, if p = 1 + 4 N , then we are done. If

1 < p < 1 + 4 N , we interpolate between L 2 and L 2+ 4 N . If 1 + 4 N < p < 1 + 4 N -2
, we interpolate between L 2+ 4 N and L r for some p + 1 < r < 2 + 4 N -2 and use the Sobolev embedding H 1 ⊂ L r .

On the other hand, by Sobolev embedding, we have

f 2+ 4 N L 2+ 4 
N (Q k ) ≤ C f 4 N L 2 (Q k ) f 2 H 1 (Q k ) ,
where

Q k := (k, k + 1) × (k, k + 1) × R N -2 , k ∈ Z. Taking the sum over k ∈ Z, we get f 2+ 4 N L 2+ 4 N ≤ C sup k∈Z f L 2 (Q k ) 4 N f 2 H 1 .
Replacing f by |f | and using the diamagnetic inequality (2.4), we have

f 2+ 4 N L 2+ 4 N ≤ C sup k∈Z f L 2 (Q k ) 4 N ∇|f | 2 L 2 + f 2 L 2 ≤ C sup k∈Z f L 2 (Q k ) 4 N (∇ -iA)f 2 L 2 + f 2 L 2 .
Thanks to the above inequality, we infer from (2.12) that there exists

(k n ) n≥1 ⊂ Z such that inf n≥1 f n L 2 (Q kn ) ≥ C. for some constant C > 0. Set y n = (-k n , -k n , 0, • • • , 0) and g n (x) := e iA(yn)•x f n (x + y n ).
We have

g n 2 L 2 = f n 2 L 2 , ˆRN V γ (x)|g n (x)| 2 dx = ˆRN V γ (x)|f n (x)| 2 dx, (∇-iA)g n 2 L 2 = (∇-iA)f n 2 L 2 .
Here we note that V γ is independent of x 1 and x 2 variables. Moreover, we have

g n 2 L 2 (Q0) = ˆ(0,1) 2 ×R N -2 |f n (x 1 -k n , x 2 -k n , x 3 , • • • , x N )| 2 dx = ˆQkn |f n (x)| 2 dx ≥ C, ∀n ≥ 1.
Thus we obtain sup n≥1 g n Σγ < ∞ and

inf n≥1 g n 2 L 2 (Q0) ≥ C > 0.
By the compactness property coming from the boundedness in the x 1 , x 2 variables and the confining potential V γ in the x 3 , • • • , x N variables, there exists f ∈ Σ γ \{0} such that up to a subsequence,

g n f weakly in Σ γ .
The proof is complete.

Standing waves in the mass-(sub)critical regimes

In this section, we give the proofs of the existence and stability of prescribed mass standing waves given in Theorems 1.1 and 1.2. Let us start with the following result which plays an important role in ruling out the vanishing scenario.

Lemma 3.1. Let N ≥ 2, 1 < p < 1 + 4 N -2 , V be as in (1.
2) satisfying (1.14), and Ω = γ. Let c > 0 and (f n ) n≥1 be a minimizing sequence for I γ (c). Then there exists C > 0 such that

lim inf n→∞ f n L p+1 ≥ C > 0.
Proof. Assume by contradiction that there exists a subsequence still denoted by (f n ) n≥1 satisfying lim n→∞ f n L p+1 = 0. By (1.23) and (2.7), we see that

I γ (c) = lim n→∞ E γ (f n ) = lim n→∞ 1 2 (∇ -iA)f n 2 L 2 + ˆRN V γ (x)|f n (x)| 2 dx ≥ lim n→∞ ω 0 γ f n 2 L 2 = ω 0 γ c. (3.1) Denote x = (x ⊥ , x ) with x ⊥ = (x 1 , x 2 ) ∈ R 2 and x = (x 3 , • • • , x N ) ∈ R N -2 and set g(x ⊥ ) = γ π e -γ 2 |x ⊥ | 2 .
We readily check that

g 2 L 2 (R 2 ) = 1, (∂ 1 -iA 1 )g 2 L 2 (R 2 ) + (∂ 2 -iA 2 )g 2 L 2 (R 2 ) = 2γ. Next let h(x ) = √ cΦ 0 ( ), where Φ 0 ∈ Σ(R N -2
) is as in (2.9). We have

h 2 L 2 (R N -2 ) = c, 1 2 ˆRN-2 |∇h(x )| 2 dx + ˆRN-2 V γ (x )|h(x )| 2 dx = c 2 N j=3 γ j . Now we define f (x) = g(x ⊥ )h(x ). It follows that f 2 L 2 = g 2 L 2 (R 2 ) h 2 L 2 (R N -2 ) = c and E γ (f ) = 1 2 (∂ 1 -iA 1 )g 2 L 2 (R 2 ) + (∂ 2 -iA 2 )g 2 L 2 (R 2 ) h 2 L 2 (R N -2 ) + 1 2 g 2 L 2 (R 2 ) N j=3 ∂ j h 2 L 2 (R N -2 ) + ˆRN-2 V γ (x )|h(x )| 2 dx g 2 L 2 (R 2 ) - 2 p + 1 g p+1 L p+1 (R 2 ) h p+1 L p+1 (R N -2 ) =   γ + 1 2 N j=3 γ j   c - 2 p + 1 g p+1 L p+1 (R 2 ) h p+1 L p+1 (R N -2 ) < ω 0 γ c, ( 3.2) 
where the last inequality comes from (2.7). This contradicts (3.1) and the proof is complete.

We next have the following global well-posedness which is needed for the stability result.

Lemma 3.2. Let N ≥ 2, V be as in (1.2) satisfying (1.14), Ω = γ, and u 0 ∈ Σ γ . Then the corresponding solution to (1.1) exists globally in time provided that one of the following conditions holds:

• 1 < p < 1 + 4 N . • p = 1 + 4 N and M (u 0 ) < M (Q),
where Q is the unique positive radial solution to (1.10).

Proof. Let u : (-T * , T * ) × R N → C be the maximal solution to (1.1), hence to (1.15). By the blow-up alternative (1.19), it suffices to prove that

sup t∈(-T * ,T * ) u(t) Σγ < ∞. (3.3) 
(1) Mass-subcritical case. By the magnetic Gagliardo-Nirenberg inequality (2.5), Young's inequality with 0 < N (p -1) < 4, and the conservation of mass, we have for any ε > 0,

2 p + 1 u(t) p+1 L p+1 ≤ C (∇ -iA)u(t) N (p-1) 2 L 2 u(t) 4-(N -2)(p-1) 2 L 2 (3.4) ≤ ε (∇ -iA)u(t) 2 L 2 + C(N, p, ε, M (u 0 )). Thus we get E γ (u(t)) ≥ 1 2 -ε (∇ -iA)u(t) 2 L 2 + ˆRN V γ (x)|u(t, x)| 2 dx -C(N, p, ε, M (u 0 )).
Taking ε = 1 2 and using the conservation of energy, we obtain

1 2 (∇ -iA)u(t) 2 L 2 + ˆRN V γ (x)|u(t, x)| 2 dx ≤ C(N, p, M (u 0 ), E γ (u 0 ))
for all t ∈ (-T * , T * ). This proves (3.3).

(2) Mass-critical case. By the magnetic Gagliardo-Nirenberg inequality (2.5) with the optimal constant

C 2+ 4 N = N +2 2N [M (Q)] -2
N and the conservation of mass, we have

E γ (u(t)) ≥ 1 2 1 - M (u 0 ) M (Q) (∇ -iA)u(t) 2 L 2 + ˆRN V γ (x)|f (x)| 2 dx. (3.5)
As M (u 0 ) < M (Q), we infer (3.3). The proof is complete.

We are now able to prove the existence and stability of prescribed mass standing waves for (1.1) given in Theorem 1.1.

Proof of Theorem 1.1. The proof is divided into several steps.

Step 1. We first show that

I γ (c) > -∞ for all c > 0. Let c > 0 and f ∈ Σ γ satisfy M (f ) = c. Arguing as in (3.4), we have for any ε > 0, 2 p + 1 f p+1 L p+1 ≤ C (∇ -iA)f N (p-1) 2 L 2 f 4-(N -2)(p-1) 2 L 2 ≤ ε (∇ -iA)f 2 L 2 + C(N, p, ε, c). It follows that E γ (f ) ≥ 1 2 -ε (∇ -iA)f 2 L 2 + ˆRN V γ (x)|f (x)| 2 dx -C(N, p, ε, c).
By taking ε = 1 4 , we have

E γ (f ) ≥ 1 4 (∇ -iA)f 2 L 2 + ˆRN V γ (x)|f (x)| 2 dx -C(N, p, c). (3.6) Since V γ ≥ 0, we have E γ (f ) ≥ -C(N, p, c) for all f ∈ Σ γ satisfying M (f ) = c. This shows that I Ω (c) is well-defined.
Step 2. We will show that there exists a minimizer for I γ (c). To see this, we take (f n ) n≥1 a minimizing sequence for I γ (c). By (3.6), we have

1 4 (∇ -iA)f n 2 L 2 + ˆRN V γ (x)|f n (x)| 2 dx ≤ E γ (f n ) + C(N, p, c) → I γ (c) + C(N, p, c)
as n → ∞. We infer that sup n≥1 f n Σγ < ∞. Thanks to Lemma 3.1, there exists a subsequence still denoted by

(f n ) n≥1 such that inf n≥1 f n L p+1 ≥ C > 0.
By Lemma 2.6, there exist φ ∈ Σ γ \{0} and a sequence (y n ) n≥1 ⊂ R N with y n = (y 1 n , y2 n , 0, • • • , 0) such that up to a subsequence,

g n (x) := e iA(yn)•x f n (x + y n ) φ weakly in Σ γ .
By the weak convergence in Σ γ , we have

0 < φ 2 L 2 ≤ lim inf n→∞ g n 2 L 2 = lim inf n→∞ f n 2 L 2 = c and 1 2 (∇ -iA)φ 2 L 2 + ˆRN V γ (x)|φ(x)| 2 dx ≤ lim inf n→∞ 1 2 (∇ -iA)g n 2 L 2 + ˆRN V γ (x)|g n (x)| 2 dx = lim inf n→∞ 1 2 (∇ -iA)f n 2 L 2 + ˆRN V γ (x)|f n (x)| 2 dx.
We claim that φ 2 L 2 = c. Assume it is true for the moment. Let us show that φ is a minimizer for I γ (c). In fact, by the weak convergence in Σ γ and φ 2 L 2 = c = lim n→∞ g n 2 L 2 , we infer that g n → φ strongly in L 2 . Thanks to the magnetic Gagliardo-Nirenberg inequality (2.5), we see that g n → φ strongly in L p+1 . It follows that

I γ (c) ≤ E γ (φ) ≤ lim inf n→∞ E γ (g n ) = lim inf n→∞ E γ (f n ) = I γ (c).
Therefore E γ (φ) = I γ (c) or φ is a minimizer of I γ (c). Moreover, we have g n → φ strongly in Σ γ .

It remains to prove the claim. Suppose that it is not true, i.e., 0 < φ 2 L 2 < c. By the weak convergence and the Brezis-Lieb's lemma [START_REF] Brézis | A relation between pointwise convergence of functions and convergence of functionals[END_REF], we have

g n p+1 L p+1 = φ p+1 L p+1 + g n -φ p+1 L p+1 + o n (1), (3.7) 
where

C n = o n (1) means C n → 0 as n → ∞.
In addition, the weak convergence in Σ γ implies that

(∇ -iA)g n 2 L 2 = (∇ -iA)φ 2 L 2 + (∇ -iA)(g n -φ) 2 L 2 + o n (1), (3.8) ˆRN V γ (x)|g n (x)| 2 dx = ˆRN V γ (x)|φ(x)| 2 dx + ˆRN V γ (x)|g n (x) -φ(x)| 2 dx + o n (1). (3.9)
In fact, let h n := g n -φ. We see that h n 0 weakly in Σ γ . We compute

(∇ -iA)g n 2 L 2 = (∇ -iA)(φ + h n ) 2 L 2 = (∇ -iA)φ 2 L 2 + (∇ -iA)h n 2 L 2 + 2 Re ˆRN (∇ + iA)φ(∇ -iA)h n dx. Let > 0. Since C ∞ 0 (R N ) is dense in Σ γ (R N ), we take ϕ ∈ C ∞ 0 (R N ) so that (∇ + iA)φ -(∇ - iA)ϕ) L 2 < 2M , where M := sup n≥1 (∇ -iA)h n L 2 . Since h n 0 weakly in Σ γ (R N ), we see that ˆRN (∇ -iA)ϕ(∇ -iA)h n dx → 0 as n → ∞.
Thus there exists n 0 ∈ N such that for n ≥ n 0 ,

ˆRN (∇ + iA)φ(∇ -iA)h n dx ≤ ˆRN ((∇ + iA)φ -(∇ -iA)ϕ)(∇ -iA)h n dx + ˆRN (∇ -iA)ϕ(∇ -iA)h n dx ≤ (∇ + iA)φ -(∇ -iA)ϕ L 2 (∇ -iA)h n L 2 + /2 < .
This shows (3.8). The one for (3.9) is treated similarly. On the other hand, we have for λ > 0,

E γ (λφ) = λ 2 E γ (φ) + 2λ 2 (1 -λ p-1 ) p + 1 φ p+1 L p+1 or E γ (φ) = 1 λ 2 E γ (λφ) + 2(λ p-1 -1) p + 1 φ p+1 L p+1 . (3.10)
Applying the above identity to

λ 0 = √ c φ L 2 > 1, we have E γ (φ) = φ 2 L 2 c E γ (λ 0 φ) + 2(λ p-1 0 -1) p + 1 φ p+1 L p+1 > φ 2 L 2 c I γ (c)
as λ 0 φ 2 L 2 = c and φ = 0. Set λ n := √ c gn-φ L 2
. By (3.9), we see that

g n -φ 2 L 2 → c -φ 2 L 2 as n → ∞, hence λ n → √ c c-φ 2 L 2 > 1 as n → ∞. We infer from (3.10) that lim n→∞ E γ (g n -φ) = lim n→∞ 1 λ 2 n E γ (λ n (g n -φ)) + 2(λ p-1 n -1) p + 1 g n -φ p+1 L p+1 ≥ c -φ 2 L 2 c I γ (c).
On the other hand, by (3.7), (3.8), and (3.9), we have

I γ (c) = lim n→∞ E γ (f n ) = lim n→∞ E γ (g n ) = E γ (φ) + lim n→∞ E γ (g n -φ) > φ 2 L 2 c I γ (c) + c -φ 2 L 2 c I γ (c) = I γ (c)
which is a contradiction. Thus the claim is now proved.

Step 3. Let us now show that the set of minimizers M γ (c) is orbitally stable under the flow of (1.1). We follow an argument of [START_REF] Cazenave | On the stability of stationary states for nonlinear Schrödinger equations with an external magnetic field[END_REF]. Assume by contradiction that it is not true. Then there exist ε 0 , φ 0 ∈ M γ (c), and a sequence of initial data

(u 0,n ) n≥1 ⊂ Σ γ such that lim n→∞ u 0,n -φ 0 Σγ = 0 (3.11)
and a sequence of time

(t n ) n≥1 ⊂ R such that inf φ∈Mγ (c) inf y∈Θ e iA(y)•• u n (t n , • + y) -φ Σγ ≥ ε 0 , (3.12) 
where u n is the solution to (1.1) with initial data

u n | t=0 = u 0,n and Θ := R 2 × {0} R N -2 .
Note that the solutions exist globally in time by Lemma 3.2. Since φ 0 ∈ M γ (c), we have E γ (φ 0 ) = I γ (c). From (3.11) and the Sobolev embedding, we infer that u 0,n 2

L 2 → φ 0 2 L 2 = c, E γ (u 0,n ) → E γ (φ 0 ) = I γ (c) as n → ∞.
By the conservation laws of mass and energy, we have

u n (t n ) 2 L 2 → c, E γ (u n (t n )) → I γ (c) as n → ∞.
In particular, (u n (t n )) n≥1 is a minimizing sequence for I γ (c). Arguing as in Step 1, we see that up to a subsequence, there exist φ ∈ M γ (c) and (y n ) n≥1 ⊂ Θ such that

e iA(yn)•• u n (t n , • + y n ) -φ Σγ → 0 as n → ∞.
This however contradicts (3.12). The proof is complete.

We now prove the existence and stability of prescribed mass standing waves for (1.1) in the masscritical case.

Proof of Theorem 1.2. The proof is similar to that of Theorem 1.1. Thus we only point out the differences. Let 0 < c < M (Q) and f ∈ Σ γ satisfy M (f ) = c. From (3.5), we have

E γ (f ) ≥ 1 2 1 - c M (Q) 2 N (∇ -iA)f 2 L 2 + ˆRN V γ (x)|f (x)| 2 dx (3.13) Since 0 < c < M (Q) and V Ω ≥ 0, we have E γ (f ) ≥ 0, hence I γ (c) is well-defined. Let (f n ) n≥1
be a minimizing sequence for I γ (c). By (3.13), we see that (f n ) n≥1 is a bounded sequence in Σ γ . Thanks to Lemma 3.1, the existence of minimizers for I γ (c) and the orbital stability of M γ (c) follow from the same argument as in the proof of Theorem 1.1. We thus omit the details.

We end this section by giving the proof of the non-existence of minimizers for I γ (c) given in Proposition 1.3.

Proof of Proposition 1.3. (1) Mass

-critical case. Let ϕ ∈ C ∞ 0 (R N ) be radially symmetric satisfying ϕ(x) = 1 for |x| ≤ 1. We define f λ (x) := λ N 2 A λ ϕ(x)Q 0 (λx), λ > 0, where Q 0 (x) = Q(x) Q L 2 and A λ > 0 is such that f λ 2 L 2 = c for all λ > 0.
By definition, we have

A -2 λ = 1 c ˆRN ϕ 2 (λ -1 x)Q 0 (x)dx.
Since Q 0 decays exponentially at infinity, we see that for λ > 0 sufficiently large and any δ > 0,

ˆRN 1 -ϕ 2 (λ -1 x) Q 2 0 (x)dx ˆ|x|≥λ e -C|x| dx ˆ|x|≥λ |x| -N -δ dx λ -δ .
In particular, we have

A 2 λ = c + O(λ -∞ ) as λ → ∞, where B λ = O(λ -∞ ) means that |B λ | ≤ Cλ -δ for any δ > 0 with some constant C > 0 independent of λ. Next we have ∇f λ 2 L 2 = A 2 λ ˆRN |∇ϕ(λ -1 x)| 2 Q 2 0 (x)dx + λ 2 ˆRN ϕ 2 (λ -1 x)|∇Q 0 (x)| 2 dx + 2λ Re ˆRN ϕ(λ -1 x)Q 0 (x)∇ϕ(λ -1 x) • ∇Q 0 (x)dx .
As |∇Q 0 | also decays exponentially at infinity and

A 2 λ = c + O(λ -∞ ) as λ → ∞, we infer that ∇f λ 2 L 2 = cλ 2 ∇Q 0 2 L 2 + O(λ -∞ )
as λ → ∞. We also have

f λ 2+ 4 N L 2+ 4 N = c 1+ 2 N λ 2 Q 0 2+ 4 N L 2+ 4 N + O(λ -∞ )
as λ → ∞. Since f λ is radially symmetric, we have L γ (f λ ) = 0. On the other hand, since λ N Q 2 0 (λx) converges weakly to the Dirac delta function at zero when λ → ∞, we infer that

V(f λ ) = A 2 λ ˆRN V (x)ϕ 2 (x)λ N Q 2 0 (λx)dx → 0
as λ → ∞, where V(f ) is as in (1.3). It follows that

I γ (c) ≤ E γ (f λ ) = 1 2 ∇f λ 2 L 2 + V(f λ ) - N N + 2 f λ 2+ 4 N L 2+ 4 N -L γ (f λ ) = cλ 2 1 2 ∇Q 0 2 L 2 - N N + 2 c 2 N Q 0 2+ 4 N L 2+ 4 N + o λ (1) = c 2 λ 2 ∇Q 0 2 L 2 1 - c M (Q) 2 N + o λ (1) (3.14) 
as λ → ∞, where B λ = o λ (1) means that |B λ | → 0 as λ → ∞. Here we have used the fact that

N N + 2 Q 0 2+ 4 N L 2+ 4 N = 1 2 Q 4 N L 2 ∇Q 0 2 L 2
which comes from the following Pohozaev's identity (see e.g., [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]):

∇Q 2 L 2 = 2N N + 2 Q 2+ 4 N L 2+ 4 N = N Q 2 L 2 .
In the case c > M (Q), letting λ → ∞ in (3.14), we get I γ (c) = -∞, hence there is no minimizer for I γ (c).

In the case c = M (Q), it follows from (3.14) that I γ (M (Q)) ≤ 0. On the other hand, by the magnetic Gagliardo-Nirenberg inequality (2.5), we have for any

f ∈ Σ γ satisfying M (f ) = c = M (Q), E γ (f ) ≥ 1 2 (∇ -iA)f 2 L 2 + ˆRN V γ (x)|f (x)| 2 dx - 1 2 c M (Q) 2 N (∇ -iA)f 2 L 2 = ˆRN V γ (x)|f (x)| 2 dx ≥ 0.
This shows that I γ (M (Q)) ≥ 0, hence I γ (M (Q)) = 0. We will show that there is no minimizer for I γ (M (Q)). Assume by contradiction that there exists a minimizer for I γ (M (Q)), says φ. We have

0 = I γ (M (Q)) = E γ (φ) = 1 2 (∇ -iA)φ 2 L 2 + ˆRN V γ (x)|φ(x)| 2 dx - N N + 2 φ 2+ 4 N L 2+ 4 N ≥ ˆRN V γ (x)|φ(x)| 2 dx ≥ 0.
It yields that

(∇ -iA)φ 2 L 2 = 2N N + 2 φ 2+ 4 N L 2+ 4 
N
or φ is an optimizer of the magnetic Gagliardo-Nirenberg inequality. This however is a contradiction due to Lemma 2.3.

(

) Mass-supercritical case. Let f ∈ C ∞ 0 (R N ) be radially symmetric with M (f ) = c. Denote f λ (x) := λ N 2 f (λx) with λ > 0. We see that M (f ) = M (f λ ) = c for all c > 0. Moreover, we have E γ (f λ ) = 1 2 ∇f λ 2 L 2 + V(f λ ) - 2 p + 1 f λ p+1 L p+1 -L γ (f λ ) = λ 2 2 ∇f 2 L 2 + λ -2 V(f ) - 2λ N (p-1) 2 p + 1 f p+1 L p+1 . 2 
Here L γ (f λ ) = 0 as f λ is radially symmetric. As N (p -1) > 4, we have

E γ (f λ ) → -∞ as λ → ∞, hence I γ (c) = -∞.
The proof is complete.

Standing waves in the mass-supercritical case

In this section, we study the existence, stability, and qualitative properties of prescribed mass standing waves for (1.1) in the mass-supercritical case. Throughout this section, we denote

H γ (f ) := (∇ -iA)f 2 L 2 + 2 ˆRN V γ (x)|f (x)| 2 dx. (4.1)
Let us start with the following lemmas. Moreover, we have I m γ (c) < ω 0 γ c. Proof. The proof is similar to that of Lemma 3.1. Here we note that for f (x) = g(x ⊥ )h(x ) as in the proof of Lemma 3.1, we have [START_REF] Cazenave | On the stability of stationary states for nonlinear Schrödinger equations with an external magnetic field[END_REF], and Ω = γ. Then for m > 0 fixed, there exists c 0 = c 0 (m) > 0 sufficiently small such that for all 0 < c < c 0 , we have

H γ (f ) =   2γ + N j=3 γ j   c ≤ m provided 0 < c < c 0 with some c 0 = c 0 (m) > 0. The claim I m γ (c) < ω 0 γ c
S(c) ∩ B γ (m) = ∅, (4.2) inf {E γ (f ) : f ∈ S(c) ∩ B γ (m/4)} < inf {E γ (f ) : f ∈ S(c) ∩ (B γ (m)\B γ (m/2))} . (4.3) Proof. (1) Let m > 0. We take ϕ ∈ C ∞ 0 (R N ) be radially symmetric satisfying ϕ L 2 = 1. Denote c 0 = c 0 (m) = m C with C := H γ (ϕ). Set f (x) = √ cϕ(x). We have M (f ) = c and H γ (f ) = cH γ (ϕ) < m for all 0 < c < c 0 . This shows that f ∈ S(c) ∩ B γ (m).
(2) To show (4.3), we first note that S(c) ∩ (B γ (m)\B γ (m/2)) = ∅ for c > 0 sufficiently small. In fact, let ϕ be as above. Denote f λ (x) := √ cλ N 2 ϕ(λx) with λ > 0 to be chosen shortly. We have M (f λ ) = c for all λ > 0. As f λ is radially symmetric, we have

H γ (f λ ) = ∇f λ 2 L 2 + 2V(f λ ) = c λ 2 ∇ϕ 2 L 2 + 2λ -2 V(ϕ
) . We will show that for each m > 0, by reducing c 0 = c 0 (m) > 0 if necessary, there exists λ 0 > 0 such that H γ (f λ0 ) = 3m 4 , hence f λ0 ∈ S(c) ∩ (B γ (m)\B γ (m/2)). The above equality is equivalent to

λ 2 ∇ϕ 2 L 2 + 2λ -2 V(ϕ) = 3m 4c . ( 4.4) 
The left hand side takes values on 2

√ 2 ∇ϕ L 2 V(ϕ), ∞ . Thus by taking c 0 = c 0 (m) > 0 so that 3m 4c0 ≥ 2 √ 2 ∇ϕ L 2 V(ϕ)
, there exists λ 0 > 0 such that (4.4) holds. To prove (4.3), we observe from the magnetic Gagliardo-Nirenberg inequality that

E γ (f ) ≥ 1 2 H γ (f ) -B (∇ -iA)f N (p-1) 2 L 2 f 4-(N -2)(p-1) 2 L 2 ≥ 1 2 H γ (f ) -B (H γ (f )) N (p-1) 4 (M (f )) 4-(N -2)(p-1) 4 
, ∀f ∈ Σ γ with some constant B > 0. It follows that

g c (H γ (f )) ≤ E γ (f ) ≤ h c (H γ (f )), ∀f ∈ S(c), ( 4.5) 
where

g c (λ) := 1 2 λ -Bc 4-(N -2)(p-1) 4 λ N (p-1) 4 , h c (λ) := 1 2 λ.
From (4.5), we see that (4.3) is proved provided that there exists c 0 = c 0 (m) > 0 sufficiently small such that for each 0 < c < c 0 , 

h c (m/4) < inf λ∈(m/2,m) g c (λ). ( 4 
H γ (u 0 ) ≤ m.
Then there exists c 0 = c 0 (m) > 0 sufficiently small such that for all 0 < c < c 0 , if M (u 0 ) = c, then the corresponding solution to (1.1) exists globally in time, i.e., T * = T * = ∞.

Proof. Let u : (-T * , T * ) × R N → C be the corresponding solution to (1.1), hence to (1.15). By (1.23) and (2.7), we have

M (u 0 ) ≤ 1 2ω 0 γ H γ (u 0 ) ≤ m 2ω 0 γ .
From this and the magnetic Gagliardo-Nirenberg inequality (2.5), we have

|E γ (u 0 )| ≤ 1 2 H γ (u 0 ) + B (∇ -iA)u 0 N (p-1) 2 L 2 u 0 4-(N -2)(p-1) 2 L 2 ≤ 1 2 H γ (u 0 ) + B(H γ (u 0 )) N (p-1) 4 (M (u 0 )) 4-(N -2)(p-1) 4 ≤ C(m) (4.7)
for some constant C(m) > 0 depending on m. On the other hand, by the conservation of mass and energy, we have for all t ∈ (-T * , T * ),

H γ (u(t)) = 2E γ (u(t)) + 4 p + 1 u(t) p+1 L p+1 ≤ 2E γ (u(t)) + B(H γ (u(t))) N (p-1) 4 (M (u(t))) 4-(N -2)(p-1) 4 ≤ 2|E(u 0 )| + B(H γ (u(t))) N (p-1) 4 (M (u 0 )) 4-(N -2)(p-1) 4 
.

Here the constant B may change from line to line. In particular, we have

H γ (u(t)) ≤ a + b(H γ (u(t)) N (p-1) 4 
, ∀t ∈ (-T * , T * ),

where

a := 2|E γ (u 0 )| + 1 2 H γ (u 0 ), b := B(M (u 0 )) 4-(N -2)(p-1) 4 
.

We next claim that for each m > 0, there exists c 0 = c 0 (m) > 0 sufficiently small such that for all

0 < c < c 0 , if M (u 0 ) = c, then H γ (u(t)) ≤ 2a ∀t ∈ (-T * , T * ).
This together with the blow-up alternative (1.19) imply T * = T * = ∞. It remains to prove the claim. Assume by contradiction that it is not true. As H γ (u 0 ) ≤ 2a, the continuity of the solution maps ensures the existence of t 0 ∈ (-T * , T * ) such that H γ (u(t 0 )) = 2a. Inserting into (4.8), we get

2a ≤ a + b(2a) N (p-1) 4 ⇐⇒ b ≥ 1 2 N (p-1) 4 a N (p-1)-4 4 
.

From (4.7), we see that a is bounded from above by a constant depending on m. Thus b is bounded from below by some constant depending on m, i.e., b ≥ b 0 (m). However, by taking c > 0 sufficiently small so that Bc

4-(N -2)(p-1) 4 
< b 0 (m), we get a contradiction. The proof is complete.

We are now able to give the proof of Theorem 1.4.

Proof of Theorem 1.4. The proof is divided into several steps.

Step 1. From (4.2), we see that I m γ (c) is well-defined for c > 0 sufficiently small. Let (f n ) n≥1 be a minimizing sequence for I m γ (c). It follows that (f n ) n≥1 is a bounded sequence in Σ γ as (f n ) n≥1 ⊂ S(c) ∩ B γ (m). By Lemma 4.1, there exists a subsequence still denoted by

(f n ) n≥1 such that inf n≥1 f n L p+1 ≥ C > 0.
By Lemma 2.6, there exist φ ∈ Σ γ \{0} and a sequence (y n ) n≥1 ⊂ R N satisfying y n = (y 1 n , y 2 n , 0, • • • , 0) such that up to a subsequence,

g n (x) := e iA(yn)•x f n (x + y n ) φ weakly in Σ γ .
By the weak convergence, we have

0 < M (φ) ≤ lim inf n→∞ M (g n ) = lim inf n→∞ M (f n ) = c and H γ (φ) ≤ lim inf n→∞ H γ (g n ) = lim inf n→∞ H γ (f n ) ≤ m.
Moreover, by the same argument as in the proof of Theorem 1.1, we prove that M (φ) = c or φ ∈ S(c) ∩ B γ (m). We also have E γ (φ) = I m γ (c) or φ is a minimizer for I m γ (c). In addition, g n → φ strongly in Σ γ .

Step 2. We next prove that M m γ (c) ⊂ B γ (m/2). Indeed, let φ ∈ M m γ (c) and assume by contradiction that φ / ∈ B γ (m/2). By (4.3), we have

I m γ (c) ≤ inf {E γ (f ) : f ∈ S(c) ∩ B γ (m/4)} < inf {E γ (f ) : f ∈ S(c) ∩ (B γ (m)\B γ (m/2))} ≤ E γ (φ) = I m γ (c) which is a contradiction.
As φ does not belong to the boundary of B γ (m), there exists a Lagrange multiplier ω ∈ R such that S γ,ω (φ)[ϕ] = 0 for all ϕ ∈ C ∞ 0 (R N ), where S γ,ω (f ) := E γ (f ) + ωM (f ). It shows that φ is a weak solution to -1 2 (∇ -iA) 2 φ + V γ φ -|φ| p-1 φ + ωφ = 0 (4.9)

or φ is a solution to (1.5) in the weak sense. In particular, u(t, x) = e iωt φ(x) is a solution to (1.1). We also have from (4.9) that which shows (1.25).

ωM (φ) = - 1 2 (∇ -iA)φ 2 L 2 - ˆRN V γ (x)|φ(x)| 2 dx + φ p+1 L p+1 = -E γ (φ) + p -1 p + 1 φ p+1 L p+1 > -E γ (φ).
Step 3. We will prove that M m γ (c) is orbitally stable under the flow of (1.1). As in the proof of Theorem 1.1, we argue by contradiction. Suppose that M m γ (c) is not orbitally stable. By definition, there exist ε 0 > 0, φ 0 ∈ M m γ (c), a sequence (u 0,n ) n ⊂ Σ γ satisfying lim n→∞ u 0,n -φ 0 Σγ = 0, (4.12)

and a sequence of time (t n ) n≥1 ⊂ R such that Assume by contradiction that there exists f ∈ S(c) with E γ S(c) = 0 such that E γ (f ) < E γ (φ) = I m γ (c). Since E γ S(c) = 0, there exists a Lagrange multiplier ω ∈ R such that f is a solution to

- 1 2 (∇ -iA) 2 f + V γ f -|f | p-1 f + ωf = 0.
Multiplying both sides of the above equation with f and integrating over R N , we have 
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  as → ∞. By conservation laws of mass and energy, we haveM (u n (t n )) → c, E γ (u n (t n )) → I m γ (c)as n → ∞. We next claim that (up to a subsequence) H γ (u n (t n )) ≤ m for all n ≥ 1. Suppose that there exists K ≥ 1 such that H γ (u n (t n )) > m for every n ≥ K. By continuity, there existst * n such that H γ (u n (t * n )) = m. Since M (u n (t * n )) → c, H γ (u n (t * n )) = m, E γ (u n (t * n )) → I m γ (c) as n → ∞, we see that u n (t * n ) is a minimizing sequence for I m γ (c). By Step 1, there exists φ ∈ S(c) ∩ B γ (m) such that u n (t * n ) → φ strongly in Σ γ and E γ (φ) = I m γ (c). This is not possible since minimizers for I m γ (c) does not belong to the boundary of B γ (m). Thus there exists a subsequence(t n k ) k≥1 such that H γ (u n k (t n k )) ≤ m for all k ≥ 1. This shows that (u n k (t n k )) k≥1 is a minimizing sequence for I m γ (c). Again, byStep 1, there exist φ ∈ M m γ (c) and a sequence (y k ) k≥1 ⊂ Θ such thate iA(y k )•• u n k (t n k , • + y k ) -φ Σγ → 0as k → ∞. This contradicts (4.13), and the proof is complete.Proof of Theorem 1.5. Let φ ∈ M m γ (c). As φ does not belong to the boundary of B γ (m), we have E γ S(c) (φ) = 0.
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