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ABSTRACT: We present cosmological constraints on the sum of neutrino masses as a function of the
neutrino lifetime, in a framework in which neutrinos decay into dark radiation after becoming non-
relativistic. We find that in this regime the cosmic microwave background (CMB), baryonic acoustic
oscillations (BAO) and (uncalibrated) luminosity distance to supernovae from the Pantheon catalog
constrain the sum of neutrino masses

∑
mν to obey

∑
mν < 0.42 eV at (95% C.L.). While the bound

has improved significantly as compared to the limits on the same scenario from Planck 2015, it still
represents a significant relaxation of the constraints as compared to the stable neutrino case. We show
that most of the improvement can be traced to the more precise measurements of low-` polarization
data in Planck 2018, which leads to tighter constraints on τreio (and thereby on As), breaking the
degeneracy arising from the effect of (large) neutrino masses on the amplitude of the CMB power
spectrum.
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1 Introduction

Even though neutrinos were first detected more than six decades ago, they remain among the most
mysterious particles in nature, with many of their fundamental properties still to be determined. In
particular, although oscillation experiments have provided convincing evidence that neutrinos have
non-vanishing masses, these measurements are only sensitive to the mass-squared splittings and con-
sequently the spectrum of neutrino masses remains unknown. The lifetimes of the neutrinos are
also poorly constrained, especially in comparison to the other particles in the Standard Model (SM).
The determination of the masses and the lifetimes of these mysterious particles remain some of the
most important open problems in fundamental physics.

The fact that cosmic neutrinos are among the most abundant particles in the universe, contribut-
ing significantly to the total energy density at early times, provides an opportunity to measure their
properties. In particular, the evolution of the cosmological density fluctuations depends on

∑
mν ,

the sum of neutrino masses. This translates into characteristic effects on the cosmic microwave back-
ground (CMB) and large-scale structure (LSS) [1, 2] (for reviews see [3–6]), that are large enough
to allow the sum of neutrino masses to be determined in the near future. This determination is based
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on the observation that massive neutrinos contribute differently to cosmological observables than ei-
ther massless neutrinos or cold dark matter (CDM). At early times, while still relativistic, massive
neutrinos contribute to the energy density in radiation, just as in the case of massless neutrinos. How-
ever, after neutrinos become non-relativistic, their energy density redshifts as matter and therefore
contributes more to the expansion rate than massless neutrinos, which would continue to redshift as
radiation. As a result, over a given redshift span, the higher expansion rate reduces the time available
for the growth of matter density perturbations. However, since massive neutrinos retain pressure until
late times, their contribution to the density perturbations on scales below their free streaming lengths
is too small to compensate for the shorter structure formation time. Therefore, if neutrinos become
non-relativistic after recombination, the net effect of non-vanishing neutrino masses is a suppression
of the matter power spectrum and the CMB lensing potential. Based on this, current observations are
able to place a bound on the sum of neutrino masses,

∑
mν . 0.12 eV [7]. It is important to note that

this result assumes that neutrinos are stable on timescales of order the age of the universe. In scenar-
ios in which the neutrinos decay [8, 9], or annihilate away into lighter species [10, 11] on timescales
shorter than the age of the universe, this bound is no longer valid and must be reconsidered.

Cosmological observations can also be used to place limits on the neutrino lifetime. In the case of
neutrinos that decay to final states containing photons, the bounds on spectral distortions in the cosmic
microwave background (CMB) can be translated into limits on the neutrino lifetime, τν & 1019 s for
the larger mass splitting and τν & 4 × 1021 s for the smaller one [12]. In the case of decays to in-
visible final states, the limits are much weaker. For neutrinos that decay while still relativistic, the
decay and inverse decay processes can prevent neutrinos from free streaming. Measurements of the
CMB power spectra set a lower bound on the neutrino lifetime, τν ≥ 4× 106 s (mν/0.05eV)5, in the
case of decay into dark radiation [13] (for earlier work see [14–17]). In the case of non-relativistic
neutrino decays into dark radiation, the energy density of the decay products redshifts faster than that
of stable massive neutrinos. Unstable neutrinos therefore have less of an effect on structure formation
than stable neutrinos of the same mass. Consequently, cosmological observables depend both on the
masses of the neutrinos and their lifetimes, and heavier values of

∑
mν may still be allowed by the

data provided the neutrino lifetime is short enough. In Ref. [18], Planck 2015 and LSS data were used
to place constraints on the neutrino mass as a function of the lifetime, and found that values of

∑
mν

as large as 0.9 eV were still allowed by the data. Future LSS measurements at higher redshifts may
be able to break the degeneracy between the neutrino mass and lifetime and measure these parame-
ters independently [19]. It is worth noting that there are also bounds on the neutrino lifetime from
Supernova 1987A [20], solar neutrinos [21–24], astrophysical neutrinos measured at IceCube [25–
30], atmospheric neutrinos and long baseline experiments [31–34]. However,these constraints are in
general much weaker than the limits from cosmology.

In this paper we revisit the scenario in which neutrinos decay into dark radiation after becoming
non-relativistic and obtain updated limits based on the newer data from Planck 2018. In order to take
advantage of the greater precision of the new data, the analysis we perform is also more accurate.
We find that, under the assumption that neutrinos decay after becoming non-relativistic, the neutrino
mass bound from Planck 2018 data (in combination with BOSS baryon acoustic oscillation (BAO)
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data and Pantheon SN1a data) is relaxed to
∑
mν . 0.42 eV (95% C.L.).1 While this represents a

remarkable relaxation of the constraints as compared to the case of stable neutrinos, we note that it
is much stronger than the limit derived from Planck 2015 data for the same decaying neutrino scenario,∑
mν . 0.9 eV at (95% C.L.). We show that the improvement of the bound arises primarily from

the more precise low-` polarization data from Planck 2018, which allows an improved determination
of the optical depth to reionization τreio, thereby breaking the correlation with

∑
mν that appears (for

relatively high neutrino masses) through the impact of neutrinos on the overall height of the acoustic
peaks (i.e. the “early integrated Sachs-Wolfe effect”) [4].

Besides using up-to-date cosmological data, we also improve the analysis from Ref. [18] by in-
corporating higher order corrections due to neutrino decays into the Boltzmann equations that describe
the evolution of Universe’s energy and metric fluctuations. Recently, Ref. [13] provided a complete
set of Boltzmann equations for the neutrino decay, but did not conduct Markov Chain Monte Carlo
(MCMC) runs necessary to calculate updated neutrino bounds. In this work, we derive Boltzmann
equations exactly valid in the absence of ‘inverse-decays’ and quantum statistics. For the numerical
implementation, we follow a consistent Tdec/mν expansion, where Tdec is the temperature at the time
of the decay, so that the analysis is under control when neutrinos decay after become non-relativistic.

This paper is organized as follows. In section 2, we present a summary of constraints on the
parameter space of decaying neutrinos. In section 3, we derive the set of Boltzmann equations to
describe neutrino decay that are valid in the non-relativistic regime and compare our improved analysis
to past work. In section 4, we present a MCMC analysis of the decaying neutrino scenario against
up-to-date cosmological data. Finally, we conclude in section 5.

2 Parameter space of decaying neutrinos

In this section we outline the constraints on the mass and lifetime of neutrinos decaying into dark
radiation. As explained in the introduction, current cosmological observables only place limits on a
combination of the sum of neutrino masses and their lifetime. Therefore, in this study we will map
out the constraints in the two-dimensional parameter space spanned by the sum of neutrino masses
(
∑
mν) and the neutrino decay width (Γν), as shown in Fig. 1. In our analysis we assume that all

three neutrinos are degenerate in mass. This is a good approximation because the current bounds
on
∑
mν are larger than the observed mass splittings (see Fig. 1). We further assume that all three

neutrinos have the same decay width Γν . Since the mixing angles in the neutrino sector are large, this
is a good approximation in many simple models of decaying neutrinos if the spectrum of neutrinos is
quasi-degenerate. While this is a simple parameterization of neutrino decays, our bounds can easily
be applied to specific models, as done in great details in Ref. [36].

The CMB can be used to constrain the masses and decay widths of neutrinos that decay prior
to recombination.When neutrinos decay while still relativistic, decay and inverse decay can prevent
neutrinos from free-streaming. If this happens before recombination, it can alter the well-known
‘neutrino drag’ effect that manifests as a phase-shift at high-`’s in the CMB power spectrum [37–40].

1It is a factor of two weaker than the constraints advocated in Ref. [35], which used a model-independent approach to
constrain the neutrino mass as a function of redshift, but neglected the effect of the daughter particles.
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Planck 2015

Planck 2018

KATRIN

Γν=H(anr
)

Log scale
Linear scale

mν >T*

CMB neutrino free streaming

Figure 1. The plot shows the current constraints on decaying neutrinos in the
∑
mν−Γν parameter space. The

colored regions are excluded by current data while the white region is allowed. The orange dashed line repre-
sents Γν = H(anr). Our study focuses on the region below this line, meaning decay happens after neutrinos
have become non-relativistic. The grey region shows current constraints on neutrino mass and lifetime coming
from the requirement that neutrinos are free streaming close to recombination [13]. The light grey region indi-
cates that this bound may not be applicable when neutrino mass is larger than the temperature of recombination:
mν > T∗ ∼ 0.2 eV [13]. Our analysis excludes the red (blue) region labelled “Planck 2015”(“Planck 2018”)
based on the data (Planck+BAO+Pantheon). The vertical brown line shows the projected KATRIN sensitivity.

Therefore, CMB data can place a constraint on the decay width of neutrinos. The resulting bound
depends on neutrino masses, and was recently updated in Ref. [13], τν ≥ 4 × 106 s (mν/0.05 eV)5 .
This bound excludes the grey region at the top of Fig. 1.

In addition, based on the analysis in this paper, part of the ‘late-decay’ parameter space can also
be excluded based on the gravitational impacts of massive neutrinos on the CMB and LSS. Through
the Monte Carlo study presented in section 4, the blue (red) shaded region in Fig. 1 is excluded
by the data combination Planck 2018(2015)+BAO+Pantheon.2 The orange dashed line in the figure
(Γν = H(anr)) separates the region where neutrinos decay when non-relativistic from the region
where they decay while still relativistic. Here anr corresponds to the approximate scale factor at

2Note that in our analysis we scanned the region between 0 ≤ log10
Γν

km/s/Mpc ≤ 6. In Fig. 1, we have extrapolated the
bound at log10

Γν
km/s/Mpc = 0 to Γν = 0, because the constraint on

∑
mν is independent of Γν when Γν � H0.
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the time that neutrinos transition to non-relativistic, and is defined as 3Tν(anr) = mν . This simple
definition is based on the fact that for relativistic neutrinos at temperature Tν , the average energy per
neutrino is approximately 3Tν . The Hubble scale at anr is given by,

H(anr) = H0

√
Ωm

(∑
mν

9Tν0

)3/2

(2.1)

' 7.5× 105km/s/Mpc

(
H0

68km/s/Mpc

)(
Ωm

0.3

)1/2(∑mν

1eV

)3/2(1.5× 10−4eV

Tν0

)3/2

,

where Tν0 is the present neutrino temperature. Since our study focuses on the decay of neutrinos after
they become non-relativistic, we only present constraints below the orange dashed line. Our analysis
shows that

∑
mν as large as 0.42 eV is still allowed by the data.

Our results have important implications for current and future laboratory experiments designed
to detect neutrino masses. Next generation tritium decay experiments such as KATRIN [41] are
expected to be sensitive to values of mνe as low as 0.2 eV, corresponding to

∑
mν of order 0.6 eV.

Naively, a signal in these experiments would conflict with the current cosmological bound for stable
neutrinos,

∑
mν < 0.12 eV. However, since the unstable neutrino paradigm greatly expands the

range of neutrino masses allowed by current cosmological data, it is interesting to explore whether
this scenario can accommodate a potential signal at KATRIN. In Fig. 1, we display a brown vertical
line

∑
mν = 0.6 eV that corresponds to the expected KATRIN sensitivity. We see that this value

of
∑
mν is too large to be accommodated in the non-relativistic decay regime, where our analysis is

valid. However, our result, in combination with those from the ‘relativistic decay’ scenario studied in
Ref. [13], leaves open the interesting possibility that neutrinos decaying with a decay width between
log10

Γν
km/s/Mpc ∼ 5.5 − 9 could reconcile cosmological observations with a potential detection at

KATRIN, thereby opening a large discovery potential for laboratory experiments. To confirm this
conjecture, more work needs to be done to cover the ‘intermediate’ decay regime (i.e. where neutrinos
are neither fully relativistic nor fully non-relativistic). We leave this for future work.

In recent years, a number of studies have attempted to constrain the neutrino mass ordering,
showing that under the assumption of stable neutrinos, the inverted ordering is now disfavored by
constraints from joint analysis of cosmological and oscillation data [42–47] (see also Refs. [48–51]
for a different take) as well as from Ly-α observations [52]. However, these arguments are centered
on the fact that these analysis lead to a constraint on

∑
mν at odds with the lower bound on the sum of

neutrino masses in the case of inverted ordering,
∑
mν & 0.1 eV. Our result suggests that these con-

straints are strongly dependent on the assumption of neutrino stability over cosmological timescales,
and therefore that the inverted ordering is not robustly excluded. It would be very interesting to extend
our analysis to the inclusion of Ly-α data to confirm this conclusion.

3 Boltzmann equations for massive neutrinos decaying into radiation

In this section, we revisit the set of Boltzmann equations describing the evolution of the phase space
distribution (PSD) of massive particles decaying into daughter radiation. In our analysis, we assume
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the decay happens after the neutrinos have become non-relativistic so that the contribution from in-
verse decay processes can be safely neglected.

3.1 Derivation of the equations

We denote the phase space distribution of each species as f(q, n̂, ~x, τ), which is a function of the
comoving momentum qn̂, coordinates ~x and conformal time τ . The general time evolution of f is
controlled by the Boltzmann equations,

df

dτ
=
∂f

∂τ
+
dxi

dτ

∂f

∂xi
+
dq

dτ

∂f

∂q
+
dn̂

dτ
· ∂f
∂n̂

= C[f ], (3.1)

where C[f ] is the collision term that includes all the processes involving the species.
This phase space distribution has the leading order contribution f̄(q, τ) that only depends on q

and τ , while perturbations are encoded in ∆f(q, n̂, ~x, τ),

f(q, n̂, ~x, τ) ≡ f̄(q, τ) + ∆f(q, n̂, ~x, τ). (3.2)

Treating ∆f fluctuations about the homogeneous background as higher order perturbations, the
zeroth order Boltzmann equations for f̄ take the form

∂f̄

∂τ
= C[f̄ ]. (3.3)

In this work, our focus is on the case in which neutrinos decay after turning non-relativistic. In this
scenario, we can neglect the effects of inverse decay processes and quantum statistics. The collision
term for the neutrino and its daughters are respectively given by [18]

Cν = − a2

2εν

∫ ∏

i

d̄3qi
2εi
|M|2(2π)4δ(4)(q − Σiqi)fν(q), (3.4)

CDj = +
a2

2εj

∫
d̄3q

2εν

∏

i 6=j

d̄q3
i

2εi
|M|2(2π)4δ(4)(q − Σiqi)fν(q). (3.5)

Here d̄3q ≡ d3q/(2π)3, ε ≡
√
q2 + a2m2 represents the comoving energy and a is the scale factor.

The label i(j) denotes the ith(jth) daughter. In the case of two body decays to massless daughters,
the amplitude squared |M|2 is simply related to the rest-frame decay width of the neutrino as |M|2 =

16πΓνmν . From the collision terms above, the background evolution for decaying neutrinos is given
by

∂f̄ν
∂τ

= −aΓν
γ
f̄ν , (3.6)

where Γν is the neutrino decay width and γ is the Lorentz boost factor,

γ=

√
q2+a2m2

ν

(amν)
. (3.7)
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The formal solution to f̄ν(q, τ) from the differential equation Eq. (3.6) is

f̄ν(q, τ) = f̄ini(q)e
−Γν

∫ τ
τini

a
γ(a)

dτ ′
, (3.8)

where τini denotes the initial conformal time and f̄ini(q) represents the initial momentum distribution,
which we take to be of the Fermi-Dirac form, f̄ini = 1/(eq/Tν0 + 1).

The Boltzmann equations for the individual daughter particles do not have a simple form, espe-
cially when the daughters consist of more than two species. However, since the daughter particles are
taken to be massless in this study the total background density of daughter radiation can be defined as

ρ̄D ≡ 4πa−4
∑

i

∫
dq q3f̄Di(q), (3.9)

where f̄Di is the background phase space distribution of the ith daughter particle. With the definition
in Eq. (3.9), regardless of the number of daughter particles and their spins, the Boltzmann equation
for the total background daughter density ρ̄D has the simple form

∂ρ̄D
∂τ

+ 4aHρ̄D = aΓνmν n̄ν , (3.10)

where n̄ν ≡ 4πa−3
∫
dq q2f̄ν(q).

We now turn to the Boltzmann equations describing the perturbations of the phase space distri-
bution of decaying neutrinos and their decay products. We work in the synchronous gauge for which
the metric perturbations can be parametrized as [53]

ds2 = a2[−dτ2 + (δij +Hij)dx
idxj ]. (3.11)

In Fourier space, Hij is given by

Hij(~k, τ) = k̂ik̂jh(~k, τ) +

(
k̂ik̂j −

1

3
δij

)
6η(~k, τ), (3.12)

where ~k is conjugate to ~x and h and η are the two independent scalar metric perturbations. To ob-
tain the Boltzmann hierarchy, we expand the angular dependence of the perturbations as a series in
Legendre polynomials,

∆f(q, n̂,~k, τ) =

∞∑

`=0

(−i)`(2`+ 1)∆f`(q, k, τ)P`(k̂ · n̂), (3.13)

where P` represents the `th Legendre polynomial. The Boltzmann hierarchy for the perturbations of
the decaying massive neutrinos ∆fν(`) read [18]

∆ḟν(0) = −qk
εν

∆fν(1) + q
∂f̄ν
∂q

ḣ

6
− a2Γνmν

εν
∆fν(0), (3.14)

∆ḟν(1) =
qk

3εν

[
∆fν(0) − 2∆fν(2)

]
− a2Γνmν

εν
∆fν(1), (3.15)

∆ḟν(2) =
qk

5εν

[
2∆fν(1) − 3∆fν(3)

]
− q∂f̄ν

∂q

(ḣ+ 6η̇)

15
− a2Γνmν

εν
∆fν(2), (3.16)

∆ḟν(`>2) =
qk

(2`+ 1)εν

[
`∆fν(`−1) − (`+ 1)∆fν(`+1)

]
− a2Γνmν

εν
∆fν(`). (3.17)
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Here εν =
√
q2 + a2m2

ν indicates the comoving energy of the neutrinos.
To study the perturbations of the daughter radiation, we focus on the case of two-body decay. In

this case, the phase space distributions of the two massless particles are basically identical and they
can be considered effectively as one species with a single fD. We can therefore define multipoles
FD(`) as in Ref. [54],

FD(`) ≡
4π

ρc

∫
dqq3∆fD(`), (3.18)

where ρc is the critical density of Universe today. The Boltzmann hierarchy of the FD(`) can be
written as,

ḞD(0) = −kFD(1) −
2

3
ḣ rD + C0,

ḞD(1) =
k

3
FD(0) −

2k

3
FD(2) + C1,

ḞD(2) =
2k

5
FD(1) −

3k

5
FD(3) +

4(ḣ+ 6η̇)

15
rD + C2,

ḞD(`>2) =
k

(2`+ 1)

[
`FD(`−1) − (`+ 1)FD(`+1)

]
+ C`, (3.19)

where rD ≡ a4ρ̄D/ρc. The terms C` appearing in Eq. (3.19) arise from the integrated daughter
collision term in Eq. (3.5) expanded in terms of Legendre polynomials. The expression for C` is
given by,

C` = 2i`
∫
dΩk

4π
P`(q̂1 · k̂)

(
4π

ρc

∫
dq1q

3
1CD1[q1, q̂1 · k̂]

)
,

= i`
(

32πmνΓνa
2

ρc

)∫
dΩkP`(q̂1 · k̂)

∫
dq1

2ε1
q3

1

∫
d̄3q2

2ε2

d̄3q

2εν
∆fν(q, q̂ · k̂)(2π)4δ(4)(q − q1 − q2).

(3.20)

The overall factor of two in the equation above arises because we are adding the collision integrals of
the two massless daughters, which are of the same form. In this expression dΩk represents the dif-
ferential solid angle along the direction k̂, while q1,2 are the momenta of daughter particles. The d̄3q2

integral can be easily evaluated using the delta function corresponding to momentum conservation. In
order to perform the integral over dΩk, we notice that the direction of k̂ enters only via P`(q̂1 · k̂) and
∆fν(q, q̂ · k̂). Now, using the Legendre expansion of ∆fν(q, q̂ · k̂) in Eq. (3.13) and employing the
identity ∫

dΩkP`(k̂ · q̂)P`′(k̂ · q̂1) =

(
4π

2`+ 1

)
P`(q̂ · q̂1)δ``′ , (3.21)

we can evaluate the dΩk integral to obtain

C` =

(
128π2mνΓνa

2

ρc

)∫
d̄3qdq1

8ενε1ε2
q3

1P`(q̂1.q̂)∆fν`(q)(2π)δ(εν − ε1 − ε2). (3.22)
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Now, notice that the direction of the neutrino momentum only enters the integrand via the angle
between the neutrino momentum q and the daughter momentum q1, defined as cos θ1 ≡ q̂ · q̂1. The
energy conserving delta function can be expressed in terms of this angle as

δ(εν − ε1 − ε2) =
ε2
qq1

δ (cos θ1 − cos θ∗1) , (3.23)

where

cos θ∗1 =
2ενq1 − a2m2

ν

2qq1
. (3.24)

The energy conservation restricts the daughter momentum to a range of values (q+
1 , q

−
1 ). The edges

of this range occur when the extreme values, cos θ∗1 = ±1, are reached. For these values,

q±1 =
m2
νa

2

2 (εν ± q)
. (3.25)

After integrating over the delta function corresponding to energy conservation, this reduces to the
simpler form,

C` =

(
8πmνΓνa

2

ρc

)∫
dq

εν
q∆fν(`)

∫ q−1

q+
1

dq1q1P`

(
2ενq1 − a2m2

ν

2qq1

)
. (3.26)

Eq. (3.26) may also be obtained by taking the appropriate limit of the more general expression in
Ref. [13]. The same Boltzmann hierarchy has been derived in the context of warm matter decaying
into dark radiation [55].

Performing the integral over q1, we can obtain the following expressions for the first few C`’s,

C0 =
4πa2Γνmν

ρc

∫
dqq2∆fν(0),

C1 =
4πa2Γνmν

ρc

∫
dq
q3

εν
∆fν(1),

C2 =
4πa2Γνmν

ρc

∫
dqq2g2(q, εν)∆fν(2),

C3 =
4πa2Γνmν

ρc

∫
dqq2g3(q, εν)∆fν(3). (3.27)

Here the functions g2(q, εν) and g3(q, εν) are given by,

g2(q, εν) ≡ 5

2
− 3

2

ε2
ν

q2
+

3

4

(ε2
ν − q2)2

ενq3
ln
(
εν + q

εν − q

)
,

g3(q, εν) ≡ 25

2

εν
q
− 4q

εν
− 15

2

ε3
ν

q3
+

15

4

(ε2
ν − q2)2

q4
ln
(
εν + q

εν − q

)
. (3.28)

Given the complicated integrals in Eq. (3.26), it is technically challenging to keep track of all
the collision terms in the Boltzmann hierarchy. Instead, we choose to keep just the first few C`’s for
` ≤ `max. The idea behind this approach is that C` is of O((Tdec/mν)`) around the time of decay.
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Therefore, for non-relativistic decay (Tdec/mν � 1), it is self-consistent to set C`>`max = 0 because
those terms only have negligible effect on physical observables. To understand the scaling of C`, we
first note that the integral over q in Eq. (3.27) receives most of its support from the region around
q ∼ Tν0 because ∆fν(`) inherits features of the Fermi-Dirac distribution from f̄ini = 1/(eq/Tν0 + 1).
Deep in the non-relativistic region, q � εν and Tν0 � amν . In this regime, we can employ a Taylor
expansion for the functions g2 and g3 in powers of q/εν to obtain,

g2(q, εν) ≈ 4

5

q2

ε2ν
, g3(q, εν)≈4

7

q3

ε3ν
for (q � εν). (3.29)

Inserting Eq. (3.29) above into Eq. (3.27), it is straightforward to see that C` ∝ (Tν0/amν)`. More-
over, if we assume decay happens deep in the non-relativistic region, we will get C` ∝ (Tdec/mν)`

when decay happens, where Tdec = Tν0/adec. Therefore, C` is suppressed by powers of Tdec/mν �
1 for higher `. To further justify this argument, we show in section 3.3 that setting `max = 2 or
`max = 3 makes negligible difference to cosmological observables (see Fig. 4). Therefore, we only
keep C`≤3 and set C`>3 = 0 in our numerical study for simplicity.

Physically, the expansion in the small parameter Tdec/mν corresponds to perturbing about the
ultra-nonrelativistic limit in which the momentum of the mother particle has completely redshifted
away, so that it has come to rest in the cosmic frame. Energy and momentum conservation is re-
spected order by order in this expansion. The earlier work [18] approximated the Boltzmann hier-
archy for daughter radiation (Eq. 3.19) by just keeping C0 and setting all the C`≥1 = 0. It is clear
from the above discussion that this is a consistent approximation to zeroth order in an expansion in the
small parameter Tdec/mν . The authors in Ref. [13] argued that the Boltzmann hierarchy for daughter
radiation in Ref. [18] does not reproduce the standard decaying CDM scenario and does not respect
momentum conservation. Both criticisms can be addressed by considering the term C1. Since C1

begins at O(Tdec/mν), we see that the Boltzmann hierarchy in Ref. [18] does in fact reproduce the
decaying CDM scenario and respects momentum conservation up toO(Tdec/mν) corrections, consis-
tent with the approximation. In this limit, the momenta of the daughter particles arise entirely from the
rest mass of the mother. In practice, since the contributions of neutrinos to the density perturbations
are small, we will see that the higher order terms do not significantly affect the constraints derived in
Ref. [18] with Planck 2015 data.

3.2 Signatures of the non-relativistic neutrino decay on the CMB spectra

To make this work fully self-contained, we briefly summarize the impact of the non-relativistic in-
visible neutrino decays on the CMB spectra, following the discussion in Ref. [18]. In Fig. 2, we
display the residuals in the CMB (lensed) TT, EE and lensing power spectra, for the sum of neutrino
masses

∑
mν = 0.6 eV and several decay widths Log10(Γν/km/s/Mpc) = 0, 2, 4, 6. In all cases,

the ΛCDM parameters are set to their best-fit values from Planck 2018, that is, {100θs = 1.04089,
ωcdm = 0.1198, ωb = 0.02233, ns = 0.9652, ln(1010As) = 3.043, τreio = 0.0540}. Our reference
ΛCDM model makes use of the same parameters and assumes standard massless neutrinos.

For the value of the mass considered (
∑
mν = 0.6 eV) and at fixed angular size of the sound

horizon θs, neutrino masses primarily impact the lensing spectrum. Indeed, as they reduce power
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Figure 2. Residuals in the the CMB lensed TT (upper), EE (middle) and lensing (lower) spectrum for a fixed
value of the neutrino mass and several decay widths. The residuals are taken with respect to the ΛCDM best-fit
parameters from Planck 2018. The ΛCDM parameters are kept fixed in all cases.

below the free-streaming scale, they produce a significant matter power suppression at small scales,
which leads to a ∼ 20% reduction in the Cφφ` at large ` (blue curve in Fig. 2). Consequently, this
power suppression decreases the smoothing in the high-` part of the TT and EE spectra, which can be
seen as ‘wiggles’ in the corresponding plots.

In addition, stable neutrinos dilute like non-relativistic matter at late times (ρ̄ν ∼ a−3), which
increases the value of Ωm. As we impose the closure relation Ωm + ΩΛ = 1 at late-times, this
is compensated for by a decrease in ΩΛ (later beginning of Λ-domination), and thus a reduction
in the Late Integrated Sachs-Wolfe effect (LISW), leaving a signature in the low-` TT spectrum.
Furthermore, the modified expansion history H(z) changes quantities integrated along z, such as
τreio, which affects the multipoles at ` ∼ 10 in the EE spectrum.

When a non-negligible Γν is considered (orange, green and red curves in Fig. 2), one can see that
the aforementioned effects typically become less prominent for earlier decays. This is particularly
true for the high-` part of the lensing spectrum (and consequently the smoothing at high-` in TT and
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EE) since decay of neutrinos reduce their impact on structure formation. The reduction of the effect
in the low-` part of the TT and EE spectra is not entirely monotonic, as intermediate values of Γν can
induce additional time variation in the gravitational potentials (thereby affecting the LISW effect), as
well as time variations in H(z) (thereby affecting τreio). As a result, the ΛCDM limit is reached not
only for small values of

∑
mν , but also for high values of Γν . This will be reflected in the MCMC

analysis in section 4, which shows a large positive correlation between both parameters. It is precisely
this degeneracy which relaxes the neutrino mass bounds.

3.3 Consistency of the implementation of Boltzmann equations

We begin by comparing the approximation used in Ref. [18] for the background energy density of
decaying massive neutrinos to the more accurate results obtained by evaluating the integral in Eq. (3.8)
numerically. In Ref. [18], the phase space distribution of neutrinos in Eq. (3.8) is approximated
through the following analytic formula,

f̄ν(q, τ) = f̄ini(q)e
−Γνt/γ . (3.30)

Figure 3. Redshift evolution of the quantity (ρ̄ν + ρ̄D)/ρ̄ur (where ρ̄ur denotes the energy density of stable
massless neutrinos), which should be equal to 1 in the limit of relativistic decays. We consider a very small value
of the neutrino mass sum,

∑
mν = 0.06 eV, and several values for the decay width, Log10(Γν/km/s/Mpc).

“approx. PSD” refers to the approximated phase space distribution in Eq. (3.30) while “Full PSD” refers to the
exact solutions of Eq. (3.8).

As argued in Ref. [18], this approximation is valid under the assumption that the decay happens
deep in the non-relativistic regime. To see the difference between the approximation and the full
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Figure 4. Fractional change in the CMB TT (upper), EE (middle) and lensing (lower) spectrum, when imposing
different prescriptions for the background energy density distribution and Boltzmann hierarchies. “approx.
PSD” refers to the approximate phase space distribution in Eq. (3.30) while “Full PSD” refers to the exact
solution of Eq. (3.8). “C`” in the plot means we only keep those collision terms in Eq. (3.19). The chosen
values of the neutrino mass (

∑
mν = 0.6 eV) and decay width (Log10(Γν/[km/s/Mpc]) = 5.5) correspond

to the case when neutrinos decay close to non-relativistic transition (Tdec/mν ' 0.3). The gray shaded region
indicates Planck 2018 1-σ uncertainties, while the pink boxes indicate the (binned) cosmic variance.

result, we plot the ratio r ≡ (ρ̄ν + ρ̄D)/ρ̄ur in Fig. 3, for several values of the decay width Γν and a
fixed value of the total neutrino mass

∑
mν = 0.06 eV. Here ρ̄ur denotes the energy density of stable

massless neutrinos. If neutrinos decay while relativistic, this ratio always gives r ' 1. However, if
the decay happens when the neutrinos are already non-relativistic (ρ̄ν ∼ a−3 ), then the ratio evolves
from r ' 1 to r ∼ a, and will eventually reach a plateau once all the neutrinos have decayed.
From Fig. 3, we can see that the approximate formula in Eq. (3.30) gradually improves as we go to
smaller decay widths (that is, going deeper into the regime of non-relativistic decays), as expected.
The error in the case of neutrinos decaying right around the time of the non-relativistic transition
(Log10(Γν/[km/s/Mpc]) ' 4 for

∑
0.06 eV) is around 25%. Nevertheless, as we argue below, the
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Figure 5. Same as in Fig. 4 , but with a smaller decay width (Log10(Γν/[km/s/Mpc]) = 4), corresponding to
a neutrino decay happening deep in the non-relativistic limit (Tdec/mν ' 0.03).

impact on observables is much smaller given that neutrinos only contribute a small fraction of the
total energy density for masses considered in this work. Not surprisingly, the approximate formula
fails in the relativistic regime, leading to r < 1 at late-times. Therefore future work focusing on this
regime should make use of the exact formula.

In Figs. 4 and 5, we show the effects of various approximations in dealing with decaying neu-
trinos (at the background and perturbation level) on the CMB TT, EE and lensing spectra. We com-
pare the impact of using either the approximated or the exact PSD of neutrinos discussed above,
as well as the impact of only keeping C`≤`max in the Boltzmann hierarchy of daughter particles in
Eq. (3.19), where we vary `max from zero to three. We show the residuals of these approximations
with respect to the ‘optimal’ case (i.e. including all terms up to `max = 3 and the exact back-
ground PSD) for a fixed value of the neutrino mass (

∑
mν = 0.6 eV) and two different decay widths

(Log10(Γν/[km/s/Mpc]) = 5.5 in Fig. 4 and Log10(Γν/[km/s/Mpc]) = 4 in Fig. 5). Fig. 4 corre-
sponds to decays happening around the time of the non-relativistic transition, Tdec/mν ' 0.3, where
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the effects of the approximations are expected to be largest. Fig. 5 on the other hand refers to decays
happening deep in the non-relativistic regime, Tdec/mν ' 0.03. We also show the Planck 2018 1-σ
error bars, as well as the (binned) cosmic variance.

For decays close to the non-relativistic transition Tdec/mν ' 0.3 shown in Fig. 4, we find that
the biggest improvement in the CMB TT spectrum occurs when including C`≤1 (i.e., the contribution
from the decaying neutrino bulk velocity) in the Boltzmann hierarchy of daughter radiation, which
impacts the integrated Sachs-Wolfe (ISW) effect at multipoles ` . 100. On the other hand, the ap-
proximate background distribution of neutrinos does not have a significant effect. For the CMB EE
spectrum shown in the same figure, which is not sourced by the ISW effect, the impact of the approx-
imate background distribution of neutrinos is comparable to the effect of the approximate perturbed
hierarchy. Nevertheless, one can see that for `max ≥ 2, additional contributions to the daughter hier-
archy have negligible impacts, which justifies our choice of cutting the collision term C` contribution
at `max = 3. Finally for the CMB lensing spectrum, the effects due to the approximate treatment of
the background PSD dominate over the ones due to including higher order terms in the Boltzmann
hierarchy of the dark radiation. This is expected given that the matter power spectrum suppression
scales approximately with ρ̄ν/ρ̄m [2, 4] where ρ̄m is the total matter density, while neutrino pertur-
bations are very small well below the free-streaming scale, so that their detailed dynamics is not as
important as on larger scales.

The impact of the various approximations in the case of decays deep in the non-relativistic regime
Tdec/mν ' 0.03, displayed in Fig. 5, is much less visible. In that case, one can therefore safely
neglect C`>0 and consider the approximate PSD, as done in Ref. [18].

4 Updated Monte Carlo analysis of the decaying neutrino scenario

4.1 Details of the analysis

In this section we perform a numerical scan over the parameter space to obtain updated limits on the
neutrino mass and lifetime. We perform comprehensive MCMC analyses with the MontePython-v33

[56, 57] code interfaced with our modified version of CLASS. We fit the decaying neutrino model to
a combination of the following data-sets:

• The Planck 2018 high-` TT, TE, EE + low-` data TT, EE + lensing data [7]. We will also com-
pare these results with the use of Planck 2015 data to disentangle the effects of our improved
formalism and that of the new data.

• The BAO measurements from 6dFGS at z = 0.106 [58], SDSS DR7 at z = 0.15 [59], BOSS
DR12 at z = 0.38, 0.51 and 0.61 [60], and the joint constraints from eBOSS DR14 Ly-α auto-
correlation at z = 2.34 [61] and cross-correlation at z = 2.35 [62].

• The measurements of the growth function fσ8(z) (FS) from the CMASS and LOWZ galaxy
samples of BOSS DR12 at z = 0.38, 0.51, and 0.61 [60].

3https://github.com/brinckmann/montepython public
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• The Pantheon SNIa catalogue, spanning redshifts 0.01 < z < 2.3 [63].

We adopt wide flat priors on the following six ΛCDM parameters: {ωb, ωcdm, H0, ns, As, τreio}.
We assume three degenerate neutrinos decaying into massless radiation and consider flat priors on∑
mν/eV and Log10(Γν/[km/s/Mpc]). To accelerate convergence, we split the parameter space

between Log10(Γν/[km/s/Mpc]) ∈ [0.1, 2.5] and Log10(Γν/[km/s/Mpc]) ∈ [2.5, 6.5]. In both
cases we take wide priors on

∑
mν ∈ [0.06, 1.5] eV. We assume our MCMC chains to be converged

when the Gelman-Rubin criterion R − 1 < 0.05 [64]. In our baseline analysis, we do not apply any
specific cut to the parameter space, even if neutrinos decay in the relativistic regime (this occurs for
low

∑
mν and high Γν). In appendix A, we investigate the impact of imposing a prior that excludes

the parameter space corresponding to relativistic decay from our analysis and show that the limit at
95% on

∑
mν agrees within a few percent.

4.2 Main results: updated limit on the neutrino mass and lifetime

The results of our analyses are presented in Figs. 6. For very late decays, Log10(Γν/[km/s/Mpc]) .
2.5, no relaxation of the constraints on

∑
mν/eV is visible, in agreement with what was found in

Ref. [18]. The impact of the new Planck data is visible as a significantly improved bound on the sum
of neutrino mass, namely we find

∑
mν < 0.127 eV (95%C.L.), an improvement of about ∼ 35%

over 2015 data, in good agreement with Ref. [7]. For Log10(Γν/[km/s/Mpc]) & 2.5, one can see
that the bound relaxes as expected, although not as much with Planck 2018 data as for Planck 2015
data.

Taking the intersect of the non-relativistic decay line as our 2σ limit, we find that Planck 2018
allows neutrinos with masses up to

∑
mν = 0.42 eV. In appendix A, we present an alternative

analysis that directly imposes the non-relativistic decay criterion as a prior while performing the
scan. Marginalizing over all parameters we find the same result,

∑
mν < 0.42 eV (95% C.L.).

The excellent agreement between these different analyses leads us to conclude with confidence that,
within the regime of non-relativistic decay, values of

∑
mν as large as 0.4 eV are still allowed by the

data. This bound is significantly stronger than the limit from Planck 2015 data, for which
∑
mν ∼ 0.9

eV was still allowed in the non-relativistic decay scenario.
Our result also has implications for laboratory searches. For

∑
mν = 0.6 eV, the smallest

mass scale that the KATRIN experiment is designed to probe, Planck 2018 data requires decay rate
Γν & 105.5 km/s/Mpc, a constraint roughly one order of magnitude stronger than from Planck 2015
data. However, this value of the decay rate is now slightly beyond the regime of validity of our work4,
indicating that, in the event of a neutrino mass discovery at KATRIN, a more involved analysis in-
cluding inverse-decays would be necessary to confirm that the decay scenario can reconcile laboratory
and cosmological measurements.

4For
∑
mν = 0.6 eV and assuming degenerate neutrino masses, the non-relativistic condition requires Γν < 105.3

km/s/Mpc.
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Figure 6. 2D posterior distribution of the decaying neutrino model reconstructed from the analysis of BAO +
FS + Pantheon together with either Planck 2015 or Planck 2018 data. In the top panel, we show the correlation
with other cosmological parameters.

4.3 Comparison with former results and the impact of Planck 2018 data

Comparing with the constraints presented in Ref. [18] for Planck 2015, we find that, while the impact
of our improved treatment is clearly visible in the CMB power spectra (and will be relevant for future
experiments), it has only a marginal impact on the constraints, and our bounds are in very good
agreement with those derived in Ref. [18], which only included the leading order term in the daughter
radiation hierarchy5. The bulk of the improvement is due to the newest Planck 2018 data and can be
understood as follows. As shown in Fig. 2, for the masses we consider, the main effect is an almost
scale independent suppression of CMB lensing spectrum. This suppression can be compensated for
by increasing the primordial amplitude As or by adjusting the matter density ωcdm (see Ref. [65] for

5Let us note that the implementation of the BAO/fσ8 DR12 likelihood used in Ref. [18] within the MontePython code
had an issue that led to constraints on

∑
mν that were somewhat milder than the true bounds. MontePython has since then

been corrected, leading to an improvement on the constraints on the stable/long-lived (Γν < 103 km/s/Mpc) case by about
20%. However, we have verified that this bug had no impact in the short-lived case (Γν > 102.5 km/s/Mpc).
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a discussion of the correlation between {
∑
mν , As, τreio, ωcdm}). Due to the well-known degeneracy

between As and e−2τreio , Planck 2015 data, which was limited in polarization, were unable to place a
tight constraint on As, and thus the constraining power on the sum of neutrino mass and lifetime was
limited. The precise measurements of low-` polarization from Planck 2018 leads to constraints on τreio

that are tighter by a factor of two than those from Planck 2015. As a result, parameters degenerate
with τreio such as As are now much better constrained. Consequently, the constraints on the sum
of neutrino mass and lifetime have significantly improved with Planck 2018 data. To confirm this
simple argument, we perform another MCMC run with Planck 2015 data and a tight gaussian prior
on τreio = 0.0540 ± 0.0074, chosen to match the optical depth to reionization reconstructed from
Planck 2018. Given that the constraints on

∑
mν are independent of Γν below Γν . 103, and the

scaling above Γν . 105.5 is monotonic, we focus on the parameter space Log10(Γν/[km/s/Mpc]) ∈
[3, 5.5] to accelerate convergence. Our results are presented in Fig. 7, where one can see that this
simple prescription leads to constraints that are very similar to those from the full Planck 2018 data.
We attribute the remaining differences to the additional constraining power of Planck 2018 data on
the parameters ωcdm and ωb, which are mildly correlated with

∑
mν (see Fig. 6, top panel). Note

that our constraints are a factor of two weaker than those advocated in Ref. [35], which performed
a ‘model-independent’ reconstruction of the neutrino mass as a function of redshift, but neglects
the decay products. As we show here, including details about the daughter radiation is necessary
to accurately compute the effect of neutrino decays even in the non-relativistic regime. Finally, as
discussed in Refs. [19, 65], a combination of CMB data with future tomographic measurements of
the power spectrum by DESI [66] or Euclid [67], and an improved determination of the optical depth
to reionization by 21-cm observations with SKA [68, 69], could greatly increase the sensitivity of
cosmological probes to neutrino masses and lifetimes.

5 Conclusions

Cosmological observations are known to set the strongest constraints on the sum of neutrino masses.
Yet, the existing mass bound from CMB and LSS measurements, which assumes that neutrinos are
stable, is significantly weakened if neutrinos decay. In this work, we provide up-to-date limits on the
lifetime of massive neutrinos that decay into dark radiation after becoming non-relativistic, from a
combination of CMB, BAO, growth factor measurements, and Pantheon SN1a data.

Compared to the earlier analysis [18], we have incorporated higher-order corrections up toO((Tdec/mν)3)

when solving the dark radiation perturbations, and also performed the full calculation of the back-
ground energy density of the decaying neutrino using Eq. (3.8). The more precise treatment of the
Boltzmann equations and the background energy evolution in our MCMC study improves the cov-
erage of the case when the neutrinos decay early so that their average momenta are close to their
masses. As shown in Fig. 5, if neutrinos decay when having Tν � mν/3, the inclusion of higher
moment perturbations C`≥2 gives a negligible change to the power spectra as compared to the ex-
perimental uncertainties. However, the complete calculation of the neutrino energy does improve the
prediction for the power spectrum significantly from the approximate result using Eq. (3.30) when the
decays happen semi-relativistically. Nevertheless, we have found that constraints from Planck 2015,
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Figure 7. Posterior distribution of
∑
mν and Log10(Γν/[km/s/Mpc]) with Planck 2018 and Planck 2015 + a

primer on τreio from Planck 2018 . The agreement of the posteriors shows the dominant constraining power on∑
mν and Log10(Γν/[km/s/Mpc]) comes from a precise measurement of τreio from Planck 2018.

given their limited precision, are unaffected by these considerations. However, we anticipate that these
effects will be relevant for future experiments (as well as an essential contribution in the relativistic
case, to be considered in the future).

In fact, we have shown that the bulk of the improvement in the constraining power compared to
Ref. [18] comes from the use of Planck 2018 data. Indeed, we have demonstrated that the improved
τreio measurement from the low-` polarization data helps breaking the degeneracy in the CMB power
spectrum amplitude and strengthens the bound on the neutrino mass and lifetime. As a result, we have
found that neutrinos with

∑
mν > 0.42 eV (2σ) cannot be made consistent with cosmological data if

they decay while non-relativistic, a significant improvement from Planck 2015 data for which masses
as high as

∑
mν ∼ 0.9 eV were consistent with the non-relativistic decay scenario [18].

We have argued that one notable application of this result is that, if the KATRIN experiment
sees an electron neutrino with mν ≈ 0.2 eV (the advocated sensitivity), our result would constrain
Γν & 105.5 km/s/Mpc, i.e. the neutrinos would need to decay between z ≈ 2 × 102 − 4 × 103,
while they are still relativistic, so that our bounds and the bounds studied in Ref. [13] would not
apply. In case of a neutrino mass discovery at KATRIN, a more involved analysis including inverse-
decays would be necessary to firmly confirm that the decay scenario can reconcile laboratory and
cosmological measurements. Additionally, our results show that the tentative exclusion of the inverted
mass ordering [44–46, 52], based solely on the fact that the inverted ordering predicts

∑
mν > 0.1

eV, is highly dependent on the hypothesis that neutrinos are stable on cosmological time-scales. Non-
relativistic decays can still easily reconcile the inverted ordering with cosmological data.

Finally, let us mention that even though current exclusion bounds in Fig. 6 do not set independent
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constraints on the neutrino mass and lifetime, next generation measurements of the matter power
spectrum at different redshifts can help break that degeneracy [19]. It will be interesting to revisit the
forecast on the sensitivity of future cosmological data to the sum of neutrino masses and their lifetime
in light of our improved formalism.
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A Excluding the relativistic decay regime from the MCMC analysis

In our baseline analysis, we have extrapolated our scans to the (mildly-)relativistic decay regime,
despite the fact that the equations do not include inverse decays. We have then interpreted the bound
on the sum of neutrino masses when considering non-relativistic decays as the intersect between the
non-relativistic decay condition Γν > H(Tν = mν/3) and the 2σ limit derived from our analysis.

In this appendix, we investigate how excluding the relativistic decay regime of parameter space
from the scan can affect the bounds on

∑
mν/eV and Log10(Γν/[km/s/Mpc]). As we are interested

in (semi-)relativistic decays, we focus on the parameter space Log10(Γν/[km/s/Mpc]) ∈ [3, 6.5].
Our results are presented in Fig. 8. In the 2D plane {Log10Γν ,

∑
mν} and below the non-relativistic

line Γν = H(Tν = mν/3), we find that imposing the condition directly within the MCMC prior
relaxes the bound by∼ 10−20%. Nevertheless, after marginalizing over Log10(Γν)), we find that the
‘naive’ bound coming from the intersect between the non-relativistic line ( Γν > H(Tν = mν/3)) and
the 2σ limit without priors is in excellent agreement with that coming from imposing this condition
as a prior in the analysis, both yielding

∑
mν < 0.42 eV.

References

[1] J. R. Bond, G. Efstathiou, and J. Silk, “Massive Neutrinos and the Large Scale Structure of the
Universe,” Phys. Rev. Lett., vol. 45, pp. 1980–1984, 1980. [,61(1980)].

[2] W. Hu, D. J. Eisenstein, and M. Tegmark, “Weighing neutrinos with galaxy surveys,” Phys. Rev. Lett.,
vol. 80, pp. 5255–5258, 1998.

– 20 –



0.2 0.4 0.6 0.8 1.0 1.2∑
mν/eV

3

4

5

6

L
og

1
0
(Γ

ν
/k

m
s−

1
M

p
c−

1
)

Γν
=
H(anr)

no prior

reject if Γν > H(T = mν/3)

Figure 8. Posterior distribution of
∑
mν and Log10(Γν/[km/s/Mpc]) when confronted to Planck 2018 +

BAO + FS + Pantheon for two different choices of priors on Γν (see legend).

[3] Y. Y. Y. Wong, “Neutrino mass in cosmology: status and prospects,” Ann. Rev. Nucl. Part. Sci., vol. 61,
pp. 69–98, 2011.

[4] J. Lesgourgues, G. Mangano, G. Miele, and S. Pastor, Neutrino Cosmology. Cambridge University
Press, 2 2013.

[5] M. Tanabashi et al., “Review of Particle Physics,” Phys. Rev. D, vol. 98, no. 3, p. 030001. 1898 p, 2018.

[6] M. Lattanzi and M. Gerbino, “Status of neutrino properties and future prospects - Cosmological and
astrophysical constraints,” Front.in Phys., vol. 5, p. 70, 2018.

[7] N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys., vol. 641,
p. A6, 2020.

[8] P. D. Serpico, “Cosmological neutrino mass detection: The best probe of neutrino lifetime,” Phys. Rev.
Lett., vol. 98, p. 171301, 2007.

[9] P. D. Serpico, “Neutrinos and cosmology: a lifetime relationship,” J. Phys. Conf. Ser., vol. 173,
p. 012018, 2009.

[10] J. F. Beacom, N. F. Bell, and S. Dodelson, “Neutrinoless universe,” Phys. Rev. Lett., vol. 93, p. 121302,
2004.

[11] Y. Farzan and S. Hannestad, “Neutrinos secretly converting to lighter particles to please both KATRIN
and the cosmos,” JCAP, vol. 1602, no. 02, p. 058, 2016.

[12] J. L. Aalberts et al., “Precision constraints on radiative neutrino decay with CMB spectral distortion,”
Phys. Rev., vol. D98, p. 023001, 2018.

[13] G. Barenboim, J. Z. Chen, S. Hannestad, I. M. Oldengott, T. Tram, and Y. Y. Y. Wong, “Invisible
neutrino decay in precision cosmology,” JCAP, vol. 03, p. 087, 2021.

– 21 –



[14] S. Hannestad and G. Raffelt, “Constraining invisible neutrino decays with the cosmic microwave
background,” Phys. Rev. D, vol. 72, p. 103514, 2005.

[15] A. Basboll, O. E. Bjaelde, S. Hannestad, and G. G. Raffelt, “Are cosmological neutrinos
free-streaming?,” Phys. Rev. D, vol. 79, p. 043512, 2009.

[16] M. Archidiacono and S. Hannestad, “Updated constraints on non-standard neutrino interactions from
Planck,” JCAP, vol. 07, p. 046, 2014.

[17] M. Escudero and M. Fairbairn, “Cosmological Constraints on Invisible Neutrino Decays Revisited,”
Phys. Rev. D, vol. 100, no. 10, p. 103531, 2019.

[18] Z. Chacko, A. Dev, P. Du, V. Poulin, and Y. Tsai, “Cosmological Limits on the Neutrino Mass and
Lifetime,” JHEP, vol. 04, p. 020, 2020.

[19] Z. Chacko, A. Dev, P. Du, V. Poulin, and Y. Tsai, “Determining the Neutrino Lifetime from Cosmology,”
Phys. Rev. D, vol. 103, no. 4, p. 043519, 2021.

[20] J. A. Frieman, H. E. Haber, and K. Freese, “Neutrino Mixing, Decays and Supernova Sn1987a,” Phys.
Lett., vol. B200, pp. 115–121, 1988.

[21] A. S. Joshipura, E. Masso, and S. Mohanty, “Constraints on decay plus oscillation solutions of the solar
neutrino problem,” Phys. Rev., vol. D66, p. 113008, 2002.

[22] J. F. Beacom and N. F. Bell, “Do solar neutrinos decay?,” Phys. Rev., vol. D65, p. 113009, 2002.

[23] A. Bandyopadhyay, S. Choubey, and S. Goswami, “Neutrino decay confronts the SNO data,” Phys. Lett.,
vol. B555, pp. 33–42, 2003.

[24] J. M. Berryman, A. de Gouvea, and D. Hernandez, “Solar Neutrinos and the Decaying Neutrino
Hypothesis,” Phys. Rev. D, vol. 92, no. 7, p. 073003, 2015.

[25] P. Baerwald, M. Bustamante, and W. Winter, “Neutrino Decays over Cosmological Distances and the
Implications for Neutrino Telescopes,” JCAP, vol. 10, p. 020, 2012.

[26] G. Pagliaroli, A. Palladino, F. L. Villante, and F. Vissani, “Testing nonradiative neutrino decay scenarios
with IceCube data,” Phys. Rev. D, vol. 92, no. 11, p. 113008, 2015.

[27] M. Bustamante, J. F. Beacom, and K. Murase, “Testing decay of astrophysical neutrinos with incomplete
information,” Phys. Rev. D, vol. 95, no. 6, p. 063013, 2017.

[28] P. B. Denton and I. Tamborra, “Invisible Neutrino Decay Could Resolve IceCube’s Track and Cascade
Tension,” Phys. Rev. Lett., vol. 121, no. 12, p. 121802, 2018.

[29] A. Abdullahi and P. B. Denton, “Visible Decay of Astrophysical Neutrinos at IceCube,” Phys. Rev. D,
vol. 102, no. 2, p. 023018, 2020.

[30] M. Bustamante, “New limits on neutrino decay from the Glashow resonance of high-energy cosmic
neutrinos,” 4 2020.

[31] M. C. Gonzalez-Garcia and M. Maltoni, “Status of Oscillation plus Decay of Atmospheric and
Long-Baseline Neutrinos,” Phys. Lett., vol. B663, pp. 405–409, 2008.

[32] R. A. Gomes, A. L. G. Gomes, and O. L. G. Peres, “Constraints on neutrino decay lifetime using
long-baseline charged and neutral current data,” Phys. Lett., vol. B740, pp. 345–352, 2015.

[33] S. Choubey, D. Dutta, and D. Pramanik, “Invisible neutrino decay in the light of NOvA and T2K data,”
JHEP, vol. 08, p. 141, 2018.

– 22 –



[34] B. Aharmim et al., “Constraints on Neutrino Lifetime from the Sudbury Neutrino Observatory,” Phys.
Rev., vol. D99, no. 3, p. 032013, 2019.
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