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1 Introduction

We consider a hypercolour (HC) gauge theory which is asymptotically free in the ultraviolet
(UV), approaches an infrared (IR) fixed-point, thus becoming approximately scale-invariant
at some scale ΛUV, and eventually undergoes confinement and develops a mass gap m∗. In
the process, some HC flavour symmetries may undergo spontaneous symmetry breaking,
with f the decay constant of the associated Nambu-Goldstone bosons (NGBs). For generic
strong dynamics, one expects

m∗ ∼ g∗f ∼
4π√
NC

f ≡ 4πf̃ , (1.1)

where g∗ is the typical coupling between the bound states, NC the number of hypercolours,
and we defined a reduced decay constant f̃ ≡ f/

√
NC . We wish to consider theories

with a number NF of HC fermions, and take the Veneziano limit of large NC and fixed
xF ≡ NF /NC of order one, corresponding to a large flavour symmetry. There are at least
two motivations for such choice: (i) we wish to obtain a coset large enough to contain the
Standard Model (SM) gauge and global symmetries; (ii) we want the theory to lie in the
vicinity of the lower edge of the conformal window, resulting in near-conformal dynamics,
which requires xF of order unity.

If the SM Higgs boson were identified with one of the composite NGBs, then the scale
f would characterise the deviations from the SM predictions for the electroweak precision
parameters as well as for the Higgs couplings. In this scenario current data imply a lower
bound f & 1TeV. While NGBs are massless in the exact-global-symmetry limit, the other
composite resonances are expected to have masses of order m∗ or heavier, which lie in the
multi-TeV range, possibly out of the reach of the Large Hadron Collider (LHC) even for
f ∼ 1TeV and NC ∼ 10.

We will employ dual holographic models aimed at capturing the salient features of
the HC theory, in order to study the spectrum of resonances in the Veneziano limit. The
main question of our investigation is whether some resonances could be parametrically
lighter than m∗, and thus provide the first observable footprints of the new strong dynamics.
While the spectrum of bosonic resonances was analysed in a companion paper [1], here we
focus on the fermionic sector. We will see that, in the large-NC limit, the lightest fermionic
resonances are expected to be meson-like objects, rather than baryon-like objects, so that
the generic scaling of eq. (1.1) remains valid for their masses. However, the spectrum
may include massless chiral (partially) composite fermions, as well as vector-like composite
fermions, whose mass may become significantly smaller than m∗ in specific regions of the
parameter space.

The idea of partial compositeness, originally introduced in [2], posits that the SM
fermions may mix with fermionic states of the strongly-coupled sector containing the
composite Higgs. This mechanism may be used to explain the mass hierarchies of the
SM fermions as being due to the mixing with operators of different scaling dimensions,
leading in particular to a large Yukawa coupling for the top quark. While most work on
this subject has been within the framework of effective field theory (for reviews, see [3, 4]),
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in recent years there has been an interest in building UV complete models that contain the
requisite fermionic states, with the right quantum numbers to couple to the SM fermions,
by considering gauge theories with constituent fermions in one or more representations of
HC [5–10], or supersymmetric gauge theories [11]. However, so far little is known about the
spectrum of such fermionic states. On the lattice, the fermionic spectra of SU(4) and Sp(4)
gauge theories have been studied in [12] and [13–15], respectively, while consequences for
partial compositeness have been further explored in [16].

Conversely, within the holographic approach to strongly coupled dynamics, the study
of the fermionic sector of composite Higgs models goes back to the early papers on the
subject [17–21], which analysed bottom-up models for which the background geometry in the
bulk is a slice of anti-de Sitter (AdS). More elaborate models can be constructed by including
scalar fields whose backreaction on the bulk geometry causes it to deviate from AdS in the
deep IR [22–26], leading to a soft wall that ends the geometry, while dynamically inducing
a mass gap, similar to what is the case in top-down confining models [27–31]. The fermionic
sector of such soft-wall models has been studied in the context of warped extra dimensions
in [32–37]. Taking inspiration from top-down models such as [31], in which extended objects
(D-branes) that probe the background geometry are responsible for symmetry breaking,
recently bottom-up models have been constructed and both their bosonic and fermionic
spectra have been computed in [38, 39]. While composite Higgs models have also been
studied within the fully top-down approach to holography [40], so far the fermionic spectrum
has not been computed, nor has partial compositeness been implemented.

The Veneziano limit, with xF ∼ 1, requires taking into account the backreaction of
the flavour sector on the geometry. We focus here on the two Models I and II introduced
in [1] within the bottom-up approach to holography. The first contains a single bulk scalar
field that is responsible both for breaking the flavour-symmetry and for ending the space
in the IR via its backreaction on the metric. The amount of backreaction depends on the
number of flavours, such that in the limit xF → 0 the background geometry approaches
AdS. Model II additionally contains a second bulk scalar, that is a flavour singlet, and
whose non-trivial radial profile governs the breaking of scale invariance. To both these
models, we add a bulk fermion, in order to describe composite fermionic states in the dual
field theory. Furthermore, in Model II we allow this fermion to couple to the flavour singlet
scalar via a Yukawa term in the bulk.

We compute the spectrum of fermionic resonances in Models I and II. As we shall see,
both these models are rich enough to incorporate multi-scale dynamics in certain regions of
the parameter space. Moreover, the effect of the Yukawa coupling may be thought of as the
bulk fermion acquiring a radially dependent mass, due to the profile of the flavour-singlet
scalar field, which leads to the scaling dimension of the dual fermionic operator effectively
varying with energy scale. Both these features may result in richer scenarios compared to
bottom-up models with a single characteristic scale m∗ as in eq. (1.1), such as those based
on a slice of AdS [17–21].

Next, we couple the strong sector to an elementary fermion, which in the case of partial
compositeness would be one of the SM quarks (or leptons). We investigate the running of the
linear coupling between the elementary and strong sectors, by making use of the formalism
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of the holographic Wilsonian renormalisation group (RG) [41, 42], originally proposed to
study the RG flow of double-trace operators. We pay particular attention to situations in
which our models may contain dangerously irrelevant operators, that is, deformations that
are irrelevant from the point of view of the UV fixed point, but nevertheless have a large
effect on the low energy dynamics due to a non-trivial RG flow.

Finally, we compute the partially composite spectrum, and correlate it with expectations
from the analysis of the RG flow. We discuss how and when the spectrum differs from that
of composite Higgs models based on the AdS background, in particular when a fermionic
resonance can be parametrically light.

This paper is organised as follows. In section 2.1, we review the gauge theory, paying
particular attention to the fermionic operators, while, in section 2.2, we review Models I
and II of [1] and introduce the fermionic sector in the bulk. In section 3, we compute the
spectrum of the strongly coupled sector in isolation, and briefly discuss how it compares to
lattice simulations. We also present a toy model for which some of the salient features of
the spectrum can be reproduced analytically. Section 4 first describes how to apply the
formalism of holographic Wilsonian RG to the linear coupling of partial compositeness, and
then makes use of it to study the RG flows in Models I and II. In section 5, we compute
the fermionic spectrum in the scenario of partial compositeness, which is the most relevant
phenomenologically. Finally, in section 6 we conclude with a discussion of the various novel
scenarios that our models make possible, as well as consequences for future model building.
Appendix A contains a detailed classification of the HC fermionic operators, appendix B
collects technical results on fermions in five dimensions, appendix C recalls some features of
the bosonic spectra for comparison, and appendix D contains an explicit derivation of the
partial-compositeness RG flow equation.

2 Modelling compositeness via gauge-gravity duality

2.1 The hypercolour theory

The ultraviolet completion of the composite Higgs scenario is subject to a number of the-
oretical and phenomenological constraints. A gauge theory of fermions can satisfy such con-
straints, for appropriate choices of symmetries and fields, as we discussed in detail in section
II of [1]. Here we just recall the main features of the suitable gauge theory we will employ.

We consider a gauge group GHC = Sp(2NC), where NC is the number of hypercolours.
Such group has a unique invariant tensor Ωij = −Ωji with indexes in the fundamental
(i, j = 1, . . . , 2NC). Our choice of the matter content, motivated by [1] and further justified
below, amounts to 2NF Weyl fermions in the fundamental, pseudoreal representation of
Sp(2NC), and one Weyl fermion in a two-index, real representation of Sp(2NC),

ψai , a = 1, . . . , 2NF , χij or χ′ij . (2.1)

There are two possible irreducible, two-index representations: traceless and antisymmet-
ric, χijΩij = 0 and χij = −χji, or symmetric, χ′ij = χ′ji. In either case, the fermion
global, anomaly-free symmetry is GF = SU(2NF ) × U(1), while its vector subgroup is
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HF = Sp(2NF ). We assume that, when the HC sector confines and develops a mass gap m∗,
also the flavour symmetry is spontaneously broken, GF → HF , with decay constant f and
the Higgs belonging to the associated set of Goldstone bosons. The coset SU(2NF )/Sp(2NF )
corresponds to a vacuum expectation value of 〈ψaψb〉 proportional to an Sp(2NF ) invariant
and antisymmetric tensor, Σab = −Σba.

In the confined phase the observables correspond to composite, HC-invariant operators.
The bosonic operators were analysed in [1]. Here we focus on fermionic operators, relevant
for the computation of the spectrum of composite fermions. In this section we limit ourselves
to operators (i) with canonical dimension ≤ 9/2, likely to be the most relevant even in the
strongly-coupled regime, and (ii) containing spin-1/2 components only, with no spin-3/2 or
larger components. We refer the Reader to appendix A for a more general list of fermionic
operators, and for the explicit contractions of HC and spinor indexes, that here we drop
for simplicity.

The minimal fermionic operator is made by two constituents only,

F̂ ≡ Fµνχ′σµν , (2.2)

where Fµν is the HC field strength, which transforms in the adjoint representation. For
an Sp(2NC) group, the adjoint coincides with the two-index symmetric representation of
χ′, allowing to form a HC-invariant combination. The operator F̂ has canonical dimension
7/2, which is the smallest possible value for a composite fermion, in theories with no scalar
constituents.

The next-to-minimal fermionic operators are fermion trilinears, with canonical dimension
9/2. There are four independent operators involving two ψ and one χ constituents,

F ab1 = ψ[aχψb] , F ab2 = ψ{aχψb} , F ab3 = ψ[aχψb] , F a4 b = ψaχψb , (2.3)

where [ ] and { } indicate antisymmetrisation and symmetrisation in the flavour SU(2NF )
indexes, respectively. Note that F3 has no symmetric counterpart, see appendix A for
details. In the model with χ replaced by χ′, that is symmetric in its HC indexes, the only
difference is a reversed flavour symmetry,

F ′1
ab = ψ{aχ′ψb} , F ′2

ab = ψ[aχ′ψb] , F ′3
ab = ψ{aχ′ψb} , F ′4

a
b = ψaχ′ψb . (2.4)

Concerning the flavour of these operators, one should notice that (i) the two-index symmetric
representation of SU(2NF ) and Sp(2NF ) coincide; (ii) the two-index antisymmetric of
SU(2NF ) contains an Sp(2NF ) singlet, obtained by tracing with the tensor Σab, plus a
traceless antisymmetric of Sp(2NF ); (iii) the operators F4 and F ′4 reduce to an SU(2NF )
singlet, obtained by tracing with δba, plus an SU(2NF ) adjoint, and the latter decomposes
under Sp(2NF ) into a symmetric plus a traceless antisymmetric.

There are also two independent operators involving three χ constituents,

Fχ = χχχ , F̃χ = χχχ . (2.5)

The analogous operators obtained by replacing χ with χ′ vanish identically, see appendix A
for the explicit index contractions.

– 4 –



J
H
E
P
0
5
(
2
0
2
2
)
0
6
6

We will be interested in two-point correlators of fermionic operators, as their poles
correspond to the masses of composite fermion resonances. At leading order in the number
of hypercolours, one can check diagrammatically that

〈FF 〉 ∼ N2
C , (2.6)

when F is any of the operators in eqs. (2.2)–(2.4), with fixed flavour indices. Note that
the large-NC behaviour is due to the presence of the field χ, which transforms under a
two-index representation of the HC gauge group. This is the case we will analyse in the
dual holographic theory. For the operators in eq. (2.5), the two-point correlator grows with
N3
C , a behaviour that could also be described holographically in an analogous fashion. Note

that one may also consider mixed correlators, between two different fermionic operators,
which may be non-vanishing when the operators belong to the same Lorentz and flavour
representations. The non-standard scalings with NC are essentially due to the two HC
indexes of χ (χ′), to be contrasted with QCD-like theories with only fermions in the
(anti-)fundamental representation. Nonetheless, it is important to notice that the fermion
operators F ∼ ψχψ share some important properties with meson operators M ∼ ψψ: their
mass gap does not scale with NC (contrary to e.g. baryon masses in QCD-like theories), so
that generically one expects mF ∼ mM ∼ m∗, and their trilinear coupling to mesons scales
with N−1/2

C , namely gF̄FM ∼ gMMM ∼ g∗.
We will be especially interested in the scaling dimension of the operators F when the

HC theory lies close to an interacting fixed point. While such fixed point is required to be
strongly coupled in order for anomalous dimensions to be large, perturbative estimates may
still provide some guidance. The one-loop anomalous dimension of three-fermion operators,
defined by [F ] = 9/2 + γ, were computed in general in [43]. Particularising these results to
the operators of eq. (2.3), we find

γ1,2,3,4 = g2
CNC

16π2

[
(0, −4, 0, −3) +O(1/NC)

]
. (2.7)

The operators of eq. (2.4) have the same anomalous dimensions, up to different O(1/NC)
corrections. Note that γ1,3 do not grow with NC , however this may well be a one-loop
accident: higher-loop contributions to γi have not been evaluated to date, but the contribu-
tion to γi at n loops is generically expected to be of order λn/(16π2)n, where λ ≡ g2

CNC

is the ’t Hooft coupling. We also remark that O(1/NC) corrections may be quantitatively
relevant even for NC ∼ 10. These anomalous dimensions should be evaluated at the fixed
point, where the HC gauge coupling takes some value ḡC . The perturbative two-loop
(renormalisation-scheme independent) estimate for the latter [44] is given in our model
by [1]

λ̄

16π2 ≡
ḡ2
CNC

16π2 = 9− 2xF
13xF − 18 +O(1/NC) . (2.8)

Let us consider e.g. a partial compositeness operator F2fSM , which mixes F2 with a SM
fermion fSM . Such operator becomes marginal when γ̄2 ' −2, and this requires xF ' 2.1.
However marginality corresponds to a large ’t Hooft coupling, λ̄/(16π2) ' 1/2, so that
the above perturbative result should be taken at most as an order-of-magnitude estimate.
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In particular, the position of the fixed point is very sensitive to higher orders — for
example, by replacing the two-loop HC beta-function with the four-loop beta-function
in the MS scheme, the fixed point is reached for significantly smaller values of xF : the
condition γ̄2 ' −2 is realised for xF ' 0.4. Higher order beta and gamma functions are in
general scheme dependent; perturbative scheme-independent approaches to higher loops
have been developed for some QCD-like anomalous dimensions (see e.g. [45, 46]), but not
for the F operators relevant here. On the other hand, as xF grows, the fixed point rapidly
becomes weakly coupled and the perturbative estimate of eq. (2.8) can be trusted, e.g.
λ̄/(16π2) ' 1/34 for xF = 4. This regime appears to be far from the floor of the conformal
window, it corresponds to small anomalous dimensions, and moreover it does not admit a
simple holographic description in terms of gravity.

Having completed the survey of the most relevant fermionic operators, let us discuss
their SM quantum numbers. The SM symmetries are embedded in the unbroken flavour
group HF , as they should be preserved down to scales well below f . The minimal model
for composite quark partners has NF = 5, with

HF = Sp(10) ⊃ SU(3)c × SU(2)L × SU(2)R ×U(1)B ,
ψa ∼ 10Sp(10) = [(3, 1, 1)1/3 + (3̄, 1, 1)−1/3 + (1, 2, 1)0 + (1, 1, 2)0]SU3221 .

(2.9)

Here SU(3)c is identified with ordinary colour, SU(2)L × SU(2)R with weak interactions
including custodial symmetry, and U(1)B with baryon number, and there are two possible
embeddings of hypercharge, Y = ±T3R+B/2. The bosonic operator (ψaψb) contains a Higgs
component, h ∼ (1, 2, 2)0. Composite partners for the quark doublets, QL ∼ (3, 2, 1)1/3, as
well as for the up- and down-quark singlets, QRc = (TRc, BRc) ∼ (3̄, 1, 2)−1/3, can be found in
any of the fermionic operators of eq. (2.3) or eq. (2.4). Indeed, such components are contained
in both the two-index symmetric and antisymmetric representations of Sp(10), see eq. (A.6).
There is also an alternative embedding for the down-quark singlet partner, BRc ∼ (3̄, 1, 1)2/3.
Such component is present only in the Sp(10) two-index antisymmetric operators.

Therefore, the model allows to implement partial compositeness for any SM quark,
by coupling it with one or more composite operators with the corresponding quantum
numbers. One expects that the composite-elementary mixing is the largest for the most
relevant operator, thus it is sufficient to consider a single operator for each SM quark. This
allows, in turn, to induce the quark Yukawa couplings to the composite Higgs. In fact a
single Sp(10) two-index fermion is sufficient, in principle, to embed a whole quark family.
However, the Yukawa hierarchies, such as the small ratio yb/yt, are more easily explained
by introducing couplings to operators with different scaling dimensions for the different
quarks. Note that the fermion operators in eqs. (2.3) and (2.4) contain, beside SM quark
partners, several other components which do not mix with the SM quarks, and may also
have an interesting phenomenology, in particular if they result in states significantly lighter
than the HC mass gap, m∗ ∼ 4πf̃ .

The above discussion focused on models for a composite NGB Higgs boson, accompanied
by composite partners for the SM quarks. However, composite fermions may have a number
of different phenomenological applications, and we will see that the holographic theory,
described in the following, is largely independent from the specific embedding of the SM
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symmetries within GF , and from the specific couplings of the various SM fields to the
HC sector. One example is provided by composite twin Higgs models [47–49], engineered
to protect the Higgs mass in the absence of new coloured states: in this case the role of
top-quark partners is played by composite fermions with only electroweak charges, whose
mass is significantly less constrained. Such scenarios correspond to different cosets GF /HF ,
but typically they also require a large NF . Another possibility is that the lightest composite
fermion may be stable, for example due to a non-trivial baryon number: it may then provide
an interesting candidate for dark matter, carrying electroweak charges or even being a SM
singlet [50–52]. Such dark matter candidates may already be present in models for Higgs
and top partners, or they may motivate a HC sector on their own. Finally, note that a
composite fermion may be arbitrarily light when it is a SM singlet, i.e. a sterile neutrino,
with various, associated phenomenological implications [53–55]. Our holographic analysis
of the spectrum of composite fermions may be of interest in all these contexts.

2.2 The holographic theory

2.2.1 Bosonic sector

Three models of composite Higgs, referred to as Models I, IIA, and IIB, were introduced
in [1], which focused on their bosonic sectors. In this paper, we restrict our attention
to Model I and IIB, the latter of which we henceforth simply refer to as Model II. The
main results that we will use in our analysis of the fermionic sector concern the form
of the background solutions, as well as the calculation of the Goldstone decay constant,
which we will use to normalise the fermionic spectra. Both models consist of gravity,
an SU(2NF ) gauge field AM ,1 as well as a scalar sector. The scalar sector contains the
antisymmetric complex scalar Φab, dual to ψaψb and responsible for flavour-symmetry
breaking. In addition, Model II also contains a flavour singlet scalar field φ, responsible for
breaking scale invariance. The action can be written on the form

S = Sgrav + Sgauge + Sscalar , (2.10)

where the gravity and gauge field parts, respectively Sgrav and Sgauge, are the same for all
the models:2

Sgrav =N2
C

∫
d5x
√
−g R4 , Sgauge =−NC

∫
d5x
√
−gTr

[1
2g

MP gNQFMNFPQ
]
, (2.11)

with R the five-dimensional Ricci scalar, and FMN the field strength associated with AM .
The scalar part Sscalar of the action is model dependent, and for Model I it is given by

S(I)
scalar = −

∫
d5x
√
−g

{
NCTr

[
gMN (DMΦ)†DNΦ

]
+N2

CV(Φ)
}
, (2.12)

1For the reasons discussed in [1] (see the two paragraphs around eq. (4.3) therein), we do not include the
U(1)ψ and U(1)χ sectors in our analysis.

2We correct a typographical error, relative to [1], which appeared in the numerical factor in front of the
kinetic term for the gauge field.
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while for Model II, it takes the form

S(II)
scalar = −

∫
d5x
√
−g

{
NCTr

[
gMN (DMΦ)†DNΦ

]
+N2

C

1
2g

MN∂Mφ∂Nφ+N2
CV(Φ, φ)

}
. (2.13)

In both models, the potential V is chosen such that it allows for solutions that in the UV
approach that of AdS with unit scale. The background solutions for the metric and the
anti-symmetric complex scalar are taken to be on the form

ds2 = dr2 + e2A(r)dx2
1,3 , Φ(r) = σ(r)

2 Σ , (2.14)

where the warp factor is given by A(r), while the radial profile of Φ(r) is parametrised by
the function σ(r) and is proportional to the real, antisymmetric matrix Σ introduced after
eq. (2.1). All background functions are assumed to only depend on the radial coordinate r,
including the background profile of the scalar φ(r), present in Model II.

Focusing our attention on Model I, the scalar potential V is given in terms of a
superpotential W as

V(Φ) = 1
2xF
W ′(I)2 − 4

3W(I)2 , (2.15)

W(I) = −3
2

1 + xF sinh2

√∆
3 I

 . (2.16)

Here, I is an SU(2NF ) invariant built from Φ, the precise form of which does not presently
concern us; we only mention that it evaluates to I = σ(r) on the background solutions (for
details, see [1]). The parameter ∆ is related to the scaling dimension of the operator dual
to Φ, while xF = NF /NC is the ratio between the number of flavours and colours. With
this choice of potential, we find the background solution

σ(r) =
√

3
∆arctanh

(
e−∆r

)
, A(r) = r + xF

2∆ log
(
1− e−2∆r

)
. (2.17)

The end of space, conventionally chosen to be at r = 0, is generated dynamically by the
backreaction of the scalar Φ on the metric. As can be seen from the form of the warp factor
A(r), this backreaction is large when the number of flavours xF is large, while in the limit
xF → 0 the background approaches that of an AdS geometry. The scaling dimension of
the operator Oσ = Tr(Σabψ

aψb) dual to σ is given by [Oσ] = 2 + |2−∆|. Furthermore, for
∆ ≥ 2, the radial profile of σ(r) has the dual interpretation in terms of Oσ developing a
VEV and breaking the flavour symmetry (purely) spontaneously.

Coming to Model II, the scalar potential V is again given in terms of a superpotential
W as

V(Φ, φ) = 1
2xF

(
∂W(I, φ)

∂I

)2
+ 1

2

(
∂W(I, φ)

∂φ

)2
− 4

3W(I, φ)2 , (2.18)
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where

W(I, φ) = −3
2

1 + xF sinh2

√∆
3 I

+ sinh2

√∆φ

3 φ

 , (2.19)

leading to the background solution

φ(r) =
√

3
∆φ

arctanh

φc
√

∆φ

3 e−∆φr

 ,

A(r) = r + xF
2∆ log

(
1− e−2∆r

)
+ 1

2∆φ
log

(
1− φ2

c

∆φ

3 e−2∆φr
)
, (2.20)

with σ(r) the same as in eq. (2.17) for Model I. The parameter ∆φ governs the scaling
dimension of the operator Oφ dual to φ, such that [Oφ] = 2 + |2−∆φ|. For 0 < ∆φ < 2,
the profile of φ(r) has the interpretation as introducing the relevant deformation Oφ in the
dual field theory, thus explicitly breaking conformal invariance. The integration constant φc
governs the size of this deformation.3 Expanding φ asymptotically in the UV, one obtains

φ = φc e
−∆φr + · · · , (2.21)

such that, for ∆φ < 2, φc is equal to the source for Oφ. In order for the flavour-symmetry
breaking scale to become dynamically related to the mass gap, we require that it is the
profile of σ(r), rather than φ(r), that is responsible for the end of the geometry in the
IR, which implies that φc <

√
3

∆φ
. In particular, it follows that for a nearly marginal

deformation ∆φ ' 0, the maximum allowed value of the source φc is large.
In addition to knowing the background solutions themselves, we will also need to

compute the Goldstone decay constant f . Decomposing the gauge field as AM = AÂMT
Â +

VAMT
A, where T Â (TA) are the broken (unbroken) generators of SU(2NF ), the axial-vector

AM (q, r) satisfies the equation of motion[
∂2
r + 2A′∂r −

(
q2e−2A + g2

5σ
2
) ]
PµνAν(q, r) = 0 , (2.22)

where g5 is the bulk gauge coupling, and qµ is the four-momentum. After writing
PµνAν(q, r) = Ãµ(q)a(q, r) and imposing the IR boundary condition ∂ra|r1 = 0, we obtain
the decay constant as

f2 = lim
r→∞

{
2NC

e2A

g2
5

∂ra

a

∣∣∣
q2=0

}
. (2.23)

Taking out the overall factor of NC , we define f̃ ≡ N−1/2
C f .

As usual, the holographic radial direction is related to energy scale on the field theory
side. One may estimate the relation between the two by defining the scale Λ(r) through [56]

Λ(r)−1 =
∫ ∞
r

dr̃ e−A(r̃) . (2.24)

3Comparing to the notation of [1], we have that φc = φB
√

3
∆φ

.

– 9 –



J
H
E
P
0
5
(
2
0
2
2
)
0
6
6

This expression is motivated by the fact that Λ(r)−1 is the time it takes for a massless
particle to reach from the boundary to the value of the radial coordinate r. We further
define the characteristic IR scale as

ΛIR ≡ lim
r→0

Λ(r) . (2.25)

Since in the IR the integrand appearing in eq. (2.24) scales as

e−A ∼ r̃−
xF
2∆ + · · · , (2.26)

one obtains that ΛIR = 0 when xF ≥ 2∆. In proximity to the limiting case, when xF ' 2∆,
one obtains a parametrically small ΛIR. In Model II, there is an additional way for this to
happen. Close to the upper bound φc <

√
3

∆φ
, in a range of the radial coordinate, one has

the following scaling of the integrand appearing in eq. (2.24):

e−A ∼ r̃
−xF2∆−

1
2∆φ ,

3− φ2
c∆φ

6∆φ
. r̃ . min

(
1

2∆ ,
1

2∆φ

)
. (2.27)

When ∆φ ≤ ∆
2∆−xF , this may lead to a suppressed ΛIR, provided φc is sufficiently close to

saturating its upper bound. We will see later that the multi-scale dynamics that results
from a small ΛIR has interesting effects both on the spectrum (sections 3 and 5), as well as
on the RG flow arising in the context of partial compositeness (section 4).

The relation between the two energy scales ΛIR and f̃ is non-trivial, and in general
needs to be determined numerically. When presenting our results for the fermionic spectrum
in sections 3 and 5, we will mostly normalise the masses in units of f̃ . The choice of f̃
is suitable when discussing phenomenology, since the (non-)observation of experimental
deviations from the SM predictions directly provides information about the ratio v/f , with
v the electroweak scale, and thus about f̃ given a choice of NC . However, in some instances,
we will find it more convenient to present our results in units of ΛIR. This includes the case
when ∆ < 2, such that the flavour symmetry is explicitly broken, and there are no exact
NGBs. Moreover, in some regions of parameter space, associated with multi-scale dynamics,
there is a large separation between ΛIR and f̃ . The mass of the lightest fermionic composite
state may be governed by the former, making it the more natural unit, in particular when
discussing light states in the partially composite spectrum of section 5.

2.2.2 Fermionic sector

In order to model fermionic states in the field theory, we supplement the bosonic part of
the action by introducing a Dirac fermion Ψ in the bulk. We have in mind that the field
theory operator dual to Ψ is one of those listed in eq. (2.3) or eq. (2.4), that may describe
potential top partners. This leads to Ψ being in the symmetric, anti-symmetric or adjoint
representation of SU(2NF ). In all of these cases, in order to reproduce the NC scaling of
eq. (2.6), the overall normalisation of the action should be given by NΨ = N2

C . Considering
simultaneously several fermionic fields in the bulk is of course possible, but at the expense
of making the model more complicated. Also, as discussed in section 2.1, considering a
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single field Ψ is not a severe restriction: on the one hand, a two-index representation of
SU(2NF ) is already large enough to provide partners for both the top and bottom quarks
and, on the other hand, we expect one of the fermionic composite operators to be more
relevant than the others and dominate the mixing with the elementary fermions at low
energies. If one is interested in flavour-singlet fermionic operators (for example, in the χ′

model, F̂ or F ′4
a
a), the dual fermion Ψ should be taken to be a singlet under SU(2NF ), a

possibility that we will mention where relevant. With these considerations, we choose the
fermionic action SΨ to be given by

N−1
Ψ SΨ = −

∫
d5x
√
−g

[1
2
(
ΨΓMDMΨ−DMΨΓMΨ

)
+HΨΨΨ

]
−
∑
i=1,2

si
2

∫
d4x

√
−g̃ΨΨ

∣∣∣
ri
, (2.28)

where summation over flavour indices are implied, and HΨ is a function of the scalar fields
of the model, the precise form of which is model dependent. We have introduced two
boundaries, r1 in the IR and r2 in the UV, which will later serve as regulators in our
computation of the spectrum, and g̃ is the determinant of the metric induced on these
boundaries. We will discuss the possible choices of the signs si = ±1 of the boundary
actions in a moment. The covariant derivative is defined in terms of the spin connection
ωM as

DM = DM + ωM , ωM = 1
8ωMAB[γA, γB] , (2.29)

where DM is the covariant derivative corresponding to the representation of the flavour
symmetry under which Ψ transforms. We have that Ψ = Ψ†iγ0, and that the flat space-time
gamma matrices γA satisfy the identities γ0† = −γ0, γi† = γi, γ5† = γ5. The curved
space-time gamma matrices ΓM are given by

ΓM = eMAγ
A , {ΓM ,ΓN} = 2gMN , (2.30)

where we used the vielbeins eMA, in terms of which the metric can be written as gMN =
eMAe

N
Bη

AB. The components of the spin connection are equal to

ωMAB = eNA∇MeNB = eNA
(
δNP∂M + ΓNMP

)
ePB , (2.31)

where ΓNMP = 1
2g
NQ (∂MgPQ + ∂P gQM − ∂QgMP ) is the Christophel symbol associated

with the bulk metric gMN . Moreover, we decompose Ψ into its left- and right-handed
components according to

PL,R = 1∓ γ5

2 , Ψ = ΨL + ΨR , ΨL,R = PL,RΨ , (2.32)

and use the notation
ΨL,R ≡ ΨL,R = (PL,RΨ)† iγ0 = ΨPR,L . (2.33)

Finally, we note that the action eq. (2.28) is invariant under the transformations

ΨL → ΨR , ΨR → −ΨL ,

HΨ → −HΨ , si → −si . (2.34)
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Having established our notation, let us now discuss the specific models we will study
in the following, in particular our choice of the function HΨ. We decompose HΨ into a
constant piece, given by the fermion mass MΨ, and hΨ which is a function of the scalar
fields of the model:

HΨ = MΨ + hΨ , (2.35)

where it is assumed that hΨ is chosen such that it vanishes asymptotically in the UV when
evaluated on the background solutions. We restrict ourselves to choices of HΨ giving rise to
a mass term and/or a Yukawa interaction. It turns out that writing an SU(2NF ) invariant
Yukawa interaction involving the scalar Φ (in the antisymmetric representation) is forbidden.
In Model I, we therefore make the choice hΨ = 0, such that HΨ = MΨ. In Model II, on the
other hand, it is possible to write a Yukawa interaction involving the flavour-singlet scalar
φ, and we hence choose hΨ(φ) = y5φ, where y5 is the bulk Yukawa coupling.

In our applications, it is sufficient to consider the fermion as propagating on top of a
given background solution, which we will choose as in eq. (2.17) or eq. (2.20), corresponding
to Models I and II, respectively. Making use of the domain-wall form of the metric in
eq. (2.14), we choose the vielbein to be

eMA = diag
(
e−A(r), e−A(r), e−A(r), e−A(r), 1

)
, (2.36)

after which the spin connection takes the simple form

ωM =
(1

2∂rAe
Aγµγ

5, 0
)
. (2.37)

Using this, the Dirac equation, projected on its left- and right-handed components, becomes

(∂r + 2∂rA+HΨ)ΨR + e−Aγµ∂µΨL = 0 ,
−(∂r + 2∂rA−HΨ)ΨL + e−Aγµ∂µΨR = 0 . (2.38)

We will also write hΨ(r), with the understanding that hΨ has been evaluated on the
background solution.

In gauge-gravity duality with fermions in the bulk, it is either the boundary value of
ΨL or ΨR that becomes the source of the dual operator in the field theory. Because of
the invariance of the bulk action under the transformations of eq. (2.34), it is sufficient to
consider the case of ΨL being the source for the field theory operator OR, without loss
of generality. By requiring that the variation of the action SΨ vanishes (for details, see
appendix B.1), it can be shown that this corresponds to the choice s2 = −1, and we hence
restrict ourselves to this case in the following. Similar reasoning relates the choice of s1
to the IR boundary condition imposed on Ψ, such that s1 = −1 implies ΨL|r1 = 0 while
s1 = 1 implies that ΨR|r1 = 0. We will refer to these boundary conditions as (−) and (+),
respectively. The former (latter) implies that the corresponding sector of the dual field
theory is chiral (vector-like), that is, it does (not) include a massless chiral fermion. In both
cases, the scaling dimension of OR at the UV fixed point is given by ∆R ≡ [OR] = 2 +MΨ.
Note that, although our prototype HC theory presented in section 2.1 is a vector-like gauge
theory, the associated spectrum of confined states may or may not contain some massless
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chiral fermions. Besides, we leave open the possibility that our holographic analysis is
applicable to different classes of HC theories. Thus, in the following we will consider both
cases (−) and (+) on equal footing.

3 Spectrum of composite fermions

In this section, we show the numerical results for the spectrum of fermionic resonances,
obtained by studying a bulk Dirac fermion Ψ propagating on a background geometry which
we will take to be either that of Model I or Model II given in section 2.2. The results we
present apply to the strongly coupled sector in isolation; in section 5, we will consider the
effect on the spectrum in the case of coupling the strong sector to an additional elementary
fermion. We also study a toy model that can be solved analytically, and which captures
some of the essential features of the numerical results for Model II. The details regarding
the formalism can be found in appendix B, the main results of which we summarise here.

The spectrum of fermionic resonances can be extracted from the poles of the two-
point function 〈OR(q)OR(−q)〉, which is computed following the procedure of holographic
renormalisation [57–59] in the following way. First, we note that for the purposes of
computing two-point functions, it is sufficient to retain only terms up to quadratic order
in the fluctuations around a given background solution. In particular, one does not need
to consider the fermion gauge coupling to vector bosons, nor the Yukawa coupling to scalar
fluctuations. Second, one evaluates the action SΨ given in eq. (2.28) on shell, obtaining
the regularised on-shell action SΨ,reg. In order to cancel divergences that may arise in the
r2 →∞ limit, one then defines SΨ,sub ≡ SΨ,reg+SΨ,ct, where the counter-terms take the form

SΨ,ct = −NΨ

∫
d4x

√
−g̃ΨL

(
F(−g̃µν∂µ∂ν)iΓσ∂σ

)
ΨL

∣∣∣
r2
, (3.1)

and locality dictates that F be polynomial. After taking into account an overall normal-
isation4

ΨL = NL(r)ψL , NL(r) ≡ exp
(
−2A(r) +MΨr −

∫ ∞
r

dr̃ hΨ(r̃)
)
, (3.2)

the two-point function is obtained by differentiating twice, and taking the limit r2 →∞,
according to

〈OR(q)OR(−q)〉 = lim
r2→∞

{
i δ2SΨ,sub

δψL(−q, r2)δψL(q, r2)

}
, (3.3)

where the Fourier transform is defined according to the convention Ψ(x) =
∫ d4

q
(2π)2 e

iqµxµΨ(q)
and we use the notation Ψ(q, r) ≡ Ψ†(−q, r)iγ0. After writing ψL(q, r) = b(q, r)ψ̃L(q), this
results in (for details, see appendix B.2)

〈OR(q)OR(−q)〉 = lim
r2→∞

{
−NΨN

2
L e

5A 1
/q

(
e−2Aq2F(e−2Aq2) + ∂rb

b

) ∣∣∣
r2

}
. (3.4)

4For future reference, we also define ΨR = NR(r)ψR, where NR(r) ≡ e−2A(r)−MΨr+
∫∞

r
dr̃ hΨ(r̃).
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Here, the scalar b satisfies the equation of motion,[
∂2
r + (∂rA+ 2HΨ)∂r − q2e−2A

]
b = 0 , (3.5)

derived from the Dirac equation (2.38), with IR boundary condition given by either
b|r1 = 0 (−) or ∂rb|r1 = 0 (+). We remind the Reader that HΨ = MΨ for Model I,
while HΨ = MΨ + y5φ for Model II.

The first comment that we make about the expression for 〈OR(q)OR(−q)〉 given in
eq. (3.4) is that, while the counter-terms are important for cancelling UV divergences,
since F is a polynomial its precise form does not affect the location of the poles. Second,
the massive spectrum can be extracted by imposing either the (−) or (+) IR boundary
condition together with the UV boundary condition b|r2 = 0, and identifying those masses
m2 = −q2 for which solutions to eq. (3.5) exist, while finally recovering the physical result
by taking the limits r1 → 0 (the IR regulator approaching the end of space) and r2 →∞
(the UV regulator approaching the boundary at infinity). Third, the presence of a massless
pole depends on the behaviour of the fraction ∂rb

b in the vicinity of q2 = 0. In appendix B.3,
we show that when imposing the (−) IR boundary condition, 〈OR(q)OR(−q)〉 contains a
massless pole, while for the (+) case, no such massless state is present. These results are
in agreement with those for the special case of an AdS background studied in [18]. The
interpretation is that the strongly coupled sector described in the (−) case is chiral (i.e. it
contains an unpaired chiral fermion), while the (+) case describes a vector-like sector.

As mentioned above, the physical spectrum is obtained after taking the limits r1 → 0
and r2 →∞. In order to improve the convergence of the numerics for computing spectra,
one may make use of the asymptotic expansions of the fluctuations under study. Specifically,
we implement such a procedure when setting up the IR and UV boundary conditions for b,
as follows. Asymptotically in the UV, the general solution for b can be expanded in powers
of e−r as

b(q, r) = b1(q)
(
1 + · · ·

)
+ b2(q)

(
e−(1+2MΨ)r + · · ·

)
. (3.6)

This implies that in the limit r2 → +∞, the UV boundary condition b|r2 = 0 selects
b1(q) = 0. Hence, in order to minimize the cutoff effects, in the numerical computations we
impose directly

b|r2 = b2(q)e−(1+2MΨ)r2 , ∂rb|r2 = −(1 + 2MΨ)b2(q)e−(1+2MΨ)r2 , (3.7)

where b2(q) amounts to an unimportant overall normalisation of b. Conversely, in the IR,
we set up the boundary condition for b according to either the (−) or (+) case, by making
use of the general IR expansion

b(q,r) = b̃1(q)

1+ (2∆)2−xF∆ q2

2(xF−2∆)2
(
1−φ2

c
∆φ

3

) 1
∆φ

r2−xF∆ +· · ·

+b̃2(q)
(
r1−xF2∆ +· · ·

)
(3.8)

for Model II. The corresponding IR expansion for Model I is given by eq. (3.8) after putting
φc = 0, thus eliminating the second factor of the denominator. The spectrum is then
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Figure 1. AdS background. Spectrum of fermionic resonances as a function of ∆R normalised to
the IR scale ΛIR. The left panel shows the poles extracted from the correlator 〈OR(q)OR(−q)〉+
while the right panel shows the poles of 〈OR(q)OR(−q)〉−.

extracted by using, for each value of m2 = −q2, the equation of motion (3.5) to numerically
evolve the solutions from the IR and from the UV towards an intermediate value of r where
the two are matched.

3.1 AdS background

Before discussing the fermionic spectrum for the models presented in section 2.2, let us
first recall the results for an AdS background (for further details, see appendix B.4). In
order to obtain a mass gap, we introduce a hard-wall IR cutoff that we take to be at r = 0
without loss of generality. In the case of the (+) IR boundary condition, one obtains that
the spectrum is given by those m for which the Bessel function J∆R− 5

2
(m) = 0. Similarly,

for (−) IR boundary condition, the spectrum is given by those m for which J∆R− 3
2
(m) = 0.

Figure 1 shows the resulting spectra, in units of the IR scale ΛIR = 1, as a function of
the scaling dimension ∆R = [OR]. The (+) case corresponds to the dual strongly-coupled
sector being vector-like, and as a consequence the spectrum is gapped for generic values of
∆R. However, as the scaling dimension approaches ∆R → 3/2, i.e. that of a free fermion,
there is a state that becomes parametrically light. The interpretation is that, in this
limit, a chiral fermion (in this case right-handed) decouples from the rest of the composite
sector and becomes a free, elementary-like fermion, and as a consequence its (left-handed)
chiral partner also becomes massless.5 Conversely, the (−) case corresponds to a chiral
strongly-coupled sector, and hence a massless state is present for generic values of ∆R.

3.2 Model I

In figure 2, we show the spectrum of fermionic states in Model I, as a function of the scaling
dimension ∆R of OR at the UV fixed point, for different values of the number of flavours xF .

5More precisely, as shown in appendix B.4, the two-point functions 〈OROR〉± both vanish exactly in the
limit ∆R → 3/2. After introducing the normalised operator ÕR ≡ OR/

√
2∆R − 3, one can show that close

to ∆R ' 3/2 its two-point functions approach the result for a canonically normalised free massless fermion,
together with an infinite tower of poles whose residues become vanishingly small.

– 15 –



J
H
E
P
0
5
(
2
0
2
2
)
0
6
6

We have chosen the bulk gauge coupling to be equal to g5 = 8, motivated by the comparison
with lattice simulations, as discussed in [1] for the bosonic spectrum. As can be seen, the
results are qualitatively the same as for the case of an AdS background (shown in figure 1):
for the (+) boundary condition, there is one state that becomes parametrically light close
to the free fermion case ∆R → 3

2 , while for the (−) boundary condition, there is always a
massless state, as the dual strongly-coupled sector is chiral.

The effect of increasing the number of flavours is to bring the scale of the mass gap down
relative to that of the decay constant f̃ . There exists indeed a longstanding argument [60, 61]
for f2 to grow proportionally to the largest between NC and NF : this would imply that
for large NF all boson and fermion masses should decrease relatively to f̃ , according to
m/f̃ ∼ x−1/2

F . In our context, the dependence on xF appears more peculiar, as we illustrate
in figure 3. Interestingly, close to the bound at xF = 2∆, when the characteristic IR
scale ΛIR tends towards zero (in units of the AdS radius), the spectrum approaches that
of a continuum (in units of f̃). This differs from the behaviour of the bosonic spectrum
discussed in appendix C, in which case instead there is a gapped continuum (see the left
panel of figure 25). At the same time, we caution the Reader that our holographic models
may be less trustable for large number of flavours, xF � 1: see discussion in [1] as well as
below eq. (2.8). Previous studies of holographic models with, or approaching, a (gapped)
continuum include e.g. [62–64] as well as [65–68], within the bottom-up and top-down
approaches, respectively.

Finally, figure 4 shows the spectrum as a function of ∆, related to the scaling dimension
of the flavour-symmetry-breaking operator, including values ∆ < 2 for which explicit
breaking is present. Again, the decrease of the mass gap (in units of f̃) for smaller values
of ∆ can be understood in terms of approaching the bound at xF = 2∆.

3.3 Model II

In Model II, the inclusion of a bulk Yukawa coupling y5 between the bulk fermion Ψ and
the flavour singlet scalar field φ allows for a fermionic spectrum with richer features than
that of Model I. In figure 5, we show the spectrum as a function of y5. While for both large
negative and positive values of y5, the masses of the heavy states increase, they may be
accompanied by light states:

(i) For large negative y5 and (+) IR boundary condition, there is a state that becomes para-
metrically light. The lower the scaling dimension ∆R, the more pronounced this effect.

(ii) For large positive y5 and (−) IR boundary condition, there is a light state as long
as the scaling dimension ∆R ' 3/2 is close to that of a free fermion. As y5 is further
increased, the mass of this light state is however lifted.

While the first of these two mechanisms for obtaining a light state works regardless of the
scaling dimension ∆R, the second requires being in the vicinity of the free fermion case.
Hence, we may regard (i) as being more realistic of a strongly coupled theory than (ii), in the
absence of a mechanism in strongly coupled field theories that generates scaling dimensions
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Figure 2. Model I. Fermionic spectrum as a function of ∆R for xF = 0.5, 2, 4 (diamonds, dots,
crosses), ∆ = 2.5, g5 = 8, r1 = 10−12, r2 = 15. The left and right panels correspond to imposing
(+) and (−) IR boundary conditions, respectively. All plots are normalised to the decay constant f̃
(notice that ΛIR/f̃ ' 2.4, 2.1, 1.3 for xF = 0.5, 2, 4). The solid line in the right panel indicates the
presence of a massless state.
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Figure 3. Model I. Fermionic spectrum as a function of xF for ∆R = 1.6, 2.5, 4 (diamonds, dots,
crosses), ∆ = 2.5, g5 = 8. In the numerics, we used the IR regulator r1 = 10−12 for xF ≤ 4.3,
while for xF > 4.3 we used r1 = 10−30 in order to minimize cutoff effects; in both cases, the UV
regulator was chosen to be r2 = 15. The left and right panels correspond to imposing (+) and (−)
IR boundary conditions, respectively. All plots are normalised to the decay constant f̃ . The solid
line in the right panel indicates the presence of a massless state.

close to the free fermion case. In the next subsection 3.4, we will describe a simplified toy
model designed to capture the qualitative features of the spectrum shown in figure 5.

Let us comment that a non-zero Yukawa coupling can roughly be thought of as a bulk
mass with radial dependence determined by the background profile of φ, and hence on the
dual field theory side as a scaling dimension that varies with energy scale (we will elaborate
further on this point in section 4 where we introduce an effective scaling dimension of OR).
One may worry that, for large negative y5, this causes the scaling dimension of OR to
effectively be lower than that of a free fermion, in apparent contradiction with unitarity
bounds [69]. Such an interpretation should however be taken with caution since, strictly
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Figure 4. Model I. Fermionic spectrum as a function of ∆ for ∆R = 1.6, 2.5, 4 (diamonds, dots,
crosses), xF = 1, g5 = 8, r1 = 10−12, r2 = 15. The decay constant f̃ is represented by the dashed
black line. We indicated by a vertical line the value ∆ = 2 below which the flavour symmetry
is explicitly broken. The left and right panels correspond to imposing (+) and (−) IR boundary
conditions, respectively. These plots are normalised to the IR scale ΛIR. The solid line in the right
panel indicates the presence of a massless state.
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Figure 5. Model II. Fermionic spectrum as a function of y5 for ∆R = 1.51, 2.5, 4 (diamonds, dots,
crosses), ∆ = 3, xF = 1, g5 = 8, ∆φ = 1, φc = 1.5, r1 = 10−12, r2 = 15. The left and right panels
correspond to imposing (+) and (−) IR boundary conditions, respectively. All plots are normalised
to the decay constant f̃ . The solid line in the right panel indicates the presence of a massless state.

speaking, scaling dimensions can be given a precise meaning only at conformal fixed points,
which in our case implies that the unitarity bound is applicable only at the UV fixed point.

As discussed in section 2.2.1, when ∆φ ≤ ∆
2∆−xF , it is possible to induce a small ΛIR

by increasing the source φc of the flavour singlet operator Oφ. We illustrate this effect in
figure 6 for two values of the Yukawa coupling y5. Close to the upper bound φc <

√
3

∆φ
,

the spectrum approaches that of a continuum, similarly to what happens in figure 3 for
large number of flavours xF . However, there is an important difference in that the bosonic
spectrum (shown in the right panel of figure 25) now approaches a continuum that is no
longer gapped. Furthermore, as is apparent from the bottom panels of figure 6, for which
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Figure 6. Model II. Fermionic spectrum as a function of φc for ∆R = 1.6, 2.5, 4 (diamonds, dots,
crosses), ∆ = 3, xF = 1, g5 = 8, ∆φ = 0.2, r1 = 10−12, r2 = 15, and y5 = 0,−2 (top, bottom
panels). The maximum allowed value of φc is given by

√
3/∆φ ≈ 3.87. The left and right panels

correspond to imposing (+) and (−) IR boundary conditions, respectively. All plots are normalised
to the decay constant f̃ . The solid lines in the right panels indicates the presence of a massless state.

y5 = −2, the effect of the Yukawa coupling on the spectrum becomes more pronounced
as φc is increased, eventually resulting in a light state for the case of (+) IR boundary
condition. We also note that for φc = 0, the fermionic spectrum of Model II is the same as
for Model I, since in this case the background geometries of the two models coincide while
φ(r) vanishes identically such that the Yukawa coupling has no effect.

Finally, in figure 7 we show the spectrum as a function of ∆φ for a particular value
of the Yukawa coupling y5 = −2. The parameters are chosen such that for ∆φ = 1, the
spectrum is the same as that of figure 5. Interestingly, the effect of the Yukawa coupling
becomes more pronounced as ∆φ → 0, when the scaling dimension of Oφ approaches that
of the marginal case. In particular, this leads to a smaller mass for the light state present
in the vector-like case, corresponding to the (+) IR boundary condition.

3.4 Toy model

In order to gain insight on the fermionic spectrum in models where the bulk fermion mass
varies radially, such as Model II, let us consider a toy model that can be solved analytically.
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Figure 7. Model II. Fermionic spectrum as a function of ∆φ for ∆R = 1.51, 2.5, 4 (diamonds, dots,
crosses), ∆ = 3, xF = 1, g5 = 8, y5 = −2, φc = 1.5, r1 = 10−12, r2 = 15. The left and right panels
correspond to imposing (+) and (−) IR boundary conditions, respectively. All plots are normalised
to the decay constant f̃ . The solid line in the right panel indicates the presence of a massless state.

Take a Dirac fermion Ψ propagating on an AdS geometry, introduce a hard-wall cutoff at
r = 0, and assume as usual a left-handed source ΨL, dual to a right-handed operator in the
field theory. The AdS case with a constant bulk-fermion mass is analysed in appendix B.4.
To capture the effect of a bulk mass that varies radially, we let Ψ have mass M∗ in the
region 0 ≤ r < r∗ and mass MΨ in the rest of the geometry r ≥ r∗. In other words, we have

HΨ = MΨ +M∆ ·Θ(r∗ − r) , M∆ ≡M∗ −MΨ . (3.9)

In comparing with Model II, r∗ is of order ∆−1
φ , while M∆ is analogous to y5∆φ

∫∞
0 dr φ(r).

This model is solvable: the equation of motion for b, given in eq. (3.5), is satisfied by

b =


e−(M∗+ 1

2)r [c1(Q)YM∗+ 1
2
(e−rQ) + c2(Q)JM∗+ 1

2
(e−rQ)

]
for 0 ≤ r < r∗ ,

e−(MΨ+ 1
2)r [d1(Q)YMΨ+ 1

2
(e−rQ) + d2(Q)JMΨ+ 1

2
(e−rQ)

]
for r ≥ r∗ ,

(3.10)

where Q2 = −q2 and Yν , Jν are Bessel functions. The ratio of the integration constants c1
and c2 is determined by imposing either the (+) or (−) IR boundary conditions,

c1(Q)
c2(Q) = −

JM∗∓ 1
2
(Q)

YM∗∓ 1
2
(Q) (±) , (3.11)

where we used dCν(z)/dz = Cν−1(z)− νCν(z)/z for C = Y, J . In addition, d1 and d2 are
determined by requiring continuity of both ΨL and ΨR at r = r∗, which in turn implies
continuity of both b and ∂rb. This determines b up to an overall normalisation that plays
no role in the following.

As usual, following the argument given in appendix B.3, there is a massless mode for (−)
IR boundary condition, while in the (+) case no such state exists. In order to compute the
massive spectrum, one should first impose the UV boundary condition b|r2 = 0, which implies

d1(Q)
d2(Q) = −

JMΨ+ 1
2
(e−r2Q)

YMΨ+ 1
2
(e−r2Q) , (3.12)
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and then take the limit r2 → +∞. Since the right-hand side vanishes in this limit, one
finds that the (massive) spectrum is determined by those Q = m which satisfy d1(Q) = 0.
Having required continuity at r∗, this condition can be written as

YM∗+ 1
2

(
e−r∗Q

)
JMΨ− 1

2

(
e−r∗Q

)
− YM∗− 1

2

(
e−r∗Q

)
JMΨ+ 1

2

(
e−r∗Q

)
+ c2(Q)
c1(Q)

[
JM∗+ 1

2

(
e−r∗Q

)
JMΨ− 1

2

(
e−r∗Q

)
− JM∗− 1

2

(
e−r∗Q

)
JMΨ+ 1

2

(
e−r∗Q

)]
= 0 . (3.13)

In order to study light states, one may expand in powers of e−r∗Q, obtaining the condition Γ
(
M∗+ 1

2

)
Γ
(
MΨ+ 1

2

)+
Γ
(
M∗− 1

2

)
(MΨ−M∗)

4Γ
(
MΨ+ 3

2

) e−2r∗Q2+O
(
e−4r∗Q4

) (3.14)

+
(
e−r∗Q

)2M∗+1
(

tan(πM∗)−
c2(Q)
c1(Q)

) 2−(2M∗+1)π(MΨ−M∗)
Γ
(
MΨ+ 3

2

)
Γ
(
M∗+ 3

2

)+O
(
e−2r∗Q2

)= 0 .

Starting from this expression, we will now argue that a parametrically light state is
present in the two following cases:

(i) Consider (+) IR boundary condition, in which case

c2(Q)
c1(Q)−tan(πM∗) =Q1−2M∗

[
22M∗−1

π
Γ
(
M∗−

1
2

)
Γ
(
M∗+

1
2

)
+O

(
Q2
)]
. (3.15)

Taking MΨ to be constant and M∗ to be large and negative, the two lines of eq. (3.14)
can be made to be of the same order if Q2 ∼ e(2M∗+1)r∗ . Solving for Q2, we obtain
the estimate for the mass of the light state,

m2 = (2MΨ + 1)(4M2
∗ − 1)

2(MΨ −M∗)
e(2M∗+1)r∗ , (3.16)

which is exponentially suppressed.

(ii) Consider (−) IR boundary condition, in which case

c2(Q)
c1(Q)−tan(πM∗) =Q−(2M∗+1)

[
22M∗+1

π
Γ
(
M∗+

1
2

)
Γ
(
M∗+

3
2

)
+O

(
Q2
)]
, (3.17)

and furthermore take the scaling dimension ∆R = MΨ + 2 to be close to the free
fermion case, namely MΨ = −1

2 + ε. For large positive M∗, the second term on the
first line of eq. (3.14) is of the same order as the second line, if Q2 ∼ e(1−2M∗)r∗ .
Keeping also the first term on the first line, which is of order O(ε), and solving for
Q2, we can estimate the mass of the light state as

m2 = 8M∗ − 4
1 + 2M∗

e2r∗ε+ 2(2M∗ − 1)e(1−2M∗)r∗ , (3.18)

such that asymptotically, for large M∗, one obtains the small finite value for the mass
m = 2

√
ε er∗ . Notice that while in case (i) it was possible to obtain a light state for

any value of the UV scaling dimension ∆R, in this case the argument crucially relies
on taking ∆R ' 3/2 to be close to that of a free fermion.
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Figure 8. Toy model. Fermionic spectrum as a function of M∆ = M∗ −MΨ for r∗ = 1 and
∆R = 1.51, 2.5, 4 (diamonds, dots, crosses). The left and right panels correspond to imposing (+)
and (−) IR boundary conditions, respectively. All plots are normalised to the IR scale ΛIR. The
solid line in the right panel indicates the presence of a massless state. Rather than using the analytic
expressions, we found it convenient to use the same numerical procedure in extracting the spectrum
as for Models I and II, and in so doing we used the UV cutoff r2 = 15. Finally, the black lines are
obtained from the approximations written in eq. (3.16) and eq. (3.18).

We show the spectrum of this simplified model, as a function of M∆, in figure 8. It can
be seen that the approximations of eq. (3.16) and eq. (3.18) work well as long as |M∆| is
sufficiently large. Note that the dependence of the spectrum on M∆ is qualitatively similar
to the dependence on y5 of the spectrum of Model II in figure 5.

3.5 Comparison with lattice results

Let us briefly discuss how our results may compare with existing lattice simulations. For
gauge theories with symmetry breaking patterns related to composite Higgs scenarios, lattice
studies of the fermionic bound states remain scarce to date, in contrast with simulations
addressing the properties of the corresponding mesonic spectra, for which several studies
are available, see the references and discussion in [1]. One elaborate analysis is provided
by ref. [12], considering an SU(4) gauge theory and, for technical reasons, a simplified
fermion content with a symmetry pattern that does not accommodate the SM Higgs: two
Dirac fermions q in the fundamental (dim-4) and two Dirac fermions Q in the two-index
antisymmetric (dim-6) representations. The fact that two dynamical fermion species are
simulated simultaneously provides a realisation, within this specific model, of the fermionic
states described by the operators in eq. (2.3) above.

The masses of the lightest fermionic bound states obtained after taking the continuum
and chiral limits are displayed in table II and figures 8 and 10 of [12], and they are also
compared with the masses of the mesonic bound states obtained previously for the same
theory [70]. Restricting our attention to the spin-1/2 states, we approximately find, in our
normalisation,6

mQqq

f̃
= 12.6(8) , mV

f̃
= 8.6(6) , (3.19)

where we also quote the mass of the lightest vector meson for comparison.
6We identify F4 of [12, 70] with

√
2f̃ , and moreover use F6 =

√
2F4 [70].
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Quite recently, results for fermionic bound states were also obtained for an Sp(4) gauge
symmetry [13, 14], with two dynamical, Dirac fermions in the fundamental and three in the
antisymmetric representations. From figure 4 of [13], one extracts

mQqq ∼ 2mV . (3.20)

Given that in these papers the gauge [12] and flavour [12–14] groups are different
from the ones considered here, and that moreover both simulations may not be close to
near-conformal dynamics,7 a quantitative comparison with our results is not pertinent. We
can nevertheless examine if some qualitative features reasonably match, by considering our
Model II, with sizeable values of ∆φ and φc, controlling the explicit breaking of conformal
symmetry, xF ∼ 1, and fermionic anomalous dimension presumably not too far from its
canonical value, ∆R . 9/2. With all such caveats, a rather generic trend is that, for ∆R ∼ 4,
the Model II results for the fermionic states appear roughly consistent with the masses of
eq. (3.19) or eq. (3.20), see figure 6 (top-left panel). In our analysis such masses have a
milder sensitivity to ∆φ and φc, as long as φc is not very large. Note that for comparable
parameter choices we had obtained mV /f̃ ∼ 7− 8 [1].

4 Partial compositeness and holographic Wilsonian RG flows

Fermion partial compositeness is realised by coupling linearly an elementary fermion χL to a
fermionic composite operator OR, issued from the strongly-coupled sector:

∫
d4x(λORχL +

h.c.).8 In holography, such a coupling is provided between the boundary value of a bulk
fermion, and the operator OR for which it is a source in the dual field theory. In order to
describe partial compositeness, we also need to make the source dynamical on the boundary,
that is, add a four-dimensional kinetic term for χL. Furthermore, we would like to describe
how the coupling λ runs with energy scale. In particular, we will identify scenarios where
the IR value of λ can be enhanced, despite λ being irrelevant in the UV.

One expects the coupling λ to be generated by some UV physics at a scale ΛUV well
above the HC mass gap m∗, while observations are sensitive to its infrared value after
RG evolution, λ(m∗). Let us briefly discuss the phenomenological constraints on the size
of m∗ and ΛUV, in turn. In partial compositeness one needs to introduce one coupling λ
for each of the SM fermions χL, in order to reproduce the SM Yukawa couplings. This
implies a lower bound on λ(m∗), in particular in the case of the top-quark Yukawa coupling,
yt ' λtLλtR/g∗ ' 1. In turn, via the couplings λ, a generic strong dynamics would induce
all sorts of higher-dimension operators suppressed by powers of m∗, especially flavour and
CP violating ones. This sets a lower bound on m∗ which, in the case of generic strong
dynamics, is of the order of ∼ 102 (∼ 103) TeV for partial compositeness of quarks [72]
(leptons [73]). In order to keep m∗ as low as ∼ 10TeV, one needs global symmetries of the
composite sector to forbid e− µ flavour transitions, as well as electric dipole moments of

7We note that, in different contexts, such as QCD with a large number of flavours, many elaborate lattice
analyses have been performed, with results approaching near-conformal dynamics (see [71] for a review).

8Here, χL is not to be confused with the two-index representation fermion χij of the gauge theory
discussed in section 2.1.
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quarks and leptons. Let us remark that these estimates hold assuming a single mass scale
m∗ for the lightest composite states. When a SM fermion mixes with a composite fermion
with mass mF significantly smaller than m∗ (the typical mass of a composite vector), then
some flavour-violating operators may be enhanced by powers of m∗/mF , thus strengthening
the constraints [4].

Beside the ORχL operators, that are linear in the elementary fermions, the UV physics
could typically induce also four-fermion operators involving two or more elementary fermions
(as in e.g. extended technicolour models), suppressed by powers of ΛUV. For an anarchic
flavour structure, this leads to a lower bound ΛUV & 105 TeV [74], which can be relaxed to
ΛUV & 103 TeV by flavour selection rules suppressing the first-family couplings [75]. One
thus concludes that flavour constraints require at least m∗/ΛUV . 10−2. In the following we
will study the RG evolution of λ between ΛUV and ΛIR. The latter is defined by eq. (2.25)
and is a good proxy for the vector resonance mass m∗, as long as the strong dynamics is
characterised by a single scale. We will discuss interesting limits where this is not the case,
and ΛIR ∼ mF � m∗ is realised instead. In such case, the Yukawa couplings are obtained
by evaluating λ(mF ) at the lower energy scale mF (rather than m∗). We will find that
the IR region of the geometry may significantly modify the running of λ, and lead to a
significant mixing between the elementary fermion and the strongly coupled sector, even for
irrelevant scaling dimensions ∆R, provided that ΛUV/ΛIR is not too large.

We will show here how to use the formalism of the holographic Wilsonian RG [41, 42]
in order to derive a beta function for λ. In particular, the treatment of fermionic operators
was developed in [76, 77]. We first consider the case when the bulk Dirac fermion Ψ is
uncharged, so that it does not couple to gauge fields. We also assume that no Yukawa
interaction with bulk scalar fluctuations is present, although we allow the fermion mass
term HΨ(r) = MΨ + hΨ(r) to depend on the radial coordinate. Furthermore, we treat the
background geometry as fixed. In this way the action is quadratic in the fermionic fields,
allowing for Gaussian integration. Later we will comment on the possible impact of cubic
or higher order interactions, whose treatment is considerably more involved.

4.1 Holography at finite cutoff

An initial assumption of holographic Wilsonian RG is that the GKPW relation [78, 79],
relating the boundary values of bulk fields to sources for composite operators in the field
theory, continues to hold also at generic finite values r̃ of the radial coordinate. The finite
radial cutoff in the bulk corresponds to the introduction of a finite UV cutoff on the field
theory side. We hence write the bulk partition function restricted to values of the radial
coordinate r ≤ r̃:

Zbulk[ψL(r̃), ψL(r̃); r̃] =
∫
DψDψ|r<r̃ eiSΨ[r1,r̃;s1,−1] . (4.1)

Here, the action SΨ restricted to an interval r1 ≤ r ≤ r2 is defined by

SΨ[r1, r2; s1, s2] ≡ −
∫ r2

r1
dr
∫

d4x
√
−g

[1
2
(
ΨΓMDMΨ−DMΨΓMΨ

)
+HΨΨΨ

]
− s1

2

∫
d4x

√
−g̃ΨΨ

∣∣∣
r1
− s2

2

∫
d4x

√
−g̃ΨΨ

∣∣∣
r2
, (4.2)
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where ΨL = NLψL and ΨR = NRψR with the normalisations given by eq. (3.2) together
with the accompanying footnote 4, while s1,2 encode the signs of the boundary actions at
r = r1,2. Note that, as a consequence of choosing s2 = −1 in eq. (4.1), the value of the
left-handed component ψL and its conjugate ψL are kept fixed at the radial cutoff r = r̃.9

The reason for this is that we will consider the case when ψL is the source of a composite
operator in the dual field theory (as explained before, the case of a right-handed source
can be treated analogously). Furthermore, we have kept the IR regulator r1, with the
understanding that physical quantities are obtained in the limit r1 → ro where ro is the
value of the radial coordinate at the end of the space. Finally, as before, we choose the IR
boundary condition (±) on ψL corresponding to the sign s1, which we keep general in the
following discussion.

The GKPW relation at finite cutoff, postulated to hold at any value of r̃, now becomes

Zbulk[ψL(r̃), ψL(r̃); r̃] =
∫
DMΛ(r̃) exp

{
iSQFT[M; Λ(r̃)] + i

∫
d4x

(
ORψL(r̃) + ψL(r̃)OR

)}
,

(4.3)
where we have collectively denoted by M all the fields appearing in the field theory, and
introduced a field theory cutoff Λ. The details regarding how the radial coordinate is related
to Λ and in particular which regularisation scheme is used in the field theory are difficult
questions that have not been fully answered (although see [80–82]). We leave both the
functional dependence of Λ on the radial coordinate, as well as the precise form of the
field theory action SQFT[M; Λ], unspecified for the moment. Later on, we will make the
assumption that Λ is given by eq. (2.24).

As a next step, consider the field theory with partition function given by

ZQFT[Λ; ξ] =
∫
DχLDχLDMΛe

iS[χL,χL,M;Λ;ξ] ,

S[χL, χL,M; Λ; ξ] = SQFT[M; Λ]−
∫

d4q χL(−q)i/qχL(q)

+
∫

d4q
(
N−1/2

Ψ ξ(q)OR(−q)χL(q) + h.c.
)
, (4.4)

describing an elementary fermion χL with canonically normalised kinetic term, coupled to
a strongly-coupled sector with strength ξ that depends on the four-momentum squared q2.
Here it is understood that the composite operator OR may refer to some specific component
of a larger flavour multiplet. In general, the coupling ξ can be expanded in powers of q2

leading to higher derivative terms.10 We also normalised ξ to be NC-independent in the
large-NC limit, by including the factor N−1/2

Ψ to compensate for the NC-scaling of OR.
As shown in section 2.1, the operators needed to realise partial compositeness of the SM
fermions scale with NΨ = N2

C . After the change of variables11

ψL(q, r̃) = N−1/2
Ψ ξ(q)χL(q) , (4.5)

9For a detailed derivation of this correspondence, see appendix E of [76].
10Even if not turned on initially, the RG flow will generate such terms, and hence it is necessary to include

them in the analysis. Note that such higher derivative operators, accounting for the UV physics being
integrated out, are still quadratic in the fields.

11Since χL couples to a specific component OR of a complete flavour multiplet, in a slight abuse of notation
we refer to ψL as the corresponding component of the source multiplet.
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we can use eq. (4.3) to rewrite ZQFT[Λ; ξ] in terms of bulk quantities, as

ZQFT[Λ(r̃); ξ] =
∫
DψL(r̃)DψL(r̃)Zbulk[ψL(r̃), ψL(r̃); r̃]

× exp
(
−iNΨ

∫
d4q ψL(−q, r̃)

i/q

ξ2(q)ψL(q, r̃)
)
. (4.6)

The usefulness of this relation stems from the fact that it holds at any r̃ and for any given
coupling ξ. Finally, we comment that it is useful to keep in mind the scaling dimension of
the various quantities as a function of the scaling dimension ∆R of OR(x) at a fixed point:
one has in particular [ψL(q)] = −∆R and [ξ] = 5/2−∆R.

4.2 Integrating out higher energy modes

The main idea of the holographic Wilsonian RG is to introduce a cutoff surface at some
finite value of the radial coordinate r = r, and divide the path integral in the bulk into two
pieces corresponding to r ≤ r and r > r. Integrating out the latter part of the geometry is
analogous to integrating out high momentum (UV) modes in the field theory. In this way,
one can derive a bulk description of the four-dimensional Wilsonian action, as a function of
the cutoff scale Λ(r). To this end, we consider the field theory defined at some UV scale
ΛUV = Λ(rUV) with partition function given by ZQFT[ΛUV; ξUV], and rewrite it in terms of
bulk quantities, by making use of eq. (4.6) at r̃ = rUV. Next, we divide the bulk partition
function into IR and UV parts:

Zbulk[ψL(rUV), ψL(rUV); rUV] =
∫
DψDψ|r<rUV e

iSΨ[r1,rUV;s1,−1]

=
∫
DψL(r)DψL(r)

[(∫
DψDψ|r<r e

iSΨ[r1,r;s1,−1]
)

×
(∫
DψR(r)DψR(r)

∫
DψDψ|r<r<rUV e

iSΨ[r,rUV;+1,−1]
)]

=
∫
DψL(r)DψL(r)Zbulk[ψL(r), ψL(r); r]

× ZUV[ψL(r), ψL(r), ψL(rUV), ψL(rUV); r, rUV] , (4.7)

where we introduced an intermediate value of the radial coordinate r, separating the IR
and UV contributions. In the last equality, we used eq. (4.1) and defined the UV functional

ZUV[ψL(r), ψL(r), ψL(rUV), ψL(rUV); r, rUV]

≡
∫
DψR(r)DψR(r)

∫
DψDψ|r<r<rUV e

iSΨ[r,rUV;+1,−1] , (4.8)

which encodes the effect of integrating out the UV degrees of freedom.
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After plugging eq. (4.7) into eq. (4.6) evaluated at r̃ = rUV, we obtain12

ZQFT[ΛUV; ξUV] =
∫
DψL(r)DψL(r)Zbulk[ψL(r), ψL(r); r]eiSUV[r,rUV] , (4.9)

eiSUV[r,rUV] ≡
∫
DψL(rUV)DψL(rUV)ZUV[ψL(r), ψL(r), ψL(rUV), ψL(rUV); r, rUV]

× exp
(
−iNΨ

∫
d4q ψL(−q, rUV)

i/q

ξ2
UV(q)

ψL(q, rUV)
)
. (4.10)

Note that, since we assumed the bulk action SΨ contained in ZUV to be quadratic in the
fields, exp(iSUV[r, rUV]) remains Gaussian as r is varied. Let us parametrise it according to

SUV[r, rUV] = −NΨ

∫
d4q ψL(−q, r)

i/q

ξ2(q, r)ψL(q, r) , (4.11)

where we have allowed ξ to depend on r. In other words, after imposing the boundary
condition that its initial value at rUV is given by ξ(q, rUV) = ξUV(q), the full functional
dependence of ξ(q, r) on r is defined by eq. (4.11). After plugging eq. (4.11) into eq. (4.9),
and using eq. (4.6) at r̃ = r, one finally obtains

ZQFT[ΛUV; ξUV] =
∫
DχLDχLDMΛUVe

iS[χL,χL,M;ΛUV;ξUV]

=
∫
DχLDχLDMΛ(r)e

iS[χL,χL,M;Λ(r);ξ(q,r)] = ZQFT[Λ(r), ξ(q, r)] , (4.12)

for any r. In other words, S[χL, χL,M; Λ(r); ξ(q, r)] defined in eq. (4.4) is to be interpreted
as the Wilsonian action, where the r-dependence of the coupling ξ(q, r) encodes the effect
of integrating out higher energy modes corresponding to the UV part of the bulk partition
function.

4.3 RG flow equation

In order to derive the beta-function for ξ, we note that since the left-hand side of eq. (4.9)
does not depend on r, neither should its right-hand side. In the large-NC limit, this implies
that

∂r
(
SΨ[r1, r; s1,−1] + SUV[r, rUV]

)
= 0 . (4.13)

After also demanding that the variation δ(SΨ[r1, r; s1,−1] + SUV[r, rUV]) vanishes on-shell,
one can derive the flow equation

∂rξ
2 = −N−2

L e−5Aq2 +N2
Le

3Aξ4 , (4.14)

where NL(r) is defined in eq. (3.2) and, at a fixed point, has scaling dimension [NL] = ∆R−2.
We provide more details regarding the derivation of eq. (4.14) in appendix D.13 Given a

12Cf. eq. (6.9) of [76].
13We also note the correspondence with the flow equation given in eq. (3.26) of ref. [76] with the

identification F = − 1
i/q
e4AN2

Lξ
2. Here, one also has to take into account a change in sign due to the assumed

(opposite) direction of the radial coordinate.
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background geometry, determined by the warp factor A(r), and a choice for the bulk fermion
mass HΨ(r), this allows us to study the RG flow of ξ.

However, we already note a problem with interpreting eq. (4.14) as describing the flow of
a coupling ξ of an elementary fermion to a strongly coupled sector: namely that ξ(q, r) = 0
is not a solution. In other words, even if one imposes that ξ(q, rUV) = 0, so that the
elementary fermion completely decouples from the strong sector, the RG flow for ξ induces
higher derivative couplings at the lower cutoff Λ(r) < ΛUV. These should be interpreted
as belonging to the strongly-coupled sector in isolation, by making the observation that
if one integrates out the external fermion χL in eq. (4.4), one generates a double-trace
operator proportional to OR /∂OR. The RG flow of the associated coupling was studied in
refs. [76, 77]. Crucially, in a strongly-coupled theory considered in isolation, even if such
double-trace coupling is turned off initially, it is generated by the RG flow as the cutoff Λ is
lowered. This can also be expected on general grounds from field theory considerations [41].
To see how this comes about, we start from eq. (4.12) and use eq. (4.4) to obtain

ZQFT[ΛUV; ξUV = 0] = ZQFT[Λ(r); ξ(0)(q, r)] =
∫
DχLDχLDMΛe

iS[χL,χL,M;Λ(r);ξ(0)(q,r)]

=
∫
DMΛ exp

(
iS(0)

QFT[M; Λ(r)]
)
, (4.15)

S(0)
QFT[M; Λ] ≡ SQFT[M; Λ]−N−1

Ψ

∫
d4q fDT(q, r)OR(−q)(i/q)OR(q) , (4.16)

where we denote by the superscript (0) that we are considering the RG flow generated by
solving the flow equation eq. (4.14), having imposed the boundary condition ξ(0)(q, rUV) = 0.
As anticipated, the integration over χL (χL) has generated a double-trace operator with
coupling defined by

fDT(q, r) ≡

(
ξ(0)(q, r)

)2

q2 , (4.17)

that satisfies the flow equation

∂rfDT = −N−2
L e−5A +N2

Le
3Aq2f2

DT . (4.18)

Even though, by definition, fDT(q, rUV) = 0, such that no double-trace coupling is present
at the UV scale ΛUV, eq. (4.18) leads to a non-trivial RG flow for fDT as the cutoff Λ is
lowered. We also note that the potentially troubling non-local nature of the factor 1/q2 in
eq. (4.17) is offset by the fact that a derivative expansion of eq. (4.14) yields (ξ(0))2 = O(q2),
so that fDT = O(q0) (we will return to this point later).

In the context of partial compositeness, it is necessary to separate the double-trace
coupling fDT, which is present already in the RG flow of the strongly coupled theory in
isolation, from the linear coupling to the external fermion. Hence, considering a general
RG flow for ξ, we have that

ZQFT[ΛUV; ξUV] = ZQFT[Λ(r); ξ(q, r)] =
∫
DχLDχLDMΛe

iS̃[χL,χL,M;Λ(r);λ(q,r)] , (4.19)

S̃[χL, χL,M; Λ;λ] ≡ S(0)
QFT[M; Λ]−

∫
d4q χL(−q)i/qχL(q)

+
∫

d4q
(
N−1/2

Ψ λ(q, r)OR(−q)χL(q) + h.c.
)
, (4.20)
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where the coupling λ is defined by

λ2(q, r) ≡ ξ2(q, r)− q2fDT(q, r) . (4.21)

The effective action S̃[χL, χL,M; Λ;λ] given in eq. (4.20) then separates into a part that
describes the RG flow of the strongly-coupled sector considered in isolation and another that
describes the effect of its coupling λ to the elementary fermion χL. Note that, due to the
factor of q2 in eq. (4.21), the distinction between ξ and λ only matters for higher-derivative
operators. Finally, the flow equation for the linear coupling λ is given by

∂rλ
2 = N2

Le
3Aλ2

(
λ2 + 2q2fDT

)
, (4.22)

and admits, as it should, λ = 0 as a solution.
We would like to write the flow equations (4.14), (4.18), and (4.22) in terms of di-

mensionless couplings, ξ̃, λ̃, and f̃DT. However, scaling dimensions of operators are only
strictly defined at fixed points, away from which they are subject to regularisation-scheme
dependence. Furthermore, we need a precise relation between the radial cutoff and Λ, which
we from now on assume takes the form given in eq. (2.24). With these considerations in
mind, we define the effective scaling dimension for OR as

∆(eff)
R (Λ) ≡ (Λ∂Λr)HΨ + 2 = Λ−1eAHΨ + 2 , (4.23)

where we inverted eq. (2.24) to compute r(Λ). Our definition (4.23) is indeed consistent with
the expectation at fixed points: for an AdS geometry with radius L, such that A(r) = r/L

and Λ(r) = exp(r/L), and for constant mass HΨ = MΨ, one obtains ∆(eff)
R = LMΨ + 2.

We assumed this to be the case in the far UV, that is for Λ→∞, with L = 1. However,
our definition also works as expected for more general geometries that may flow close to
an IR fixed point with a different AdS radius. We furthermore note that, under rather
general assumptions, eq. (4.23) implies that ∆(eff)

R becomes equal to two in the deep IR.
More precisely, if one assumes the following to hold at the end of space: (i) the warp factor
A diverges to −∞ (i.e. the end of space is dynamically generated), (ii) the IR scale ΛIR > 0
does not vanish, and (iii) the radially dependent mass HΨ remains finite, then it follows that
∆(eff)
R (ΛIR) = 2. While the first assumption is violated in the case of an AdS background

with a hard-wall cutoff, all these assumptions are satisfied for Models I and II, given the
background solutions that we consider.

We now define the dimensionless couplings

ξ̃(q,Λ) ≡ F (Λ)ξ(q,Λ) , λ̃(q,Λ) ≡ F (Λ)λ(q,Λ) , (4.24)

and
f̃DT(q,Λ) ≡ F 2(Λ)Λ2fDT(q,Λ) , (4.25)

where

F (Λ) ≡ exp
(∫ ∞

Λ

dΛ̃
Λ̃

[
∆R −∆(eff)

R (Λ̃)
])

Λ∆R− 5
2

= Λ−1/2 exp
(
MΨr−

∫ ∞
r

dr hΨ(r)
)
, (4.26)
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and ∆R ≡MΨ + 2 is the scaling dimension of OR at the UV fixed point. We then obtain
the flow equation for ξ̃ as

Λ∂Λξ̃
2 = − q

2

Λ2 + 2
(

∆(eff)
R − 5

2

)
ξ̃2 + ξ̃4 , (4.27)

while the corresponding flow equations for λ̃ and f̃DT are given by

Λ∂Λλ̃
2 = 2

(
∆(eff)
R − 5

2 + q2

Λ2 f̃DT

)
λ̃2 + λ̃4 ,

Λ∂Λf̃DT = −1 +
(
2∆(eff)

R − 3
)
f̃DT + q2

Λ2 f̃
2
DT , (4.28)

where the double-trace coupling satisfies the UV boundary condition f̃DT(q,ΛUV) = 0.
When the four-momentum is small compared to the renormalisation scale, i.e. q2 � Λ2,

one may consider the derivative expansion of the coupling λ̃:

λ̃(q,Λ) = λ̃0(Λ) + λ̃1(Λ)Λ−2q2 + · · · , (4.29)

and similarly for the double-trace coupling f̃DT:

f̃DT = f̃DT,0(Λ) + f̃DT,1(Λ)Λ−2q2 + · · · . (4.30)

At the lowest order, we obtain

Λ∂Λλ̃
2
0 = 2

(
∆(eff)
R − 5

2

)
λ̃2

0 + λ̃4
0 , (4.31)

which, as can be seen, does not require knowing the solution for f̃DT. As expected, since the
lowest order coupling λ̃0 describes the most relevant deformation, its flow is also independent
from that of higher-order operators. The flow equation (4.31) can be solved formally to give

λ̃2
0(Λ) = F 2(Λ)

F 2(ΛUV)λ̃−2
0,UV +

∫ ΛUV
Λ

dΛ̃
Λ̃ F 2(Λ̃)

, (4.32)

where λ̃0,UV ≡ λ̃0(ΛUV) is the value of the coupling at the UV cutoff.
While at the lowest order in the derivative expansion there is no distinction between ξ̃

and λ̃, this is no longer true at subsequent orders. For the purpose of illustrating this, we
therefore also write explicitly the flow equations at the next order:

Λ∂Λλ̃1 =
(

∆(eff)
R − 1

2 + 3
2 λ̃

2
0

)
λ̃1 + λ̃0f̃DT,0 , (4.33)

where f̃DT,0 satisfies
Λ∂Λf̃DT,0 =

(
2∆(eff)

R − 3
)
f̃DT,0 − 1 , (4.34)

with boundary condition f̃DT,0(ΛUV) = 0. As can be seen, the lowest order coupling λ̃0
drives the flow of the coupling at the next order λ̃1, such that even if λ̃1 is put to zero as
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an initial condition, it becomes generated by the flow provided λ̃0 is non-zero. Also, the
flow of the double-trace coupling f̃DT,0 enters non-trivially in the RG equations.

Finally, let us make a few comments regarding the assumptions we have made in our
derivation of the RG flow equations. The first is that we considered a single fermion in the
bulk, whereas in the field theory there may be several different fermionic composite operators
of interest, and they may mix. Such mixing would be easily incorporated into the formalism
by simply generalising it to n bulk fermions and a non-diagonal matrix HΨ. The result would
be a coupled system of RG flow equations for n couplings that generalizes eq. (4.14) for ξ.

Secondly, as mentioned, the reason that the effective action of eq. (4.4), and hence
eq. (4.20), remains of the same form along the RG flow is due the absence of interaction
terms in the bulk action SΨ, which ensures that exp(iSUV[r, rUV]) remains Gaussian along
the flow. In other words, we have treated the bulk fermion as propagating on top of a given
background, having neglected the fluctuations of all other fields. The full treatment of
Models I and II should include fluctuations of the entire bosonic sector, in particular the
gauge field associated with the part of the flavour symmetry under which OR is charged.
As a consequence, exp(iSUV[r, rUV]) no longer remains Gaussian along the flow, and hence
the Wilsonian effective action should contain all possible operators consistent with the
symmetries, built from an arbitrary number of fields, as is usually the case. In this more
general treatment, the RG flow equation (4.14) for ξ (and hence λ) would remain the same,
but it would need to be supplemented by additional RG flow equations for the couplings
associated with operators of higher order in the number of fields.

In the following, we will primarily focus on the RG flow for λ̃0, as it describes the
most relevant deformation, and being at the lowest order in the derivative expansion, it is
the coupling that most affects the masses of light states. We will consider three explicit
examples for the background: AdS, Model I, and Model II.

4.4 AdS background

Let us specialise the general flow equations to the case of an AdS background with constant
HΨ = MΨ. Without loss of generality we fix the end of space to be at ro = 0. The
field-theory energy scale is given by Λ(r) = er, which implies that ΛIR = 1, and the
effective scaling dimension of OR is constant, ∆(eff)

R (Λ) = ∆R = 2 +MΨ. In this case the
dimensionless coupling ξ̃ reads

ξ̃(q,Λ) ≡ ΛδRξ(q,Λ) , δR ≡ ∆R −
5
2 , (4.35)

and the flow equation (4.27) simply becomes

Λ∂Λξ̃
2 = −Λ−2q2 + 2δR ξ̃2 + ξ̃4 . (4.36)

Its general solution is given by14

ξ̃2(Q,Λ) = −QΛ
JδR+1(Λ−1Q)− cξ(Q)YδR+1(Λ−1Q)
JδR(Λ−1Q)− cξ(Q)YδR(Λ−1Q) , Q ≡

√
−q2 , (4.37)

14Note the similarity between eq. (4.36) and the differential equation for x ≡ − ∂rb
b
, that can be derived

from the equation of motion (3.5): Λ∂Λx = −Λ−2q2 − (1 + 2MΨ)x+ x2. Hence the similarity between the
solutions: eq. (4.37) and eq. (B.32), respectively.
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Figure 9. The coupling λ̃0 as a function of the energy scale Λ for an AdS background. The two
panels show a few possible RG flows for the cases of a relevant deformation with ∆R = 1.75 (left),
and an irrelevant deformation with ∆R = 3.25 (right). The dashed red line indicates the position of
the IR fixed point (left panel).

where Jα and Yα are Bessel functions, and the integration constant cξ(Q) determines the
boundary value ξ̃2(Q,ΛUV).

Although eq. (4.37) gives the general solution for ξ̃, from which λ̃2 = ξ̃2− q2

Λ2 f̃DT can be
determined, we find it illustrative to study the derivative expansion of λ̃ given in eq. (4.29).
The flow equation (4.31) for the lowest order coupling λ̃0 becomes

Λ∂Λλ̃
2
0 = 2δR λ̃2

0 + λ̃4
0 , (4.38)

whose solution is
λ̃2

0(Λ) = 2δR(
2δR
λ̃2

0,UV
+ 1

)(ΛUV
Λ

)2δR
− 1

, (4.39)

where ΛUV = erUV is the UV scale at which we specify the initial value λ̃0(ΛUV) ≡ λ̃0,UV.
For δR ≥ 0, the operator ORχL represents an irrelevant deformation of the CFT, and the
RG flow approaches an IR fixed point at λ̃0 = 0. Conversely, for δR < 0, one has that
ORχL is relevant, and the RG flow approaches a non-trivial IR fixed point, at λ̃2

0 = −2δR.
In the latter case, there is also a UV fixed point at λ̃0 = 0. We illustrate a few examples of
RG flows in figure 9.

Finally, we note that if one makes the requirement that λ̃0 does not reach a Landau
pole at a scale Λ < ΛUV, then eq. (4.39) implies that its IR value λ̃0,IR must be restricted
to the range

0 ≤ |λ̃0,IR| ≤ λ
(max)
0,IR =

√√√√√ 2δR(
ΛUV
ΛIR

)2δR − 1
. (4.40)

Suppose the UV cutoff ΛUV is large compared to IR scale ΛIR. Then, for δR > 0, the
maximum allowed IR value of the coupling is suppressed as

λ
(max)
0,IR '

√
2δR

( ΛIR
ΛUV

)δR
, (4.41)

while for δR < 0, it approaches that of the IR fixed point λ(max)
0,IR '

√
−2δR.
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4.5 Model I

Let us now consider the flow of λ̃0 in the background of Model I. The geometry is determined
by the warp factor given in eq. (2.17), i.e. A(r) = r+xF /(2∆) log

(
1− e−2∆r

)
, and depends

on the number of flavours xF , as well as ∆, related to the scaling dimension of the flavour-
symmetry breaking operator, as explained in section 2.2. We recall that the end of space
is located at ro = 0. As before, we have constant HΨ = MΨ. Remarkably, it is possible
to solve analytically the flow equation (4.31) for λ̃0, even for this non-trivial background.
First, one evaluates eq. (2.24) in terms of a hypergeometric function

Λ(r) = er

2F1
(

1
2∆ ,

xF
2∆ ; 1 + 1

2∆ ; e−2∆r
) . (4.42)

Then, the solution of eq. (4.31) becomes

λ̃2
0(r) =

2δR 2F1
(

1
2∆ ,

xF
2∆ ; 1 + 1

2∆ ; e−2∆r
)

λ̃Ce−2δRr − 2F1
(
xF
2∆ ,−

δR
∆ ; 1− δR

∆ ; e−2∆r
) , (4.43)

where λ̃C is an integration constant, that can be written in terms of the IR value of the
coupling λ̃0(0) ≡ λ̃0,IR as

λ̃C = Γ
(

1− xF
2∆

) Γ
(
1 + 1

2∆

)
Γ
(
1− xF−1

2∆

) 2δR
λ̃2

0,IR
+

Γ
(
1− δR

∆

)
Γ
(
1− xF+2δR

2∆

)
 . (4.44)

We illustrate a few examples of RG flows in figure 10. In the far UV, ∆(eff)
R ' ∆R, and

hence the RG flow is close to that in the AdS case. The main qualitative difference with
AdS occurs in the deep IR, where at the end of the space ∆(eff)

R (ΛIR) = 2. For the case of a
relevant deformation, this has the effect of diverting the RG flow of λ̃0 from the would-be
fixed point at λ̃0 =

√
5− 2∆R, corresponding to the AdS case, towards λ̃0 ' 1.

As usual, when the flow is expressed as a function of the coupling in the IR, one must
check whether the flow can be extrapolated up to the desired UV scale. In order to avoid a
Landau pole at Λ < ΛUV, λ̃0,IR is constrained to be in the range 0 ≤ |λ̃0,IR| ≤ λ̃

(max)
0,IR , with

λ̃
(max)
0,IR

2 =
2δR Γ

(
1 + 1

2∆

)
Γ
(
1− xF

2∆
)

Γ
(
1− xF+2δR

2∆

)
Γ
(
1− xF−1

2∆

) [
e2δRrUVΓ

(
1− xF + 2δR

2∆

)

×2 F1

(
xF
2∆ ,−δR∆ ; 1− δR

∆ ; e−2∆rUV

)
− Γ

(
1− xF

2∆

)
Γ
(

1− δR
∆

)]−1

. (4.45)

One may ask whether it is possible for the effective scaling dimension ∆(eff)
R to remain close

to 2 over a sufficiently large range of energies that it leads to significant deviations of the
RG flow in the IR, compared that of the AdS case. It would be especially interesting if even
for irrelevant deformations, when ∆R > 5/2, one can reach sizeable values of the coupling
λ̃0 in the IR. This leads us to consider the number of flavours close to the upper bound
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Figure 10. Model I. The coupling λ̃0 as a function of the energy scale Λ, for ∆ = 2.5 and xF = 3.
The two panels show a few possible RG flows for the cases of a relevant deformation with ∆R = 1.75
(left), and an irrelevant deformation with ∆R = 3.25 (right).

xF ' 2∆, where the background solutions exhibit multiscale dynamics (see section 2.2).
We have that the maximum IR value of λ̃0 is

λ̃
(max)
0,IR = 1 +

ψ(0)
(
− δR

∆

)
− ψ(0)

(
1

2∆

)
+Be−2∆rUV

(
− δR

∆ , 0
)

4∆ (2∆− xF ) +O
(
(2∆− xF )2

)
,

(4.46)
where ψ(0)(x) is the digamma function and Bα(x, y) is the incomplete beta function. As can
be seen, when the bound is saturated at xF = 2∆, one has that λ̃(max)

0,IR = 1, independent of
the scaling dimension ∆R of OR at the UV fixed point. In the left panel of figure 11, we
show the effective scaling dimension ∆(eff)(Λ) as a function of the energy scale Λ for a few
different values of xF . As anticipated, when xF ' 2∆, one has that ∆(eff)(Λ) ' 2 over a
large range of energies. The maximum IR value λ̃(max)

0,IR of the coupling is illustrated in the
right panel of figure 11. It will be especially relevant in the next section, where we compute
the spectrum as a function of λ̃0,IR. Figure 12 shows a few examples of the RG flow for
different values of xF with the parameter λ̃0,IR chosen such that the RG flows coincide
in the UV. As can be seen, proximity to the upper bound at xF = 2∆ may lead to the
multiscale dynamics responsible for generating sizeable values of λ̃0 in the deep IR. While
this is an interesting result, we remind the Reader that our models are less trustable when
the number of flavours is large [1].

4.6 Model II

The background solutions of Model II are given in eq. (2.20), i.e. the warp factor is A(r) =
r + xF

2∆ log
(
1− e−2∆r

)
+ 1

2∆φ
log

(
1− φ2

c
∆φ

3 e
−2∆φr

)
while the profile for the flavour-singlet

scalar is φ(r) =
√

3
∆φ

arctanh
(
φc

√
∆φ

3 e−∆φr

)
. We remind the Reader that HΨ = MΨ +y5φ.

Hence, compared to Model I, there are three additional parameters: ∆φ, φc (governing the
scaling dimension and strength of the relevant deformation Oφ, respectively), and y5 (the
bulk Yukawa coupling). In order to study the flow of λ̃0 in the background of Model II, we
need to resort to numerics. We have confirmed that moderate values of ∆φ = 1, φc = 1.5,
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Figure 11. Model I. The left panel shows the effective scaling dimension ∆(eff)
R as a function of the

energy scale Λ, for ∆ = 2.5, xF = 1, 3, 4.7, 4.9 (short-dashed, dashed, long-dashed, solid lines), and
two choices ∆R = 1.6, 3.5 (in blue, black). The right panel shows the maximum IR value λ̃(max)

0,IR as a
function of xF , for ∆ = 2.5, ΛUV

ΛIR
= 103, and ∆R = 1.7, 2.3, 2.6, 3 (short-dashed, dashed, long-dashed,

solid lines).
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Figure 12. Model I. The coupling λ̃0 as a function of the energy scale Λ, for ∆ = 2.5 and
xF = 2, 4.2, 4.7, 4.9 (short-dashed, dashed, long-dashed, solid lines), and ∆R = 2.75, 4.5 (left, right
panels). For each of the flows depicted, the parameter λ̃0,IR is chosen such that the Landau pole is
at ΛUV

ΛIR
= 103.

and y5 = 0 leads to similar RG flows as those depicted in figures 10 and 12. In particular,
as for Model I, it is possible to obtain large deviations in the IR, compared to the AdS case,
when xF ' 2∆.

In Model II, it is also possible to construct such flows when the number of flavours
is far from the aforementioned bound. As shown in figure 13, taking y5 to be large and
negative leads to the effective scaling dimension ∆(eff)

R being substantially smaller than its
UV value ∆R in a sizeable region (left panel), which consequently may result in a large
IR value of the coupling λ̃(max)

0,IR even in the irrelevant case ∆R > 5/2 (right panel). This is
further illustrated in figure 14, where we plot the coupling λ̃0 as a function of energy scale
Λ. Conversely, a large positive y5 may suppress λ̃(max)

0,IR , even when ∆R < 5/2.
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Figure 13. Model II. Both panels have ∆ = 3, xF = 1, ∆φ = 1, and φc = 1.5. The left panel shows
the effective scaling dimension ∆(eff)

R as a function of the energy scale Λ, for y5 = 1.5, 0.5,−0.5,−1.5
(short-dashed to solid lines), and two choices ∆R = 1.6, 3.5 (in blue, black). The right panel
shows the maximum IR value λ̃(max)

0,IR as a function of y5, for ΛUV
ΛIR
' 103, and ∆R = 1.51, 2.5, 3, 3.4

(short-dashed to solid lines).
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Figure 14. Model II. The coupling λ̃0 as a function of the energy scale Λ, for ∆ = 3, xF = 1,
∆φ = 1, and φc = 1.5. In the left panel ∆R = 3 and y5 = 0,−1,−2,−3 (short-dashed to solid lines),
while in the right panel ∆R = 4.5 and y5 = 0,−2,−4,−6 (short-dashed to solid lines). The boundary
condition for λ̃0 is chosen such that, for all RG flows shown, the Landau pole is at ΛUV

ΛIR
' 103.

Another mechanism, by which one may obtain large values of λ̃0 in the IR even when
∆R > 5/2, is given by taking the scaling dimension of Oφ to be ∆φ ≤ ∆

2∆−xF together with
the source φc '

√
3/∆φ close to its upper bound (see the discussion around eq. (2.27)).

As can be seen from the left panel of figure 15, taking φc close to this bound pushes the
effective scaling dimension towards its IR value ∆(eff)

R = 2 over a range of energies, such
that the maximum IR value of the coupling λ̃(max)

0,IR becomes large for any value of ∆R (right
panel). We illustrate a few examples of RG flows for the coupling λ̃0 in figure 16.

Finally, we note the similarity between the right panels of figures 11 and 15. In both
cases, the dynamics allowing for large IR values of the coupling λ̃(max)

0,IR involves significantly
deforming the geometry of the background, by pushing either xF or φc towards their
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Figure 15. Model II. Both panels have ∆ = 3, xF = 1, ∆φ = 0.2, and y5 = 0. The left panel shows
the effective scaling dimension ∆(eff)

R as a function of the energy scale Λ, for φc = 1, 2.5, 3.3, 3.7
(short-dashed to solid lines), and two choices ∆R = 1.6, 3.5 (in blue, black). The right panel
shows the maximum IR value λ̃(max)

0,IR as a function of φc, for ΛUV
ΛIR
' 103, and ∆R = 1.7, 2.3, 2.6, 3

(short-dashed to solid lines).
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Figure 16. Model II. The coupling λ̃0 as a function of the energy scale Λ, for ∆ = 3, xF = 1,
∆φ = 0.2, y5 = 0, and ∆R = 3, 4.5 (left and right panels), for φc = 1, 2.5, 3.3, 3.7 (short-dashed to
solid lines). The maximum allowed value of φc is given by

√
3/∆φ ≈ 3.87. The boundary condition

for λ̃0 is chosen such that, for all RG flows shown, the Landau pole is at ΛUV
ΛIR
' 103.

respective upper bounds. In contrast, the dependence of λ̃(max)
0,IR on y5, as seen from the

right panel of figure 13, is qualitatively different: (i) the maximum IR value of the coupling
does not approach λ̃(max)

0,IR = 1 as a limiting case, and (ii) it is possible to suppress λ̃(max)
0,IR

even in the relevant case ∆R < 5/2.

5 Spectrum of partially composite fermions

In this section, we study how the spectrum is modified by coupling the strong sector to
an elementary fermion, as in section 4. In particular, we will show how the RG flow of λ̃0
towards the IR may be used to predict when large mixing causes the spectrum to change
significantly with respect to that of the isolated strongly coupled sector studied in section 3.
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5.1 Two-point functions and spectrum

Let us first consider the two-point function of OR, computed at finite cutoff Λ, in the case of
ξ = 0, such that the strongly coupled sector can be considered in isolation. The calculation
proceeds along the same lines as outlined in section 3, with a few important differences.
We start from the assumption that the GKPW relation is valid at finite cutoff, i.e. that
eq. (4.3) holds at any value of the radial coordinate. As a consequence, we do not add
counter-terms to the regularised on-shell action SΨ,reg before differentiating with respect to
the source. Also, rather than taking the limit of the UV regulator r2 →∞ as in eq. (3.4),
since the cutoff Λ(r) is kept finite, we evaluate the expressions at a finite value of the radial
coordinate r = r. With these considerations, the result for the two-point function is

〈OR(q)OR(−q)〉ξ|Λ=0
Λ(r) = i δ2SΨ,reg

δψL(−q, r)δψL(q, r)
= −NΨN

2
Le

5A 1
/q

∂rb

b

∣∣∣
r
. (5.1)

Note that this expression differs from that of eq. (3.4) by the absence of the term containing
F that originates from the counter-term action Sct. We also comment that, since the
counter-terms are unimportant for the computation of the spectrum, for ξ|Λ = 0, one
recovers the same mass spectrum as in section 3 in the limit Λ→∞, when cutoff effects
can be neglected.

In order to derive two-point functions for the case of non-zero coupling ξ, we write the
partition function of the field theory eq. (4.4) in the presence of sources:

ZQFT[JR, JR, JL, JL; Λ(r̃); ξ] =
∫
DχLDχLDMΛe

iS[χL,χL,M;Λ(r2)]+i
∫
d4
x(ORJL+χLJR+h.c.) .

(5.2)
This has the effect of changing eq. (4.6) into

ZQFT[JR, JR, JL, JL; Λ(r̃); ξ] =
∫
DψLDψLZbulk[ψL(r̃) + JL, ψL(r̃) + JL; r̃] (5.3)

× exp
{
−iNΨ

∫
d4q ψL(−q)

i/q

ξ2(q, r̃)ψL(q)

+ iN 1/2
Ψ

∫
d4q

( 1
ξ(q, r̃)JR(−q)ψL(q) + h.c.

)}
.

Using eq. (5.1), this then leads to the following two-point functions:

〈χL(q)χL(−q)〉Λ(r) = −1

/q−ξ2(q,r)N−1
Ψ 〈OR(q)OR(−q)〉ξ|Λ=0

Λ(r)

=
−/q

q2+ξ2N2
Le

5A ∂rb
b

∣∣∣∣∣
r

,

〈χL(q)OR(−q)〉Λ(r) =
−iN−1/2

Ψ ξ 〈OR(q)OR(−q)〉ξ|Λ=0
Λ

/q−ξ2(q,r)N−1
Ψ 〈OR(q)OR(−q)〉ξ|Λ=0

Λ(r)

=
iN 1/2

Ψ ξN2
Le

5A ∂rb
b

q2+ξ2N2
Le

5A ∂rb
b

∣∣∣∣∣
r

,

〈OR(q)OR(−q)〉Λ(r) = /q 〈OR(q)OR(−q)〉ξ|Λ=0
Λ

/q−ξ2(q,r)N−1
Ψ 〈OR(q)OR(−q)〉ξ|Λ=0

Λ(r)

=
−NΨN

2
Le

5A ∂rb
b /q

q2+ξ2N2
Le

5A ∂rb
b

∣∣∣∣∣
r

. (5.4)

Note how 〈χL(q)χL(−q)〉Λ agrees with the expected result from resumming the perturbative
series expansion in ξ. Again, these expressions for the two-point functions hold for any value
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of the cutoff Λ(r). Although they depend on the cutoff, as expected, the mass spectrum
that can be extracted from their poles is physical and hence RG invariant. We will show
explicitly that this is the case for the example of an AdS background in a moment.

In practice, it is convenient to extract the spectrum from eqs. (5.4) at the UV cutoff
rUV for the following reasons. In the derivative expansion of eq. (4.29), we can expect the
UV values of the couplings λ̃i,UV to be order one, having been generated in an underlying
theory with characteristic scale ΛUV. Provided that the resonances that we are interested
have masses m � ΛUV, we can therefore safely neglect all couplings except the zeroeth
order one and put ξ̃UV = λ̃0,UV in our computation of the spectrum, from which it follows
that one should impose the UV boundary condition

q2 + ξ2N2
Le

5A∂rb

b

∣∣∣
rUV
' q2 + Λ2λ̃2

0
Λ∂Λb

b

∣∣∣
ΛUV

= 0 . (5.5)

In the limit of λ̃2
0,UV → 0, this boundary condition reproduces the prescription b|rUV = 0,

used for computing the spectrum in the strongly coupled sector without a dynamical
source. Conversely, in the limit λ̃2

0,UV →∞, one obtains the Neumann boundary condition
∂rb|rUV = 0, which reproduces the prescription given in ref. [18] for a dynamical source.
Following the reasoning of appendix B.3, one can show that, for non-zero coupling λ̃, the
presence of massless poles is the opposite of what was the case with a non-dynamical source:
for the (+) IR boundary condition, a massless pole is present, whereas for (−) IR boundary
condition, there is no massless state. Furthermore, we note that in this section, we will
compute the decay constant by using the finite cutoff version of eq. (2.23), i.e.

f2 = 2NC
e2A

g2
5

∂ra

a

∣∣∣
q2=0,r=rUV

. (5.6)

Finally, we comment on a relation between the spectra of the strongly coupled sector
in isolation and the partially composite spectrum at infinite coupling λ̃0,UV. In the range
3
2 < ∆R < 5

2 , these two spectra are identical provided that one makes the replacements
HΨ → −HΨ together with (±)→ (∓) for the IR boundary conditions (as well as use same
UV cutoff ΛUV in the two computations). This property of the spectra follows by making
use of eq. (B.23), which relates the ratio ∂rb/b for different solutions b of the equation of
motion (3.5). For our models in particular, the first of the two replacements implies that one
should take ∆R → 4−∆R for the scaling dimension of OR in the UV, as well as y5 → −y5
for the Yukawa coupling present in Model II. We will return to these observations later,
when we discuss the spectrum in more detail.

5.2 Low energy effective actions

We will now write the low energy effective actions that contain up to and including the
lightest massive fermionic resonance. Consider first the case of (−) IR boundary condition.
This implies that the strongly coupled theory in isolation is chiral, and contains a massless
state. When coupling it to the elementary fermion χL, it combines with OR to form a vector,
lifting the mass of this state. The denominator appearing in eqs. (5.4) can be expanded
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close to the pole of the lightest state (with mass m) as

q2 + ξ2N2
Le

5A∂rb

b

∣∣∣
r
∼ (q2 +m2) + · · · . (5.7)

We may now write the low energy action

S(−)
eff =

∫
d4q

[
−χL(−q)i/qχL(q)−XR(−q)i/qXR(q)+

(
fλχXR(−q)χL(q)+h.c.

)]
, (5.8)

which reproduces the two-point functions of eq. (5.4), close to −q2 = m2, provided one
makes the identification λχ = m

f = m√
NC f̃

together with

OR ←→ sign(ξ)e
5A
2 NLN 1/2

Ψ

√
∂rb

b
XR . (5.9)

Similarly, in the case of (+) IR boundary conditions, the low energy effective action
can be written as

S(+)
eff =

∫
d4q

[
− χL(−q)i/qχL(q)−XL(−q)i/qXL(q)−XR(−q)i/qXR(q)

+
(
m0XR(−q)XL(q) + fλχXR(−q)χL(q) + h.c.

) ]
, (5.10)

where m2 = m2
0 + f2λ2

χ with m0 the mass of the lightest resonance in the isolated strongly-
coupled theory, and, as expected, a massless state is also present.

The coupling λχ, appearing in the low energy effective actions of eqs. (5.8) and (5.10),
is related to the IR value λ̃0,IR of the coupling λ̃0 studied in section 4, though the two are
not identical since λ̃0,IR is normalised in units of ΛIR rather than f , and also because of the
fact that it appears as the lowest order in a derivative expansion which strictly speaking
only is valid for Q =

√
−q2 � ΛIR. Nevertheless, we will see that λ̃0,IR captures well the

qualitative features of the spectrum, namely the size of the mixing of the elementary fermion
with the strongly coupled sector, and since it is also more convenient to work with in the
holographic description, we hence use it, rather than λχ, to parameterize our results for the
partially composite spectra.

5.3 AdS background

As in subsections 3.1 and 4.4, we introduce a hard-wall IR cutoff at r = 0, in order to
obtain a mass gap. Furthermore, we parametrize our results for the spectrum in terms of
the scaling dimension [OR] = ∆R and the IR value of the coupling λ̃0(ΛIR) = λ̃0,IR.

Figure 17 shows the spectrum as a function of λ̃0,IR for a few different values of ∆R.
The maximum value of the coupling λ̃(max)

0,IR depends on ∆R and was given by eq. (4.40)
after making the requirement that the RG flow does not result in a Landau pole at a scale
below ΛUV. When ΛUV is large and finite, this implies that one can reach values of λ̃0,IR
that are slightly above the IR fixed point. For (+) IR boundary condition, the strongly
coupled sector in isolation is vector-like. In the partially composite case, the elementary
fermion mixes with the composite states, however there is always a massless state in the
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theory which will be more or less elementary depending on the strength of λ̃0,IR. Conversely,
for (−) IR boundary condition, the strongly coupled sector in isolation is chiral-like, and
contains an exactly massless state. As the strength of λ̃0,IR is increased, the elementary
fermion pairs up with this mode, lifting the mass of the lightest state. We also note that in
the irrelevant case, when ∆R >

5
2 , the maximum value of λ̃0,IR is suppressed by the factor

(ΛIR/ΛUV)∆R− 5
2 appearing in eq. (4.41), such that for large UV cutoff ΛUV the low energy

spectrum remains almost identical to that of the strongly coupled sector in isolation (with
the exception of the presence or not of a massless state).

From figure 17, we can also observe how the spectra of the composite and partially
composite cases are related to each other in the range 3

2 < ∆R <
5
2 . The spectrum of the

strongly coupled sector in isolation is given by taking λ̃0,IR → 0, and removing/adding
the massless state for (+)/(−) IR boundary condition. This spectrum is identical to that
for the maximum value of λ̃0,IR, after making the replacement ∆R → 4 −∆R while also
switching the IR boundary condition (±)→ (∓). In particular, the diamonds (∆R = 1.7)
of the left panel for λ̃0,IR = 0 are the same as the dots (∆R = 2.3) of the right panel for
λ̃0,IR = λ̃

(max)
0,IR , and vice versa.

Figure 18 shows the spectrum as a function of the scaling dimension ∆R for the
maximum value of the coupling λ̃0,IR. We have superimposed the spectrum of the strongly
coupled sector in isolation, previously displayed in figure 1, in order to make apparent the
effect of turning on the maximum allowed mixing between the elementary and composite
sectors. When ∆R >

5
2 , the coupling λ̃0 is irrelevant, and hence for large UV cutoff ΛUV the

massive spectrum is approximately the same as the case of the composite sector in isolation,
with a larger deviation close to the marginal case ∆ ' 5

2 . However, in the relevant case
∆R <

5
2 , the spectrum changes drastically. In particular, for the (−) IR boundary condition,

the previously massless state, present due to the chiral nature of the theory, is lifted as it
mixes with the elementary fermion, with a resulting mass that becomes progressively larger
as one approaches the free fermion case, ∆R ' 3

2 .
Before discussing the results for the spectra of Models I and II, let us take a slight

detour to demonstrate that the mass spectrum indeed is RG invariant; in other words that
if one takes into account the RG flow of the couplings, the locations of the poles in the
correlators of eq. (5.4) do not depend on the cutoff Λ. To show this, we use the analytical
solution for ξ̃ given in eq. (4.37), and focus on the two-point function 〈χL(q)χL(−q)〉:

〈χL(q)χL(−q)〉Λ =
−/q

q2 + ξ̃2Λ2 Λ∂Λb
b

. (5.11)

In order to proceed we use eq. (B.32) which we reproduce here for convenience:

Λ∂Λb

b
= −QΛ

JδR(Λ−1Q)− c±(Q)YδR(Λ−1Q)
JδR+1(Λ−1Q)− c±(Q)YδR+1(Λ−1Q) , (5.12)

where the integration constant c±(Q) depends on the IR boundary condition and is equal to

c−(Q) = JδR+1(Q)
YδR+1(Q) , c+(Q) = JδR(Q)

YδR(Q) . (5.13)
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Figure 17. AdS background. Fermionic spectrum as a function of λ̃0,IR for ∆R = 1.7, 2.3, 2.6
(diamonds, dots, crosses). The corresponding IR fixed point values (λ̃0 =

√
5− 2∆R when ∆R < 2.5

and λ̃0 = 0 when ∆R ≥ 2.5) are indicated by vertical dashed lines. The left and right panels
correspond to imposing (+) and (−) IR boundary conditions, respectively. The solid line in the left
panel indicates the presence of a massless state. The ratio between the UV and IR energy scales is
equal to ΛUV

ΛIR
= 103.
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Figure 18. AdS background. Fermionic spectrum as a function of ∆R for λ̃0,IR = λ̃
(max)
0,IR . The left

and right panels correspond to imposing (+) and (−) IR boundary conditions, respectively. The solid
line in the left panel indicates the presence of a massless state. The ratio between the UV and IR
energy scales is equal to ΛUV

ΛIR
= 103. The dashed lines indicate the spectrum of the strongly coupled

sector in isolation, computed in the limit ΛUV →∞, and is the same as the one shown in figure 1.

A direct calculation, making use of eq. (4.37), now yields that

〈χL(q)χL(−q)〉Λ

= /q

c±(Q)− cξ(Q)

[
π

2 Λ−1Q−1
(
JδR+1(Λ−1Q)− c±(Q)YδR+1(Λ−1Q)

)
(5.14)

×
(
JδR(Λ−1Q)− cξ(Q)YδR(Λ−1Q)

) ]
.

The (massive) pole structure follows completely from the very first factor, and leads to the
condition c±(Q) = cξ(Q), which as advertised does not depend on the cutoff Λ.
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5.4 Model I

In figure 19, we show the spectrum as a function of λ̃0,IR for a few different values of the
scaling dimension ∆R of OR at the UV fixed point. Notice that these numerical results
allow to extract the coupling λχ, appearing in the low energy effective action of eq. (5.8),
as a function of λ̃0,IR: the lightest massive state in the right panel of the figure is given
by m/f̃ = λχN

1/2
C . Similarly, the parameters in the action of eq. (5.10) are related to

the lightest massive state in the left panel, according to m/f̃ = (m2
0/f

2 + λ2
χ)1/2N

1/2
C .

The maximum allowed value of the coupling λ̃(max)
0,IR is given in eq. (4.45), which implies a

smaller range of λ̃0,IR when ∆R has larger scaling dimension. The resulting spectrum is
qualitatively similar to that shown in figure 17 for an AdS background. This is consistent
with the fact that, since we have chosen moderate values of xF = 3 and ∆ = 2.5, the
running of λ̃0 depicted in figure 10 only shows small deviations from that of the AdS case
in figure 9.

Figure 20 shows the spectrum as a function of the scaling dimension ∆R for a few
different values of xF , and with the maximum allowed value of the coupling λ̃0,IR = λ̃

(max)
0,IR .

Comparing with figure 2, we see that for ∆R >
5
2 , the spectrum remains virtually unchanged

with respect to that of the strongly coupled sector in isolation. Conversely, for ∆R < 5
2 ,

the mixing between the elementary and strongly coupled sector becomes large, significantly
modifying the spectrum. In particular, the mass of the lightest state, which was previously
massless for the (−) IR boundary condition, is lifted and becomes of the same order as the
mass gap close to ∆R ' 3

2 . While all this is qualitatively in agreement with the results for
an AdS background, shown in figure 18, the spectrum depends non-trivially on the number
of flavours, resulting in a lower mass gap (compared to f̃) and a more densely packed tower
of states, as xF is increased. We recall that this also was the case for the strongly coupled
sector in isolation, as apparent from figure 3, when the number of flavours is taken to be
close to the upper bound at xF = 2∆.

We further explore the flavour dependence of the partially composite spectrum in
figure 21. In order to obtain the largest possible effect, we choose λ̃0,IR = λ̃

(max)
0,IR to be

its maximum possible value. As was shown in figure 11, this value of the coupling in the
IR can be made to be large close to xF ' 2∆ even when the scaling dimension ∆R > 5

2 .
This was also illustrated in figure 12, which depicts the running of λ̃0 with energy scale
for different values of xF . Keeping in mind that, close to the upper bound for xF , the
spectrum becomes densely packed in units of f̃ , we instead plot the spectrum in units
of the IR scale ΛIR. The result, shown in figure 21, is consistent with what might be
expected from the study of the RG flow of λ̃0, namely that for xF ' 2∆ close to its
upper bound, it is possible to lift the mass of the light state, present for (−) IR boundary
condition, even when ∆R >

5
2 . This can be interpreted as that there is significant mixing

between the elementary and composite sectors, and shows that despite the coupling λ̃0
being irrelevant, the details of the IR physics, captured by the bulk geometry near the end
of space, may lead to results that deviate to a large extent from models based on an AdS
background.
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Figure 19. Model I. Fermionic spectrum as a function of λ̃0,IR for ∆ = 2.5, xF = 3, g5 = 8, and
∆R = 1.7, 2.3, 2.6 (diamonds, dots, crosses). The left and right panels correspond to imposing (+)
and (−) IR boundary conditions, respectively. The solid line in the left panel indicates the presence
of a massless state. The ratio between the UV and IR energy scales is equal to ΛUV

ΛIR
= 103. We used

the IR regulator r1 = 10−12 in the numerics.
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Figure 20. Model I. Fermionic spectrum as a function of ∆R for ∆ = 2.5, g5 = 8, λ̃0,IR = λ̃
(max)
0,IR ,

and xF = 0.5, 2, 4 (diamonds, dots, crosses). The left and right panels correspond to imposing (+)
and (−) IR boundary conditions, respectively. The solid line in the left panel indicates the presence
of a massless state. The ratio between the UV and IR energy scales is equal to ΛUV

ΛIR
= 103. We used

the IR regulator r1 = 10−12 in the numerics.

5.5 Model II

For Model II, it is possible to obtain a large IR value of the coupling λ̃0 even when it
is irrelevant, in two additional ways compared to Model I. As shown in section 4, this
may happen when either (i) the Yukawa coupling y5 is large and negative, illustrated in
figure 14, or (ii) the scaling dimension of Oφ is ∆φ . ∆

2∆−xF and its source φc ≤
√

3/∆
is large, illustrated in figure 16. In our study of the partially composite spectrum of
Model II, we therefore choose to concentrate on these two different cases. Again, we choose
λ̃0,IR = λ̃

(max)
0,IR to be its maximum possible value, in order to obtain the largest possible

effect on the spectrum.
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Figure 21. Model I. Fermionic spectrum as a function of xF for ∆ = 2.5, g5 = 8, λ̃0,IR = λ̃
(max)
0,IR ,

and ∆R = 1.6, 2.5, 2.75 (diamonds, dots, crosses). The left and right panels correspond to imposing
(+) and (−) IR boundary conditions, respectively. The solid line in the left panel indicates the
presence of a massless state. The decay constant f̃ is represented by the dashed black line. The
ratio between the UV and IR energy scales is equal to ΛUV

ΛIR
= 103. In the numerics, we used the IR

regulator r1 = 10−12 for xF ≤ 4.5, while for xF > 4.5 we used r1 = 10−30 in order to minimize the
cutoff effects. Even though, for large xF ' 4.9, these unphysical effects are visible for the heavy
states, we still chose to display the results of the numerical calculation, since we checked that lightest
states are less sensitive to the position of the IR regulator.

Figure 22 shows the resulting spectrum as function of the Yukawa coupling y5. Com-
paring to figure 5, which shows the spectrum for the strongly coupled sector in isolation, we
see that the mass of the light state, present for (+) boundary condition and large negative
y5, can be lifted by making |y5| sufficiently large, even when the scaling dimension ∆R >

5
2

is irrelevant. Similarly, the exactly massless state, present for (−) boundary condition in
the isolated strongly coupled sector, can also be lifted by making y5 large and negative,
with a smaller effect for larger scaling dimensions. We stress that, contrary to the case
represented by taking xF ' 2∆, the spectrum does not become densely packed in units of
f̃ . We attribute this to the fact that in the expression for the effective scaling dimension
∆(eff)
R given in eq. (4.23), it is the factor HΨ = MΨ + y5φ, rather than the warp factor A,

that is responsible for the large deviation from ∆R in the deep IR.
In figure 23, we show the spectrum as function of the source φc. We remind the Reader

that when the strongly coupled sector is considered isolation, the spectrum becomes densely
packed in units of f̃ for large φc, as can be seen from figure 6. We therefore choose to display
the partially composite spectrum in units of ΛIR. For large values of φc the spectrum shows
similar features as that of Model I with large xF ' 2∆, displayed in figure 21. In both
cases, the IR scale ΛIR becomes parametrically small compared to the AdS scale associated
with the UV fixed point, leading to multi-scale dynamics in the dual field theory. An
important difference, previously discussed, is that the bosonic spectrum, shown in figure 25,
approaches a gapped continuum for xF close to 2∆, whereas for large φc the continuum is
no longer gapped: the masses of the lowest resonances approach zero in units of f̃ both for
the fermionic and bosonic states.
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Figure 22. Model II. Fermionic spectrum as a function of y5 for ∆ = 3, xF = 1, g5 = 8, ∆φ = 1,
φc = 1.5, λ̃0,IR = λ̃

(max)
0,IR , and ∆R = 1.51, 2.5, 3 (diamonds, dots, crosses). The left and right panels

correspond to imposing (+) and (−) IR boundary conditions, respectively. The solid line in the left
panel indicates the presence of a massless state. The ratio between the UV and IR energy scales is
equal to ΛUV

ΛIR
= 103. We used the IR regulator r1 = 10−12 in the numerics.
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Figure 23. Model II. Fermionic spectrum as a function of φc for ∆ = 3, xF = 1, g5 = 8, ∆φ = 0.2,
y5 = 0, λ̃0,IR = λ̃

(max)
0,IR , and ∆R = 1.6, 2.5, 3 (diamonds, dots, crosses). The maximum allowed value

of φc is given by
√

3/∆φ ≈ 3.87. The decay constant f̃ is represented by the dashed black line. The
left and right panels correspond to imposing (+) and (−) IR boundary conditions, respectively. The
solid line in the left panel indicates the presence of a massless state. The ratio between the UV and
IR energy scales is equal to ΛUV

ΛIR
= 103. We used the IR regulator r1 = 10−12 in the numerics.

6 Conclusions and outlook

We presented holographic models which aim to elucidate the strong dynamics of the
composite Higgs scenario in the Veneziano limit. We focused our attention on the fermionic
sector, complementing the study carried out for the bosonic sector in [1]. The new results
that we presented fall into three categories. First, we calculated the spectrum of fermionic
resonances in the strongly coupled sector considered in isolation. Second, we incorporated
partial compositeness by coupling this sector to an external elementary fermion, and found
a connection to the formalism of holographic Wilsonian RG. Third, we explored the effect
of the fermion partial compositeness on the physical spectrum.
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Incorporating the Veneziano limit in holographic models necessitates considering back-
ground solutions that deviate from AdS to a significant degree, due to the effect of backreac-
tion of the flavour sector on the bulk geometry. We considerered two models [1] where the
backreaction arises due to the dynamics of bulk scalar fields that acquire non-trivial radial
profiles on the background. In Model I, only one such bulk scalar field is present, introduced
in order to describe flavour-symmetry breaking. The free parameters are ∆, related to the
scaling dimension of the flavour-symmetry breaking operator in the dual field theory, the
number of flavours xF , and the bulk gauge coupling g5. In the present study of the fermionic
spectrum, g5 only enters into the calculation of the decay constant f̃ , which provides the
units in which we present the majority of our results. Model II contains a second bulk scalar
field, associated with the explicit breaking of conformal invariance, leading to the additional
parameters ∆φ, related to the scaling dimension of the dual flavour-singlet operator, and
the source φc which parameterizes the size of the deformation due to such operator.

Common to Models I and II is the scaling dimension ∆R of the fermionic operator of
the dual field theory, related to the mass of the corresponding bulk fermionic field, as well
as the choice of IR boundary condition on the bulk fermionic field, which governs whether
the dual strongly-coupled sector is chiral (−) or vector-like (+). For Model II, we also
considered the effect of the Yukawa coupling y5 between the flavour-singlet scalar field and
the bulk fermion. We remind the Reader that the masses for flavour singlet and non-singlet
fermions are the same, as long as the above parameters are chosen to be the same.

For the case of the composite sector in isolation, and for generic choices of the parameters,
we found that the results of the spectrum for both models are qualitatively similar to that
of a slice of AdS, obtained in our models as xF , φc → 0. In particular, it remains true for
our models that, when the spectrum of the dual strongly-coupled sector is vector-like, there
may be a light fermionic state when ∆R ' 3/2, corresponding to an approximately free
fermion. Additionally, we identified three possible regions of parameter space — illustrated
by means of a few examples in figure 24 — in which the spectrum deviates substantially
from the minimal AdS case, leading to fermionic states parametrically lighter than 4πf̃ :

(A) An interesting limiting case is to take the number of flavours xF close to 2∆. As
one approaches this upper bound on xF , the backreaction of the flavour-symmetry
breaking scalar on the bulk geometry becomes large, inducing multi-scale dynamics
in the dual field theory. This can be anticipated in the bulk theory, where the IR
scale ΛIR becomes parametrically small, in units of the AdS curvature in the UV
of the geometry. This manifests in a characteristic spectrum, shown for Model I in
figure 3 for the fermionic sector, and in the left panel of figure 25 for the bosonic
sector. Close to xF ' 2∆, the fermionic spectrum approaches that of a continuum
(in units of the decay constant f̃), while the bosonic spectrum becomes that of a
gapped continuum, accompanied by two kinds of light states, namely the NGBs,
associated with the flavour-symmetry breaking, and the dilaton, associated with the
breaking of scale invariance. Therefore, the low energy spectrum is characterised
by a dilaton and a number of NGBs, accompanied by a tower of fermionic states,
beginning at the scale mF ∼ ΛIR � 4πf̃ . The remaining towers of bosonic states

– 47 –



J
H
E
P
0
5
(
2
0
2
2
)
0
6
6

(A)

�

�

��

��

��

m/f̃ (B)

�

�

��

��

��

m/f̃ (C)

�

�

��

��

��

m/f̃

0+S 0+NS 0−NS
1
2

(+) 1
2

(−)
1−NS 1+NS 2+S 0+S 0+NS 0−NS

1
2

(+) 1
2

(−)
1−NS 1+NS 2+S 0+S 0+NS 0−NS

1
2

(+) 1
2

(−)
1−NS 1+NS 2+S

Figure 24. Bosonic and fermionic spectra for three especial scenarios described in the text.
Scenario (A) corresponds to Model I with ∆ = 2.5, xF = 4.6, g5 = 8, ∆R = 2.5, r1 = 10−16 (bosons),
r1 = 10−30 (fermions), r2 = 15. The remaining two scenarios correspond to Model II with ∆ = 3,
xF = 1, g5 = 8, ∆R = 2.5, r1 = 10−12, r2 = 15. In addition, for scenario (B) we took ∆φ = 1,
φc = 1.5, y5 = −2, and for scenario (C) ∆φ = 0.2, φc = 3.7, y5 = 0. All plots are normalised in
units of the decay constant f̃ . Below the plots, we indicated by JPS,NS the spin J and parity P of
the various bosonic states, as well as whether they transform in singlet (S) or non-singlet (NS)
flavour representations. For the fermionic states, J = 1/2, the superscripts (+) and (−) refer to
the choice of the IR boundary condition, corresponding to the composite sector being vector-like
or chiral, respectively. The various sectors from left to right are: singlet scalar (blue, solid lines),
non-singlet scalar (blue, dashed lines), non-singlet pseudoscalar (black, solid lines), fermion in the
vector-like case (purple, solid lines), fermion in the chiral case (orange, solid lines), non-singlet vector
(green, solid lines), non-singlet axial-vector (green, dashed lines), singlet tensor (red, solid lines).
The non-singlet scalar spectrum is computed using the invariant I2 (for details see [1]).

appear only at a significantly higher scale governed by the NGB decay constant.
Although we illustrated this scenario for Model I, the spectrum of Model II shows the
same qualitative features close to xF ' 2∆, for moderate values of φc and ∆φ.

(B) In Model II, it is possible to obtain parametrically light fermionic states by dialling the
bulk Yukawa coupling y5 to large and negative values. This effect, shown in figure 5,
concerns the case when the IR boundary condition for the bulk fermion is chosen to be
(+), corresponding to the dual strongly-coupled sector being vector-like. Here, the scale
associated with the typical bosonic and fermionic resonances is m∗ ∼ 4πf̃ . However,
we interestingly found that an isolated light fermionic state can be obtained, for any
value of ∆R, by making the Yukawa coupling sufficiently large and negative. We were
also able to capture this effect in a simple toy model that can be analytically solved,
see section 3.4. In addition to this light fermionic state, the low energy spectrum
also consists of a number of NGBs accompanied, when the singlet operator is close
to marginal (∆φ ' 0), by a light dilaton (see [1] for further discussion on this point).
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(C) In Model II, there is an additional limit, in which one obtains a large backreaction on
the bulk geometry, and which leads to multiscale dynamics in the dual field theory. For
sufficiently small ∆φ, one may increase the source φc for the flavour-singlet operator,
such that the backreaction of its corresponding bulk scalar field causes the IR scale
ΛIR to become parametrically small. For large φc, the resulting fermionic spectrum,
depicted in figure 6, shows similar features as in scenario (A), namely it approaches
that of a continuum (in units of the decay constant f̃). However, as can be seen
from the right panel of figure 25, the bosonic spectrum no longer contains a gapped
continuum, but also approaches a continuum that starts at zero. In this scenario, one
therefore finds that the low energy spectrum contains a number of NGBs, accompanied
by both fermionic and bosonic towers beginning at the scale ΛIR � 4πf̃ .

We remark that out of these three scenarios, the first and the last both rely on large
deviations of the bulk geometry, compared to the AdS case, which is the reason that also the
bosonic part of the spectrum is significantly affected. Conversely, the mechanism described
in scenario (B) relies on dialling the bulk Yukawa coupling y5, and hence only affects
the spectrum of the fermionic sector. We also note that, as we chose ∆ ≥ 2 to realise a
spontaneous breaking of the flavour symmetry, scenario (A) requires taking the number
of flavours to be large, xF & 4, thus entering a regime in which our models may be less
trustable, see [1] as well as the discussion after eq. (2.8).

By making use of the formalism of the holographic Wilsonian RG, we were able to derive
a flow equation for an infinite number of couplings, collectively contained in λ̃, between an
elementary fermion and the strongly coupled sector. Focusing on the most relevant coupling
λ̃0, obtained at the lowest order in a derivative expansion of λ̃, we studied the dependence
of its RG flow on the parameters. For generic choices of the model parameters, the RG flow
is qualitatively the same as for the AdS case, with only slight deviations in the deep IR.
However, the RG flow can be radically different in all of the three scenarios outlined above.
Remarkably, it is possible to induce RG flows leading to sizeable values of the coupling λ̃0
in the IR, even when the associated operator is irrelevant at the UV fixed point, ∆R > 5/2.
Examples of such special RG flows are shown in figures 12–16.

Finally, we investigated the effect of partial compositeness on the spectrum of fermionic
resonances. The presence of an exactly massless fermionic state is reversed with respect
to the case of a strongly-coupled sector in isolation: when the strong sector is chiral,
the coupling to the elementary fermion causes the previously massless state to be lifted,
whereas for a vector-like strong sector, there is always a massless state present after partial
compositeness is incorporated. In the former case, how much the mass of the light state is
lifted depends on the IR value of the coupling λ̃0, with larger mixing leading to a larger
mass, in agreement with the expectations from the analysis of the RG flow (see figure 19).
As can be seen from figure 20, for generic values of the parameters, the effect of partial
compositeness on the spectrum is simply controlled by the scaling dimension ∆R at the
UV fixed point: RG flows induced by relevant deformations produce the largest deviations
from the low energy spectrum of the strongly-coupled sector in isolation (see figure 2). Of
particular interest is whether the masses of light states can be significantly affected even
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when ∆R > 5/2. Our models allow for such dynamics in the following cases:

(i) When the (−) IR boundary condition is chosen (chiral strongly-coupled sector) one
may significantly lift the mass of the light state, provided the model parameters are
chosen to be in the regimes corresponding to the scenarios (A–C) described above.
This is illustrated in figures 21–23.

(ii) In Model II with (+) IR boundary condition (vector-like strongly-coupled sector) the
mass of the light state present for large negative y5 in scenario (B) can be significantly
lifted provided |y5| is taken sufficiently large. This is illustrated in figure 22. In
scenarios (A) and (C) the mass of the lightest vector-like fermion was of order (a
few) ΛIR in the composite sector in isolation: partial compositeness has the effect of
enhancing it, most significantly when λ̃0,IR becomes sizeable.

Under these conditions, the operator OR may be considered to be dangerously irrelevant,
in the sense that it can have a large effect on the low energy physics, despite its irrelevant
nature from the point of view of the UV fixed point.

Let us draw some phenomenological implications from the above features of the fermionic
spectrum. Recall that, for the composite sector in isolation, each resonance corresponds to a
full representation of the unbroken flavour group, Sp(2NF ), specifically either a singlet or a
two-index representation, see the last column of table 2. While SM singlet fermions can be
light or even massless if sufficiently decoupled, the two-index representations contain several
components in exotic SM representations, see eq. (A.6) for the minimal case NF = 5. As
the latter have not been observed, a realistic model requires a (+) IR boundary condition,
to remove these components from the chiral content of the theory.15 Given such large,
composite vector-like multiplet, an elementary SM chiral fermion can have a linear coupling
to the corresponding component of the multiplet, i.e. the one carrying the conjugate quantum
numbers: this results in a partially composite chiral fermion, as well as a state with mass
raised with respect to the other components of the multiplet.16 The magnitude of the mass
splitting depends crucially on the IR value of such coupling. In particular, the smaller ∆R,
the more relevant OR, resulting in a larger effect.

The generic mass for a composite vector-like fermion is m∗ ∼ 4πf̃ . Figure 24 illustrates
two scenarios (A) and (B) where, instead, the first fermion resonance becomes parametrically
lighter. Additionally, in scenario (C), all resonances become parametrically lighter than
4πf̃ : the resonance gap is controlled by a flavour-singlet operator, and it is significantly
smaller than the scale of flavour-symmetry breaking. The experimental lower bounds lie
in the few-TeV (few-hundred-GeV) range for coloured (electroweak) vector-like fermions,
while SM singlet fermions could be much lighter. At the same time one needs to keep
f ≡

√
NC f̃ & 1TeV. If light fermions will be discovered, this may imply a stronger

15Alternatively, for (−) IR boundary condition one needs to introduce as many exotic elementary fermions,
to pair with their composite partners and thus lift their mass from zero. This scenario is possibly more
peculiar, but interestingly it allows to keep massless only desirable components, e.g. to realise a right-handed
top quark that is fully composite.

16For simplicity we are neglecting, throughout the discussion, the effect of SM gauge and fermion loops, that
may lift significantly the lightest states in the spectrum, in particular in the case of gluon or top-quark loops.
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lower bound on f , and thus no observable deviations e.g. in SM Higgs couplings. Vice
versa, if the latter are observed first, one cannot approach too closely the limiting cases of
scenarios (A–C). Note also that, as a vector-like fermion multiplet becomes lighter, the
component mixing with a SM chiral fermion becomes progressively heavier than the others:
consequently one might discover exotic states before observing an actual top prime. The
light fermion resonances may or may not be accompanied by light bosonic ones (beside the
NGBs): as illustrated in figure 24, a light dilaton may or may not be present and, in the
case of scenario (C), all bosonic sectors may feature a relatively light state as well.

The above scenarios (A–C) illustrate how light fermionic modes may emerge in certain
bottom-up holographic models, proposed to capture the strongly-coupled dynamics of a class
of HC theories in the Veneziano limit. It would be interesting if future lattice simulations
could identify regions in the (NC , NF ) plane leading to spectra with the same qualitative
features as in these scenarios. At present, typical lattice simulations of UV-complete gauge
theories in the composite-Higgs context (see section 3.5) are realised for a small number
of hypercolours, and are likely to be far from the near-conformal regime where anomalous
dimensions could be large. Complementarily, one may ask whether one can build models
that implement partial compositeness within the context of top-down gauge-gravity dualities.
Such top-down models are rigidly constrained, as their field content and dynamics are
dictated by supergravity, and thus allow for greater predictability. In particular, operator
scaling dimensions are calculable rather than appearing as free parameters, in contrast
with bottom-up models. It would be especially interesting if one could find regimes in
which the dynamics is comparable to our scenarios (A–C), leading to parametrically light
fermionic states.
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A Inventory of composite fermionic operators

Given a HC theory with gauge group Sp(2NC), one can combine the constituent fields into
composite, HC-invariant operators, which are suitable to describe the confined phase of the
theory. In table 1, we collect the properties of the constituent fields with respect to Lorentz
(gauge bosons and Weyl fermions), hypercolour (one- or two-index representations), and
the flavour symmetry GF = SU(2NF ) × U(1). In appendix C of ref. [1] we classified all
possible bosonic operators, while here we present all possible fermionic operators. We only
list operators with no (covariant) derivatives, as these can be added straightforwardly, by
acting on constituent fields in all possible ways.
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Lorentz Sp(2NC) SU(2NF ) U(1)

Aµij (1/2, 1/2)µ ij • 0

ψαai (1/2, 0)α i
a qψ

ψ
α̇
ai ≡ ψ

†α̇
aj Ωji (0, 1/2)α̇ i a −qψ

χαij (χ′αij ) (1/2, 0)α
ij

( ij) • qχ (qχ′)

χα̇ij ≡ Ωikχ
†α̇
kl Ωlj (χ′αij ) (0, 1/2)α̇

ij
( ij) • −qχ (−qχ′)

Table 1. The constituent fields of the HC theory: the gauge bosons A, the Weyl fermions ψ and χ
(or χ′) and their conjugates. In our convention i, j, . . . are Sp(2NC) indexes, µ, ν, . . . Lorentz vector
indexes, α, β . . . and α̇, β̇, . . . Lorentz spinor indexes, a, b, . . . flavour SU(2NF ) indexes. Singlets are
indicated by a bullet. The ratio of U(1) charges is determined by the requirement of a vanishing
U(1)− Sp(2NC)− Sp(2NC) anomaly: qχ(NC − 1) = −qψNF [or qχ′(NC + 1) = −qψNF ].

A.1 Fermion trilinears

Let us begin by considering HC-invariant operators made of fermion constituents only.
Fermionic operators should include 3 + 2k constituents, for k = 0, 1, 2, . . . . The unique
invariant tensor with only indexes in the fundamental of Sp(2NC) is Ωij = −Ωji. Therefore,
it is easy to identify all possible contractions of HC indexes,

ψTΩ(χΩ)1+2kψ , tr
[
χΩχΩ(χΩ)1+2k

]
, (A.1)

where each ψ (χ) can be replaced by ψ (χ, χ′, χ′), as they transform in the same HC
representation.

Since the canonical scaling dimension of these operators is 9/2 + 3k, one expects that
the fermion-trilinear operators (k = 0) are the most relevant ones, and that they therefore
are those with the largest mixing with the SM fermions. Moreover, naively one may expect
the mass of a composite fermion to grow with the number of constituents, MF ∝ (3+2k)m∗.
In this case, the fermion-trilinear operators should be sufficient to describe the spectrum
of the lightest composite fermions. There are, however, potential exceptions, because (i)
composite fermions which are non-generically light are possible, e.g. zero modes, and (ii)
such light states may belong to a specific Lorentz and flavour representation, which may
not be realised for k = 0. Keeping this caveat in mind, in the following classification we
limit ourself to fermion-trilinear operators only.

The interplay between the HC and Lorentz contractions of three fermions is non-trivial,
therefore let us analyse these contractions in detail, before presenting the complete list of
independent operators. The Sp(2NC) contraction of two fundamental representations with
a two-index representation reads explicitly

ψTΩχΩψ = ψiχjkψlΩijΩkl . (A.2)

With χ antisymmetric (χ′ symmetric), such contraction is antisymmetric (symmetric) under
the exchange of HC indexes between the two ψ’s. The contraction of three two-index
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representations reads
tr(χΩχΩχΩ) = χijχklχmnΩjkΩlmΩni . (A.3)

With χ antisymmetric (χ′ symmetric), such contraction is symmetric (antisymmetric) under
the exchange of HC indexes between two χ’s. Note that we defined ψ and χ such that
they transform under HC in the same way as ψ and χ, see table 1. Therefore eqs. (A.2)
and (A.3) hold when one or more fermions are barred as well.

Coming to Lorentz representations, we work with the conventions of [83] for spinor
indexes. The combination of three spin-1/2 fermions should contain two spin-1/2 components
and one spin-3/2 component. In the case of three left-handed spinors, e.g. ψχψ, the
components in (1/2, 0)3 = 2× (1/2, 0) + (3/2, 0) can be identified as

F β1 ≡ ψ
αχβψγεαγ , F β2 ≡ (ψγχαψβ − ψβχγψα)εαγ ,

Gαβγ ≡ ψαχβψγ − 1
2F

β
1 ε

γα + 1
6
(
Fα2 ε

βγ − F γ2 ε
αβ
)
.

(A.4)

The spin-1/2 operator F1 (F2) is symmetric (antisymmetric) under the exchange of the
two ψ’s, by taking into account the anticommutation of the spinors. The spin-3/2 operator
G satisfies Gαβγ = −Gγβα. Any other product of three left-handed spinors, e.g. χχχ,
decomposes in the same way. In the case of two left-handed and one right-handed spinor,
e.g. ψχψ, the components in (1/2, 0)2 × (0, 1/2) = (0, 1/2) + (1, 1/2) can be identified as

F β̇3 ≡ ψ
αχβ̇ψγεαγ , H β̇

µν ≡ ψαχβ̇ψγ(σµν) γ
α . (A.5)

The spin-1/2 operator F3 is symmetric under the exchange of the two ψ’s. The operator
H, despite being Lorentz irreducible, contains a spin-1/2 and a spin-3/2 component, both
antisymmetric under the exchange of the two ψ’s. Indeed, the spin corresponds to the vector
subgroup of the Lorentz group, SU(2)spin ⊂ SU(2)left × SU(2)right. Therefore, in order to
distinguish the spin components of H, one can identify dotted and undotted indexes and
develop the same decomposition as in eq. (A.4).

Armed with these tools, one can identify the non-vanishing trilinear operators, that we
list in table 2. Let us make some remarks to clarify how the list of independent operators is
established, and how to identify their flavour representation. First of all, In the cases ψχψ
and ψχψ, the replacement χ ↔ χ′ inverts the symmetry in flavour indexes. In the case
χχχ, the F2-like contraction vanishes because of antisymmetry under exchange of the two
contracted spinors, and the analogue of Gαβγ also vanishes because it is fully antisymmetric
in α, β, γ = 1, 2. In the case χ′χ′χ′, both F1,2-like contractions vanish because the two
spinors contracted by an ε-tensor are antisymmetric in HC. In the χχχ (χ′χ′χ′) case, the
H β̇
µν-like (F β̇3 -like) contraction vanishes by antisymmetry.

Let us discuss the flavour assignment of fermion-trilinear operators. Since each ψ carries
an SU(2NF ) index, the ψχψ operators transform in SU(2NF ) two-index representations
(symmetric, antisymmetric or adjoint), which all reduce to Sp(2NF ) two-index symmetric or
antisymmetric representations, up to traces that are flavour singlets. The χχχ operators are
SU(2NF ) singlets. The trilinear U(1) charge, not shown in table 2, is simply the sum of the
three corresponding constituent U(1) charges, shown in table 1. Larger operators, those with
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Lorentz SU(2NF ) Sp(2NF )

Fβab1 = ψTαaΩχβΩψγbεαγ [χ↔ χ′] (1/2, 0)β
ab [

ab
]

ab
+ •aa [ ab]

Fβab2 = (ψTγaΩχαΩψβb − ψTβaΩχγΩψαb)εαγ [χ↔ χ′] (1/2, 0)β ab

[
ab
]

ab

[
ab

+ •aa
]

Gαβγab = ψTαaΩχβΩψγb − (spin 1/2 pieces) [χ↔ χ′] (3/2, 0)αβγ ab

[
ab
]

ab

[
ab

+ •aa
]

Fβχ = tr
(
χαΩχβΩχγΩ

)
εαγ (1/2, 0)β • •[

Gαβγ = tr
(
χ′αΩχ′βΩχ′γΩ

)] [
(3/2, 0)αβγ

]
[•] [•]

F β̇ab3 = ψTαaΩχβ̇Ωψγbεαγ [χ↔ χ′] (0, 1/2)β̇
ab [

ab
]

ab
+ •aa [ ab]

Hβ̇ab
µν = ψTαaΩχβ̇Ωψbγ(σµν) γα [χ↔ χ′] (1, 1/2)β̇µν ab

[
ab
]

ab

[
ab

+ •aa
]

F γ̇4
a

b
= ψTαaΩχβΩψγ̇b εαβ [χ↔ χ′] (0, 1/2)γ̇ a

b + •aa ab +
ab

+ •aa

H γ̇a
µνb

= ψTαaΩχβΩψγ̇b (σµν) βα [χ↔ χ′] (1, 1/2)γ̇µν
a
b + •aa ab +

ab
+ •aa

F̃ β̇χ = tr
(
χαΩχβ̇ΩχγΩ

)
εαγ (0, 1/2)β̇ • •[

Hβ̇
µν = tr

(
χ′αΩχ′β̇Ωχ′γΩ

)
(σµν) γα

]
[(1, 1/2)β̇µν ] [•] [•]

Table 2. The fermion-trilinear operators, and their transformation properties with respect to
Lorentz and to the flavour symmetry, before and after SSB. HC indexes (not shown) are contracted
according to eqs. (A.2) and (A.3). The case when χij antisymmetric is replaced by χ′ij symmetric is
shown in squared brackets everywhere.

k > 0 in eq. (A.1), transform in the same SU(2NF ) representations as the corresponding
k = 0 fermion trilinear, however the non-vanishing components may be different, due to the
different HC and Lorentz contractions. Of course, the operator U(1) charge also depends
on k.

The operators with non-trivial SM charges come from the decomposition of the Sp(2NF )
representations ab or

ab
. In the minimal case NF = 5, defined by eq. (2.9), such

decomposition under SU(3)C × SU(2)L × SU(2)R ×U(1)B is given by

(55S)Sp(10) =
[
(1, 1, 1)0 + (1, 2, 2)0 + (1, 1, 3)0 + (1, 3, 1)0 + (8, 1, 1)0 + (6, 1, 1)2/3

+ (6, 1, 1)−2/3 + (3, 2, 1)1/3 + (3, 2, 1)−1/3 + (3, 1, 2)1/3 + (3, 1, 2)−1/3
]

SU3221
,

(44A)Sp(10) =
[
2× (1, 1, 1)0 + (1, 2, 2)0 + (8, 1, 1)0 + (3, 1, 1)−2/3 + (3, 1, 1)2/3

+ (3, 2, 1)1/3 + (3, 2, 1)−1/3 + (3, 1, 2)1/3 + (3, 1, 2)−1/3
]

SU3221
, (A.6)

for the symmetric and antisymmetric case, respectively. As top and bottom quark partners
should belong to the (1/2, 0) or (0, 1/2) Lorentz representation, inspecting table 2 one
finds that the list of possible quark-partner operators is given by F ab1 , F ab2 , F ab3 , F4

a
b , as

anticipated in eq. (2.3), and analogously eq. (2.4) for the χ′ case.
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A.2 Glue plus fermions

Let us complete the classification of composite fermionic operators, by considering HC-
invariant combinations of gauge and fermion constituents. The HC gauge-field strength can
be written as a two-index symmetric tensor,

Fµνij ≡ Ωik(TA)kjFAµν , (A.7)

where A runs over the Sp(2NC) generators TA, which satisfy ΩTA = −(TA)TΩ, and the
contraction with Ω illustrates that the adjoint of Sp(2NC) is indeed equivalent to the
two-index symmetric representation, see appendix C in [1] for more details. Therefore, Fµνij
transforms as χ′ij with respect to HC. One can build fermionic operators by combining the
same fermion constituents as in eq. (A.1) with one or more powers of Fµν : (ψ2χ1+2kF 1+n)
or (χ3+2kF 1+n), for k, n = 0, 1, 2, . . . , and analogously for χ ↔ χ′. These have canonical
scaling dimension ≥ 13/2, therefore they are expected to be highly irrelevant.

However, in the case of an adjoint fermion χ′, there is also the possibility of fermionic
operators with a single constituent fermion, (χ′F 1+n), with canonical scaling dimension
7/2 + 2n. Let us focus on the minimal case n = 0, where the contraction of HC indexes
reads explicitly

Fµνij χ
′α
klΩjkΩli = tr

(
FµνΩχ′αΩ

)
. (A.8)

It contains three irreducible Lorentz components,

F̂ β ≡ tr
(
FµνΩχ′αΩ

)
(σµν)βα ∼ (1/2, 0)β ,

Ĝαβγ ≡ tr
(
FµνΩχ′αΩ

)
(σµν)βγ −

1
3
(
F̂γε

βα + F̂ βδ αγ

)
∼ (3/2, 0)αβγ ,

Ĥαβ̇
γ̇ ≡ tr

(
FµνΩχ′αΩ

)
(σµν)β̇γ̇ ∼ (1/2, 1)αβ̇γ̇ .

(A.9)

They are all flavour singlets, and they are conceivably more relevant w.r.t. to the three-
fermion operators (canonical dimension 7/2 versus 9/2), listed in table 2. It is also
conceivable that the lightest flavour-singlet composite fermions are better described as
bound states of one gluon and one fermion, rather than three-constituent bounds states.

We also note that a composite fermion operator with a smaller scaling dimension
should have a more significant mixing with elementary fermions in the same representation.
However, in order to mix the operators in eq. (A.9) with the SM elementary fermions,
one would need χ′ to carry SM charges, that is, one should introduce several flavours of
constituent fermions in the adjoint. This endangers the asymptotic freedom of HC, as well
as of the SM gauge interactions, as demonstrated in appendix B of [1].

B Fermions in five dimensions and their holographic interpretation

In this appendix, we discuss some details about the treatment of fermions in holography [18,
84, 85], in particular pertaining to the computation of two-point functions using the
formalism of holographic renormalisation [57–59].
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B.1 Variational problem

Consider a Dirac fermion Ψ in the bulk with the action given by eq. (2.28) which we repeat
here for convenience (in this appendix we suppress the overall normalisation NΨ)

SΨ = −
∫

d5x
√
−g

[1
2
(
ΨΓMDMΨ−DMΨΓMΨ

)
+HΨΨΨ

]
−
∑
i=1,2

si
2

∫
d4x

√
−g̃ΨΨ

∣∣∣
ri
. (B.1)

Taking the variation of SΨ with respect to Ψ, we obtain

δSΨ = δS(1)
Ψ + δS(2)

Ψ ,

δS(1)
Ψ =

∫
d4x

√
−g̃

[
Ψ
(
−s1 + γ5

2

)
δΨ + δΨ

(
−s1 − γ5

2

)
Ψ
] ∣∣∣∣∣
r1

,

δS(2)
Ψ =

∫
d4x

√
−g̃

[
Ψ
(
−s2 − γ5

2

)
δΨ + δΨ

(
−s2 + γ5

2

)
Ψ
] ∣∣∣∣∣
r2

. (B.2)

Consider first the UV contribution. Suppose we take s2 = −1. Then

δS(2)
Ψ =

∫
d4x

√
−g̃

[
ΨRδΨL + δΨLΨR

] ∣∣∣∣∣
r2

, (B.3)

and when ΨL is the source its variation vanishes in the UV, so that δS(2)
Ψ = 0. Conversely,

s2 = 1 corresponds to choosing ΨR as the source. Because of the invariance of the action
under the transformations of eq. (2.34), it is sufficient to consider the case of ΨL being the
source. Hence, in the following, we put s2 = −1 without loss of generality.

By contrast, in the IR, we do not require either of the variations δΨL,R to vanish.
Choosing s1 = −1 leads to

δS(1)
Ψ =

∫
d4x

√
−g̃

[
ΨLδΨR + δΨRΨL

] ∣∣∣∣∣
r1

, (B.4)

and the Dirichlet boundary condition ΨL|r1 = 0. Conversely, s1 = 1 implies that ΨR|r1 = 0.
We will consider both these cases which we refer to as (−) and (+) IR boundary conditions,
respectively. As already discussed in the main body of the paper, the (−) boundary
condition implies that the dual strongly-coupled sector is chiral, while the (+) boundary
condition describes a vector-like strong sector.

B.2 Two-point functions

Two-point functions are obtained by differentiating the on-shell action (supplemented by
counter-terms) with respect to the boundary value of the bulk field. To this end, we rewrite
the action SΨ, separating it into a bulk part, that vanishes by the equations of motion, and
boundary parts. Making use of the identity

ωMΓM = ΓMωM −
1√
−g

∂M
(√
−g ΓM

)
, (B.5)
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the action SΨ can be rewritten as

SΨ = SD + Sb , (B.6)

SD = −
∫

d5x
√
−gΨ

[
ΓMDM +HΨ

]
Ψ , (B.7)

Sb =
∫

d4x
√
−g̃Ψ

(
−s1 − γ5

2

)
Ψ
∣∣∣
r1

+
∫

d4x
√
−g̃ΨPRΨ

∣∣∣
r2
, (B.8)

where we used the explicit form of the vielbein eMA given in eq. (2.36). After using the
equation of motion for Ψ given by the Dirac equation[

ΓMDM +HΨ
]

Ψ = 0 , (B.9)

the regularised on-shell action SΨ,reg only receives a contribution from Sb. Furthermore,
after imposing either ΨL|r1 = 0 (s1 = −1) or ΨR|r1 = 0 (s1 = 1), only the UV part of Sb
contributes on-shell, leaving

SΨ,reg =
∫

d4x
√
−g̃ΨLΨR

∣∣∣
r2
. (B.10)

After projecting with PL,R, eq. (B.9) can be written as

(∂r + 2∂rA+HΨ)ΨR + e−Aγµ∂µΨL = 0 ,
−(∂r + 2∂rA−HΨ)ΨL + e−Aγµ∂µΨR = 0 . (B.11)

We define Fourier transforms by the convention

Ψ(x) =
∫ d4q

(2π)2 e
iqµxµΨ(q) , (B.12)

and in momentum space we use the notation Ψ(q, r) ≡ Ψ†(−q, r)iγ0. Solving for ΨR in
eq. (B.11), we then obtain

ΨR(q, r) = −
i/q

q2 e
A(∂r + 2∂rA−HΨ)ΨL(q, r) , (B.13)

which after plugging into eq. (B.10) gives

SΨ,reg = −
∫

d4q e5A ΨL(−q, r)
i/q

q2 (∂r + 2∂rA−HΨ)ΨL(q, r)
∣∣∣
r2
. (B.14)

To this we need to add the counter-term action

SΨ,ct = −
∫

d4x
√
−g̃ΨL

(
F(−g̃µν∂µ∂ν)iΓσ∂σ

)
ΨL

∣∣∣
r2

(B.15)

= −
∫

d4q e3A ΨL(−q, r)
(
F(e−2Aq2)i/q

)
ΨL(q, r)

∣∣∣
r2
,

to define the subtracted action as SΨ,sub ≡ SΨ,reg + SΨ,ct. Here, F is a polynomial

F(e−2Aq2) =
n∑
i=0

fi(e−2Aq2)i , (B.16)

the order n of which depends on the dimension of the operator dual to ΨL.
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It is convenient to rescale ΨL as

ΨL(q, r) = NL(r)ψL(q, r) , (B.17)

NL(r) ≡ exp
(
−2A(r) +MΨr −

∫ ∞
r

dr̃ hΨ(r̃)
)
, (B.18)

where we anticipated that it is necessary to include the normalisation factor NL(r) so that
ψL becomes the source of the operator OR in the dual field theory.17 In terms of ψL, the
Dirac equation (B.11) becomes[

∂2
r + (∂rA+ 2HΨ)∂r − q2e−2A

]
ψL = 0 , (B.19)

while the two possible IR boundary conditions, (−) and (+), become Dirichlet ψL|r1 = 0
(s1 = −1) or Neumann ∂rψL|r1 = 0 (s1 = 1), respectively.

After writing ψL(q, r) = b(q, r)ψ̃L(q), where b is a scalar, we obtain

δ2SΨ,sub

δψL(−q, r2)δψL(q, r2)
= N2

L e
5A i

/q

(
e−2Aq2F(e−2Aq2) + ∂rb

b

) ∣∣∣
r2
. (B.20)

The two-point function of the operator OR is then given by

〈OR(q)OR(−q)〉 = lim
r2→∞

{
i δ2SΨ,sub

δψL(−q, r2)δψL(q, r2)

}
. (B.21)

We see that the massive poles, and hence the spectrum, can be extracted from the non-trivial
solutions that satisfy the UV boundary condition b|r2 = 0. We will treat the massless case
separately soon.

Finally, we comment on a relation that follows from eq. (B.19). Given a solution
ψL(q, r) = b(q, r)ψ̃L(q) to eq. (B.19), let us define the ratio

x±HΨ
= −∂rb

b
, (B.22)

where the superscript ± indicates which boundary condition b satisfies in the IR, while the
subscript refers to the function HΨ appearing in eq. (B.19). Then, it follows that

x±HΨ
= e−2Aq2

x∓−HΨ

, (B.23)

corresponding to the invariance of eq. (2.34).

B.3 Massless poles

Whether or not the fermionic correlator of eq. (B.21) contains massless poles depends on
the behaviour of ∂rbb in eq. (B.20) at large r2 and small q2: such dependence may or may

17Indeed, from eq. (B.19) we see that, for asymptotically AdS backgrounds and lim
r→∞

HΨ = MΨ > − 1
2 ,

the leading mode scales as ψL ∼ 1 in the UV of the geometry (large r).
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not lead to the cancellation of the prefactor 1
/q
as q2 → 0. Hence, let us expand b for small

q2 as
b(q, r) = N (q2)

(
b(0) + b(2)(r)q2 + · · ·

)
, (B.24)

where N (q2) is an unimportant overall normalisation, and we used the Dirac equation (B.11)
at zero momentum to fix b(0) as having no radial dependence.

Suppose we use the (+) boundary condition. Then, we have that

∂rb
+

b+
= ∂rb

(2)

b(0) q2 + · · · , (B.25)

which when plugged into eq. (B.20) and eq. (B.21) implies that 〈OR(q)OR(−q)〉+ has no
massless pole. On the other hand, the (−) boundary condition implies that b(0) = 0, and
hence

∂rb
−

b−
= ∂rb

(2)

b(2) + · · · , (B.26)

where b(2)(r) satisfies the equation of motion[
∂2
r + (∂rA+ 2HΨ)∂r

]
b(2) = 0 , (B.27)

supplemented by the IR boundary condition b(2)(r1) = 0. In an asymptotically AdS
background, this leads to the UV expansion

b(2)(r) = b
(2)
1 + b

(2)
2

(
e−(1+2MΨ)r + · · ·

)
(B.28)

where b(2)
1 and b(2)

2 are integration constants. Which in turn implies that

∂rb
−

b−
= −b

(2)
2

b
(2)
1

(1 + 2MΨ)e−(1+2MΨ)r + · · · (B.29)

for large r, such that the exponential factor cancels against the factor N2
Le

5A in eq. (B.20).
Consequently, eq. (B.21) implies that 〈OR(q)OR(−q)〉− has a massless pole, except for
special cases (e.g. when MΨ = −1/2 such that the scaling dimension ∆R = 3/2 is that of a
free fermion, see next subsection).

B.4 Application to AdS background

It is instructive to compute the fermionic two-point functions for the case of an AdS
background. Hence, we take A(r) = r and HΨ = MΨ constant, such that eq. (B.19)
becomes [

∂2
r + (1 + 2MΨ)∂r − q2e−2r

]
b = 0 (B.30)

with the solution (for q2 ≤ 0)

b = e−αr
[
c1(Q)Yα(e−rQ) + c2(Q)Jα(e−rQ)

]
, α ≡MΨ + 1

2 , Q ≡
√
−q2 , (B.31)

where c1 and c2 are integration constants.
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After imposing the two possible IR boundary conditions b|r1 = 0 (−) or ∂rb|r1 = 0 (+),
one obtains

∂rb
−

b−
= Qe−r

Jα−1 (e−rQ)Yα (e−r1Q)− Jα (e−r1Q)Yα−1 (e−rQ)
Jα (e−r1Q)Yα (e−rQ)− Jα (e−rQ)Yα (e−r1Q) , (B.32)

∂rb
+

b+
= Qe−r

Jα−1 (e−rQ)Yα−1 (e−r1Q)− Jα−1 (e−r1Q)Yα−1 (e−rQ)
Jα−1 (e−r1Q)Yα (e−rQ)− Jα (e−rQ)Yα−1 (e−r1Q) . (B.33)

It is straightforward to verify that these expressions are consistent with the relation given
in eq. (B.23).

Recalling that the counter-terms are polynomial in q2, the massive poles of
〈OR(q)OR(−q)〉− are given by the zeroes of b−(Q, r2) in the limit r2 → ∞. One can
show that these are given by those Q for which

Jα(e−r1Q) = 0 . (B.34)

Similarly, the massive poles of 〈OR(q)OR(−q)〉+ can be obtained from the zeroes of b+(Q, r2)
in the limit r2 →∞, which leads to

Jα−1(e−r1Q) = 0 . (B.35)

We showed the resulting spectrum as a function of ∆R = 2 +MΨ in figure 1.
For the computation of the two-point function, including the cancellation of potential

UV divergencies, we consider separately the two cases corresponding to non-integer or
integer values of α. In the former case, one can show that the counterterm coefficients fk
may be chosen to be18

fk = (−1)kΘ(α− 1)g(α)
k , k = 0, · · · , bαc , (B.36)

where bαc is the largest integer smaller or equal to α and the coefficients g(α)
k are defined

through the expansion
J1−α(z))
J−α(z) ≡

∑
k≥0

g
(α)
k z2k+1 . (B.37)

The resulting two-point functions become equal to

〈OR(q)OR(−q)〉± = ±2
/q

(
Q

2

)2α Γ(1− α)
Γ(α)

J−α+ 1
2±

1
2
(e−r1Q)

Jα− 1
2∓

1
2
(e−r1Q) , (B.38)

which confirms the above statements regarding the position of the massive poles. It is also
easy to verify by expanding for small Q that, as expected, 〈OR(q)OR(−q)〉− has a massless
pole while 〈OR(q)OR(−q)〉+ does not. Finally note that in the limit α→ 0, corresponding
to the free fermion case ∆R = 3

2 , both two-point functions vanish identically.
For integer α = n ≥ 1, one has to take into account the presence of logarithmic

divergencies. After choosing the counterterm coefficients to be

fk = (−1)k+1h
(n)
k , k = 0, · · · , n− 2 , (B.39)

fn−1 = (−1)n
[ 1

22(n−1)κn(n− 1)!

(
r − log

(
µ

2

))
+ h

(n)
n−1

]
, (B.40)

18Note that no counterterms are needed when α < 1.
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Figure 25. Bosonic spectrum for Model I (left panel) and Model II (right panel), as a function of
xF and ∆φ, respectively. In Model I, we used ∆ = 2.5, g5 = 8, r1 = 10−10, and r2 = 15. In Model II,
we used xF = 1, ∆ = 3, g5 = 8, ∆φ = 0.2, r1 = 10−12, and r2 = 15. Both plots are normalised
in units of the decay constant f̃ . The colour coding for the spectrum is: singlet scalar (blue),
non-singlet scalar (blue diamonds), tensor (red), pseudoscalar (black), vector (green), axial-vector
(green diamonds); for further details see [1]. In Model I, since ∆ > 2, there is also a massless dilaton
in the spectrum. In both panels, it is understood that heavier states are present in the right- and
left-upper corners.

where µ is a constant, κ0 = −2γE , κn = (n − 1)! (n ≥ 1), and the coefficients h(n)
k are

defined through the expansion

Yn−1(z)− 2
π log

(
z
2
)
Jn−1(z)

Yn(z)− 2
π log

(
z
2
)
Jn(z)

≡
∑
k≥0

h
(n)
k z2k+1 , (B.41)

one obtains the two-point functions

〈OR(q)OR(−q)〉± = 2
/q

(
Q

2

)2n 1
κn(n− 1)!

πYn− 1
2∓

1
2
(e−r1Q)

Jn− 1
2∓

1
2
(e−r1Q) − 2 log

(
Q

µ

) . (B.42)

As can be seen, we have traded the UV scale corresponding to a finite r2 for the renormali-
sation scale µ.

C Comparison with bosonic spectrum

In order to make the comparison between the fermionic and bosonic spectra of Models I
and II, we here present two additional plots shown in figure 25, complementing the results
previously obtained in [1]. We remind the Reader that what we call Model II in the current
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paper is referred to as Model IIB in [1]. Furthermore, the spectrum is computed using the
invariant I = I2, which is a choice that only affects the results for the non-singlet scalar
(for details, see [1]). The left panel of figure 25 shows the bosonic spectrum for Model I,
as one approaches the upper bound on the number of flavours xF ≤ 2∆. Conversely, the
right panel shows the bosonic spectrum for Model II, as one approaches the upper bound
on φc <

√
3/∆φ for a value of ∆φ <

∆
2∆−xF . In both limits, the spectrum begins to form a

continuum, i.e. the spacing between the heavy states approaches zero in units of f̃ . However,
there is an important difference in that for the former case the mass gap remains of the
same order as xF is varied, resulting in a gapped continuum, while for the latter case, the
continuum that forms for large values of φc starts at zero. We also note the presence of
light states in both cases, namely the NGBs and the dilaton, which are both massless for
Model I, while in Model II, increasing the source φc results in lifting the mass of the dilaton.
The latter effect is small due to the choice of ∆φ = 0.2 being close to marginal.

D Holographic Wilsonian RG

For completeness, we give here a derivation of the flow equation given by eq. (4.14), following
the arguments outlined in [42] for bosons, and generalised to fermions in [76, 77]. We start
by observing that eq. (4.9) is invariant under change of the cutoff surface parametrized by
r. Recalling eq. (4.2), the actions appearing in eq. (4.9) are

SΨ[r1, r; s1,−1] = −
∫ r

r1
dr
∫

d4x
√
−g

[1
2
(
ΨΓMDMΨ−DMΨΓMΨ

)
+HΨΨΨ

]
− s1

2

∫
d4x

√
−g̃ΨΨ

∣∣∣
r1

+ 1
2

∫
d4x

√
−g̃ΨΨ

∣∣∣
r

(D.1)

and

SUV[r, rUV] = −
∫

d4q
√
−g̃ΨL(−q, r)f(q, r)ΨL(q, r) , (D.2)

where, for ease of presentation, we have defined (see eq. (4.11))

f(q, r) ≡
i/q

e4AN2
Lξ

2 , (D.3)

and we omitted the factor NΨ which only appears as an overall constant, irrelevant in the
following. In the large-NC limit, these actions are to be evaluated on the classical solutions,
and the RG invariance of eq. (4.9) hence implies that

∂r
(
SΨ[r1, r; s1,−1] + SUV[r, rUV]

)
= 0 . (D.4)

In addition, the variational problem demands that

0 = δSΨ[r1, r; s1,−1] + δSUV[r, rUV]

=
∫

d4q
√
−g̃

{[
ΨR(−q, r)−ΨL(−q, r)f(q, r)

]
δΨL(q, r)

+ δΨL(−q, r)
[
ΨR(q, r)− f(q, r)ΨL(q, r)

]}
, (D.5)
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leading to the boundary conditions relating ΨR (ΨR) to ΨL (ΨL):

ΨR(−q, r) = ΨL(−q, r)f(q, r)
ΨR(q, r) = f(q, r)ΨL(q, r) . (D.6)

Together, eqs. (D.4) and (D.5) imply a flow equation for f , as follows. We have that

∂rSΨ[r1, r; s1,−1] =

=
∫

d4x

{1
2∂r

(√
−g̃ΨΨ

)
−
√
−g

[1
2
(
ΨΓMDMΨ−DMΨΓMΨ

)
+HΨΨΨ

]}∣∣∣∣
r

=
∫

d4q e4A
{

(2∂rA−HΨ)
[
ΨR(−q, r)ΨL(q, r) + ΨL(−q, r)ΨR(q, r)

]
+ ΨR(−q, r)∂rΨL(q, r) + ∂rΨL(−q, r)ΨR(q, r)

− e−A
[
ΨL(−q, r)(i/q)ΨL(q, r) + ΨR(−q, r)(i/q)ΨR(q, r)

]}
(D.7)

=
∫

d4q e4A
{

(4∂rA− 2HΨ) ΨL(−q, r)f(q, r)ΨL(q, r)

+ ΨL(−q, r)f(q, r)∂rΨL(q, r) + ∂rΨL(−q, r)f(q, r)ΨL(q, r)

− e−A
[
ΨL(−q, r)(i/q)ΨL(q, r) + ΨL(−q, r)f(q, r)(i/q)f(q, r)ΨL(q, r)

]}
,

where we used eq. (D.5) to obtain an expression in terms of ΨL and ΨL. Furthermore,

∂rSUV[r, rUV] =−
∫

d4q e4A
{

4∂rAΨL(−q,r)f(q,r)ΨL(q,r)+ΨL(−q,r)∂rf(q,r)ΨL(q,r)

+∂rΨL(−q,r)f(q,r)ΨL(q,r)+ΨL(−q,r)f(q,r)∂rΨL(q,r)
}
, (D.8)

so that eq. (D.4) becomes

0 = ∂r
(
SΨ[r1, r; s1,−1] + SUV[r, rUV]

)
= −

∫
d4q e4AΨL(−q, r)

{
∂rf(q, r) + 2HΨf(q, r)

+ e−Ai/q + f(q, r)
(
e−Ai/q

)
f(q, r)

}
ΨL(q, r) . (D.9)

One now observes that eq. (D.9) needs to hold for any classical solution. In particular, after
imposing an IR boundary condition on ΨL, one can think of the space of such solutions as
being parametrized by the value that ΨL takes at the coordinate r = r, which implies that

∂rf = −2HΨf − e−Ai/q − f
(
e−Ai/q

)
f . (D.10)

Using the definition of f(q, r) given in eq. (D.3), one finally obtains the RG flow equation
for ξ:

∂rξ
2 = −N−2

L e−5Aq2 +N2
Le

3Aξ4 . (D.11)

– 63 –



J
H
E
P
0
5
(
2
0
2
2
)
0
6
6

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] D. Elander, M. Frigerio, M. Knecht and J.-L. Kneur, Holographic models of composite Higgs in
the Veneziano limit. Part I. Bosonic sector, JHEP 03 (2021) 182 [arXiv:2011.03003]
[INSPIRE].

[2] D.B. Kaplan, Flavor at SSC energies: A New mechanism for dynamically generated fermion
masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].

[3] R. Contino, The Higgs as a Composite Nambu-Goldstone Boson, in Theoretical Advanced
Study Institute in Elementary Particle Physics: Physics of the Large and the Small,
pp. 235–306 (2011) [DOI] [arXiv:1005.4269] [INSPIRE].

[4] G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, Springer, Lect. Notes Phys.
913 (2016) 1 [arXiv:1506.01961] [INSPIRE].

[5] J. Barnard, T. Gherghetta and T.S. Ray, UV descriptions of composite Higgs models without
elementary scalars, JHEP 02 (2014) 002 [arXiv:1311.6562] [INSPIRE].

[6] G. Ferretti and D. Karateev, Fermionic UV completions of Composite Higgs models, JHEP 03
(2014) 077 [arXiv:1312.5330] [INSPIRE].

[7] L. Vecchi, A dangerous irrelevant UV-completion of the composite Higgs, JHEP 02 (2017) 094
[arXiv:1506.00623] [INSPIRE].

[8] A. Belyaev et al., Di-boson signatures as Standard Candles for Partial Compositeness, JHEP
01 (2017) 094 [Erratum ibid. 12 (2017) 088] [arXiv:1610.06591] [INSPIRE].

[9] N. Bizot, M. Frigerio, M. Knecht and J.-L. Kneur, Nonperturbative analysis of the spectrum of
meson resonances in an ultraviolet-complete composite-Higgs model, Phys. Rev. D 95 (2017)
075006 [arXiv:1610.09293] [INSPIRE].

[10] H. Gertov, A.E. Nelson, A. Perko and D.G.E. Walker, Lattice-Friendly Gauge Completion of a
Composite Higgs with Top Partners, JHEP 02 (2019) 181 [arXiv:1901.10456] [INSPIRE].

[11] F. Caracciolo, A. Parolini and M. Serone, UV Completions of Composite Higgs Models with
Partial Compositeness, JHEP 02 (2013) 066 [arXiv:1211.7290] [INSPIRE].

[12] V. Ayyar et al., Baryon spectrum of SU(4) composite Higgs theory with two distinct fermion
representations, Phys. Rev. D 97 (2018) 114505 [arXiv:1801.05809] [INSPIRE].

[13] B. Lucini et al., Sp(4) gauge theories and beyond the standard model physics, EPJ Web Conf.
258 (2022) 08003 [arXiv:2111.12125] [INSPIRE].

[14] E. Bennett et al., Progress in Sp(2N) lattice gauge theories, in 38th International Symposium
on Lattice Field Theory, (2021) [arXiv:2111.14544] [INSPIRE].

[15] Bennett et al., Lattice studies of the Sp(4) gauge theory with two fundamental and three
antisymmetric Dirac fermions, arXiv:2202.05516 [INSPIRE].

[16] V. Ayyar et al., Partial compositeness and baryon matrix elements on the lattice, Phys. Rev. D
99 (2019) 094502 [arXiv:1812.02727] [INSPIRE].

– 64 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP03(2021)182
https://arxiv.org/abs/2011.03003
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.03003
https://doi.org/10.1016/S0550-3213(05)80021-5
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB365%2C259%22
https://doi.org/10.1142/9789814327183_0005
https://arxiv.org/abs/1005.4269
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1005.4269
https://doi.org/10.1007/978-3-319-22617-0
https://doi.org/10.1007/978-3-319-22617-0
https://arxiv.org/abs/1506.01961
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.01961
https://doi.org/10.1007/JHEP02(2014)002
https://arxiv.org/abs/1311.6562
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.6562
https://doi.org/10.1007/JHEP03(2014)077
https://doi.org/10.1007/JHEP03(2014)077
https://arxiv.org/abs/1312.5330
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.5330
https://doi.org/10.1007/JHEP02(2017)094
https://arxiv.org/abs/1506.00623
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.00623
https://doi.org/10.1007/JHEP01(2017)094
https://doi.org/10.1007/JHEP01(2017)094
https://arxiv.org/abs/1610.06591
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.06591
https://doi.org/10.1103/PhysRevD.95.075006
https://doi.org/10.1103/PhysRevD.95.075006
https://arxiv.org/abs/1610.09293
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.09293
https://doi.org/10.1007/JHEP02(2019)181
https://arxiv.org/abs/1901.10456
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.10456
https://doi.org/10.1007/JHEP02(2013)066
https://arxiv.org/abs/1211.7290
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1211.7290
https://doi.org/10.1103/PhysRevD.97.114505
https://arxiv.org/abs/1801.05809
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.05809
https://doi.org/10.1051/epjconf/202225808003
https://doi.org/10.1051/epjconf/202225808003
https://arxiv.org/abs/2111.12125
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2111.12125
https://arxiv.org/abs/2111.14544
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2111.14544
https://arxiv.org/abs/2202.05516
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2202.05516
https://doi.org/10.1103/PhysRevD.99.094502
https://doi.org/10.1103/PhysRevD.99.094502
https://arxiv.org/abs/1812.02727
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.02727


J
H
E
P
0
5
(
2
0
2
2
)
0
6
6

[17] R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudoGoldstone boson, Nucl.
Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].

[18] R. Contino and A. Pomarol, Holography for fermions, JHEP 11 (2004) 058 [hep-th/0406257]
[INSPIRE].

[19] K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B
719 (2005) 165 [hep-ph/0412089] [INSPIRE].

[20] K. Agashe and R. Contino, The Minimal composite Higgs model and electroweak precision
tests, Nucl. Phys. B 742 (2006) 59 [hep-ph/0510164] [INSPIRE].

[21] R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models,
Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].

[22] A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys.
Rev. D 74 (2006) 015005 [hep-ph/0602229] [INSPIRE].

[23] C. Csáki and M. Reece, Toward a systematic holographic QCD: A Braneless approach, JHEP
05 (2007) 062 [hep-ph/0608266] [INSPIRE].

[24] A. Falkowski and M. Pérez-Victoria, Electroweak Breaking on a Soft Wall, JHEP 12 (2008)
107 [arXiv:0806.1737] [INSPIRE].

[25] J.A. Cabrer, G. von Gersdorff and M. Quirós, Soft-Wall Stabilization, New J. Phys. 12 (2010)
075012 [arXiv:0907.5361] [INSPIRE].

[26] J.A. Cabrer, G. von Gersdorff and M. Quirós, Suppressing Electroweak Precision Observables
in 5D Warped Models, JHEP 05 (2011) 083 [arXiv:1103.1388] [INSPIRE].

[27] E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,
Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

[28] I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: Duality cascades
and chi SB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].

[29] A.H. Chamseddine and M.S. Volkov, Non-Abelian Bogomol’nyi-Prasad-Sommerfield Monopoles
in N = 4 Gauged Supergravity, Phys. Rev. Lett. 79 (1997) 3343 [hep-th/9707176] [INSPIRE].

[30] J.M. Maldacena and C. Núñez, Towards the large N limit of pure N = 1 superYang-Mills,
Phys. Rev. Lett. 86 (2001) 588 [hep-th/0008001] [INSPIRE].

[31] T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys.
113 (2005) 843 [hep-th/0412141] [INSPIRE].

[32] B. Batell, T. Gherghetta and D. Sword, The Soft-Wall Standard Model, Phys. Rev. D 78
(2008) 116011 [arXiv:0808.3977] [INSPIRE].

[33] A. Delgado and D. Diego, Fermion Mass Hierarchy from the Soft Wall, Phys. Rev. D 80
(2009) 024030 [arXiv:0905.1095] [INSPIRE].

[34] S. Mert Aybat and J. Santiago, Bulk Fermions in Warped Models with a Soft Wall, Phys. Rev.
D 80 (2009) 035005 [arXiv:0905.3032] [INSPIRE].

[35] T. Gherghetta and D. Sword, Fermion Flavor in Soft-Wall AdS, Phys. Rev. D 80 (2009)
065015 [arXiv:0907.3523] [INSPIRE].

[36] P.R. Archer, S.J. Huber and S. Jager, Flavour Physics in the Soft Wall Model, JHEP 12
(2011) 101 [arXiv:1108.1433] [INSPIRE].

– 65 –

https://doi.org/10.1016/j.nuclphysb.2003.08.027
https://doi.org/10.1016/j.nuclphysb.2003.08.027
https://arxiv.org/abs/hep-ph/0306259
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0306259
https://doi.org/10.1088/1126-6708/2004/11/058
https://arxiv.org/abs/hep-th/0406257
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0406257
https://doi.org/10.1016/j.nuclphysb.2005.04.035
https://doi.org/10.1016/j.nuclphysb.2005.04.035
https://arxiv.org/abs/hep-ph/0412089
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0412089
https://doi.org/10.1016/j.nuclphysb.2006.02.011
https://arxiv.org/abs/hep-ph/0510164
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0510164
https://doi.org/10.1103/PhysRevD.75.055014
https://arxiv.org/abs/hep-ph/0612048
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0612048
https://doi.org/10.1103/PhysRevD.74.015005
https://doi.org/10.1103/PhysRevD.74.015005
https://arxiv.org/abs/hep-ph/0602229
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0602229
https://doi.org/10.1088/1126-6708/2007/05/062
https://doi.org/10.1088/1126-6708/2007/05/062
https://arxiv.org/abs/hep-ph/0608266
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0608266
https://doi.org/10.1088/1126-6708/2008/12/107
https://doi.org/10.1088/1126-6708/2008/12/107
https://arxiv.org/abs/0806.1737
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0806.1737
https://doi.org/10.1088/1367-2630/12/7/075012
https://doi.org/10.1088/1367-2630/12/7/075012
https://arxiv.org/abs/0907.5361
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0907.5361
https://doi.org/10.1007/JHEP05(2011)083
https://arxiv.org/abs/1103.1388
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1103.1388
https://doi.org/10.4310/ATMP.1998.v2.n3.a3
https://arxiv.org/abs/hep-th/9803131
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9803131
https://doi.org/10.1088/1126-6708/2000/08/052
https://arxiv.org/abs/hep-th/0007191
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0007191
https://doi.org/10.1103/PhysRevLett.79.3343
https://arxiv.org/abs/hep-th/9707176
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9707176
https://doi.org/10.1103/PhysRevLett.86.588
https://arxiv.org/abs/hep-th/0008001
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0008001
https://doi.org/10.1143/PTP.113.843
https://doi.org/10.1143/PTP.113.843
https://arxiv.org/abs/hep-th/0412141
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0412141
https://doi.org/10.1103/PhysRevD.78.116011
https://doi.org/10.1103/PhysRevD.78.116011
https://arxiv.org/abs/0808.3977
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0808.3977
https://doi.org/10.1103/PhysRevD.80.024030
https://doi.org/10.1103/PhysRevD.80.024030
https://arxiv.org/abs/0905.1095
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0905.1095
https://doi.org/10.1103/PhysRevD.80.035005
https://doi.org/10.1103/PhysRevD.80.035005
https://arxiv.org/abs/0905.3032
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0905.3032
https://doi.org/10.1103/PhysRevD.80.065015
https://doi.org/10.1103/PhysRevD.80.065015
https://arxiv.org/abs/0907.3523
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0907.3523
https://doi.org/10.1007/JHEP12(2011)101
https://doi.org/10.1007/JHEP12(2011)101
https://arxiv.org/abs/1108.1433
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1108.1433


J
H
E
P
0
5
(
2
0
2
2
)
0
6
6

[37] A. Ahmed, A. Carmona, J. Castellano Ruiz, Y. Chung and M. Neubert, Dynamical origin of
fermion bulk masses in a warped extra dimension, JHEP 08 (2019) 045 [arXiv:1905.09833]
[INSPIRE].

[38] J. Erdmenger, N. Evans, W. Porod and K.S. Rigatos, Gauge/gravity dual dynamics for the
strongly coupled sector of composite Higgs models, JHEP 02 (2021) 058 [arXiv:2010.10279]
[INSPIRE].

[39] J. Erdmenger, N. Evans, W. Porod and K.S. Rigatos, Gauge/gravity dynamics for composite
Higgs models and the top mass, Phys. Rev. Lett. 126 (2021) 071602 [arXiv:2009.10737]
[INSPIRE].

[40] D. Elander and M. Piai, Towards top-down holographic composite Higgs: minimal coset from
maximal supergravity, JHEP 03 (2022) 049 [arXiv:2110.02945] [INSPIRE].

[41] I. Heemskerk and J. Polchinski, Holographic and Wilsonian Renormalization Groups, JHEP
06 (2011) 031 [arXiv:1010.1264] [INSPIRE].

[42] T. Faulkner, H. Liu and M. Rangamani, Integrating out geometry: Holographic Wilsonian RG
and the membrane paradigm, JHEP 08 (2011) 051 [arXiv:1010.4036] [INSPIRE].

[43] D. Buarque Franzosi and G. Ferretti, Anomalous dimensions of potential top-partners, SciPost
Phys. 7 (2019) 027 [arXiv:1905.08273] [INSPIRE].

[44] T. Banks and A. Zaks, On the Phase Structure of Vector-Like Gauge Theories with Massless
Fermions, Nucl. Phys. B 196 (1982) 189 [INSPIRE].

[45] T.A. Ryttov and R. Shrock, Infrared fixed point physics in SO(Nc) and Sp(Nc) gauge theories,
Phys. Rev. D 96 (2017) 105015 [arXiv:1709.05358] [INSPIRE].

[46] J.A. Gracey, T.A. Ryttov and R. Shrock, Scheme-Independent Calculations of Anomalous
Dimensions of Baryon Operators in Conformal Field Theories, Phys. Rev. D 97 (2018) 116018
[arXiv:1805.02729] [INSPIRE].

[47] Z. Chacko, H.-S. Goh and R. Harnik, The Twin Higgs: Natural electroweak breaking from
mirror symmetry, Phys. Rev. Lett. 96 (2006) 231802 [hep-ph/0506256] [INSPIRE].

[48] R. Barbieri, D. Greco, R. Rattazzi and A. Wulzer, The Composite Twin Higgs scenario, JHEP
08 (2015) 161 [arXiv:1501.07803] [INSPIRE].

[49] M. Low, A. Tesi and L.-T. Wang, Twin Higgs mechanism and a composite Higgs boson, Phys.
Rev. D 91 (2015) 095012 [arXiv:1501.07890] [INSPIRE].

[50] K. Agashe and G. Servant, Baryon number in warped GUTs: Model building and (dark matter
related) phenomenology, JCAP 02 (2005) 002 [hep-ph/0411254] [INSPIRE].

[51] K. Agashe, D. Kim, M. Toharia and D.G.E. Walker, Distinguishing Dark Matter Stabilization
Symmetries Using Multiple Kinematic Edges and Cusps, Phys. Rev. D 82 (2010) 015007
[arXiv:1003.0899] [INSPIRE].

[52] M. Frigerio, J. Serra and A. Varagnolo, Composite GUTs: models and expectations at the LHC,
JHEP 06 (2011) 029 [arXiv:1103.2997] [INSPIRE].

[53] N. Arkani-Hamed and Y. Grossman, Light active and sterile neutrinos from compositeness,
Phys. Lett. B 459 (1999) 179 [hep-ph/9806223] [INSPIRE].

[54] D.J. Robinson and Y. Tsai, Dynamical framework for KeV Dirac neutrino warm dark matter,
Phys. Rev. D 90 (2014) 045030 [arXiv:1404.7118] [INSPIRE].

– 66 –

https://doi.org/10.1007/JHEP08(2019)045
https://arxiv.org/abs/1905.09833
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.09833
https://doi.org/10.1007/JHEP02(2021)058
https://arxiv.org/abs/2010.10279
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.10279
https://doi.org/10.1103/PhysRevLett.126.071602
https://arxiv.org/abs/2009.10737
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.10737
https://doi.org/10.1007/JHEP03(2022)049
https://arxiv.org/abs/2110.02945
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2110.02945
https://doi.org/10.1007/JHEP06(2011)031
https://doi.org/10.1007/JHEP06(2011)031
https://arxiv.org/abs/1010.1264
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1010.1264
https://doi.org/10.1007/JHEP08(2011)051
https://arxiv.org/abs/1010.4036
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1010.4036
https://doi.org/10.21468/SciPostPhys.7.3.027
https://doi.org/10.21468/SciPostPhys.7.3.027
https://arxiv.org/abs/1905.08273
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.08273
https://doi.org/10.1016/0550-3213(82)90035-9
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB196%2C189%22
https://doi.org/10.1103/PhysRevD.96.105015
https://arxiv.org/abs/1709.05358
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.05358
https://doi.org/10.1103/PhysRevD.97.116018
https://arxiv.org/abs/1805.02729
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.02729
https://doi.org/10.1103/PhysRevLett.96.231802
https://arxiv.org/abs/hep-ph/0506256
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0506256
https://doi.org/10.1007/JHEP08(2015)161
https://doi.org/10.1007/JHEP08(2015)161
https://arxiv.org/abs/1501.07803
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1501.07803
https://doi.org/10.1103/PhysRevD.91.095012
https://doi.org/10.1103/PhysRevD.91.095012
https://arxiv.org/abs/1501.07890
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1501.07890
https://doi.org/10.1088/1475-7516/2005/02/002
https://arxiv.org/abs/hep-ph/0411254
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0411254
https://doi.org/10.1103/PhysRevD.82.015007
https://arxiv.org/abs/1003.0899
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1003.0899
https://doi.org/10.1007/JHEP06(2011)029
https://arxiv.org/abs/1103.2997
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1103.2997
https://doi.org/10.1016/S0370-2693(99)00672-3
https://arxiv.org/abs/hep-ph/9806223
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9806223
https://doi.org/10.1103/PhysRevD.90.045030
https://arxiv.org/abs/1404.7118
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1404.7118


J
H
E
P
0
5
(
2
0
2
2
)
0
6
6

[55] Z. Chacko, P.J. Fox, R. Harnik and Z. Liu, Neutrino Masses from Low Scale Partial
Compositeness, JHEP 03 (2021) 112 [arXiv:2012.01443] [INSPIRE].

[56] C. Csáki, J. Erlich, T.J. Hollowood and J. Terning, Holographic RG and cosmology in theories
with quasilocalized gravity, Phys. Rev. D 63 (2001) 065019 [hep-th/0003076] [INSPIRE].

[57] M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631
(2002) 159 [hep-th/0112119] [INSPIRE].

[58] M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001)
041 [hep-th/0105276] [INSPIRE].

[59] K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002)
5849 [hep-th/0209067] [INSPIRE].

[60] R.S. Chivukula, M.J. Dugan and M. Golden, Electroweak corrections in technicolor
reconsidered, Phys. Lett. B 292 (1992) 435 [hep-ph/9207249] [INSPIRE].

[61] H. Georgi, Generalized dimensional analysis, Phys. Lett. B 298 (1993) 187 [hep-ph/9207278]
[INSPIRE].

[62] A. Falkowski and M. Pérez-Victoria, Holographic unparticle Higgs boson, Phys. Rev. D 79
(2009) 035005 [arXiv:0810.4940] [INSPIRE].

[63] C. Csáki, G. Lee, S.J. Lee, S. Lombardo and O. Telem, Continuum Naturalness, JHEP 03
(2019) 142 [arXiv:1811.06019] [INSPIRE].

[64] E. Megías and M. Quirós, Gapped Continuum Kaluza-Klein spectrum, JHEP 08 (2019) 166
[arXiv:1905.07364] [INSPIRE].

[65] M. Berg, M. Haack and W. Mueck, Bulk dynamics in confining gauge theories, Nucl. Phys. B
736 (2006) 82 [hep-th/0507285] [INSPIRE].

[66] M. Berg, M. Haack and W. Mueck, Glueballs vs. Gluinoballs: Fluctuation Spectra in
Non-AdS/Non-CFT, Nucl. Phys. B 789 (2008) 1 [hep-th/0612224] [INSPIRE].

[67] D. Elander and M. Piai, Calculable mass hierarchies and a light dilaton from gravity duals,
Phys. Lett. B 772 (2017) 110 [arXiv:1703.09205] [INSPIRE].

[68] D. Elander and M. Piai, Glueballs on the Baryonic Branch of Klebanov-Strassler: dimensional
deconstruction and a light scalar particle, JHEP 06 (2017) 003 [arXiv:1703.10158] [INSPIRE].

[69] G. Mack, All unitary ray representations of the conformal group SU(2, 2) with positive energy,
Commun. Math. Phys. 55 (1977) 1 [INSPIRE].

[70] V. Ayyar et al., Spectroscopy of SU(4) composite Higgs theory with two distinct fermion
representations, Phys. Rev. D 97 (2018) 074505 [arXiv:1710.00806] [INSPIRE].

[71] T. DeGrand, Lattice tests of beyond Standard Model dynamics, Rev. Mod. Phys. 88 (2016)
015001 [arXiv:1510.05018] [INSPIRE].

[72] B. Keren-Zur, P. Lodone, M. Nardecchia, D. Pappadopulo, R. Rattazzi and L. Vecchi, On
Partial Compositeness and the CP asymmetry in charm decays, Nucl. Phys. B 867 (2013) 394
[arXiv:1205.5803] [INSPIRE].

[73] M. Frigerio, M. Nardecchia, J. Serra and L. Vecchi, The Bearable Compositeness of Leptons,
JHEP 10 (2018) 017 [arXiv:1807.04279] [INSPIRE].

[74] UTfit collaboration, Model-independent constraints on ∆F = 2 operators and the scale of
new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [INSPIRE].

– 67 –

https://doi.org/10.1007/JHEP03(2021)112
https://arxiv.org/abs/2012.01443
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.01443
https://doi.org/10.1103/PhysRevD.63.065019
https://arxiv.org/abs/hep-th/0003076
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0003076
https://doi.org/10.1016/S0550-3213(02)00179-7
https://doi.org/10.1016/S0550-3213(02)00179-7
https://arxiv.org/abs/hep-th/0112119
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0112119
https://doi.org/10.1088/1126-6708/2001/08/041
https://doi.org/10.1088/1126-6708/2001/08/041
https://arxiv.org/abs/hep-th/0105276
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0105276
https://doi.org/10.1088/0264-9381/19/22/306
https://doi.org/10.1088/0264-9381/19/22/306
https://arxiv.org/abs/hep-th/0209067
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0209067
https://doi.org/10.1016/0370-2693(92)91200-S
https://arxiv.org/abs/hep-ph/9207249
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9207249
https://doi.org/10.1016/0370-2693(93)91728-6
https://arxiv.org/abs/hep-ph/9207278
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9207278
https://doi.org/10.1103/PhysRevD.79.035005
https://doi.org/10.1103/PhysRevD.79.035005
https://arxiv.org/abs/0810.4940
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0810.4940
https://doi.org/10.1007/JHEP03(2019)142
https://doi.org/10.1007/JHEP03(2019)142
https://arxiv.org/abs/1811.06019
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.06019
https://doi.org/10.1007/JHEP08(2019)166
https://arxiv.org/abs/1905.07364
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.07364
https://doi.org/10.1016/j.nuclphysb.2005.11.029
https://doi.org/10.1016/j.nuclphysb.2005.11.029
https://arxiv.org/abs/hep-th/0507285
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0507285
https://doi.org/10.1016/j.nuclphysb.2007.07.012
https://arxiv.org/abs/hep-th/0612224
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0612224
https://doi.org/10.1016/j.physletb.2017.06.035
https://arxiv.org/abs/1703.09205
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.09205
https://doi.org/10.1007/JHEP06(2017)003
https://arxiv.org/abs/1703.10158
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.10158
https://doi.org/10.1007/BF01613145
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C55%2C1%22
https://doi.org/10.1103/PhysRevD.97.074505
https://arxiv.org/abs/1710.00806
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.00806
https://doi.org/10.1103/RevModPhys.88.015001
https://doi.org/10.1103/RevModPhys.88.015001
https://arxiv.org/abs/1510.05018
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.05018
https://doi.org/10.1016/j.nuclphysb.2012.10.012
https://arxiv.org/abs/1205.5803
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.5803
https://doi.org/10.1007/JHEP10(2018)017
https://arxiv.org/abs/1807.04279
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.04279
https://doi.org/10.1088/1126-6708/2008/03/049
https://arxiv.org/abs/0707.0636
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0707.0636


J
H
E
P
0
5
(
2
0
2
2
)
0
6
6

[75] M.A. Luty and T. Okui, Conformal technicolor, JHEP 09 (2006) 070 [hep-ph/0409274]
[INSPIRE].

[76] D. Elander, H. Isono and G. Mandal, Holographic Wilsonian flows and emergent fermions in
extremal charged black holes, JHEP 11 (2011) 155 [arXiv:1109.3366] [INSPIRE].

[77] J.N. Laia and D. Tong, Flowing Between Fermionic Fixed Points, JHEP 11 (2011) 131
[arXiv:1108.2216] [INSPIRE].

[78] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical
string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

[79] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253
[hep-th/9802150] [INSPIRE].

[80] L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with TT , JHEP 04
(2018) 010 [arXiv:1611.03470] [INSPIRE].

[81] M. Taylor, TT deformations in general dimensions, arXiv:1805.10287 [INSPIRE].

[82] T. Hartman, J. Kruthoff, E. Shaghoulian and A. Tajdini, Holography at finite cutoff with a T 2

deformation, JHEP 03 (2019) 004 [arXiv:1807.11401] [INSPIRE].

[83] H.K. Dreiner, H.E. Haber and S.P. Martin, Two-component spinor techniques and Feynman
rules for quantum field theory and supersymmetry, Phys. Rept. 494 (2010) 1
[arXiv:0812.1594] [INSPIRE].

[84] M. Henningson and K. Sfetsos, Spinors and the AdS/CFT correspondence, Phys. Lett. B 431
(1998) 63 [hep-th/9803251] [INSPIRE].

[85] M. Henneaux, Boundary terms in the AdS/CFT correspondence for spinor fields, in
International Meeting on Mathematical Methods in Modern Theoretical Physics (ISPM 98),
pp. 161–170 (1998) [hep-th/9902137] [INSPIRE].

– 68 –

https://doi.org/10.1088/1126-6708/2006/09/070
https://arxiv.org/abs/hep-ph/0409274
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0409274
https://doi.org/10.1007/JHEP11(2011)155
https://arxiv.org/abs/1109.3366
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1109.3366
https://doi.org/10.1007/JHEP11(2011)131
https://arxiv.org/abs/1108.2216
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1108.2216
https://doi.org/10.1016/S0370-2693(98)00377-3
https://arxiv.org/abs/hep-th/9802109
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9802109
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://arxiv.org/abs/hep-th/9802150
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9802150
https://doi.org/10.1007/JHEP04(2018)010
https://doi.org/10.1007/JHEP04(2018)010
https://arxiv.org/abs/1611.03470
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.03470
https://arxiv.org/abs/1805.10287
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.10287
https://doi.org/10.1007/JHEP03(2019)004
https://arxiv.org/abs/1807.11401
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.11401
https://doi.org/10.1016/j.physrep.2010.05.002
https://arxiv.org/abs/0812.1594
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0812.1594
https://doi.org/10.1016/S0370-2693(98)00559-0
https://doi.org/10.1016/S0370-2693(98)00559-0
https://arxiv.org/abs/hep-th/9803251
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9803251
https://arxiv.org/abs/hep-th/9902137
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9902137

	Introduction
	Modelling compositeness via gauge-gravity duality
	The hypercolour theory
	The holographic theory
	Bosonic sector
	Fermionic sector


	Spectrum of composite fermions
	AdS background
	Model I
	Model II
	Toy model
	Comparison with lattice results

	Partial compositeness and holographic Wilsonian RG flows
	Holography at finite cutoff
	Integrating out higher energy modes
	RG flow equation
	AdS background
	Model I
	Model II

	Spectrum of partially composite fermions
	Two-point functions and spectrum
	Low energy effective actions
	AdS background
	Model I
	Model II

	Conclusions and outlook
	Inventory of composite fermionic operators
	Fermion trilinears
	Glue plus fermions

	Fermions in five dimensions and their holographic interpretation
	Variational problem
	Two-point functions
	Massless poles
	Application to AdS background

	Comparison with bosonic spectrum
	Holographic Wilsonian RG

