
HAL Id: hal-03520909
https://hal.science/hal-03520909v1

Submitted on 11 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Blockchain software patterns for the design of
decentralized applications: A systematic literature

review
Nicolas Six, Nicolas Herbaut, Camille Salinesi

To cite this version:
Nicolas Six, Nicolas Herbaut, Camille Salinesi. Blockchain software patterns for the design of decen-
tralized applications: A systematic literature review. Blockchain: Research and Applications, 2022,
pp.100061. �10.1016/j.bcra.2022.100061�. �hal-03520909�

https://hal.science/hal-03520909v1
https://hal.archives-ouvertes.fr

Blockchain software patterns for the design of

decentralized applications: A systematic literature

review

Nicolas Six, Nicolas Herbaut, Camille Salinesia

aCentre de Recherche en Informatique, Université Paris 1 Panthéon-Sorbonne, France

Abstract

A software pattern is a reusable solution to address a commonly occurring
problem within a given context when designing software. Using patterns is
a common practice for software architects to ensure software quality. Many
pattern collections have been proposed for a large number of application do-
mains. However, because of the technology’s recentness, there are only a few
available collections with a lack of extensive testing in industrial blockchain
applications. It is also difficult for software architects to adequately apply
blockchain patterns in their applications, as it requires deep knowledge of
blockchain technology. Through a systematic literature review, this paper
has identified 120 unique blockchain-related patterns and proposes a pattern
taxonomy composed of multiple categories, built from the extracted pattern
collection. The purpose of this collection is to map, classify, and describe
all available patterns across the literature to help readers make adequate
decisions regarding blockchain pattern selection. This study also shows po-
tential applications of those patterns and identifies the relationships between
blockchain patterns and other non-blockchain software patterns.

Keywords: blockchain, software patterns, software design, smart contracts

1. Introduction

Blockchain technology is a distributed ledger constituted of blocks, sup-
ported by a network of peers that each owns a copy of it. Each node follows
the same protocol and uses a consensus algorithm to keep its copy consis-
tent with others’ and manage the addition of new blocks into it. Users can
interact with nodes to append transactions, but modification and deletion of

Preprint submitted to blockchain: Research and Applications January 11, 2022

them are theoretically impossible. While the first generation of blockchains
was only focusing on cryptocurrency transactions between users (e.g., Bit-
coin [1]), some of them now support smart contracts (e.g., Ethereum [2]).
A smart contract is a decentralized program that can be executed on-chain,
through nodes. Users can deploy and interact with smart contracts using
transactions. Blockchain is fully decentralized by nature, where no third
party is in charge of the network functioning. Blockchain data are also im-
mutable and tamper-proof, as nobody can alter a block after its creation and
addition, into a blockchain. Thanks to these properties, blockchain-based ap-
plications can be trusted, as nobody can tamper with the correct execution
of a smart contract1. Also, it is possible to retrace the state change history
of a blockchain. Thus, smart contract state changes can also be replayed for
the complete traceability of decentralized applications (dApps).

In recent years, blockchain has been growing rapidly from a niche technol-
ogy used by a few people as a promising solution for many sectors, due to its
unique properties that empower the design of innovative software architec-
tures and systems [3]. First, due to the native support of cryptocurrencies,
blockchain enables the creation or the improvement of use cases in the fi-
nancial domain that was difficult to leverage using existing technologies. For
example, currency exchange through banks can be an expensive process for
a consumer, Automated Market Makers (AMM) allow the swap from one
cryptocurrency to another without any intermediate using liquidity pools of
cryptocurrencies and a smart contract to perform the swap [4]. Regarding
insurance, blockchain can be used to automate the claiming process in case of
an accident. Such a process would take many days or weeks with traditional
insurance systems [5]. Blockchain also has many applications in nonfinancial
domains, due to its capacity to operate without any third party and enable
trust with the usage of decentralized applications. For instance, blockchain
can be the platform in an inter-organizational business process, to monitor
organizations’ actions and data, or to allow the business process execution
directly on-chain [6]. In this context, participants can trust the information
stored by the blockchain, and operations performed in smart contracts can-
not be tampered with. This layer of decentralized automation and trust is
also used in other applications, such as smart grids [7], as blockchain can

1This is only valid if the smart contract is well designed to prevent execution flaws and
security issues.

2

connect thousands of individuals to enable a market for energy exchange
between users, or healthcare for medical records sharing. As blockchain is
increasingly considered in many use cases, many companies started to show
interest in blockchain and build new applications. According to the Deloitte’s
2020 Global blockchain Survey2, 55% of the 1488 surveyed companies across
the world considers blockchain as one of their top-five strategic priorities.
However, even if more and more companies start blockchain projects, only a
few are successful. Organizational, legal, and technical issues still hinder the
adoption of blockchain.

Regarding technical issues, it is indeed tedious for software architects
to include blockchain in new or existing applications. First, they have to
consider the liabilities of blockchain technology: depending on its type, high
latency and bad throughput can be observed, as the network needs to reach
a consensus to process a new block and its transactions. Data immutability,
a quality in some cases, can also be a burden: it can interfere with data
protection regulation such as GDPR [8], or hinder the upgradeability and
the modifiability of smart contracts. Second, they have to be careful about
the design of smart contracts. Because of the non-repudiation aspect of
blockchain, every vulnerability in a smart contract can be a major security
threat that leads to a loss of funds or erratic behavior. Design flaws can also
generate extra functioning costs, augmented by the fact that public block-
chains often require the usage of cryptocurrencies to pay for smart contract
execution.

In software engineering, software patterns are used to tackle such design
issues. Specified as repeatable solutions for commonly recurring problems,
they ensure that the final design of the software fulfills expected require-
ments. Therefore, an adequate selection of software patterns can lead to a
well-designed architecture. For blockchain-based applications, this is diffi-
cult to achieve, and the design of blockchain-based software architecture is
one of the main challenges in the blockchain-Oriented Software Engineer-
ing (BOSE) field [9]. Unfortunately, there are only a few blockchain-based
patterns available, scattered throughout the literature and industrial web-
sites. The software architect can also struggle with the selection of adequate
patterns as it requires extensive knowledge of blockchain for pattern selec-

2https://www2.deloitte.com/ie/en/pages/technology/articles/Global_

blockchain_survey.html

3

https://www2.deloitte.com/ie/en/pages/technology/articles/Global_blockchain_survey.html
https://www2.deloitte.com/ie/en/pages/technology/articles/Global_blockchain_survey.html

tion. For other technological fields, systematic literature reviews of patterns
have been proposed to collect existing patterns across the literature (see Sec-
tion 6). To the best of our knowledge, such a study does not exist yet for
blockchain-based patterns, despite the benefit of it for the state of the art of
blockchain-based design patterns.

Throughout a systematic literature review, this paper tries to fill the gap
by collecting all available blockchain-based patterns and classifying them into
comprehensive categories that help to fetch adequate blockchain patterns. A
detailed description of the most frequently mentioned patterns is also given
through a pattern format. This paper also investigates the link between
blockchain patterns and the connections between them and non-blockchain
software patterns. A description of the application domains of those pat-
terns is also given. In parallel, this paper also proposes some future research
directions for blockchain-based patterns, as gaps were identified throughout
the study.

The main contribution of this study is a uniform collection of 160 block-
chain-based software patterns from 20 different academic sources, reduced
to 120 unique patterns. A design pattern taxonomy is also proposed to
classify current and upcoming blockchain-based patterns in comprehensive
categories. Those contributions have been stored on GitHub3, to allow their
reusability by others. This work aims to facilitate navigating across existing
patterns for readers, through a comprehensive classification, a short rationale
on many patterns, and a mapping between identified patterns, their variants,
and the associated papers.

The paper is structured as follows: Section 2 introduces some background
on blockchain technology and software patterns, then Section 3 describes the
review process employed and the results obtained, discussed in Section 4.
Threats of validity are discussed in Section 5, Section 6 introduces related
works, and section 7 concludes the paper with planned future works.

2. Background

2.1. Blockchain

The first implementation of blockchain technology has been proposed in
2008 when Satoshi Nakamoto released a whitepaper on Bitcoin, a decentral-

3https://github.com/harmonica-project/blockchain-patterns-collection

4

ized cryptocurrency [1]. He combined multiple previously existing technolo-
gies, such as asymmetric encryption [10], Merkle tree structures [11], consen-
sus methods, and Hashcash, a cryptographic algorithm where computing the
proof is difficult and verifying it is a simple task [12]. This combination has
defined the foundation of blockchain technology and its associated network.

According to [13], a possible definition of blockchain is the following (1):

Definition 1. A blockchain is an immutable read-only data structure, where
new entries (blocks) get appended onto the end of the ledger by linkage to the
previous block’s ‘hash’ identifier.

Usually, blocks contain transactions, where their type depends on the
blockchain usage: for Bitcoin, transactions represent an exchange of cryp-
tocurrency between users. The blockchain as a data structure is maintained
by a network of peers. Each member of the network owns a copy of the
blockchain. They communicate using the same protocol to maintain their
copy up to date. To do that, each blockchain protocol comes with its con-
sensus algorithm, a mechanism to reach an agreement among participating
nodes on the transaction order. To mention a few of them, the Proof-of-Work
algorithm is based on a mathematical challenge that nodes have to solve for
appending a block to the blockchain [14]. If so, they can share the block
with others and start searching for a solution for the next block. Using the
Proof-of-Stake algorithm, participants must put collateral at stake to be en-
titled to create and share blocks4. The size of the collateral determines the
share of the blocks it has the right to create [15]. Misbehaving nodes are
punished by taking out their stakes. Another notable algorithm is the Prac-
tical Byzantine Fault-Tolerant (PBFT) algorithm, that tolerates Byzantine
faults (e.g., dysfunctional or malicious nodes) in the network [16]. A leader,
once elected, is responsible for broadcasting new transactions from clients to
backup nodes that verify the transaction, execute the required operations,
and then propagate the transaction. If enough backup nodes agree on the
same result, the transaction is appended to the blockchain.

For the first two consensus algorithms, participants must put at stake
something with real-world value: either computing power or cryptocurren-
cies. However, for the third one, there is nothing at stake: the only solution

4The term minting is often employed in the context of PoS-based blockchains for this
operation.

5

for a secure network is to know the participants and exclude them in case of
misbehaving. Depending on the consensus algorithm used, blockchain net-
works can either allow anybody to join and participate or require approval
from others to join, called respectively public and private blockchains. Se-
lecting the right blockchain for a given context is a tough choice: public
blockchains are more decentralized than private ones in general, as anybody
can join and participate, but might suffer from bad performance due to heavy
consensus algorithms, where private blockchains are more efficient but often
controlled by a group of organizations. For example, Bitcoin can only process
6 transactions per second using a Proof-of-Work algorithm, whereas Hyper-
ledger Fabric with PBFT can process hundreds of transactions per second.

Blockchain can be used to transact cryptocurrencies, but also leverage
decentralized applications, so-called smart contracts. The first proposal of
blockchain smart contracts traced back to 2015 with Ethereum [2], and gen-
eralized to many blockchains since then. A smart contract is a decentralized
on-chain program that can be instantiated and requested through transac-
tions. Executing a smart contract function follows the same process as adding
a transaction into the blockchain: the function is performed by the requested
node, and the result is shared with the other nodes that will also verify the
correctness of the function execution. When building decentralized appli-
cations, we can differentiate its off-chain part from its on-chain part. The
on-chain part is usually constituted by smart contracts, and the off-chain
part is composed of components that are not part of the network but might
interact with it. The distinction is important as it constitutes a separation
between patterns in the taxonomy presented in Section 4.1.

Through its specific behavior, blockchain technology has many interesting
properties:

• Decentralization by nature - no one is in charge of the whole network.
By extension, smart contract-based apps are also decentralized, as no
third party is responsible for executing its functions and returning the
result to others.

• Transparency - every network participant can dive into the content of
the blockchain, either transactions or smart contracts data.

• Tamper-proofing and immutability - it is impossible to modify the con-
tent of a block after its addition. It would be detected by others be-

6

cause the hash of the block would change and mismatch the block hash
already stored in the next block.

However, blockchain qualities can also be liabilities, depending on the
context. The transparency and immutability of a blockchain can put per-
sonal or confidential data at risk. Even encrypted, it is unsure that data is
safe, because of potential advances in data decryption or key leakage. Im-
mutability also means it is impossible to reverse transactions, even if they are
harmful. As an example, a vulnerability exploited in TheDAO smart contract
has led to a loss of 12 million $USD in Ether, the network cryptocurrency5.
Finally, the poor performance of blockchains can also be a burden, when low
latency or high throughput is expected. Thus, any company that wants to
use blockchains in their applications must carefully assess the implications,
as this is not always the best solution. Software patterns can help to lower
the impact of blockchain liabilities on the final design, to guide the design
of blockchain applications through repeatable solutions, or to ensure that
blockchain qualities are kept intact in the final design. However, there is
still a lack of a wide structured collection of software patterns for blockchain.
This paper will address several research questions aiming towards this goal.

2.2. Software pattern

In the software engineering field, patterns are strong assets for engineers
and architects to design robust and well-designed applications. The principle
of patterns was first proposed by Christopher Alexander in the construction
field, as he proposed to document architecture designs in a way that docu-
mentation can be reused for other buildings [17]. In one of his books [18], he
proposes a definition of patterns, commonly reused later by other researchers,
that is the following (2):

Definition 2. Each pattern describes a problem that occurs over and over
again in our environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times over,
without ever doing it the same way twice.

In the software engineering field, patterns appeared later in 1987 where
Cunningham et al. decided to apply the pattern approach to guide develop-
ers using Smalltalk, an object-oriented language [19]. Later on, 4 researchers

5https://www.coindesk.com/understanding-dao-hack-journalists

7

https://www.coindesk.com/understanding-dao-hack-journalists

(commonly called the GoF - Gang of Four) released a book that defines a
collection of design patterns for the development of object-oriented applica-
tions [20]. Since then, many researchers have proposed software patterns for
many uses cases, such as microservices [21] and Internet-of-Things (IoT) [22].

They can be grouped into three categories: architectural patterns that
define, at the highest level of abstraction, the general structure of the appli-
cation (elements, connections), design patterns that define a way to organize
modules, classes, or components to solve a problem, and idioms, a solution to
a language-related problem at the code level. Using patterns in an applica-
tion brings many advantages. First, as existing patterns are often extensively
tested and applied by others, they can be reused in a new design as the best
solution possible for a given case. They also define a common language among
developers, as software patterns are defined with a meaningful name. How-
ever, their application must not always be systematic: applying the wrong
pattern to a certain design can be more harmful than helpful. They might
also increase the complexity of software. As an example, the Proxy pattern,
that helps to control the access to an object is unnecessary if the object in
question is not sensitive and only accessed by one other object.

To be easily reused, software patterns are often expressed using a pat-
tern template. The two most commonly used pattern templates are the form
proposed by the GoF (GoF pattern format), and the Alexandrian form, by
Christopher Alexander [23]. In both approaches, a pattern is described by an
expressive Name, the Context it is applicable to, and a recurring Problem.
The Alexandrian form is also constituted by the following: the Solution to
describe the pattern, the Forces where the pattern has an impact on, Ex-
amples of application, the Resulting context, a Rationale on deep or
complex aspects of the patterns, Related pattern and Known uses. The
GoF format contains other types of information: an optional Classifica-
tion of the pattern among others, a Known as field in case the pattern
also exists with different names, the Motivation to introduce an example
of scenario the pattern can address, Applicability to describe situations
where the pattern can be applied, Participants (eg. classes and objects)
and the Collaboration that links them to carry out their responsibilities,
the Structure of the pattern, the Consequences of using it on the soft-
ware, an Implementation part to describe code samples and key technical
aspects to consider, Known uses and Related pattern. The process of
writing patterns from existing knowledge is also a subject of research in the
pattern community. For example, [24] proposes a pattern language for pat-

8

tern writing, thus using patterns to address commonly occurring problems
when writing patterns. [25] presents advice for shepherding, a method used
in the pattern community to improve the quality of patterns by having an
experienced pattern writer review patterns from others. The patterns format
as well as the methodologies to write patterns are very useful to construct
patterns in a comprehensive and informative way, as it can be difficult to
formalize a pattern even with expertise in the domain associated with the
pattern to write. In this paper, we have chosen to use a reduced pattern for-
mat, as there is no uniform notation in collected papers to express patterns
with the same amount of detail as the Alexandrian or GoF pattern format.
Hence, patterns were collected during the literature review as a Context
and problem, a Solution, and Examples. Using this pattern format, a
uniformized collection of patterns was constituted.

3. Review Process

As it is important to follow a robust methodology to perform a high-
quality literature review, this paper follows Kitchenham et al. [26] guidelines
to conduct a Systematic Literature Review (SLR). This task was divided into
three main stages as follows:

1. Planning: during this phase, the research questions, as well as the goals
of the SLR, are elicited. Also, the literature databases that will serve
for the retrieval of papers are selected, and inclusion/exclusion criteria
are given.

2. Conducting: the SLR is conducted, following the plan designed earlier.
Studies are extracted then filtered, and the remaining papers are read.
An analytic framework is used to extract the necessary data to answer
the research questions.

3. Reporting: results of the SLR are factually given, as well as a quality
assessment of the extracted studies. Then, they are discussed in their
own section.

3.1. Review Planning

The first step in the planning of the systematic literature review is the
formalization of sound research questions. Those questions have to be de-
signed considering that the answers must address the research goals of this
study. The main purpose of this study is the design of a comprehensive

9

and uniform collection of blockchain software patterns extracted from the
existing literature. However, collecting the patterns in bulk is not enough
to allow their reusability and usability; thus a classification scheme must
be proposed along. To further refine the quality of extracted patterns, we
can also consider the context of those patterns: their relation with existing
non-blockchain patterns (e.g. GoF patterns [20]) or their links with specific
technologies or domains. Indeed, we found several patterns that cannot be
separated from their domain or their technology. As an example, the Limit
modifiers pattern is directly bound to the modifier keyword in the Solidity
language, thus non-applicable to blockchains that do not support it. These
aspects must be addressed in research questions. Finally, the results of the
systematic literature review can be used to highlight several research gaps in
the blockchain software pattern literature for further exploration. From the
different considerations of this study, the following research questions have
been formulated:

• RQ1: What taxonomy can be built from existing literature on block-
chain-based patterns?

• RQ2: What are the existing blockchain-based patterns and their dif-
ferent categories?

• RQ3: What are the most frequently mentioned patterns and their
variants across identified patterns?

• RQ4: Are some of the patterns equivalent to existing software pat-
terns?

• RQ5: What are the applications of the literature patterns?

• RQ6: What are the current gaps in research on blockchain-based pat-
terns?

Three library databases have been selected to extract relevant studies:
IEEE Xplore, ACM Digital Library, and Scopus. Snowballing from selected
papers is also considered as a data source, as it might help to include other
relevant papers. To query the databases of papers, a search query has to be
designed. We have chosen to use the Quasi-Gold Standard (QGS) method to
select the words composing the query. The QGS method consists in selecting
a set of studies that must appear in the results of the query, then designing

10

the query around the terms employed in those papers. Thus, 5 studies have
been selected to compose this corpus of studies [27, 28, 29, 30, 31]. From
that, the following query has been constituted:

(blockchain OR blockchain-based OR ”smart contract*”) AND
(”idiom*” OR (”architectural pattern*” OR ”design pattern*”
OR ”blockchain pattern*” OR ”blockchain-based pattern*”))

We decided to include only the studies that have those terms in their title,
abstract, or keywords, to improve the precision of the query. To prepare for
the filtering phase of the SLR, inclusion and exclusion criteria have been
defined. They provide systematic guidelines to include or exclude papers
during the filtering phase, where papers are selected for further reading.
Table 1 provides the chosen inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria
- Presents one or more blockchain-
based patterns.

- The paper is a duplicate of other
studies.

- The paper is described as pre-
senting blockchain-based patterns
in other accepted studies.

- The paper lies outside the soft-
ware engineering and blockchain do-
mains.
- Full text is not accessible.
- The paper is not written in En-
glish.
- The paper has not been peer-
reviewed.

Table 1: Inclusion and exclusion criteria.

Finally, a set of questions have been prepared to assess the quality of the
extracted patterns:

• QQ1: Does the paper clearly present the pattern solutions, problems,
and contexts?

• QQ2: Does the paper reference existing solutions using presented pat-
terns?

• QQ3: Does the paper use a standard pattern presentation form (e.g.,
GoF/Alexandrian templates [23], described in Subsection 2.2)?

11

For each question, an answer can be given among the following options:
”Yes”, ”Partially”, and ”No”. Knowing the answer for a paper can help
to assess the quality of the patterns introduced in it, where knowing the
answer to all the papers assesses the quality of the collection derived from
this literature study. To guarantee the quality of the extracted patterns, we
decided to only keep papers where the answer to the first question is at least
”Partially”. Indeed, it is difficult to extract a clear pattern where there is no
description of the solution and the problem it addresses in a specific context.

3.2. Review Execution

Figure 1 gives a graphical overview of the review protocol, where for each
step the number of remaining or excluded papers is displayed. 98 papers
have been retrieved using the query over the three selected databases. As
Scopus indexes papers from many other libraries, 17 duplicates were found
and removed. Then, papers have been filtered on their title, abstract, and
keywords based on the inclusion/exclusion criteria defined in the review plan-
ning (3.1). 32 papers were kept from this first filtering. 18 additional papers
were filtered out during the reading phase, for several reasons. First, some
of them were not fitting our inclusion/exclusion criteria, as they were not
presenting any design patterns in their studies. Also, the presentation of
software patterns in several papers was not clear enough for data extraction
(QQ1). Lastly, some papers were excluded as they were merely presenting
patterns without proposing any enhancement. During the reading phase, pa-
pers that were mentioned by others to introduce blockchain-based patterns
were added to the corpus of papers.

In addition, backward and forward snowballing was done for each paper
to complete the corpus of studies. Regularly performed during systematic
literature reviews, backward and forward snowballing respectively aims to
analyze the citations of selected papers and other papers that cited selected
papers to find new relevant papers. This has led to the addition of 52 pa-
pers from snowballing, where 46 of them were filtered out. The result is the
addition of 6 new studies into the final corpus, that were exclusively found
during backward snowballing. Forward snowballing hasn’t yielded any new
study into the corpus. Note that, contrary to forward snowballing and regu-
lar inclusion of papers through performed queries, non-peer-reviewed papers
were not excluded during backward snowballing. This decision has been
made as they can be considered relevant, as selected papers citing them were
peer-reviewed themselves.

12

Retrieved records
(n=98)

ACM (n=33)

IEEE (n=24)

Scopus
(n=41)

Removing
duplicates (n=81)

Excluding papers
by title and abstract

(n=32)

Excluding papers
during reading
phase (n=14)

Adding papers from
snowballing (n=66)

Excluding papers
by title and abstract

(n=38)

Excluding papers
during reading
phase (n=20)

Removed: 17Removed: 49Removed: 18

Added: 52 Removed: 28 20 selected papers

Figure 1: Review process scheme.

3.3. Taxonomy construction

In parallel with the review process, the taxonomy was built using newly
acquired knowledge. To achieve such a task, a taxonomy development method-
ology was used [32]. The methodology proposed by Nickerson et al. first
describes what a taxonomy is and the associated problems for taxonomy de-
velopment. Then, it gives a method for taxonomy development that satisfies
the problems mentioned before, adaptable for many contexts.

According to [32], a possible definition of a taxonomy is the following (3):

Definition 3. A taxonomy is a set of dimensions each consisting of mutually
exclusive and collectively exhaustive characteristics such as each object under
consideration has one and only one characteristic for each dimension.

An important attribute, as stated by the definition, is that no object

13

can have two different characteristics in a dimension. Also, a taxonomy is
not meant to be perfect and can change over time, but they have to fulfill
qualitative attributes to be usable. A taxonomy must be concise: too many
dimensions can lead to difficulties in applying the taxonomy. It must also
be robust, containing enough clear dimensions and characteristics to differ-
entiate objects contained inside, and comprehensive, that is the capability to
classify as known objects within the domain under consideration. Finally, a
taxonomy must be extensible to adapt to the needs of users and enable the
inclusion of new objects, and explanatory to provide information on the na-
ture of the objects under study. Those qualities are particularly important
for the construction of our taxonomy: the conciseness and the robustness
of the taxonomy will help the reader to navigate in the different categories
available to pick relevant patterns (i.e., the knowledge domain), and the ex-
tensibility will allow the taxonomy to grow over future studies on blockchain
patterns.

The first step of the taxonomy construction, as presented in [32], is to
define meta-characteristics. This gives a basis for identifying the other char-
acteristics of the taxonomy. In this taxonomy, the two meta-characteristic
”On-chain pattern” and ”On/off-chain interaction pattern” have been cho-
sen. As this study focuses on design aspects, we found it relevant to order
patterns depending on their position regarding the blockchain: in the block-
chain (smart contracts, transaction data), or out of the blockchain (services
that interact with the blockchain, wallets, ...). Then, as building a taxon-
omy is an iterative process, ending conditions must be determined. Indeed,
as said before, a taxonomy is not meant to be perfect; thus the process must
be stopped when a satisfactory taxonomy is built. It is considered satisfac-
tory when all the qualities of a well-built taxonomy are present. Additional
ending conditions can also be added. One condition we chose to add is the
following: all objects of a representative sample of objects have been ex-
amined. As the patterns are the cornerstone of this study, it is important
to examine all of them to construct an accurate taxonomy. Therefore, this
taxonomy construction is empirical-to-conceptual rather than the opposite:
from the patterns, categories are drafted and then refined to return an accu-
rate taxonomy.

The next three steps are the construction of the taxonomy itself. As they
are incremental, they must be repeated until ending conditions are met. To
begin, identification of a subset of objects must be done. In our case, the
subset is constituted of all the identified patterns. The next step is iden-

14

tifying common characteristics and group objects. To do that, a Natural
Language-based algorithm was designed to ingest all the summaries of pat-
terns, lemmatize them, and identify a recurrent suite of words (n-grams).
For bigrams, the most recurrent combination of words were ”Smart con-
tract(s)” (54 times), ”Data storage” (11 times), ”Proxy contract” (6 times),
and ”Factory object” (6 times). Other interesting combinations were found:
”Outside blockchain” (5 times), ”Restrict execution” (3 times), and ”Critical
operation” (3 times). From those combinations and others, three assump-
tions can be made: (1) smart contract is a crucial topic in blockchain-based
patterns, (2) many traditional software design patterns were found in pat-
terns summaries. Thus links might exist between the existing knowledge on
software patterns and newly designed patterns, (3) some important design
aspects are recurrent in pattern summaries. Existing collection names were
also exploited to generate categories. For example, [33] proposes patterns
exclusively dedicated to smart contract gas efficiency. Such collection gives
hints of potential types of categories. Using those assumptions and our per-
sonal knowledge, a first taxonomy has been built. As not all of the patterns
were fitting defined dimensions in the first iteration, two other iterations
were performed to construct the version of the taxonomy presented in this
study. We also found during the literature review that the majority of found
patterns are design patterns, thus the taxonomy has been recentered from
all software patterns to design patterns. The final version of this taxonomy
is presented in the Subsection 4.1 associated with the RQ1.

3.4. Results

This section factually presents the results of the systematic literature
study. More details are given when discussing each research question in
Section 4.

The final corpus of papers is composed of 20 studies, out of which 6 were
added through reference snowballing. 19 of them propose design patterns,
whereas only one proposes architectural patterns. No study that introduced
idioms was found. However, some of the patterns found were more related
to idioms than design patterns and categorized as such. 160 patterns were
found from these 20 studies, including duplicates. At first, patterns that were
said to come from other studies were also added but filtered out afterward
to ensure no pattern is missing from the extracting phase. After duplicate
removal, 120 unique patterns have been found. 104 of them have been classi-
fied as design patterns, 3 of them as architectural patterns, and 14 as idioms.

15

As the links between patterns across papers were collected during the SLR,
they have been used to filter a large number of duplicates. Then, pattern
names and summaries/solutions were used to filter out additional patterns.
Precautions have been taken when removing patterns using those fields: close
patterns that diverge on tiny aspects were kept as separate patterns.

Regarding the quality assessment performed on accepted papers, Figure
2 shows the distribution of the answers to each question.

Figure 2: Quality assessment answers distribution (labels detailed in Subsection 3.1)

For the first quality question, 8 papers out of 20 clearly introduce pat-
terns, whereas 12 papers might lack details in the pattern detailing. The
second quality question shows that 4 papers do not mention any example
of implementation, 7 references one example on average per pattern, and 9
studies reference more than 2 implementation examples. Finally, the third
quality question indicates that 8 papers are using a pattern format to de-
scribe their patterns, 6 papers are using a form but lack important sections
usually found in pattern formats, and 6 studies do not use any particular
format.

16

4. Discussion

In this section, each research question is addressed using the results col-
lected throughout the completion of the systematic literature review. An
answer is given for each question in its respective subsection, and a discus-
sion is done of those results.

4.1. RQ1: What taxonomy can be built from existing literature on blockchain-
based patterns?

In this subsection, a taxonomy of design patterns is presented to classify
the design patterns in comprehensive categories that help to decide on what
patterns to use for a specific aspect of blockchain-based application develop-
ment. This taxonomy has been built using the methodology from [32], and
its construction is detailed in Subsection 3.3. Figure 3 shows a graphical
representation of the proposed design pattern taxonomy.

Smart-contract
pattern
(n=47)

Contract security
pattern
(n=11)

Contract
management pattern

(n=12)

Contract access
control pattern

(n=9)

Contract efficiency
pattern
(n=15)

Design pattern
taxonomy

(n=104)

On/off-chain
interaction pattern

(n=18)

Data exchange
pattern (n=7)

Off-chain storage
pattern
(n=7)

Wallet and keys
pattern
(n=3)

Data management
pattern
(n=18)

Encryption pattern
(n=2)

Migration pattern
(n=11)

Domain-based
pattern
(n=21)

BPM pattern
(n=3)

Decentralized identity
pattern
(n=5)

Multi-domain feature
pattern
(n=12)

Storage pattern (n=5)

Transactions pattern
(n=1)

On-chain pattern
(n=86)

Big data pattern
(n=1)

Figure 3: Design pattern taxonomy.

The taxonomy consists of 2 meta-categories, ”On-chain pattern” and
”On/off-chain interaction pattern”, and 15 different categories. Intermediate

17

categories were also created to group categories together in the ”On-chain
pattern” meta-category: ”Smart contract pattern”, ”Data management pat-
tern”, and ”Domain-based pattern”.

The ”On/off-chain interaction pattern” category aims to regroup design
patterns constituted of off-chain elements that interact with a blockchain.
This category is key for the development of decentralized applications, as
proposed design patterns might bridge off-chain systems and software with
on-chain data or smart contracts. Four subcategories compose this category.
The first one, ”Data exchange pattern” subcategory, groups patterns that
enable communication between on-chain smart contracts and off-chain com-
ponents. Indeed, blockchain cannot request data from outside, thus requiring
an external service (i.e. Oracle) to push fresh data inside smart contracts.
The ”Data management pattern” subcategory is comprised of design patterns
that leverage off-chain data but use blockchain to guarantee tamper-proofing
or trustability of those data. For instance, hashing a dataset, then storing
the hash on-chain to attest later the integrity of the dataset. The ”Wallet
and keys pattern” subcategory tackles the management of wallets and keys
in the context of a decentralized application. Finally, ”Transactions pattern”
subcategory deals with the transaction aspects between off-chain components
and the blockchain, such as transaction confirmation or block inclusion.

In the ”Domain-based pattern” intermediate category, on-chain patterns
that deal with domain features are regrouped. Note that this category is
meant to be extended with the advances in blockchain-based patterns for spe-
cific domains. Therefore, three domain-specific categories were created from
the knowledge of existing domain-based patterns: ”Business Process Man-
agement (BPM) pattern” subcategory concerns on-chain business process
management (e.g., on-chain activities, ...), the ”Big data pattern” subcate-
gory proposes applications of blockchain for big data, and the ”Decentralized
identity pattern” subcategory leverage blockchain to create and manage de-
centralized identities. A fourth subcategory, ”Multi-domain feature pattern”,
contains features that do not belong to a particular domain but rather can
be used by multiple domains.

The ”Smart contract pattern” intermediate category classifies patterns
that concern smart contract implementation and management. As ensuring
the security of smart contracts is primordial, the ”Contract security pattern”
subcategory regroups smart contract patterns that deal with security issues
such as reentrancy attacks, overflow attacks, or flawed behavior of smart
contracts. The ”Contract efficiency pattern” subcategory essentially deals

18

with patterns that reduce the price of leveraging smart contracts, especially
on public blockchains. It also contains patterns on other efficiency aspects
such as data refreshing, a difficult task with smart contracts as they cannot
perform requests on others smart contracts by themselves. The ”Contract
access control pattern” subcategory regroups patterns for permission and
authorization management for the execution of smart contract functions. Fi-
nally, the ”Contract management pattern” subcategory helps with designing
the organization of smart contracts together. For example, having a proxy
smart contract that relays the function calls to other contracts.

The last intermediate category, ”Data management pattern” deals with
patterns for efficient on-chain data management. It is different from the
”Data management pattern” subcategory of ”On/off-chain interaction pat-
tern” subcategory as it only concerns data on-chain, located in smart con-
tracts or directly in transactions. The ”Migration pattern” subcategory
groups patterns that help with migrating data from one blockchain to an-
other. Under ”Encryption pattern” are classified patterns for on-chain data
encryption, and ”Storage pattern” regroups patterns that deal with on-chain
data storage.

Through the systematic literature review, the taxonomy has been applied
to classify patterns with success. However, it is meant to be extensible;
thus categories might be changed depending on the evolution of the state
of the art in blockchain-based patterns notably with the appearance of new
architectural patterns or idioms, not present in this taxonomy due to their
scarcity.

This taxonomy is important for an adequate usage of patterns identified
in the systematic literature review. For example, a user willing to imple-
ment smart contract security measures in his application to protect it against
threats or vulnerabilities will be tempted to search in the ”Contract security
pattern” subcategory instead of directly searching in the corpus of patterns.
They are also complementary: as each category covers a specific aspect of the
design of a blockchain-based application, they can be combined depending
on the user requirements. For instance, ”Contract security” patterns can be
used along ”Contract efficiency” patterns to improve at the same time the
cost efficiency and the security of designed smart contracts. However, pos-
sible conflicts between individual patterns are left outside the scope of this
paper, as this information is not present in retrieved papers.

19

4.2. RQ2: What are the existing blockchain-based patterns and their different
categories?

This subsection introduces examples of patterns found within the differ-
ent categories defined by the taxonomy. For the sake of brevity, not all of
the patterns found will be introduced. The focus will notably be made on
patterns observed in multiple studies. However, the results of this study in-
cluding the list of all patterns are available on GitHub6. Note that even if
architectural patterns and idioms are outside of the taxonomy, they will still
be presented at the end of the subsection.

4.2.1. On/off-chain Interaction Patterns

This first category regroups all of the patterns with their components
both on and off-chain. It is divided into four subcategories. Table 2 lists all
the patterns contained in this category.

On/off-chain interaction patterns
Subcategory Patterns

Data exchange
pattern

Ticker tape [34] - Oracle [35, 27, 29, 28] - Reverse
Oracle [35, 27, 34] - Pull-based inbound oracle [36]
- Push-based inbound oracle [36] - Pull-based out-
bound oracle [36] - Push-based outbound oracle
[36]

Data management
pattern

State Channel [35, 27] - (Off-chain) Contract Reg-
istry [35] - Legal and smart contract pair [27] -
Off-chain data storage [37, 35, 27, 31, 38, 39] -
Confidential and pseudo-anonymous contract en-
forcement [40] - Off-chain Signatures [39] - Dele-
gated Computation [39]

Wallet and keys
pattern

Master & Sub Key [31] - Hot & Cold Wallet Stor-
age [31] - Key Sharding [31]

Transactions patterns X-confirmation [27]

Table 2: On/off-chain interaction patterns.

The first one is named ”Data exchange pattern”, to group patterns that

6https://github.com/harmonica-project/blockchain-patterns-collection

20

enable communication between on-chain smart contracts and off-chain com-
ponents. 7 patterns were sorted in this subcategory. The most frequent
pattern is the Oracle pattern, introduced or mentioned by 5 different papers
[35, 27, 29, 28, 34]. As blockchain cannot request the external world to re-
trieve up-to-date information, components named oracles have been designed
to listen for blockchain requests or statuses that indicate some information
is needed, then send a transaction to the blockchain to inject them. Its op-
posite has also been proposed: the Reverse oracle pattern is applied when
off-chain components need blockchain data to work, so they listen for specific
state changes and react accordingly [34, 27, 35, 33]. Another study proposed
more detailed variants of those patterns, as they differentiate the data flow
direction (as the Oracle and Reverse Oracle), as well as if data are pushed
out of the data source or pulled from an active component.
The second subcategory groups 7 patterns that manage and store data off-
chain while using blockchain as an additional layer of trust. A commonly
proposed pattern under many names is the Off-chain data storage pattern
[37, 35, 27, 31, 38, 39]. It consists of storing large amounts of data off-chain,
then producing a hash of the data and saving it on-chain. Therefore, it is
far cheaper to leverage while having a possibility to check the integrity of
stored data using the hash on-chain. This pattern is presented in detail in
a dedicated part of Subsection 4.3.1. The same concept has been applied
to variants. For example, the State channel pattern involves letting two
or more users perform micro-transactions off-chain and regularly storing a
hash on-chain to prove the existence of such transactions later on. Other
studies propose the binding between an off-chain legal contract and an on-
chain smart contract, to ensure sensitive data are kept off-chain while only
important signatures and states are stored on-chain [40, 27].
Finally, the third and fourth subcategories are respectively ”Wallet and keys
pattern” and ”Transaction pattern”. They only contain three and one pat-
tern respectively: Key sharding, Hot & Cold wallet storage, and Master &
Sub keys patterns [27, 31] for the management of blockchain wallets and keys,
as well as the X-confirmation pattern [27]. Although there are only a few
patterns in those categories, they have been added as they might contain
more patterns later with future studies.

4.2.2. On-chain Patterns - domain-based Patterns

The ”Domain-based pattern” intermediate category is part of ”On-chain pat-
tern”, and contains patterns that propose a feature to address a domain-

21

based problem, either for a specific domain or applicable to many. A list of
all the patterns contained in this category is presented in Table 3.

On-chain patterns - domain-based patterns
Subcategory Patterns

BPM pattern
Blockchain BP Engine [37] - Smart Contract Ac-
tivities [37] - Decentralize business process [37]

Decentralized identity
pattern

Identifier Registry [31] - Multiple Registration
[31] - Bound with Social Media [31] - Dual Reso-
lution [31] - Delegate List [31]

Big data pattern
Blockchain Security Pattern for Big Data Ecosys-
tems [41]

Multi-domain feature
pattern

Blockchain-based reputation system [37] - Vote
[34] - Blocklist [34] - Announcement [34] - Bulletin
Board [34] - Randomness [28] - Poll [28] - Selec-
tive Content Generation [31] - Time-Constrained
Access [31] - One-Off Access [31] - Digital Record
[38] - State machine [29]

Table 3: On-chain patterns - domain-based patterns

For BPM, 3 patterns have been identified, all proposed in [37]: the Block-
chain BP Engine pattern, that enables collaborative business processes by
storing and executing a business process through a smart contract, the Smart
contract activities pattern where business logic activities are stored in a single
smart contract for execution, and the Decentralize business process pattern
that uses blockchain as a software connector for collaborative business process
execution.
Regarding decentralized identity patterns, 5 design patterns have been ex-
tracted from [31]. The first one, Identifier registry pattern, proposes the
usage of smart contracts to establish a mapping between a DID (Decentral-
ized Identifier), a unique identifier for a human within a domain, and the
location of off-chain storage attributes. Here, the DID is managed using a
private key used to prove the ownership of an identifier. If the key is lost,
the Delegates list pattern can be used to retrieve this ownership. To protect
user privacy, multiple identifiers can be created using the Multiple identi-
fiers pattern. An identifier can also be mapped to a social media account
through the Blockchain & Social Media Account Pair pattern, to improve

22

the trustworthiness of both social media account and identifier. Finally, the
Dual resolution pattern helps to use a DID to enable communication with
another entity through its own DID.
One pattern has been identified for the ”Big data pattern” category: the
Blockchain Security Pattern for Big Data Ecosystems pattern leverages block-
chain to register operations performed on a data store [41].
The ”Multi-domain feature pattern” subcategory groups 12 patterns that
propose on-chain features to address problems found in multiple domains.
For example, the Poll and the Vote patterns [28, 34] can be used to take
collaborative decisions on-chain, the Time-constrained access or the One-Off
Access patterns [31] let users give access to off-chain resources from an on-
chain authorization smart contract, and the Randomness pattern [28] can be
used to generate random numbers on-chain, a difficult task.

4.2.3. On-chain Patterns - smart contract Patterns

The second intermediate category of ”On-chain patterns” is the ”Smart con-
tract pattern”. In a decentralized application, smart contracts are often
the most important pieces. Many sensitive operations can be performed on
them, such as storing and transferring cryptocurrencies. Therefore, maximal
security in smart contract operations is paramount, and well-designed access
control functions must be implemented to support it. Managing them is also
difficult, as a smart contract code is immutable once deployed. Thus, the
on-chain smart contract architecture must be adequately designed to tackle
the inflexibility of smart contracts and ensure they fill their initial goals while
being easily upgradeable if needed. Finally, they often have to be efficient,
as for public blockchains developers and users have to pay for deploying and
executing smart contract functions. Each of those topics is important for
the development of smart contracts and has its own subcategory, presented
below. Table 4.2.3 lists all patterns in this category.

23

On-chain patterns - smart contracts patterns
Subcategory Patterns

Contract
management pattern

Migration [34] - Inter-family communication [42]
- Data Contract [35, 27, 33, 29] - Factory Con-
tract [35, 27, 43, 44, 45] - Proxy Contract [35, 29,
44, 45, 33, 43] - Flyweight [35, 43, 44] - Satellite
[29] - Contract Registry [27, 29] - Contract Com-
poser [45] - Contract Decorator [45] - Contract
Mediator [45] - Contract Observer [45]

Contract security
pattern

Fork check [28] - Emergency Stop [35, 30] - Mu-
tex [35, 30] - Contract Balance Limit [35, 30] -
Automatic Deprecation [29] - Speed Bump [30] -
Rate Limit [30] - Check Effect Interaction [35, 30]
- Time Constraint [28] - Termination [28] - Math
[28]

Contract efficiency
pattern

Incentive Execution [35, 27] - Tight Variable
Packing [35] - Limit storage [33] - Minimize on-
chain data [33] - Limit external calls [33] - Fewer
functions [33] - Use libraries [33] - Short constant
strings [33] - Limit modifiers [33] - Avoid redun-
dant operations [33] - Write values [33] - Pull pay-
ment [29] - Publisher-Subscriber [44, 43] - Chal-
lenge Response [39] - Low Contract Footprint [39]

Contract
access-control pattern

Judge [34] - Embedded Permission [34, 35, 27, 28]
- Dynamic Binding [35] - Multiple authorization
[27, 45] - Off-chain secret enabled dynamic au-
thentication [27] - Ownership [29] - Access Re-
striction [29] - Hash Secret [45]

Table 4: On-chain Patterns - smart contracts Patterns

The first subcategory ”Contract management pattern” is about organizing
well smart contracts in the decentralized application architecture. 12 dif-
ferent patterns have been labeled with this subcategory. Some of them ad-
dress the separation of concerns, between the dApp entry point, features,
and data. The most-frequently mentioned pattern is the Proxy pattern
[35, 33, 29, 44, 45, 43]. Usually implemented in traditional software engi-
neering to wrap an object only accessible by it, this pattern is used in block-

24

chain to wrap a smart contract (the object) into another one (the proxy).
A full description of this pattern is given in a dedicated part of Subsection
4.3.4. Another pattern for separation of concerns is the Data contract that
decouples data from functions in two separate contracts [35, 27, 29]. The
Flyweight pattern is similar in functioning, but consists in storing data used
by multiple contracts in one place [35, 44, 43]. Finally, a mentionable pattern
is the Satellite that can be used to decouple features that are more likely to
change from features that will not change over time [29].
The second subcategory, ”Contract security pattern”, is filled with 11 pat-
terns. Most of them target Solidity-based contracts. Solidity is a program-
ming language for smart contracts deployed on Ethereum blockchain net-
works. One usage of such patterns is the restriction of access to smart con-
tracts functions when it is needed. To cite a few of them, the Termination
pattern consists in locking the contract to prevent any further function call
[28]. It is also possible to use the Emergency Stop pattern to simply halt
its functioning until reactivated. This can be used for instance to protect
the contract against abusive withdraw of funds [35, 30]. The Speed bump
[30], Rate Limit [30], and Time constraint [28] patterns are used to imple-
ment time limitations when executing smart contract functions. Some other
patterns aim to protect the correct execution of a function. The Check-
Effects-Interaction pattern [30] guarantee a safe execution of the function by
first, checking the satisfaction of preconditions, then applying the modifica-
tions on the contract, and finally applying modifications on other external
contracts, if needed. Also, some other interesting patterns are the Mutex
pattern [35, 30] that protects the access to a used resource, or the Contract
Balance Limit pattern [35, 30] to ensure that the smart contract does not
hold too many funds, to mitigate the risk of losing all the funds if compro-
mised.
15 patterns have been added in the third subcategory, ”Contract efficiency
pattern”, and also target Solidity smart contracts. In Ethereum, a smart
contract user must pay a defined amount of Ether, the native cryptocur-
rency of the network, to deploy or interact with the contract. The more the
function stores data or perform complex operations, the more it will cost
the user. Design patterns in this section help to reduce the fees associated
with the deployment, storage, or execution of smart contract functions. For
on-chain storage reduction, many patterns have been proposed in [33]: the
Limit storage or Minimize storage data patterns in general, or Fewer func-
tions and Limit modifiers to reduce function overhead and code size. The

25

Short constant string pattern can also be used to limit on-chain storage by
limiting the size of strings to prevent a high consumption of storage size.
Tight variable packing pattern, as proposed in [35], can also be a solution to
reduce storage size by storing data in the smallest unit possible (e.g., Uint8
instead of default Uint256 to store a number below 256). At computation, the
Avoid redundant operations and the Low contract footprint patterns can help
reduce the complexity of operations, thus saving costs [35, 39]. This taxon-
omy also places in the Contract efficiency pattern subcategory patterns that
help to keep on-chain data accurate. For example, the Incentive execution
pattern [35, 27] refunds or reward users that call a specific function to up-
date contract data, as no update can be done by the contract itself without
external intervention.
The last subcategory is the ”Contract access control pattern” and concerns
the permission management of contracts. 9 patterns constitute this category.
The most important one is the Embedded permission pattern (also called
Access Control or Authorization), mentioned by 4 papers [46, 28, 35, 27], that
consists of encoding permission in a smart contract for sensitive functions.
Only authorized addresses will be able to call those functions. One variant is
the Owner pattern [29], which defines a contract owner as the solely entitled
person to execute specific functions. Authorization to execute a function
can also require multiple signatures at the same time. A pattern named
Multiple Authorization [27, 31, 45] consists in defining a set of addresses
in the contract, where a fraction of them is required to execute a function.
Another noteworthy pattern is the Judge pattern [34], which lets users vote to
elect a trusted third party. The winner is given the authorization to update
the smart contract with fresh information, as an Oracle could do.

4.2.4. On-chain Patterns - Data management pattern

The last intermediate category of ”On-chain patterns”, ”Data management
pattern”, proposes patterns related to the storage, migration, and encryption
of on-chain data. The complete list of patterns contained in this category is
given in Table 4.2.4.

26

On-chain patterns - data management patterns
Subcategory Patterns

Storage pattern
Transparent Event Log [37] - Key-value store [34]
- Address mapping [34] - Event log [33] - Tokeni-
sation [27, 28, 38, 34]

Migration pattern

Token burning [47] - Snapshotting [47] - State Ag-
gregation [47] - Node Sync [47] - Establish Genesis
[47] - Hard Fork [47] - State Initialization [47] -
Exchange Transfer [47] - Transaction Replay [47]
- Virtual Machine Emulation [47] - Smart Con-
tract Translation [47]

Encryption pattern
Commit and Reveal [35, 29] - On-chain encryp-
tion [27]

Table 5: On-chain Patterns - data management Patterns

Regarding the ”Storage pattern” subcategory, 5 have been identified. The
most-proposed one is the Tokenization pattern [34, 28, 27, 38]. Through
this design pattern, real-life or complex assets can be encapsulated into a
token and exchanged on-chain. A dedicated part of Subsection 4.3.4 gives
a detailed presentation of this pattern. Other forms of data storage can be
mentioned: the Key-value store pattern to organize data into a resizable
store, accessible with keys, or the Address mapping pattern where mapping
is established between an address and its associated data [34]. Finally, some
patterns propose to store logs of data into event logs, either in a native block-
chain event log (proposed by some blockchains, such as Ethereum) [33] or in
a smart contract [37].
Two patterns have been added to the ”Encryption pattern” subcategory. De-
spite the lack of patterns for this subcategory, it still has been added as many
patterns will probably be added to this subcategory in the future, following
the advances in on-chain encryption strategies such as homomorphic encryp-
tion [48] or zero-knowledge proofs [49]. The On-chain encryption pattern
[27] helps in protecting sensitive on-chain data through symmetric encryp-
tion. Data can then be stored on-chain and be non-readable by anybody who
does not have the encryption key. The main drawback of this pattern is the
key leakage threat because data will remain on-chain forever, even in case of
a leak. The Commit and Reveal pattern works differently: some values are
kept secret during the commit phase and revealed when needed [35, 29]. It is

27

possible to attest that the revealed value was the same as the one committed
in secret. Through this pattern, it is possible to commit some data without
revealing its content.
In the last subcategory, ”Migration pattern”, 11 design patterns for data
migration are included. All of those patterns were found in [47], which pro-
poses a pattern collection for data migration. To mention a few of them,
the Snapshotting pattern consists in saving a copy of states, smart contracts,
and transactions on the source blockchain to transfer them to the target
blockchain later. This operation can be done using the State initialization
or the Establish genesis patterns to respectively transfer states from source
to target blockchain or set states in the first block of target blockchain (i.e.,
genesis block). Besides existing data, the code of useful smart contracts must
also be changed to fit the target blockchain; this can be done using the Smart
contract translation pattern.

4.2.5. Architectural Patterns and Idioms

To conclude this section, other patterns that do not belong to the design pat-
tern taxonomy are introduced. This sample of patterns contains 14 idioms
[35, 33]. They all concern Solidity, a smart contract programming language
for the Ethereum blockchain, and address smart contract efficiency. As pre-
sented before, users have to pay for smart contract function execution on a
public blockchain. Proposed idioms help to reduce execution fees in various
ways: for example, Packing variables or Packing booleans patterns can be
used to reduce variable required storage with a smart ordering of variables
in the code, as background variables are grouped by the compiler in 32-bytes
slots. More efficient structures can be selected to save space, thus costs,
using Uint* vs Uint256 and Mapping vs Array patterns. Ether can also be
returned to the user when using the Freeing storage pattern, that consists in
deleting unused variables or smart contracts.
Additionally, 3 architectural patterns have been identified. In [50], authors
propose 3 related architectural patterns. The first one, Self-generated trans-
actions, let the responsibility for the user to create and sign transactions to
interact with blockchain smart contracts. It ensures maximal security, as
they keep control of their keys at all times and can verify the code to en-
sure correct behavior, but it leads to poor user experience and expertise is
required. To facilitate this task, they can use a browser wallet (e.g., Meta-

28

mask7) to generate and sign transactions. Another pattern, Self-Confirmed
Transactions, is a tradeoff between security and usability as the website is
in charge of generating transactions and the user is given the choice of sign-
ing them or not, using a browser wallet. Finally, the Delegated Transactions
offers the most convenient experience for users, as the website handles all
the blockchain-related operations. However, trust towards the website is
mandatory, as they have full control of keys and wallets.

4.3. RQ3: What are the most frequently mentioned patterns for each section,
and their variants across identified patterns?

In this subsection, four patterns are introduced in detail, using the Alexan-
drian form, a pattern format described in the subsection 2.2. Exploiting the
taxonomy, we only selected the most representative patterns in every subcat-
egory, based on the number of references in the corpus of papers. Whenever
possible, the formalization synthesizes each using the description of the men-
tioned academic work. We completed them with our own analysis of the
pattern whenever specific information required by the pattern format was
found missing.

4.3.1. Off-chain Data Storage pattern

The Off-chain data storage pattern consists in storing a hash of off-chain data
in a smart contract, to be able to verify the off-chain data integrity later.
This pattern belongs to the ”On/off-chain interaction pattern” category and
has been found 6 times in the corpus of papers.
Context - As the blockchain is replicated among nodes, every node has a
copy of it. Some applications might consider using blockchain to store a large
amount of data, ensuring their integrity [35, 27].
Problem - Allowing users to store on-chain data without any limit of storage
could hamper the network functioning. Therefore, many blockchain networks
enforce a block size limit to limit the size growth of blockchain over time.
Even if the size limit suits the needs of the user, storing data on-chain is
prohibitively expensive. Thus, how can the user store data on-chain while
taking advantage of blockchain immutability and integrity [27]?
Forces - Using this pattern implies balance forces. The first one is cost, as
storing data on-chain is expensive and even more if using a smart contract to

7https://metamask.io/

29

keep the possibility to perform operations on them directly on-chain. Then,
scalability, because storing large files on a blockchain is difficult as they
are replicated across all nodes [27]. Finally, immutability level has to be
considered: storing a hash on-chain does not offer the same protection as
storing the file itself. Indeed, it can still be modified or deleted off-chain.
Solution - Store the data off-chain, then calculate a hash of those data. Store
the result on-chain in a smart contract, possibly associated with metadata
(e.g., resource location, description, ...) [35, 39]. As hashing data is a one-way
function, data confidentiality is preserved, and users can check the integrity
of their data using the immutable hash stored on-chain [27].
Example - A company that wants to store proof that a legal contract is
signed can hash the contract after its signature and store the result on-chain.
Thus, if another company denies the authenticity of a contract, it is possible
to prove the existence of the document as well as its metadata (e.g., signature
time).
Resulting context - Data are kept off-chain, and stay confidential, but
their integrity can still be accessed using the on-chain hash. It is inexpensive
to store the hash on-chain compared to the file itself, considering the size of
such file is large. However, the file is still vulnerable to deletion or tampering,
as the hash itself cannot help retrieve a lost file or deleted content. Adequate
measures must be taken to preserve off-chain data.
Related patterns - According to [31], this pattern is directly related to the
Low contract footprint pattern in [39], as the latter propose to minimize the
number and size of on-chain transactions to save costs, notably with opti-
mizing write operations. As the Off-chain data storage pattern only stores a
hash on-chain, this cost is kept low.
Known uses - The Government of Estonia’s e-health solution utilizes block-
chain as a ”fingerprint” registry to ensure the integrity of e-health records
[38]. Factom8, a blockchain for building records systems, implements this
pattern by systematically hashing files sent to the blockchain. Only the hash
is kept on-chain after the operation.

4.3.2. State Machine pattern

The State machine pattern proposes to manage smart contract state tran-
sitions through state machines, to break the problem of state changes into

8https://www.factom.com/

30

simple state transitions. It belongs to the ”Domain-based pattern” interme-
diate category. As each of the patterns included in this category has only
been found one time in selected papers, we decided to select the State ma-
chine pattern for a thorough introduction as this pattern can be used in many
different scenarios, including basic implementations of smart contracts.
Context - When leveraging smart contracts, state changes are often per-
formed. Depending on the purpose of the smart contract, many states
changes might occur during its lifecycle.
Problem - A smart contract might be difficult to design if many state
changes occur, as complex logic must be implemented.
Forces - Some forces are bound to the usage of this pattern: the complex-
ity of the smart contract to design and its efficiency, as depending on the
implementation of the state changes part, the contract might be efficient or
cumbersome to use.
Solution - Apply a state machine to model and represent different contract
stages and their transitions in the smart contract [29].
Example - A company that wants to leverage a business process on-chain
with multiple steps that might trigger automatic operations might be tempted
to use the State machine pattern in order to model and perform the state
changes within the contract.
Resulting context - The state machine breaks complex problems into sim-
ple states and state transitions [29], resulting in a more efficient smart con-
tract.
Related patterns - In the Confidential and pseudo-anonymous contract
enforcement pattern [40], a state machine can be employed in the smart
contract used by the pattern to handle state changes of the associated legal
contract on-chain.
Known uses - The DutchMachine smart contract implements a state ma-
chine for handling auctions [29].

4.3.3. Tokenization pattern

The third presented pattern is the Tokenization pattern. Classified in the
”Data management pattern” intermediate category and mentioned 4 times,
this pattern consists in representing an asset by a token, to facilitate its
exchange on blockchain networks.
Context - Through a blockchain network, it is possible to send transactions
and interact with smart contracts without any third party as an intermediate.

31

Such a network enables the exchange of value directly between one user to
another, notably with the exchange of native cryptocurrency.
Problem - Native fungible blockchain tokens (e.g., Bitcoin, Ether) often
serve as the native cryptocurrency of the associated blockchain network. In
some cases, they can also be used as token support to track assets, but their
capabilities are limited. Indeed, extending the concept of value exchange
for other types of assets (e.g., other currencies, art, houses, ...) is not a
straightforward process due to the dissimilarity between those assets.
Forces - Some forces are bound to this pattern: authority, as it must be
ensured that the on-chain asset is the authority source of the correlated
asset [27], and liquidity, as blockchain can enable a frictionless exchange of
value.
Solution - Model many types of assets on blockchain using tokens. Two
types of tokens can be differentiated: fungible tokens that are indistinguish-
able from each other, and non-fungible tokens (NFTs), representing a unique
asset with its own properties. Smart contracts can thus be used as a data
structure to handle the tokens and associated operations (transfer, deletion,
...) [27], but also enhance their capabilities.
To illustrate, Ethereum proposes two different standards to create fungible
and non-fungible tokens using smart contracts, that are respectively ERC209

and ERC72110 tokens. Using these standards simplifies the usage of tokens,
as on-chain applications and users can rely on standard interfaces to inter-
act with all of the smart contracts that implement tokens for their usage.
Other standards exist in the Ethereum ecosystem to improve their usability
in different contexts. For instance, the ERC1155 can also be mentioned as
it allows the usage of both fungible and non-fungible tokens (ERC20 and
ERC721) in the same smart contract. ERC998-based tokens go even fur-
ther by regrouping multiple tokens under a single token (commonly called a
basket). This simplifies their exchange between users and enables other use
cases (e.g. a service proposing users to invest in a specific basket of tokens
all-at-once). A variant, the ERC3664, allows the combination of multiple
NFTs to a single one. This composability of NFTs is notably useful in the
gaming industry (e.g. a set of items merged into a better one).
Where tokens can be used to represent different types of assets, they can also

9https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
10https://eips.ethereum.org/EIPS/eip-721

32

be used for other purposes. One of the most popular uses in this context is
token governance: depending on their amount of owned tokens, users could
vote on important decisions. For instance, owning governance tokens that
represent a share of an on-chain fund, users could vote about the usage of
those funds, such as their investment in other protocols. Another similar con-
cept is staking, notably for Proof-of-Stake blockchains: by locking a defined
amount of their tokens at stake, users could be entitled by the consensus
algorithm to create new blocks.
Example - A real estate company can use non-fungible tokens to repre-
sent the ownership of houses directly into the blockchain. Ownership of a
house can then be directly exchanged on-chain, and a complete history of
transactions can be retraced for a house.
Resulting context - Assets are tokenized on-chain and can be easily sent
between users. Using smart contracts, many features can be implemented
along with the tokens, such as royalties, sales, or burn (i.e., destroying to-
kens).
Related patterns - The Address mapping pattern can be used as a comple-
ment to map blockchain accounts (e.g., public addresses) with owned tokens.
The Poll pattern might use the Token pattern to materialize votes as tokens
and keep track of them.
Known uses - The Tokenization pattern has already been applied in a
tremendous number of domains. For instance, stablecoins (e.g., Tether11),
consist in emitting fungible tokens on-chain that keep the same value as an
underlying asset (e.g., US Dollar) using different strategies. This enables
many other use cases relying on the usage of fiat currencies, such as friction-
less currency swap. Another use case is the usage of NFTs in art. Many
artists have digitalized their art as NFTs to sell it on on-chain marketplaces,
such as OpenSea12.

4.3.4. Proxy contract pattern

The fourth and last presented pattern is the Proxy contract pattern. It be-
longs to the ”Smart contract pattern” intermediate category and appeared
6 times in found patterns.
Context - In a blockchain, data becomes immutable after addition. This

11https://tether.to/
12https://opensea.io/

33

concept also applied to smart contracts, that cannot be modified after their
deployment on-chain [33].
Problem - If a smart contract must be changed, for diverse reasons (up-
grades, bug correction, ...), the developer has to deploy another version of
the contract and manually change the other contracts that reference the old
contract [33]. In the best case, this is a cumbersome task, and it might even
not be possible in certain cases.
Forces - The problem requires balancing the following forces: first, im-
mutability, as deployed smart contracts are designed to be immutable, and
upgradeable, as proposing features to allow upgradeability enhances designed
smart contracts.
Solution - Using a proxy contract, a user can query the latest version of
a target contract. The proxy contract will relay the request to the target
contract [29]. By replacing the reference of the target contract with a new
one, it is possible to easily upgrade parts of the decentralized application
[33].
Example - A user can request a proxy contract as the bridge for a decentral-
ized application, such as the latest version of a decentralized cryptocurrency
exchange.
Resulting context - Proxy contracts can be used to easily access the latest
version of a contract, without requiring storing the latest contract addresses
off-chain. Reference updates can easily be performed by requesting the proxy
contract with the latest contract address.
Related patterns - The Data contract pattern can be implemented along
the Proxy contract pattern as the proxy will allow updating the logic used
to access the data contract without updating the data contract itself. The
Contract registry pattern is related to the Proxy contract pattern, as the
contract registry has a reference to all the latest versions of the contracts,
where the proxy only references one contract.
Known uses - A security company named OpenZeppelin proposes a generic
implementation of the Proxy contract pattern for Solidity-based smart con-
tracts13. Uniswap, a decentralized exchange on Ethereum, uses proxy con-
tracts to forward user transactions to the exchange smart contract14.

13https://blog.openzeppelin.com/proxy-patterns/
14https://etherscan.io/address/0x09cabec1ead1c0ba254b09efb3ee13841712be14

34

4.4. RQ4: Are some of the patterns equivalent to existing software patterns?

Since the first collection of design patterns released by the GoF [20], many
patterns have been proposed that can be applied in many contexts. As dApps
have many similarities with traditional applications, one aspect this study
investigates are the links between existing software patterns and proposed
blockchain-based patterns, either through the creation of variants or the di-
rect usage of existing patterns in blockchain applications. Table 6 introduces
the list of all identified software patterns. It has been found that 22 extracted
patterns mention references to existing software patterns, where 16 of them
directly arise from the GoF design pattern collection. A possible explana-
tion is that smart contracts have many similarities with objects, many GoF
design patterns can be applied to them. For example, the Factory pattern is
used to create instances of smart contracts from a factory contract, as it can
be used in OOP (Object-Oriented Programming) to create objects from one.
On top of that, using GoF patterns with smart contracts can help to tackle
their lack of flexibility, a difficult aspect to manage in dApp development.
To illustrate, where the Proxy pattern is a good practice for protecting the
access of sensitive objects, it is even stronger with smart contracts, as it can
dynamically change its target from one contract to another, a mechanism
used to upgrade an old smart contract by switching to the new one.

GoF pattern Other pattern
Proxy (4) - Factory (3) - Flyweight
(3) - Chain of responsibility (2) -
Observer (1) - Facade (1) - Memento
(1) - Composite (1)

Mutex (2) - Publisher-Subscriber
(2) - Snapshot (1) - Layered design
(1)

Table 6: Existing software patterns mentioned by selected studies and their occurrences.

4.5. RQ5: What are the applications of identified patterns?

Looking at the domain applications, 7 papers out of 20 targeted a specific
domain, such as healthcare, big data, decentralized identity, record man-
agement, financial services, and BPM. The proximity between some of the
patterns and their application domain is the reason they have been classified
in the Domain-based pattern subsection of the taxonomy. In [37], specific
patterns for BPM have been proposed. They might be applied in other so-
lutions, but their main purpose is bound to business process management.

35

In other cases, some patterns are presented as a domain-agnostic solution
coupled with implementation details in a specific application domain. For
instance, [44] proposes an adaptation of GoF patterns to serve healthcare
solutions, using blockchain.
From a technological standpoint, 6 of the 20 selected papers propose pat-
terns for specific blockchain technology. In those papers, 5 are focusing on
Ethereum, and more specifically Solidity smart contracts. Indeed, a growing
interest is shown by academics and businesses for Ethereum since its release in
2016, as its mainnet is currently the most-adopted public blockchain network
for smart contract development. In this context, software patterns support
many aspects of Solidity-based smart contracts. As seen before, found pat-
terns mainly address the efficiency and the security of smart contracts, two
major aspects to consider when developing Solidity-based decentralized appli-
cations. Another paper introduced a pattern for the Hyperledger ecosystem,
more specifically for Sawtooth, a modular blockchain technology15. Looking
at patterns themselves, over the 160 non-unique patterns retrieved, 28 of
them were not mentioning the usage of smart contracts, 79 of them mentions
the usage of smart contracts without any precision on used technology in the
pattern Solution, and 53 patterns are proposed in the context of using a
specific technology (e.g., Ethereum). However, we found that some of the
patterns might be proposed in a more generic form, thus allowing its appli-
cation to other technologies. This might be the ground for future research in
this domain.

4.6. RQ6: What are the current gaps in research on blockchain-based pat-
terns?

Regarding current gaps in research on blockchain-based patterns, the lack of
non-design patterns can be mentioned. Among the 120 patterns retrieved,
only 3 of them are architectural patterns and 14 of them are idioms. Although
design patterns are a very compelling solution for the design of robust and
efficient applications, exploring new forms of blockchain architectures, then
formalizing them as architectural patterns could benefit a lot to blockchain
dApp design. Taking back the examples mentioned in Subsection 4.2, [46]
shows the strong impact on software quality using architectural patterns. On
one side, applying the Self-Generated Transactions pattern means letting the

15https://www.hyperledger.org/use/distributed-ledgers

36

task of signing transactions to users on the client-side, thus ensuring no one
aside the client has access to the keys. On the other side, using the Delegated
Transactions pattern lets full control of the funds to the application. This
can be convenient for users without knowledge of using a blockchain wallet
but adds a potentially vulnerable third party into the balance. Such research
could be conducted by exploring the existing literature or applications to
find innovative ways of organizing decentralized application components. For
example, [51] proposes a microservices system where smart contracts are ser-
vices themselves. As the Microservices architectural pattern already exists,
adapting it for blockchain could lead to a new way of designing a loosely
coupled smart contract system with its own advantages and liabilities.
Regarding the idioms, and the other smart contract patterns found, all
of them deal with Solidity, except one (Hyperledger Sawtooth). Although
Ethereum is the most used public blockchain for decentralized applications
as of today, yet other languages could be considered. Rust, a high-level com-
piled language, is used for smart contract development by many blockchain
technologies, such as ink! from Polkadot16, or Rust for Solana17. Formalizing
new idioms and patterns in this context could help improve code quality and
security. In addition, existing patterns in Solidity could also be translated
for other blockchains. As an example, the Freeing storage idiom from [33]
could also be applied to other public blockchains where freeing the storage
refunds a defined amount of money.

5. Threats to Validity

In this literature review, the Kitchenham et al. methodology has been ap-
plied to systematically conduct the study, from the selection of papers to the
collection of data [26]. Although using this method helps to limit the bias in
our study, some internal threats can appear due to manual steps performed.
Regarding the query used, applying it to titles, abstracts, and keywords im-
prove the precision of the request, yet some papers might have been missed.
To overcome this, backward and forward snowballing has been used to re-
trieve papers that cited or have cited studies found while performing the sys-
tematic literature review. The categorization and grouping of patterns can
also lead to manual errors, as this is performed mainly from data collected

16https://github.com/paritytech/ink
17https://github.com/solana-labs/solana

37

from the patterns, that might lack accuracy. In parallel, great attention has
been paid to not merging patterns that are not strictly identical, to avoid
missing variants of patterns that serve in different contexts.
The taxonomy construction is also subject to bias. For instance, even if
different methods were used to generate category names, the final decision
is up to the taxonomy builders. Selecting the high-level dimensions (meta-
characteristics) is also a subjective task that has a high impact on the con-
struction of the taxonomy. To limit such bias, the methodology from Nick-
erson et al. was applied [32]. Also, found patterns have easily been classified
into the final version of the taxonomy, hence, the produced version of the
taxonomy satisfies the goals initially described before its construction.

6. Related Works

Using systematic literature reviews to collect patterns is a strategy that has
already been used in other fields. For instance, [52] has gathered 206 design
patterns on multi-agent systems (MAS) from the literature. Authors have
also identified the links between found patterns and proposed classification to
group patterns under different categories and subcategories. The study also
mentions several research gaps in the literature for MAS, such as the lack
of standardization when describing a pattern despite the existence of several
pattern formats, the lack of links between patterns that do not belong to the
same category, and the lack of mentioned applications of presented patterns.
Our study also shares the same conclusions. In [53], 44 architectural patterns
are extracted from a corpus of 8 papers about microservices. A taxonomy
is also provided to classify the different patterns. It has been found that
identified patterns are mostly bound to five quality attributes: scalability,
flexibility, testability, performance, and elasticity. [54] has also performed a
systematic literature review of IoT software patterns, and has collected 143
architecture and design patterns from a corpus of 32 papers. They have also
identified that 57% of all found patterns are non-IoT patterns, thus meaning
IoT systems are designed through a conventional architecture perspective,
something that we also identified in this study through the ”On/off-chain in-
teraction pattern” category as well as GoF-based design patterns. Our study
follows the same path as others by proposing a taxonomy and a collection
of patterns. To the best of our knowledge, this is the first attempt in the
blockchain-based pattern literature to propose such work.

38

7. Conclusion and Future Works

Ensuring the high quality and efficiency of newly built decentralized appli-
cations is a challenge of uttermost importance for the future of blockchain.
Software patterns are a promising solution to address this challenge, as they
ensure commonly occurring problems in a given context are addressed with
extensively tested solutions. In this paper, a systematic literature review is
performed on the available blockchain pattern literature to identify existing
software patterns and classify them into a comprehensive taxonomy. 20 stud-
ies have been selected for reading and kept accepted afterward, from where
160 patterns have been extracted. After duplicate removal, 120 unique pat-
terns have been found and regrouped in a taxonomy. The taxonomy consists
of 4 main categories and 15 subcategories and has been built using a con-
struction taxonomy methodology [32]. This paper also discusses the links
between found patterns, but also their relation with existing software pat-
terns such as the GoF design pattern collection. One finding is that many
patterns from this collection are translated into blockchain patterns, such
as the Proxy or Factory pattern. Future research could be performed on
the translation of GoF patterns that have not been translated yet as block-
chain-based patterns. It has also been found that while some patterns are
described in a very generic form, some variants propose specific forms of
patterns based on them, such as the Oracle pattern that was derived into
4 different variants in [36]. Application domains of patterns have also been
discussed: among the corpus of papers, we found 3 papers directly linked to
domain-based patterns, respectively healthcare [43], collaborative business
processes [37], and decentralized identity [31]. Finally, research gaps are ad-
dressed: we enlight the scarcity of architectural patterns and idioms for the
design of blockchain-based architectures, and the concentration of patterns
on one blockchain protocol (Ethereum). Further research in creating archi-
tectural patterns and idioms for various blockchain protocols could benefit
the development of robust blockchain-based applications.
This study is part of a bigger project that aims to empower software ar-
chitects with a framework for the design and implementation of blockchain-
based applications [55], notably with the construction of BLADE (Blockchain
Automated Decision Engine), a decision-making tool to select the most suit-
able blockchain and patterns for a given context [56]. The taxonomy pro-
posed in this paper paves the way for the construction of an ontology in a

39

further study, to perform semantic queries (SPARQL18) on its entities (i.e.,
patterns), and forms the knowledge base of BLADE. Building this ontology
will also be an opportunity to further explore links between patterns and
groups of patterns, an aspect partially left from outside the scope of this pa-
per. In this paper, patterns were collected from existing studies, yet future
works will also consist in extending the current knowledge with new patterns,
systematically derived from existing blockchain-based applications through a
literature review, but also by proposing new patterns (i.e., [57]) to enable the
design of better-decentralized solutions. The collected patterns will also be
reused through BLADE, as it will recommend patterns from this knowledge
set. Finally, this study also contributes to the state of the art of blockchain-
based patterns, through a taxonomy that will help to classify newly created
patterns in comprehensive categories, a systematic literature review to map
and describe the existing literature on blockchain-based patterns within the
taxonomy, and highlight research gaps that could be addressed in further
studies.

Declaration of competing interest

The authors declare that they have no known competing financial interests
or personal relationships that could have appeared to influence the work
reported in this paper.

References

[1] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, Decentral-
ized Business Review (2008) 21260.

[2] V. Buterin, et al., Ethereum white paper, GitHub repository 1 (2013)
22–23.

[3] S. Zeadally, J. B. Abdo, Blockchain: Trends and future opportunities,
Internet Technology Letters 2 (6) (2019) e130.

[4] M. Pourpouneh, K. Nielsen, O. Ross, Automated market makers, Tech.
rep., IFRO Working Paper (2020).

18https://www.w3.org/TR/rdf-sparql-query/

40

[5] C. Oham, R. Jurdak, S. S. Kanhere, A. Dorri, S. Jha, B-fica: Blockchain
based framework for auto-insurance claim and adjudication, in: 2018
IEEE International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart
Data (SmartData), IEEE, 2018, pp. 1171–1180.

[6] C. Di Ciccio, A. Cecconi, M. Dumas, L. Garćıa-Bañuelos, O. López-
Pintado, Q. Lu, J. Mendling, A. Ponomarev, A. B. Tran, I. We-
ber, Blockchain support for collaborative business processes, Informatik
Spektrum 42 (3) (2019) 182–190.

[7] A. A. G. Agung, R. Handayani, Blockchain for smart grid, Journal of
King Saud University-Computer and Information Sciences (2020).

[8] P. Voigt, A. Von dem Bussche, The eu general data protection regula-
tion (gdpr), A Practical Guide, 1st Ed., Cham: Springer International
Publishing 10 (2017) 3152676.

[9] S. Porru, A. Pinna, M. Marchesi, R. Tonelli, Blockchain-oriented soft-
ware engineering: challenges and new directions, in: 2017 IEEE/ACM
39th International Conference on Software Engineering Companion
(ICSE-C), IEEE, 2017, pp. 169–171.

[10] G. J. Simmons, Symmetric and asymmetric encryption, ACM Comput-
ing Surveys (CSUR) 11 (4) (1979) 305–330.

[11] R. C. Merkle, A certified digital signature, in: Conference on the Theory
and Application of Cryptology, Springer, 1989, pp. 218–238.

[12] A. Back, et al., Hashcash-a denial of service counter-measure (2002).

[13] M. Belotti, N. Božić, G. Pujolle, S. Secci, A vademecum on blockchain
technologies: When, which, and how, IEEE Communications Surveys &
Tutorials 21 (4) (2019) 3796–3838.

[14] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, S. Cap-
kun, On the security and performance of proof of work blockchains, in:
Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, 2016, pp. 3–16.

41

[15] F. Saleh, Blockchain without waste: Proof-of-stake, The Review of fi-
nancial studies 34 (3) (2021) 1156–1190.

[16] H. Sukhwani, J. M. Mart́ınez, X. Chang, K. S. Trivedi, A. Rindos,
Performance modeling of pbft consensus process for permissioned
blockchain network (hyperledger fabric), in: 2017 IEEE 36th Sympo-
sium on Reliable Distributed Systems (SRDS), IEEE, 2017, pp. 253–
255.

[17] C. Alexander, et al., The timeless way of building, Vol. 1, New york:
Oxford university press, 1979.

[18] C. Alexander, A pattern language: towns, buildings, construction, Ox-
ford university press, 1977.

[19] K. Beck, Using pattern languages for object-oriented programs,
http://c2.com/doc/oopsla87.html (1987).

[20] E. Gamma, R. Helm, R. Johnson, J. Vlissides, D. Patterns, Elements
of reusable object-oriented software, Vol. 99, Addison-Wesley Reading,
Massachusetts, 1995.

[21] D. Taibi, V. Lenarduzzi, C. Pahl, Architectural patterns for microser-
vices: A systematic mapping study., in: CLOSER, 2018, pp. 221–232.

[22] S. Qanbari, S. Pezeshki, R. Raisi, S. Mahdizadeh, R. Rahimzadeh,
N. Behinaein, F. Mahmoudi, S. Ayoubzadeh, P. Fazlali, K. Roshani,
et al., Iot design patterns: computational constructs to design, build and
engineer edge applications, in: 2016 IEEE First International Confer-
ence on Internet-of-Things Design and Implementation (IoTDI), IEEE,
2016, pp. 277–282.

[23] A. Tešanovic, What is a pattern, Dr. ing. course DT8100 (prev.
78901/45942/DIF8901) Object-oriented Systems (2005).

[24] D. J. Meszaros, J. Doble, G. a pattern language for pattern writing,
in: Proceedings of International Conference on Pattern languages of
program design (1997), Vol. 131, 1997, p. 164.

[25] N. B. Harrison, The language of shepherding, Pattern languages of pro-
gram design 5 (1999) 507–530.

42

[26] B. Kitchenham, S. Charters, Guidelines for performing systematic liter-
ature reviews in software engineering (2007).

[27] X. Xu, C. Pautasso, L. Zhu, Q. Lu, I. Weber, A pattern collection for
blockchain-based applications, in: Proceedings of the 23rd European
Conference on Pattern Languages of Programs, 2018, pp. 1–20.

[28] M. Bartoletti, L. Pompianu, An empirical analysis of smart contracts:
platforms, applications, and design patterns, in: International confer-
ence on financial cryptography and data security, Springer, 2017, pp.
494–509.

[29] M. Wöhrer, U. Zdun, Design patterns for smart contracts in the
ethereum ecosystem, in: 2018 IEEE International Conference on In-
ternet of Things (iThings) and IEEE Green Computing and Communi-
cations (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), IEEE, 2018, pp. 1513–
1520.

[30] M. Wohrer, U. Zdun, Smart contracts: security patterns in the ethereum
ecosystem and solidity, in: 2018 International Workshop on Blockchain
Oriented Software Engineering (IWBOSE), IEEE, 2018, pp. 2–8.

[31] Y. Liu, Q. Lu, H.-Y. Paik, X. Xu, Design patterns for blockchain-based
self-sovereign identity, in: Proceedings of the European Conference on
Pattern Languages of Programs 2020, 2020, pp. 1–14.

[32] R. C. Nickerson, U. Varshney, J. Muntermann, A method for taxon-
omy development and its application in information systems, European
Journal of Information Systems 22 (3) (2013) 336–359.

[33] L. Marchesi, M. Marchesi, G. Destefanis, G. Barabino, D. Tigano, De-
sign patterns for gas optimization in ethereum, in: 2020 IEEE Inter-
national Workshop on Blockchain Oriented Software Engineering (IW-
BOSE), IEEE, 2020, pp. 9–15.

[34] C. R. Worley, A. Skjellum, Opportunities, challenges, and future exten-
sions for smart-contract design patterns, in: International Conference
on Business Information Systems, Springer, 2018, pp. 264–276.

43

[35] V. Rajasekar, S. Sondhi, S. Saad, S. Mohammed, Emerging design pat-
terns for blockchain applications., in: ICSOFT, 2020, pp. 242–249.

[36] R. Mühlberger, S. Bachhofner, E. C. Ferrer, C. Di Ciccio, I. We-
ber, M. Wöhrer, U. Zdun, Foundational oracle patterns: Connecting
blockchain to the off-chain world, in: International Conference on Busi-
ness Process Management, Springer, 2020, pp. 35–51.

[37] M. Müller, N. Ostern, M. Rosemann, Silver bullet for all trust issues?
blockchain-based trust patterns for collaborative business processes, in:
International Conference on Business Process Management, Springer,
2020, pp. 3–18.

[38] V. L. Lemieux, A typology of blockchain recordkeeping solutions and
some reflections on their implications for the future of archival preserva-
tion, in: 2017 IEEE International Conference on Big Data (Big Data),
IEEE, 2017, pp. 2271–2278.

[39] J. Eberhardt, S. Tai, On or off the blockchain? insights on off-chaining
computation and data, in: European Conference on Service-Oriented
and Cloud Computing, Springer, 2017, pp. 3–15.

[40] N. Six, C. N. Ribalta, N. Herbaut, C. Salinesi, A blockchain-based pat-
tern for confidential and pseudo-anonymous contract enforcement, in:
2020 IEEE 19th International Conference on Trust, Security and Pri-
vacy in Computing and Communications (TrustCom), IEEE, 2020, pp.
1965–1970.

[41] J. Moreno, E. B. Fernandez, E. Fernandez-Medina, M. A. Serrano,
Blockbd: a security pattern to incorporate blockchain in big data ecosys-
tems, in: Proceedings of the 24th European Conference on Pattern Lan-
guages of Programs, 2019, pp. 1–8.

[42] L. Owens, B. Razet, W. B. Smith, T. C. Tanner, Inter-family commu-
nication in hyperledger sawtooth and its application to a crypto-asset
framework, in: International Conference on Distributed Computing and
Internet Technology, Springer, 2019, pp. 389–401.

[43] P. Zhang, D. C. Schmidt, J. White, G. Lenz, Blockchain technology use
cases in healthcare, in: Advances in computers, Vol. 111, Elsevier, 2018,
pp. 1–41.

44

[44] P. Zhang, J. White, D. C. Schmidt, G. Lenz, Applying software patterns
to address interoperability in blockchain-based healthcare apps, arXiv
preprint arXiv:1706.03700 (2017).

[45] Y. Liu, Q. Lu, X. Xu, L. Zhu, H. Yao, Applying design patterns in smart
contracts, in: International Conference on Blockchain, Springer, 2018,
pp. 92–106.

[46] A. Mavridou, A. Laszka, Designing secure ethereum smart contracts:
A finite state machine based approach, in: International Conference on
Financial Cryptography and Data Security, Springer, 2018, pp. 523–540.

[47] H. D. Bandara, X. Xu, I. Weber, Patterns for blockchain data migration,
in: Proceedings of the European Conference on Pattern Languages of
Programs 2020, 2020, pp. 1–19.

[48] W. Liang, D. Zhang, X. Lei, M. Tang, K.-C. Li, A. Zomaya, Circuit
copyright blockchain: Blockchain-based homomorphic encryption for ip
circuit protection, IEEE Transactions on Emerging Topics in Computing
(2020).

[49] X. Yang, W. Li, A zero-knowledge-proof-based digital identity manage-
ment scheme in blockchain, Computers & Security 99 (2020) 102050.

[50] F. Wessling, V. Gruhn, Engineering software architectures of blockchain-
oriented applications, in: 2018 IEEE International Conference on Soft-
ware Architecture Companion (ICSA-C), IEEE, 2018, pp. 45–46.

[51] R. Tonelli, M. I. Lunesu, A. Pinna, D. Taibi, M. Marchesi, Implementing
a microservices system with blockchain smart contracts, in: 2019 IEEE
International Workshop on Blockchain Oriented Software Engineering
(IWBOSE), IEEE, 2019, pp. 22–31.

[52] J. Juziuk, D. Weyns, T. Holvoet, Design patterns for multi-agent sys-
tems: A systematic literature review, in: Agent-Oriented Software En-
gineering, Springer, 2014, pp. 79–99.

[53] F. Osses, G. Márquez, H. Astudillo, An exploratory study of academic
architectural tactics and patterns in microservices: A systematic litera-
ture review, Avances en Ingenieria de Software a Nivel Iberoamericano,
CIbSE 2018 (2018).

45

[54] H. Washizaki, S. Ogata, A. Hazeyama, T. Okubo, E. B. Fernandez,
N. Yoshioka, Landscape of architecture and design patterns for iot sys-
tems, IEEE Internet of Things Journal 7 (10) (2020) 10091–10101.

[55] N. Six, Decision process for blockchain architectures based on require-
ments, CAiSE (Doctoral Consortium) (2021) 53–61.

[56] N. Six, N. Herbaut, C. Salinesi, Blade : Un outil d’aide à la décision
automatique pour guider le choix de technologie blockchain, Revue
ouverte d’ingénierie des systèmes d’information 2 (Numéro 1) (2021).
doi:10.21494/ISTE.OP.2021.0604.

[57] N. Six, C. N. Ribalta, N. Herbaut, C. Salinesi, A blockchain-based pat-
tern for confidential and pseudo-anonymous contract enforcement, in:
2020 IEEE 19th International Conference on Trust, Security and Pri-
vacy in Computing and Communications (TrustCom), IEEE, 2020, pp.
1965–1970.

46

https://doi.org/10.21494/ISTE.OP.2021.0604

	Introduction
	Background
	Blockchain
	Software pattern

	Review Process
	Review Planning
	Review Execution
	Taxonomy construction
	Results

	Discussion
	RQ1: What taxonomy can be built from existing literature on blockchain-based patterns?
	RQ2: What are the existing blockchain-based patterns and their different categories?
	On/off-chain Interaction Patterns
	On-chain Patterns - domain-based Patterns
	On-chain Patterns - smart contract Patterns
	On-chain Patterns - Data management pattern
	Architectural Patterns and Idioms

	RQ3: What are the most frequently mentioned patterns for each section, and their variants across identified patterns?
	Off-chain Data Storage pattern
	State Machine pattern
	Tokenization pattern
	Proxy contract pattern

	RQ4: Are some of the patterns equivalent to existing software patterns?
	RQ5: What are the applications of identified patterns?
	RQ6: What are the current gaps in research on blockchain-based patterns?

	Threats to Validity
	Related Works
	Conclusion and Future Works

