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a b s t r a c t

This paper presents a parallel multidomain strategy to compute the turbulent flow in a closed vessel

stirred by six fans. The method is based on running multiple instances of the same solver, working on

different subdomains and communicating through small overlapping zones where interpolations allow

to handle moving meshes. First the accuracy of this Multi Instances Solver Coupled on Overlapping Grids

(MISCOG) approach is evaluated for the convection of a single vortex. Load balancing issues on parallel

machines are discussed and a performance model is proposed to allocate cores to each code instance.

Then, the method is applied to the LES of a closed vessel stirred by six fans. Mean and fluctuating fields

obtained by the LES are compared to experimental data. Finally, the structure of the turbulence generated

at the center of the vessel is studied and the mechanisms allowing turbulence to travel from the fans to

the center of the vessel are analyzed.

1. Introduction

Turbulence has been studied for decades in its most canonical

form: homogeneous isotropic turbulence (HIT) [1–7]. This limit

case is the cornerstone of multiple theoretical approaches as well

as the building brick of Large Eddy Simulation (LES) models where

the Kolmogorov cascade assumption allows to model the effects of

small scales from information available for the resolved ones [8,9].

HIT is also the only generic case where the interaction of other

phenomena with turbulence can be defined using a limited num-

ber of parameters: evolution of large droplets in HIT [10–12], inter-

action of evaporating droplets with HIT [13], flame/turbulence

interaction [14–16].

While defining HIT theoretically or numerically is a reasonably

simple and clear task, creating HIT experimentally is more

challenging. This paper focuses on one classical technique used to

generate HIT: fan-stirred closed vessels. Sometimes these appara-

tus are called ‘bombs’, a denomination that will be used in this

paper. Stirring vessels with fans to study turbulent flame propaga-

tion has been used for more than a century (see Laffitte’s book [17]).

A classical paper where this turbulence was qualified as HIT is due

to Semenov [18] who showed that properly designed bombs with

multiple fans were able to generate reasonable HIT in a zone

located near the center of the chamber where the mean flow is

almost zero and turbulence is homogeneous and isotropic. A signif-

icant amount of work has been based on correlations obtained in

such bombs. The most famous example is probably the quest for

‘turbulent flame speed’ correlations in which the speed sT of pre-

mixed turbulent flames is expressed as a function of the initial tur-

bulent velocity u0. Such correlations continue to be frequently

published [19–23] and interestingly, few of them agree. One reason

for this may be that the notion of a generic turbulent flame speed

depending only on a limited number of flow and flame parameters

may not be relevant [14]. Another one could be that the initial tur-

bulence in such bombs is not really close to HIT and that more

parameters should be taken into account. Therefore, since most

models are based on measurements performed in bombs, an inter-

esting question is to study whether the flow created in a fan-stirred

bomb really mimics HIT and over which spatial extent. This ques-

tion has been investigated experimentally [18,24,25] but using

CFD would be a useful addition.

Even though the largest CFD simulations to date have been pub-

lished for HIT with meshes up to 64 billion points [26], all of them

were performed in simple cubic meshes, initialized with a flow

which has all the properties of theoretical HIT. None of these
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simulations address the question of how HIT is created (if it is) in a

real fan-stirred bomb. This question is muchmore complicated and

existing experimental diagnostics are not always sufficient to guar-

anty that the flow in this situation matches all properties of theo-

retical HIT: in a bomb, fans obviously induce a strong mean,

pulsated flow. In the center of the vessel, the mean flow is expected

to be zero and turbulence assumed to diffuse to a central zone

where HIT is expected. This involves a series of questions which

are rarely addressed:

� By which mechanisms does turbulence transfer from the

fan region to the central zone?

� Since the number of fans is usually limited, are there pref-

erential straining axes in the bomb which could affect

isotropy near its center?

� The fans flow being by nature unsteady, is turbulence at

the center of the apparatus sensitive to the pulsating

nature of the flow created by the blades rotation?

� How large is the zone where HIT is obtained?

The objective of this paper is to show how the turbulent flow in

a fan-stirred vessel can be studied using high-resolution LES to

complement experimental diagnostics. To reach this objective,

the simulation code must satisfy three criteria:

� Considering the complexity of the objects to mesh, the

need to correctly capture the blade geometry and the

necessity to handle moving objects, unstructured meshes

are required so that classical DNS codes used for HIT

(spectral methods [27,28], high-order compact schemes

[29–31]) cannot be used.

� The configuration includes a large number of moving

objects (the fans) close to each other. Classical techniques

such as ALE (Arbitrary Lagrangian Eulerian) [32–34] are

difficult to implement for a flow with multiple fans

because of meshing issues. Immersed Boundary methods

[35–37] are easier to develop for moving objects but are

usually associated to a low order of accuracy which is not

acceptable in a LES framework. Here, a new multidomain

high-order LES technique with mesh overlapping devel-

oped byWang et al. [38,39] is used on a real configuration.

� To resolve turbulent structures accurately, a high-fidelity

explicit (in time) LES solver is needed and the correspond-

ing CPU cost is expected to be large so that the implemen-

tation of the multidomain method must be fully parallel.

This paper is organized as follows: first, the numerical method-

ology is described in Section 2. It is based on the simultaneous exe-

cution of multiple instances of the same solver, called MISCOG for

Multi Instances Solver Coupled on Overlapping Grids. These

instances are coupled on parallel computers using the OpenPalm

coupler [40,41]. This coupler is well suited for this task, however,

one limitation is that only two instances can exchange at the same

time so that the balancing strategy becomes much more complex

than it was for a single instance, which is also discussed in Section 2.

A validation test case of the MISCOG approach is presented in

Section 3. It consists in propagating a single vortex across two

overlapping computational domains. It is thought as an elementary

validation of the ability to convect turbulent structures. The

method is then applied to a fan-stirred bomb experiment devel-

oped in Orléans [42], where 7 instances are required to compute

the bomb and the six fans. Section 4 describes this configuration,

the numerical set-up and the parallel efficiency of the global

simulation.

Flow results are discussed in Section 5: quantities that can be

obtained both from LES and PIV are first compared (mean flow

fields and RMS values for all three velocity components). LES

results are used to analyze quantities which cannot be obtained

experimentally such as the velocity tensor – to identify the struc-

ture of the turbulence – or the budget of turbulent kinetic energy

in order to understand how turbulence reaches the center of the

vessel.

2. Numerical methodology

The filtered LES unsteady compressible Navier–Stokes equa-

tions that describe the spatially filtered mass, momentum and

energy conservation are solved by the unstructured compressible

LES solver, AVBP [43]. These equations can be written in the

conservative form:

@W

@t
þ ~r �~F ¼ 0 ð1Þ

where W is the vector containing the conservative variables

ðq;qU;qEÞT and ~F ¼ ðF;G;HÞT is the flux tensor. The flux is divided

into two components: the convective flux depending only on W

and the viscous flux depending on both W and its gradient rW.

The contributions of Sub-Grid Scale (SGS) turbulence models are

included in the viscous flux through the addition of the so called

turbulent viscosity mt . Two schemes are used in this study: Lax–

Wendroff [44] (LW, with 2nd-order accuracy in time and space)

and the two-step Taylor–Galerkin finite element scheme TTGC

[45] (3rd-order in time and space). The LW scheme, which is faster

than TTGC is used for transient phases while all statistics are gath-

ered (when steady state is reached) using the TTGC scheme.

To compute the whole configuration and the flow created by the

fans the code must be able to deal with moving parts (in this case,

six rotating fans). Immersed Boundaries Methods [35,36] were

tested but were not able to represent correctly the blade geometry

of the fan because the entire zone spanned by the fans must be

meshed with a very fine grid size leading to a prohibitive cost

in term of CPU time. ALE methods with mesh deformation

[46,47,34] were also considered but introduced excessive deforma-

tion of cells and frequent interpolation phases [48].

To solve this problem, the MISCOG approach, developed initially

for turbomachinery [38,39], was extended to bomb configurations.

In MISCOG, two or more instances of the same LES solver (namely

AVBP), each with their own computational domain, are coupled

through the parallel coupler OpenPALM [40,41]. For the bomb case,

the whole flow domain is initially divided into 7 parts: the bomb

itself has a static mesh (AVBP01) while each fan is computing in

a moving framework (AVBP0i, i 2 ½2;7
). For moving parts, the code

uses the ALE block rotation approach [46,47,34]: the grid is rotated

without deformation. The remaining unit AVBP01 simulates the

flow in the static part of the bomb in the same coordinate system.

The solution retained to handle interfaces between the units

involving rotating and non-rotating parts consists in reconstruct-

ing the residuals using an overset grid method and exchanging

by interpolation the multidomain conservative variables wherever

needed. To do so an efficient distributed search algorithm is imple-

mented in the OpenPALM coupler to locate the points in parallel

partitioned mesh blocks and a linear method is used to interpolate

residuals (the interpolation is of 2nd order). This coupling phase is

implemented outside the CFD instances in conjunction with sec-

ond order interpolation.

The computational domain corresponding to the experiment of

Orléans is displayed in Fig. 1: six cylindrical rotating domains

(i = 2–7) are used for each fan zone while one domain (i ¼ 1) is

used for the rest of the bomb. In general, the number of cells used

for each domain can be different. Here the grids for the six fans

(AVBP02–AVBP07) have the same number of cells but the bomb



grid (AVBP01) is different so that load balancing becomes immedi-

ately an issue which will be discussed in Section 4.2. The timetable

used in the MISCOG approach for each iteration is the following:

1. All AVP0i (i 2 ½1;N
) entities run.

2. When AVBP01 and AVBP02 have computed one iteration,

they exchange conservative variables in the buffer zone of

regions 1 and 2. After this exchange, AVBP02 starts to

compute the next iteration.

3. When AVBP03 finishes its iteration and AVBP01 has also

finished exchanging with AVBP02, AVBP01 and AVBP03

start to exchange, otherwise AVBP01 waits. This is

repeated for all AVBP0i instances (i 2 ½2;N
).

Note that AVBP01 starts to compute the next iteration as soon

as it has exchanged residuals with the last instance AVBP0N.

3. Validation test cases

Many academic test cases have been performed to validate the

MISCOG approach in configurations where a single domain compu-

tation or an analytical solution can be used as the reference solu-

tion. For example, acoustic wave and two-dimensional vortex

propagation cases were tested successfully using MISCOG byWang

et al. [38,39]. These results showed good performances of the MIS-

COG approach and a negligible accuracy loss through the overlap-

ping zone thanks to the second-order interpolation. Here a new

three-dimensional vortex case closer to the Orléans bomb geome-

try was tested by propagating a vortex with the TTGC scheme in

the box of Fig. 2.

The computational domain consists in a tri-periodic cubic box

where a cylindrical grid is inserted. This cylinder is rotated at

10;000 rpm corresponding to the rotation speed of the fans in

the real bomb. The mean flow goes from left to right at U0. In this

test case, the vortex must travel through interfaces without being

affected by the inner rotating mesh so that the exact solution is

simple to derive as a reference. This test case is representative of

the target configuration where fans are encapsulated in finite cyl-

inders: vortices created by the fan blades must travel through the

coupling interface. This case is simulated both with the MISCOG

approach and with a single domain AVBP computation. Fig. 3(a)

presents the time evolution of the axial velocity at the center of

the rotating cylinder while Fig. 3(b) shows a cut of the pressure

field after two convection times. A very good agreement is found

between the analytical solution, the single domain computation

and the MISCOG approach. The vortex is convected at the expected

speed U0 (no dispersion) and its structure is preserved (no dissipa-

tion). Note that formally, when the vortex goes through the over-

lapping zone, the third order of the TTGC scheme is lost since the

current interpolation is of 2nd order. However, the pressure and

the velocity profiles are both well convected.

This test case demonstrates the ability of the MISCOG approach

to convect a 3D vortex through different interfaces and confirms

the accuracy of this approach for coupled LES. On the long term,

it is clear that the interpolation method used in the overlapping

zone combined with the numerical scheme in each domain leads

to global dispersion and dissipation properties which would

require a much more precise analysis. This is left for further studies

to concentrate here on the fan-stirred bomb simulations.

4. Numerical set-up and parallel efficiency of the MISCOG

approach on a six-fan stirred vessel

This section describes the bomb configuration and the numeri-

cal set-up. The parallel efficiency of the global MISCOG simulation

is discussed because it raises new questions compared to classical

load balancing issues in a single instance solver.

4.1. Description of the bomb configuration and numerical set-up

The configuration is the bomb experiment of the PRISME labo-

ratory in Orléans [42]. This spherical vessel is stirred by six fans.

The radius of the closed vessel R0 is 100 mm and it has six windows

for visualization (see Fig. 4(a)). Fans are axial fans with an external

diameter of 60 mm. All characteristics of the fans are presented by

Fig. 4(b).

Simulations used to gather statistics are performed with the

TTGC scheme. The sub-grid scale (SGS) model is WALE [49] which

was developed for wall bounded flows. All boundary conditions are

no-slip and adiabatic walls (fans and closed vessel).

Experimental results obtained in the PRISME laboratory, give

values for the RMS velocity urms;exp and the integral length scale

Ls;exp at the bomb center: urms;exp ’ 3 m/s and Ls;exp ’ 3 mm. The

time scale associated to the integral length scale s is s ¼ Ls;exp=

urms;exp ’ 1 ms. Knowing the viscosity m ¼ 1:78:10�5 m2 s�1 the tur-

bulent Reynolds number can be evaluated Ret;exp ¼ urms;expLs;exp=

m ’ 600. The experimental Kolmogorov length scale gexp can be

estimated with the relation:

gexp ¼ Ls;exp=Re
3=4
t;exp ð2Þ

giving a value of the order of gexp ’ 40 lm. All theses information

are summarized in Table 1. The computation with a constant mesh

size in the whole bomb of Dx ¼ 1 mm in the closed vessel gives a

ratio Dx=gexp ’ 25 corresponding to a mesh of 21 million of cells

for AVBP01. Even though the computation is a LES, this resolution

leads almost to a DNS-like computation because very few intense

structures actually exist between the Kolmogorov scale g and a

length of the order of 20g [5]. For the mesh of the fan, a fine discret-

ization at the blade-walls is used to capture the flow generated by

fans (Fig. 5): four prism layers are added on all blade-walls to

describe the boundary layer [50]. The typical thickness of the prism

layers is about 0:05 mm, so that the maximum wall yþ2 on the first

grid point near the blade wall is 10 and is located at the leading edge

of the blade (see Fig. 6). The mesh size around the fan (away from

the walls) is 1 mm leading to a mesh of 3:3 million cells for each

fan instance AVBP02 to AVBP07. Thus the full mesh including the

bomb-mesh and the six fan-meshes contains 41 million cells.

AVBP01

(bomb)

AVBP02

AVBP03

AVBP04

AVBP05

AVBP06

AVBP07

Fan domain

(rotating)

Bomb domain

xed)

Overlapping

zone

Fig. 1. MISCOG decomposition for a fan-stirred vessel. Six cylindrical rotating

domains (AVBP02–AVBP07) for the fans and one fixed domain (AVBP01) for the rest

of the bomb.

2 The normalized wall distance yþ is defined by uþ ¼ yus=m where us is the friction

velocity. us is defined by us ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

swall=q
p

.



4.2. Efficiency of the MISCOG approach

The load balancing of the MISCOG approach strategy raises

much more questions than the usual optimization of single

instance codes on parallel systems: the present configuration

requires the coupling of 7 AVBP entities (one for the bomb and 6

six for the fans). Timers were added to measure the times needed

for (1) computation, Tc , (2) exchange, Te and (3) waiting, Tw.

Defining a waiting time Tw in a multiple instances run requires

caution. Here we define Tw using the following convention: Tw is

negative when fans (AVBP02–AVBP07) wait while it is positive if

the bomb (AVBP01) waits. Note that Te corresponds to exchanges

between AVBP01 and individual fans: communication times

between cores inside each instance are included in the computa-

tion time. Two computation times are defined: T fc and Tbc , the fan

and the bomb standalone computational times, respectively.

A theoretical model of performance for MISCOG can be derived

using simple relations. Two limit cases are considered. The bomb-

limited case (BL) where fans have to wait – corresponding to

Tw < 0 – and the fan-limited case (FL) where the bomb has to wait

– corresponding to Tw > 0 –. Timetables of BL and FL cases are

displayed in Figs. 7 and 8, respectively. According to timetables

presented in Figs. 7 and 8 and using the convention previously pro-

posed for the waiting time, leads to an expression for Tw, which is

valid for all cases:

Tw ¼ ðT fc � Tbc Þ � ðN � 2ÞTe ð3Þ

The exchange time, Te, cannot be estimated simply (its dependance

on load balancing is not easy to evaluate) and it was measured in

the solver. The total time for one iteration T it can be expressed using

two relations: communications between instances in MISCOG

approach are sequential so that (except for the first iteration) the

time needed by the bomb (AVBP01) to compute one iteration Tbit
is equal to the time needed by each fan (AVBP02–AVBP07) to com-

pute one iteration T fit (Figs. 7 and 8). This leads to two expressions

for T it:

T it ¼ ðN � 1ÞTe þ Tbc þmaxð0; TwÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Tb
it

¼ Te þ T fc �minð0; TwÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

T f
it

ð4Þ

Fig. 2. Sketch of the 3D convection vortex test case: a rotating cylinder is placed inside a tri-periodic box. Views are colored by the velocity field.
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To validate this model, computations were performed where the

total number of cores was fixed (400 on SGI Altix ICE 8200) and

the ratio Rc ¼ Nb
c=N

f
c of the number of cores allocated to the bomb

instance AVBP01 (Nb
c ) to the number of cores allocated to fan

instances AVBP02 to AVBP07 (Nf
c) was varied (all fan instances have

the same number of cores). Table 2 summarizes the computations

performed to evaluate the performance of MISCOG. Fig. 9 compares

the model (Eqs. (3) and (4)) to waiting and total times measured in

simulations. Fig. 9(a) shows the waiting times. When Rc is increased

(more cores are allocated to the bomb instance AVBP01), the wait-

ing time is expected to go from negative (fans wait) to positive

(bomb waits) values as shown by Eq. (3). A good agreement is found

while Rc is less than 20. For large Rc values, the trend is good but

values differs slightly: in simulations the waiting time goes to zero

but remains negative. When there are extreme differences in load

balancing between AVBP01 and AVBP02 (Rc > 20) the behavior of

MISCOG is not well understood yet. According to Eq. (3), in order

to cancel the waiting time (Tw ¼ 0), the load balancing must be

chosen such as T fc ¼ Tbc þ ðN � 2ÞTe. This leads here to a ratio

Rc ’ 19, where 303 cores are allocated to AVBP01 (the bomb) and

16 cores are used for each fan domain. Fig. 9(b) displays the

absolute execution time of the code for one time-iteration. The

agreement with Eq. (4) is reasonable.

In an ideal computation, the minimum computing cost of such a

simulation is obtained when Tw ¼ 0. In practice, the Rc range which

minimizes the total time for one iteration is Rc 2 ½10;20
 showing

that the MISCOG efficiency is weakly dependent on this ratio. In

this range, Tw is closed to zero but can be negative showing that

the optimal performance of MISCOG can be obtained in a situation

where fans wait.

Fig. 4. Sketch of the geometry (top) and fan characteristics (bottom) (configuration

setup at the PRISME laboratory, Orléans).

Table 1

Experimental data about the flow at the bomb center.

urms;exp 3 m/s

Ls;exp 3 mm

s 1 ms

Ret;exp 600

gexp 40 lm

Fig. 5. Mesh of the fan. Four prism layers were added near blade-walls.

Fig. 6. yþ field on the fan walls.



5. Characterization of turbulent flow inside the fan-stirred

bomb

In the experimental set-up, many operating points have been

studied: four fan geometries have been tested, the fan rotation

speed xfan was varied from 1,000 rpm to 15,000 rpm, the pressure

P0 from 1 bar to 10 bar and the temperature T0 from 323 K to

473 K. Only one operating point is studied numerically:

P0 ¼ 101325 Pa and T0 ¼ 323 K. The fans rotation speed is

xfan ¼ 10;000 rpm (the corresponding rotation period is

T fan ¼ 6 ms). The Reynolds number, based on the blade tip radius

(30 mm) and speed (31.5 m/s) is about 60,000. A normalized time

t� giving the number of fan rotations that are computed is defined

as t� ¼ t=T fan, where t is the physical time.

To reach steady state, a first computation is performed on a

coarse grid. Fig. 10 shows the evolution of the mean resolved

kinetic energy in the computational domain Ek ¼ 1=V
RRR

V
u2dV . This

quantity is a relevant diagnostic to quantify the temporal conver-

gence of the flow inside the vessel. In this configuration, the flow

is established after about 20 rotations. From t� ¼ 0—45, the LW

scheme is used. Then from t� = 45–95, the TTGC scheme is used.

Finally from t� = 95–165, the computation is performed on the fine

grid with the TTGC scheme. The resolved mean kinetic energy Ek

Fig. 7. Timetable of the operations performed in the MISCOG approach for the BL case (only fans wait). : Computing; : waiting; : exchanging.

Fig. 8. Timetable of the operations performed in the MISCOG approach for the FL case (only bomb waits). : Computing; : waiting; : exchanging.

Table 2

Simulations performed to evaluate the performance of MISCOG. The ratio Rc is

increased for MISCOG 1–5. All times are given in seconds per iteration.

Name Rc Te Tw T it

MISCOG 1 2 0.593 �4.35 6.19

MISCOG 2 4.5 0.345 �2.42 4.37

MISCOG 3 9.9 0.347 �1.28 3.93

MISCOG 4 19 0.423 �0.34 4.03

MISCOG 5 34 0.606 �0.25 7.84
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increases slightly when the fine grid is introduced because new

structures are created. However the new steady state is reached

quickly and diagnostics are performed from t� = 105–165.

To check the quality of the LES, the ratio Rl of turbulent viscos-

ity lt (created by the subgrid-scale model) over laminar viscosity

ll was computed: Fig. 11 shows a probability density function

(PdF) of Rl over all grid nodes. The maximum value of Rl reaches

15 times the laminar viscosity but is much less at most points. This

diagnostic shows that a large portion of the turbulence is resolved

on the mesh and not modeled.

5.1. Velocity at the bomb center

Fig. 12 presents the temporal evolution of the three velocity

components u ¼ ðu;v ;wÞ at the center of the vessel. The signal

recorded by the probe is zero until t� ¼ 6. This time represents

the time needed by large turbulent scales generated by fans to

reach the center of the vessel. The distance between the fan blades

to the center of the vessel is Lfv ¼ 65 mm. A velocity V s can be esti-

mated by the relation V s ¼ Lfv=t
�
’ 2 m/s. This velocity is very

small compared to the flow velocity at the blade tip Vbt ’ 30 m/s.

The mechanism by which turbulence goes from fan regions to

the bomb center is described in Section 5.4.

The RMS velocity values3 at the center of the vessel are

respectively 2.3, 2.0 and 2.1 m/s. Probability density functions of

the velocity fluctuations components u0 are plotted on Fig. 13. The

pdf’s of u0;v 0 and w0 are compared to a Gaussian distribution which

characterizes random processes. A good agreement is found between

a Gaussian distribution and the distribution of the velocity compo-

nents at the bomb center. These first results suggest that turbulence

at the center is close to HIT which is the objective of this experimen-

tal set-up.

5.2. Mean and RMS velocities in the closed vessel

A second diagnostic is to compare average �u and fluctuating

urms velocities measured experimentally to those computed by

LES. These statistics are performed oven 60 fan rotations

(t� 2 ½105;165
). Fig. 14 shows fields of the magnitude of the aver-

age and fluctuating velocities in the closed vessel. As expected, the

average velocity is close to zero at the bomb center. To compare

these results to experimental data, Fig. 15 presents x-axis cuts of

average velocity components. As previously observed on Fig. 14,

average velocities are near zero at the bomb center. The agreement

between experimental data and LES calculation is reasonable.

Moreover the ‘S’ shape of the �u and �v curves observed experimen-

tally is fairly well predicted by the computation. The domain

where the average velocity is near zero is a sphere with a radius

of about 3 cm. Fig. 16 presents x-axis cuts of fluctuating velocities

components. Once again the agreement between experimental

data and LES is quiet good. The urms and vrms profiles are well cap-

tured. The LES results slightly under-estimate the velocity fluctua-

tions since only the resolved fluctuations are plotted. Considering

the complexity of this simulation, capturing most of the trends

observed in the measurements is already challenging and we think

that results are sufficiently good to show that the whole approach

is promising.

5.3. Turbulence structure

To study the structure of the turbulence, the time average

invariants defined by Lumley [51,52] are a useful tool. According

to this theory an anisotropy invariant map within which all

realizable Reynolds stress invariants must lie can be defined. The

borders of this domain describe different states of the turbulence.

This theory is based on the analysis of the non-dimensional form of

the anisotropy tensor given by:

bij ¼
sij
skk

�
1

3
dij ð5Þ

with sij ¼ u0

iu
0

j the average Reynolds stress tensor. The principal

components of the anisotropy tensor may be found by solving the

relation:

det½bij � rdij
 ¼ 0: ð6Þ
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Fig. 10. Mean kinetic energy in the closed vessel versus the number of fan rotations
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3 The RMS values are defined as urms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PNs
n¼1u

0
n
2=Ns

q

where Ns is the number of

samples and u0 ¼ u� �u. They do not include the SGS contribution.



where r are the eigenvalues (i.e. the principal stresses) of b. Eq. (6)

expands to the following third-order equation for:

r3 � I1r2 þ I2r� I3 ¼ 0 ð7Þ

where I1; I2 and I3 are respectively the first, second, and third invari-

ants of the tensor bij. These invariants are related to the tensor

terms according to the relations:

I1 ¼ traceðbÞ ¼ bkk

I2 ¼
1

2
traceðbÞ½ 


2
� traceðb

2
Þ

� �

¼ �
1

2
bijbji

I3 ¼ detðbÞ

ð8Þ

I1 is zero for incompressible flows and is not used here. The anisot-

ropy invariant map is constructed by plotting �I2 versus I3. Isotro-

pic turbulence is found at the origin (I2 ¼ I3 ¼ 0). When I2 or I3
differ from zero, they quantify the type of turbulence which is found

locally (1, 2 or 3 components, axi-symmetry, etc.). The I2 and I3
invariants were computed locally (which means that the �: operator

in Eq. (5) is a temporal averaging operator) in the LES on the fine

mesh during the established phase (t� > 105). This analysis has

been done on the x, y and z-axis (20 points in each direction) of

the closed vessel and results are reported in Fig. 17. Each point is

colored by its distance r to the center of the bomb.

Fig. 17 shows that at the bomb center (x 2½� 30;þ30
mm), tur-

bulence can be assumed to be isotropic. In this spherical domain all
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Fig. 13. Local velocity fluctuations distributions at the bomb center. : Gaussian distribution; ——: LES.

Fig. 14. Average and RMS velocity fields. (Statistics performed on 60 fan rotations, t� 2 ½105;165
.)
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structures generated by the six fans impact and mix (by diffusion)

leading to an homogenous turbulence. Outside this spherical

domain where turbulence is isotropic, the presence of the fans

affects the structure of the turbulence: at a distance of more than

30 mm of the bomb center, turbulence becomes ‘rod-like’. This loss

of isotropy is confirmed by results obtained experimentally. Fig. 18

presents the evolution of the ration urms=v rms versus the x-axis

showing that turbulence is isotropic at the bomb center. The agree-

ment between LES and experimental measurements is good. Note

that Fig. 18 is consistent with Fig. 17

5.4. Kinetic energy balance

The objective in this section is to show how turbulence is trans-

ferred from the fans regions to the bomb center. A relevant quan-

tity to characterize the turbulence inside the vessel in terms of

production, dissipation and transport is the mean turbulent kinetic

energy (TKE) �e ¼ 1=2u0

iu
0

i. The budget of �e is given by Hinze [3]:

�ui
@�e

@xi
|fflfflfflffl{zfflfflfflffl}

Convection

�
@

@xi
p0u0

i

� �

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Pressure diffusion

�
@

@xi
eu0

i

� �

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Turbulent diffusion

þ
@

@xj
2ðmþ mtÞs0iju

0

i

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Viscous diffusion

�2ðmþ mtÞs0ijs
0

ij
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Dissipation

�u0

iu
0

j

@ui
@xj

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Production

¼ 0 ð9Þ

where p0 is the pressure fluctuation, e is the instantaneous turbulent

kinetic energy e ¼ 1=2u0

iu
0

i and s0ij ¼ 1=2 @u0

i=@xj þ @u0

j=@xi
� �

is the

deformation tensor [53,4,54,55]. The turbulent viscosity mt ¼ lt=q
is taken into account in the budget of �e. Terms in Eq. (9) are calcu-

lated over 60 solutions: 1 solution is stored at each fan rotation

from t� ¼ 105 to t� ¼ 165. These solutions are uncorrelated since

the time between two solutions is 6 ms and the time scale associ-

ated to the integral length scale s is around 1 ms (convergence

was checked). These terms are then averaged spatially assuming

spherical symmetry so that they are plotted as a function of the

bomb radius rb (rb ¼ 0 at the bomb center). Only terms of interest

are plotted here: Fig. 19 displays the convection, turbulent diffu-

sion, dissipation and the production terms (resolved quantities). A

fan is superimposed to the graph to show its position in the bomb.

The dissipation rate found in this work is about 100 m2/s3 in the

region of the bomb center. This value is in agreement with the dis-

sipation rate measured experimentally by De Jong et al. [56] in an

eight-fan cubic turbulence box. The production term is maximum

at rb=R0 ’ 0:5: the turbulent kinetic energy is produced by fans

which are located at this position. Finally, over a central region of

diameter 30 mm, turbulent diffusion dominates convection as

expected: the mean flow is around zero in this region (see

Fig. 15), confirming that turbulence is not convected but diffused

towards the bomb center from the fan regions.
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Fig. 16. Comparison of the fluctuating velocities urms and v rms along the x-axis. : experimental data (PIV); ——: LES. (Statistics performed on 60 fan rotations,
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5.5. Spectra

The flow generated by fans is, by nature, a pulsating flow.

Because fans have four blades, this flow is expected to exhibit a

mode at a frequency fp equal to four times the fan rotation fre-

quency (fp ¼ 4=T fan). To check if turbulence at the center of the

bomb is affected by the pulsated flow created by the blades rota-

tion, Power Spectral Density (PSD) of the velocity can be computed

to track the existence of harmonic oscillations at fp.

Fig. 20 shows the bomb configuration and the position where

PSD are performed. Two points in the domain are analyzed: close

to a fan (point P0) and at the bomb center (point P1). At P0, the

PSD exhibits a mode at a frequency exactly equal to four times

the frequency of the fan rotation as expected. On the other hand,

at the bomb center, this mode vanishes and the spectrum follows

the Kolmogorov theory [57]. Here the slope of the spectrum is near

the �5/3 theoretical slope. This confirms that the turbulence at the

bomb center is not affected by the periodicity of the flow generated

by fans. Moreover, PSD results show that more energy is contained

in the spectrum at point P0 than at point P1 (showing that

turbulence decays between these two points).

6. Conclusion

This study presents a computation of a spherical vessel stirred

by six fans. This configuration corresponds to an experiment con-

ducted at the PRISME laboratory in Orléans to study the propaga-

tion of turbulent premixed flames in homogeneous isotropic

turbulence. In this paper, only the non-reacting flow is studied, just

before ignition. At this instant, the Reynolds number associated to

the fans is 60,000 while the Reynolds number based on the integral

length and RMS speed is of the order of 600 at the bomb center.

An approach first developed for turbomachinery simulations

called MISCOG, has been adapted here to handle six fans inside

the vessel. This method couples multiple instances of the same

code, exchanging residuals on small overlapping zones. A first test

case shows that the MISCOG approach is able to convect vortices

with limited dispersion and dissipation effects. The parallel

efficiency of MISCOG is discussed too.

A well resolved LES of the full geometry is then performed with

the unstructured compressible code AVBP. Average and fluctuating

fields match experimental data reasonably well. Finally the struc-

ture of the turbulence is studied and it is shown that turbulence

is almost homogeneous and isotropic at the bomb center in a

region of around 6 cm of diameter. The budget of mean turbulent

kinetic energy is performed too and shows that turbulence is not

convected from fans to the bomb center but diffused since the

average velocities are near zero at this location. The trace of the

blade passage frequency disappears near the bomb center.
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