open science

Automatic branch detection of the arterial system from abdominal aortic segmentation

Sébastien Riffaud, Gwladys Ravon, Thibault Allard, Florian Bernard, Angelo Iollo, Caroline Caradu

- To cite this version:

Sébastien Riffaud, Gwladys Ravon, Thibault Allard, Florian Bernard, Angelo Iollo, et al.. Automatic branch detection of the arterial system from abdominal aortic segmentation. 2022. hal-03520790v1

HAL Id: hal-03520790
 https://hal.science/hal-03520790v1

Preprint submitted on 11 Jan 2022 (v1), last revised 8 Jul 2022 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Automatic branch detection of the arterial system from abdominal aortic segmentation

Sébastien Riffaud • Gwladys Ravon • Thibault Allard Florian Bernard • Angelo Iollo - Caroline Caradu

Received: date / Accepted: date

Abstract

We present a new method to automatically identify the different arteries present in an abdominal aortic segmentation. In this approach, the arterial system is first represented by a vascular tree, extracted from the segmentation and containing the topologic and geometric features (branch position, branch direction, branch length, branch diameter) of the arterial system. Then, the branches of the vascular tree are matched with the main arteries originating from the aorta: celiac artery, superior mesenteric artery, renal arteries and common iliac arteries. This match is determined by maximizing a similarity measure between the different branches and corresponding arteries. We evaluate this method on 239 segmentations obtained from 102 different patients. The results demonstrate the accuracy of the proposed method, capable of delivering an error of less than 2.5% for the identification of the celiac and superior mesenteric arteries, 8.4% for the renal arteries, and 2.1% for the common iliac arteries.

Keywords Computed tomography • Abdominal aortic aneurysm • Automatic branch detection - Graph matching method Aortic root

[^0]Sébastien Riffaud
Inria - Bordeaux Sud-Ouest, Team MEMPHIS, 33405 Talence, France
E-mail: sebastien.riffaud@inria.fr
Gwladys Ravon
Inria - Bordeaux Sud-Ouest, Team MEMPHIS, 33405 Talence, France
Thibault Allard
Nurea, 33000 Bordeaux, France
Florian Bernard
Nurea, 33000 Bordeaux, France
Angelo Iollo
IMB, UMR 5251, Université de Bordeaux, 33405 Talence, France
Inria - Bordeaux Sud-Ouest, Team MEMPHIS, 33405 Talence, France
Caroline Caradu
Vascular Surgery Department, Bordeaux University Hospital, 33000 Bordeaux, France

1 Introduction

Abdominal aortic aneurysm (AAA) is associated with a high mortality rate if not treated immediately after its rupture [9,3]. Measuring geometric characteristics (length, diameter, volume) of an AAA is therefore vital in diagnostic assessment or surgical intervention planning. However, manual extraction of anatomical structures in an abdominal aortic segmentation is time consuming, requires a certain level of experience and can introduce inter-observer variations in the results.

Several methods [5 14,6, 8, 11, 12] have been proposed to automatically identify anatomical reference points (landmarks) commonly used in medical imaging analysis. In general, these methods rely solely on the segmentation of medical images and do not exploit any information from the vascular tree that can be extracted from the segmentation. Nevertheless, this vascular tree is usually employed in organ registration [10, 13 [1] 7, 4] to study the deformation of an organ over time. In theses approaches, the arterial system is modeled as a tree (i.e. a connected acyclic undirected graph), and the nodes that correspond to the same landmarks between two vascular trees are identified by a graph matching method. However, these approaches are ill-suited to our problem since they require for every patient to manually annotate a reference vascular tree which must contain all landmarks appearing in future segmentations.

Fig. 1 Example of segmentation (blue) and vascular tree (black) obtained from tomography scan images.

For these reasons, we develop in this work a new method to automatically identify the different arteries present in an abdominal aortic segmentation. In this approach, the arterial system is first represented by the vascular tree extracted from the segmentation, as illustrated in Figure 1 Then, instead of pairing the branches of two different graphs, the branches of the vascular tree are matched with the main arteries originating from the aorta: celiac artery
(CA), superior mesenteric artery (SMA), renal arteries (RAs) and common iliac arteries (CIAs). The location of the aortic root and renal artery ostia can notably be deduced from the position of these arteries.

2 Methodology

In order to annotate the branches of the vascular tree, our method proceeds in two steps. The first step employs a matching algorithm to identify the CA, SMA, a first left and right RAs, and the CIAs. In this approach, the branches that best match the different arteries originating from the aorta are determined by maximizing a similarity measure between the different branches and corresponding arteries. In the second step, a decision rule-based algorithm detects possible extra RAs to obtain the complete description of the arterial system. To this end, we extract the branches that have not already been matched, and decision rules are employed to determined whether these branches correspond to additional RAs or not.

Fig. 2 Schematic diagram illustrating the automatic branch detection of the arterial system.

2.1 Dataset

The present work is restricted to segmentations that contain the aortic bifurcation. The study includes 239 segmentations from 102 different patients. Segmentations are obtained from pre-operative and post-endovascular aneurysm repair computed tomography scan images. These images contain the entire abdominal aorta and may extend to the aortic arch. In addition 24 segmentations present additional RAs for a total of 29 polar RAs.

The segmentations are provided by Nurea (https://www.nurea-soft.com) using the software PRAEVAorta [2]. This software employs deep learning approaches to automatically identify the voxels corresponding to lumen and thrombus in tomography scan images.

The vascular tree is then extracted from the full segmentation, that is lumen and thrombus. This one corresponds to a tree (i.e. a connected acyclic undirected graph), where the nodes are located along the central lines of the segmentation and the edges represent the
topology of the arterial system. In this way, the vascular tree contains the topologic and geometric features (branch position, branch direction, branch length, branch diameter) of the segmentation.

2.2 Matching algorithm

2.2.1 Notations and definitions

Before describing the matching algorithm, we need to introduce the definitions and notations used in the following.
Definition 1 (Graph path) A sequence of vertices $\left(v^{1}, \ldots, v^{n}\right)$ is a graph path if $\left\{v^{i}, v^{i+1}\right\}$ is an edge of the graph for $i=1, \ldots, n-1$.

Theorem 1 Two vertices of a tree are connected by exactly one path.
Definition 2 (Distance between two nodes) Let v^{1} and v^{n} be two vertices of the vascular tree. There exists a unique path $\left(v^{1}, \ldots, v^{n}\right)$ connecting theses two vertices according to Theorem 1. The distance between v^{1} and v^{n} is then defined as the sum of the Euclidean distances between two adjacent vertices of the path $\left(v^{1}, \ldots, v^{n}\right)$:

$$
\operatorname{dist}\left(v^{1}, v^{n}\right)=\sum_{i=1}^{n-1}\left\|\mathbf{v}^{i+1}-\mathbf{v}^{i}\right\|_{2},
$$

where $\mathbf{v}^{i}=\left(v_{x}^{i}, v_{y}^{i}, v_{z}^{i}\right)^{T} \in \mathbb{R}^{3}$ denote the spatial coordinates of vertex v^{i}.
Definition 3 (Leaf and bifurcation nodes) In a tree, a leaf is a vertex with exactly one neighbour. Similarly, a bifurcation node is a vertex with at least three neighbours.

Definition 4 (Tree branch) The tree branch starting from the bifurcation node b and containing the vertex u^{m} is defined as the set of vertices $\left\{v^{1}, \ldots, v^{n}\right\}$ such that the path between b and v^{i} contains the vertex u_{1}, where $\left(b, u_{1}, \ldots, u^{m}\right)$ is the path connecting b and u^{m}.

Definition 5 (Directions of a branch) Let $\left\{v^{1}, \ldots, v^{n}\right\}$ be the vertices of the branch starting from the bifurcation node b and containing the vertex u^{m}. The direction of this branch is defined as the vector with origin \mathbf{b} that best approximates the vertices $\left\{v^{1}, \ldots, v^{n}\right\}$. More precisely, considering the matrix

$$
\mathbf{A}=\left(\begin{array}{ccc}
v_{x}^{1}-b_{x} & v_{y}^{1}-b_{y} & v_{z}^{1}-b_{z} \tag{1}\\
v_{x}^{2}-b_{x} & v_{y}^{2}-b_{y} & v_{z}^{2}-b_{z} \\
\vdots & \vdots & \vdots \\
v_{x}^{n}-b_{x} & v_{y}^{n}-b_{y} & v_{z}^{n}-b_{z}
\end{array}\right) \in \mathbb{R}^{n \times 3}
$$

and the eigenvector $\mathbf{e} \in \mathbb{R}^{3}$ associated with the largest eigenvalue of $\mathbf{A}^{T} \mathbf{A} \in \mathbb{R}^{3 \times 3}$, the direction with origin \mathbf{b} that best approximates vertices $\left\{v^{1}, \ldots, v^{n}\right\}$ is given by

$$
\mathbf{d}_{o p t}\left(b, v^{1}, \ldots, v^{n}\right)=\operatorname{sign}\left(\mathbf{1}^{T} \mathbf{A} \mathbf{e}\right) \mathbf{e},
$$

where $\mathbf{1}=(1, \ldots, 1)^{T} \in \mathbb{R}^{n}$. The global direction of the branch starting from b and containing u^{m} is then defined as

$$
\mathbf{d}_{g l o b}\left(b, u^{m}\right)=\mathbf{d}_{o p t}\left(b, v^{1}, \ldots, v^{n}\right) .
$$

Similarly, we define the local direction $\mathbf{d}_{l o c}\left(b, u^{m}\right)$, representing the direction of the beginning of the branch (i.e. when the corresponding artery leaves the aorta). This direction is computed in the same way as the global direction except that only the vertices located at the beginning of the branch are used. More precisely, given the path $\left(b, n^{1}, \ldots, n^{k}\right)$, where n^{k} denotes the first bifurcation or leaf encountered starting from b and going to u^{1}, we only consider the vertices $\left\{n^{i}\right\}_{i=1}^{l} \subset\left\{n^{1}, \ldots, n^{k}\right\}$, such that n^{i} is at most $3 r$ from b :

$$
\operatorname{dist}\left(b, n^{i}\right) \leqslant 3 r,
$$

where r is the radius of the artery at node b. The local direction is then given by

$$
\mathbf{d}_{l o c}\left(b, u^{m}\right)=\mathbf{d}_{o p t}\left(b, n^{1}, \ldots, n^{l}\right) .
$$

Definition 6 (Angle between two directions) Notably, the global and local directions allow to measure the angle of a branch with different anatomical directions. In particular, we will consider in the following the angle between two vectors $\mathbf{d}^{1}, \mathbf{d}^{2} \in \mathbb{R}_{*}^{3}$ in the horizontal and frontal planes defined respectively by

$$
\operatorname{angle}_{x, y}\left(\mathbf{d}^{1}, \mathbf{d}^{2}\right)=\cos ^{-1}\left(\frac{d_{x}^{1} d_{x}^{2}+d_{y}^{1} d_{y}^{2}}{\sqrt{\left(d_{x}^{1}\right)^{2}+\left(d_{y}^{1}\right)^{2}} \sqrt{\left(d_{x}^{2}\right)^{2}+\left(d_{y}^{2}\right)^{2}}}\right)
$$

and

$$
\operatorname{angle}_{x, z}\left(\mathbf{d}^{1}, \mathbf{d}^{2}\right)=\cos ^{-1}\left(\frac{d_{x}^{1} d_{x}^{2}+d_{z}^{1} d_{z}^{2}}{\sqrt{\left(d_{x}^{1}\right)^{2}+\left(d_{z}^{1}\right)^{2}} \sqrt{\left(d_{x}^{2}\right)^{2}+\left(d_{z}^{2}\right)^{2}}}\right)
$$

In case of vanishing denominator, the angle in the horizontal or frontal plane is replaced by the angle in $3 D$ space:

$$
\operatorname{angle}\left(\mathbf{d}^{1}, \mathbf{d}^{2}\right)=\cos ^{-1}\left(\frac{\left(\mathbf{d}^{1}\right)^{T} \mathbf{d}^{2}}{\left\|\mathbf{d}^{1}\right\|_{2}\left\|\mathbf{d}^{2}\right\|_{2}}\right) .
$$

Definition 7 (Lengths of a branch) Let $\left\{v^{1}, \ldots, v^{n}\right\}$ be the nodes of the branch starting from the bifurcation node b and containing the vertex u^{m}. The length of this branch is defined as the maximum distance between the bifurcation node b and the different nodes $\left\{v^{1}, \ldots, v^{n}\right\}$:

$$
\text { length }\left(b, u^{m}\right)=\max _{i \in\{1, \ldots, n\}} \operatorname{dist}\left(b, v^{i}\right) .
$$

In addition, we also define the length of this branch in a direction $\mathbf{d} \in \mathbb{R}_{*}^{3}$:

$$
\text { lengthD }\left(b, u^{m}, \mathbf{d}\right)=\frac{\|\mathbf{A d}\|_{\infty}}{\|\mathbf{d}\|_{2}}
$$

where the matrix \mathbf{A} is given in Equation (1). In particular, we will consider in the next sections the branch lengths in the following anatomical directions:

- left to right:

$$
x^{-}\left(b, u^{m}\right)=\text { length } \mathrm{D}\left(b, u^{m},(-1,0,0)^{T}\right) ;
$$

- right to left:

$$
x^{+}\left(b, u^{m}\right)=\text { lengthD }\left(b, u^{m},(1,0,0)^{T}\right) ;
$$

- posterior to anterior:

$$
y^{-}\left(b, u^{m}\right)=\text { lengthD }\left(b, u^{m},(0,-1,0)^{T}\right) ;
$$

- superior to inferior:

$$
z^{-}\left(b, u^{m}\right)=\text { lengthD }\left(b, u^{m}(0,0,-1)^{T}\right) ;
$$

- inferior to superior:

$$
z^{+}\left(b, u^{m}\right)=\text { lengthD }\left(b, u^{m},(0,0,1)^{T}\right) .
$$

2.2.2 Enumeration of valid pairings

The matching algorithm aims to find the branches of the vascular tree that best match the arteries located along the aorta. To this end, a branch is represented as a pair (u, v), where u denotes the bifurcation from which the branch originates and v denotes a node belonging to this branch. Since there are six branches to identify, a pairing is then defined as a set $\left\{\left(u^{c a}, v^{c a}\right),\left(u^{s m a}, v^{s m a}\right),\left(u^{l r a}, v^{l r a}\right),\left(u^{r r a}, v^{r r a}\right),\left(u^{\text {lcia }}, v^{l c i a}\right),\left(u^{r c i a}, v^{r c i a}\right)\right\}$, where each pair represents respectively the CA, MSA, left RA, right RA, left CIA and right CIA.

Bifurcation pairing. In order to enumerate every possible pairing, we first determine the nodes $\left(u^{c a}, \ldots, u^{r c i a}\right)$. As these nodes are located at the beginning of a branch, they either correspond to a bifurcation node or are left empty (i.e. $u=\varnothing$) in order to take into account the case where the associated artery is not present in the vascular tree. In addition, since the arteries of interest originate from the aorta, we consider only the bifurcation nodes located along the aorta. To this end, we exploit the fact that the aorta is the only artery connecting the part above the RAs with the part below the aortic bifurcation. The path between the highest and lowest nodes thus passes through the part of the aorta of interest, and we consider only the bifurcations $\left\{b^{1}, \ldots, b^{n}\right\}$ located along this path, as illustrated in Figure 3 The nodes $\left(u^{c a}, \ldots, u^{r c i a}\right)$ finally belong to the set $\left\{\varnothing, b^{1}, \ldots, b^{n}\right\}$ and since the same bifurcation b can be associated with several nodes u, there are $(n+1)^{6}$ possible pairings. However, in order to represent a valid pairing, the nodes $\left(u^{c a}, \ldots, u^{r c i a}\right)$ must satisfy the following anatomical constraints:

- the left and right CIAs start from the same bifurcation (i.e. the aortic bifurcation):

$$
\begin{equation*}
u^{l c i a}=u^{r c i a} ; \tag{2}
\end{equation*}
$$

- the bifurcation of the CA is above the bifurcation of the SMA and strictly above the bifurcations of the other arteries:

$$
\begin{gather*}
u_{z}^{c a} \geqslant u_{z}^{\text {sma }}, \\
u_{z}^{c a}>u_{z}^{i} \quad \forall i \in\{\text { lra }, \text { rra }, \text { lcia }, \text { rcia }\} \tag{3}
\end{gather*}
$$

- the aortic bifurcation is strictly below the bifurcations of the other arteries:

$$
\begin{equation*}
u_{z}^{l c i a}=u_{z}^{r c i a}<u_{z}^{i} \quad \forall i \in\{c a, s m a, l r a, r r a\} ; \tag{4}
\end{equation*}
$$

- the distance between the bifurcations of the different arteries is lower than 250 millimetres (mm):

$$
\begin{equation*}
\operatorname{dist}\left(u^{i}, u^{j}\right) \leqslant 250 \quad \forall i, j \in\{\text { ca,sma,lra, rra, lcia, } \text {,cia }\} ; \tag{5}
\end{equation*}
$$

- the distance between the bifurcations of the CA, SMA and RAs is lower than 70 mm :

$$
\begin{equation*}
\operatorname{dist}\left(u^{i}, u^{j}\right) \leqslant 70 \quad \forall i, j \in\{c a, \text { sma,lra }, r r a\} ; \tag{6}
\end{equation*}
$$

- if both the left and right RAs are present, then the distance between the two RAs is less than 35 mm :

$$
\begin{equation*}
u^{l r a}, u^{r r a} \neq \varnothing \Longrightarrow \operatorname{dist}\left(u^{l r a}, u^{r r a}\right) \leqslant 35 \tag{7}
\end{equation*}
$$

- if both the left and right RAs are present, then the bifurcation of the SMA is above the bifurcations of the lowest RA:

$$
\begin{equation*}
u^{l r a}, u^{r r a} \neq \varnothing \Longrightarrow\left(u_{z}^{s m a} \geqslant u_{z}^{l r a}\right) \vee\left(u_{z}^{s m a} \geqslant u_{z}^{r r a}\right) \tag{8}
\end{equation*}
$$

- if there is only one RA, then the bifurcation of the SMA is at most 35 mm under this RA:

$$
\begin{align*}
& \left(u^{l r a} \neq \varnothing\right) \wedge\left(u^{r r a}=\varnothing\right) \Longrightarrow\left(u_{z}^{s m a} \geqslant u_{z}^{l r a}\right) \vee\left(\operatorname{dist}\left(u^{s m a}, u^{l r a}\right) \leqslant 35\right), \\
& \left(u^{l r a}=\varnothing\right) \wedge\left(u^{r r a} \neq \varnothing\right) \Longrightarrow\left(u_{z}^{s m a} \geqslant u_{z}^{r r a}\right) \vee\left(\operatorname{dist}\left(u^{s m a}, u^{r r a}\right) \leqslant 35\right) \tag{9}
\end{align*}
$$

These conditions involve three parameters: the maximum distance between the bifurcations of the different arteries (250 mm), the maximum distance between the bifurcations of the CA, SMA and RAs (70 mm) and the maximum distance between the RAs (35 mm). These parameters were chosen according to Table 1 to be sufficiently large to not exclude valid cases while being small enough to eliminate outliers.

Fig. 3 Example illustrating the selection of valid bifurcation nodes: vascular tree (black), path between the lowest and highest nodes (blue) and valid bifurcation nodes (red).

	Mean	Standard deviation	Maximum
Maximum distance between the bifurcations of the different arteries	157.7 mm	19.2 mm	206.9 mm
Maximum distance between the bifurcations of the CA, SMA and RAs	35.0 mm	10.9 mm	68.7 mm
Maximum distance between the principal RAs	9.5 mm	5.1 mm	31.9 mm

Table 1 Statistics used to determine the parameters involved in conditions 2-9. These statistics were computed from the 239 segmentations of the dataset.

Fig. 4 Example of bifurcation pairing: valid bifurcation pairing (left) and invalid bifurcation pairing (right).

Branch pairing. Once $\left(u^{c a}, \ldots, u^{r c i a}\right)$ are fixed, we only have to determine $\left(v^{c a}, \ldots, \nu^{r c i a}\right)$. Each node v corresponds to a neighbour of u, and the pair (u, v) thus represents the branch starting from the bifurcation u and containing the node v. Moreover, as the branches associated with the arteries of interest are not part of the aorta, $\left(v^{c a}, \ldots, v^{r c i a}\right)$ corresponds to the neighbours of vertices $\left(u^{c a}, \ldots, u^{r c i a}\right)$ that do not belong to the aorta. To this end, let $u^{\max }$ and $u^{\text {min }}$ be respectively the highest and lowest bifurcations of $\left(u^{c a}, \ldots, u^{r c i a}\right)$. We consider the neighbours of vertices $\left(u^{c a}, \ldots, u^{r c i a}\right)$ that do not belong to the path between $u^{\max }$ and $u^{\text {min }}$. In addition, we still need to remove the branch corresponding to the aorta that could be above $u^{\max }$, as shown in Figure 5 To do this, if $u^{\max }$ has at least one neighbour whose corresponding branch is directed upwards, we remove the neighbour $v^{\max }$ associated to the branch with the largest radius, and thus corresponding to the aorta. In particular, let a branch starting from $u^{\max }$ and containing the neighbour w. The radius of this branch is defined as the mean radius of the nodes between $u^{\max }$ and the first bifurcation or leaf encountered starting from $u^{m a x}$ and going to w. Finally, given the set of neighbours $\left\{n^{1}, \ldots, n^{m}\right\}$ that do not belong to the aorta, the nodes $\left(v^{c a}, \ldots, v^{r c i a}\right)$ are a subset of $\left\{\varnothing, n^{1}, \ldots, n^{m}\right\}$. However, in order to obtain a valid pairing, the nodes $\left(v^{c a}, \ldots, v^{r c i a}\right)$ must verify the following conditions:

- if u is left empty, then v is also left empty:

$$
\begin{equation*}
u^{i}=\varnothing \Longrightarrow v^{i}=\varnothing \quad \forall i \in\{c a, \text { sma,lra,rra,lcia,rcia }\} ; \tag{10}
\end{equation*}
$$

- the nodes v associated with a branch are distinct in order to represent different branches:

$$
\begin{equation*}
(i \neq j) \wedge\left(v^{i} \neq \varnothing\right) \wedge\left(v^{j} \neq \varnothing\right) \Longrightarrow v^{i} \neq v^{j} \quad \forall i, j \in\{\text { ca,sma, lra }, \text { rra }, \text { lcia }, \text { rcia }\} . \tag{11}
\end{equation*}
$$

Fig. 5 Example of branch pairing: path between $u^{\max }=u^{c a}$ and $u^{\min }=u^{l c i a}=u^{r c i a}$ corresponding to the aorta (black) and branch $\left(u^{\max }, v^{\max }\right)$ located above $u^{\max }$ which corresponds to the aorta (black).

2.2.3 Score evaluation

In order to find the branches of the vascular tree that best match the arterial system, a score is assigned to every valid pairing. This score measures the similarity between the different branches (u, v) and their corresponding arteries:

$$
\begin{aligned}
\text { score }= & \operatorname{CAscore}\left(u^{c a}, v^{c a}\right) \\
& +\operatorname{SMAscore}\left(u^{\text {sma }}, v^{s m a}\right) \\
& +\operatorname{LRAscore}\left(u^{l r a}, v^{l r a}\right) \\
& +\operatorname{RRAscore}\left(u^{r r a}, v^{r r a}\right) \\
& +\operatorname{CIAscore}\left(u^{l c i a}, v^{l c i a}, u^{r c i a}, v^{r c i a}\right),
\end{aligned}
$$

and the valid pairing with the maximum score is finally considered as the solution of the matching problem. Since the enumeration of the different pairings results in a small number of valid pairings, this solution can be determined in a few seconds by a brute-force search, which compares the scores of all valid pairings. In the case where the optimal solution is not unique, we consider the optimal solution that contains the least number of branches (i.e. the first one containing the most nodes v equal to \varnothing). In the following, we detail the score evaluation for each artery.

Renal arteries score. The RAs branch off from the aorta to the left and right as illustrated in Figure 6 For this reason, we first impose that the global and local directions of the branch corresponding to the left (resp. right) RA points to the left (resp. right) :

$$
\begin{align*}
& \operatorname{angle}_{x, y}\left(\mathbf{d}_{g l o b}\left(u^{l r a}, v^{l r a}\right), \mathbf{d}^{1}\right)<\frac{\pi}{3} \quad \text { and } \tag{12}\\
& \operatorname{angle}_{x, y}\left(\mathbf{d}_{g l o b}\left(u^{r r a}, v^{r r a}\right), \mathbf{d}^{2}\right)<\frac{\pi}{3} \quad \text { and } \tag{13}\\
& x, y \\
& \\
& \\
& \\
& \text { angle } \\
& x, y \\
& \left(\mathbf{d}_{l o c}\left(u^{l r a},\left(u^{r r a}, v^{l r a}\right), \mathbf{d}^{1}\right)<\frac{\pi}{3}\right. \\
& \left.\left.v^{r r a}\right), \mathbf{d}^{2}\right)<\frac{\pi}{3}
\end{align*}
$$

with $\mathbf{d}^{1}=(1,0,0)^{T}$ and $\mathbf{d}^{2}=(-1,0,0)^{T}$. The score of the left (resp. right) RA then corresponds to the length of the branch in the left (resp. right) direction:

$$
\text { LRAscore }= \begin{cases}x^{+}\left(u^{l r a}, v^{l r a}\right) & \text { if } u^{l r a}, v^{l r a} \neq \varnothing \text { and (12) } \\ 0 & \text { otherwise, }\end{cases}
$$

and

$$
\text { RRAscore }= \begin{cases}x^{-}\left(u^{r r a}, v^{r r a}\right) & \text { if } u^{r r a}, v^{r r a} \neq \varnothing \text { and (13) } \\ 0 & \text { otherwise. }\end{cases}
$$

Fig. 6 Example illustrating the RAs score evaluation: vascular tree (grey), branches corresponding to the RAs (black), $x^{-}\left(u^{r r a}, v^{r r a}\right)$ (blue) and $x^{+}\left(u^{l r a}, v^{l r a}\right)$ (red).

Common iliac arteries score. The CIAs originate from the aortic bifurcation and run in left-inferior and right-inferior directions as shown in Figure 7. We therefore impose that the global direction of the branch corresponding to the left (resp. right) CIA is oriented in the left-inferior (resp. right-inferior) direction:

$$
\begin{equation*}
\operatorname{angle}_{x, z}\left(\mathbf{d}_{g l o b}\left(u^{l c i a}, v^{l c i a}\right), \mathbf{d}^{1}\right)<\frac{\pi}{4} \quad \text { and } \quad \operatorname{angle}_{x, z}\left(\mathbf{d}_{g l o b}\left(u^{r c i a}, v^{r c i a}\right), \mathbf{d}^{2}\right)<\frac{\pi}{4} \tag{14}
\end{equation*}
$$

with $\mathbf{d}^{1}=(1,0,-1)^{T}$ and $\mathbf{d}^{2}=(-1,0,-1)^{T}$. The score of the left (resp. right) CIA then corresponds to the branch length in the left (resp. right) and inferior directions. However, as the RA score considers the branch length in only one direction, we weight the CIA score by taking the diagonal formed by these two lengths: $\sqrt{\left(x^{+}\left(u^{\text {lcia }}, \nu^{l c i a}\right)\right)^{2}+\left(z^{-}\left(u^{l c i a}, v^{l c i a}\right)\right)^{2}}$ and $\sqrt{\left(x^{-}\left(u^{r c i a}, \nu^{r c i a}\right)\right)^{2}+\left(z^{-}\left(u^{r c i a}, v^{r c i a}\right)\right)^{2}}$ for the left and right CIAs, respectively. Moreover, we add the contribution of the aorta: $z^{+}\left(u^{l c i a}, n^{\text {aorta }}\right)$ with $n^{\text {aorta }}=u^{\text {max }}$ if $u^{l c i a} \neq u^{\text {max }}$ and $n^{\text {aorta }}=v^{\max }$ otherwise, in order to find the bifurcation that forms the largest inverted " Y " in the vascular tree. The score of the CIAs is finally defined by

CIAscore $= \begin{cases}\sqrt{\left(x^{+}\left(u^{l c i a}, v^{l c i a}\right)\right)^{2}+\left(z^{-}\left(u^{l c i a}, v^{l c i a}\right)\right)^{2}} & \text { if } u^{l c i a}, v^{l c i a}, u^{r c i a}, v^{r c i a}, n^{a o r t a} \neq \varnothing \\ +\sqrt{\left(x^{-}\left(u^{r c i a}, v^{r c i a}\right)\right)^{2}+\left(z^{-}\left(u^{r c i a}, v^{r c i a}\right)\right)^{2}} & \text { and } 14 \\ +z^{+}\left(u^{l c i a}, n^{\text {aorta }}\right) & \\ 0 & \text { otherwise. }\end{cases}$

Fig. 7 Example illustrating the CIAs score evaluation: vascular tree (grey), branches corresponding to the aorta and CIAs (black), $\sqrt{\left(x^{-}\left(u^{r c i a}, v^{r c i a}\right)\right)^{2}+\left(z^{-}\left(u^{r c i a}, v^{r c i a}\right)\right)^{2}}$ (blue), $\sqrt{\left(x^{+}\left(u^{l c i a}, v^{l c i a}\right)\right)^{2}+\left(z^{-}\left(u^{l c i a}, v^{l c i a}\right)\right)^{2}}$ (green) and $z^{+}\left(u^{l c i a}, n^{a o r t a}\right)$ (red).

Superior mesenteric artery score. The SMA leaves the aorta in the anterior direction and then tends to the inferior direction as illustrated in Figure 8 For this reason, we first impose that the local direction of the branch corresponds to the anterior direction:

$$
\begin{equation*}
\text { angle }_{x, y}\left(\mathbf{d}_{l o c}\left(u^{s m a}, v^{s m a}\right), \mathbf{d}\right)<\frac{\pi}{3} \tag{15}
\end{equation*}
$$

with $\mathbf{d}=(0,-1,0)^{T}$. The score is then given by the length of the branch in the anterior direction $y^{-}\left(u^{s m a}, v^{s m a}\right)$. In addition, if the local direction verifies

$$
\begin{equation*}
\operatorname{angle}_{x, y}\left(\mathbf{d}_{l o c}\left(u^{s m a}, v^{s m a}\right), \mathbf{d}\right)<\frac{\pi}{6} \tag{16}
\end{equation*}
$$

with $\mathbf{d}=(0,-1,0)^{T}$, or if the main length of the branch corresponds to the anterior or inferior direction:

$$
\begin{equation*}
\max \left(y^{-}\left(u^{s m a}, v^{s m a}\right), z^{-}\left(u^{s m a}, v^{s m a}\right)\right)>\max \left(x^{+}\left(u^{s m a}, v^{s m a}\right), x^{-}\left(u^{s m a}, v^{s m a}\right)\right), \tag{17}
\end{equation*}
$$

then we add the contribution of the branch length in the inferior direction $z^{-}\left(u^{\text {sma }}, v^{\text {sma }}\right)$. This notably allows to contrast the score of the SMA with that of the CA. The SMA score is thus defined by

SMAscore $= \begin{cases}y^{-}\left(u^{s m a}, v^{s m a}\right)+z^{-}\left(u^{s m a}, v^{s m a}\right) & \left.\left.\text { if } u^{s m a}, v^{s m a} \neq \varnothing \text { and } 15\right) \text { and }(16) \text { or 17] }\right) \\ y^{-}\left(u^{s m a}, v^{s m a}\right) & \text { if } u^{s m a}, v^{s m a} \neq \varnothing \text { and 15) } \\ 0 & \text { otherwise. }\end{cases}$

Fig. 8 Example illustrating the SMA score evaluation: vascular tree (grey), branch corresponding to the SMA (black), $y^{-}\left(u^{s m a}, v^{s m a}\right)$ (blue) and $z^{-}\left(u^{s m a}, v^{s m a}\right)$ (red).

Celiac artery score. The CA starts from the aorta in the anterior direction and then tends to go to the left and right as shown in Figure 9 As for the SMA, we impose that the local direction of the branch is directed towards the anterior direction:

$$
\begin{equation*}
\operatorname{angle}_{x, z}\left(\mathbf{d}_{l o c}\left(u^{c a}, v^{c a}\right), \mathbf{d}\right)<\frac{\pi}{3} \tag{18}
\end{equation*}
$$

with $\mathbf{d}=(0,-1,0)^{T}$, and the score is given by the length of the branch in the anterior direction $y^{-}\left(u^{c a}, v^{c a}\right)$. However, the additional contribution is based on the branch lengths in the left $x^{+}\left(u^{c a}, v^{c a}\right)$ and right $x^{-}\left(u^{c a}, v^{c a}\right)$ directions to contrast with the SMA score. This contribution is added only if the local direction verifies:

$$
\begin{equation*}
\operatorname{angle}_{x, z}\left(\mathbf{d}_{l o c}\left(u^{c a}, v^{c a}\right), \mathbf{d}\right)<\frac{\pi}{6}, \tag{19}
\end{equation*}
$$

with $\mathbf{d}=(0,-1,0)^{T}$, or if the main length of the branch corresponds to the anterior, left or right direction:

$$
\begin{equation*}
\max \left(y^{+}\left(u^{c a}, v^{c a}\right), x^{+}\left(u^{c a}, v^{c a}\right), x^{-}\left(u^{c a}, v^{c a}\right)\right)>z^{-}\left(u^{c a}, v^{c a}\right) \tag{20}
\end{equation*}
$$

However, as the SMA additional contribution considers only one direction, the contribution of the branch lengths in the left and right directions is divided by two in order to weight the score. The score of the CA is finally given by
CAscore $= \begin{cases}y^{-}\left(u^{c a}, v^{c a}\right)+\frac{x^{+}\left(u^{c a}, v^{c a}\right)+x^{-}\left(u^{c a}, v^{c a}\right)}{2} & \left.\text { if } u^{c a}, v^{c a} \neq \varnothing \text { and (18) and (19) or (20) }\right) \\ y^{-}\left(u^{c a}, v^{c a}\right) & \text { if } u^{c a}, v^{c a} \neq \varnothing \text { and 18) } \\ 0 & \text { otherwise. }\end{cases}$

Fig. 9 Example illustrating the CA score evaluation: vascular tree (grey), branch corresponding to the CA (black), $x^{-}\left(u^{c a}, v^{c a}\right)$ (blue), $x^{+}\left(u^{c a}, v^{c a}\right)$ (red) and $y^{-}\left(u^{c a}, v^{c a}\right)$ (green).

2.2.4 Detection of non-anatomic branches

Since the aorta is not perfectly cylindrical, the vascular tree may contain non-anatomic branches resulting from small bumps on the surface of the aorta. As shown in Figure 10 .
these branches are small and do not correspond to any artery. For these reasons, we check the length of the branches $\left\{\left(u^{c a}, \nu^{c a}\right), \ldots,\left(u^{r c i a}, \nu^{r c i a}\right)\right\}$ to detect potential non-anatomic branches. If the length of a branch (u, v) is less than 3 times the radius r of the aorta at node u or if the length is less than 20 mm plus the radius r :

$$
\begin{equation*}
\text { length }(u, v)<3 r \quad \vee \quad \text { length }(u, v)<r+20, \tag{21}
\end{equation*}
$$

then a warning is sent to signal that this branch is small and may correspond to a nonanatomic branch. Condition 21) involves two parameters: the minimum relative length of the branch ($3 r$) and the minimum absolute length of the branch $(r+20)$. These parameters were determined according to Figure 11 in order to be large enough to detect non-anatomic branches.

Fig. 10 Example of non-anatomic branch: segmentation (grey), vascular tree (black) and non-anatomic branch (red)

Fig. 11 Left: statistics used to determine the parameters involved in condition 21 . Right: zoom of the left figure. These statistics were computed from the 239 segmentations of the dataset.

2.3 Decision rule-based algorithm

Definition 8 Given a branch starting from b and going to n^{1}, we call primary branch the path $\left(b, n^{1}, \ldots, n^{k}\right)$ where n^{k} denotes the first bifurcation or leaf encountered. Let's p^{4} be the fourth point of the primary branch.

Once we had the pairing with the highest score, we looked for one extra left and one extra right renal artery among the branches that were not already identified by the matching algorithm. Among the remaining bifurcation points on the aorta, we kept those that were above the highest supra-renal artery and less than 20 mm far and those that were above the aortic bifurcation and more than 80 mm far, along the vascular tree. We then removed branches that went to the front of the body, that is branches with a local direction such that:

$$
\begin{equation*}
\operatorname{angle}_{x, y}\left(\mathbf{d}_{l o c}\left(b, p^{4}\right), \mathbf{d}\right)>\frac{3 \pi}{4} \tag{22}
\end{equation*}
$$

with $\mathbf{d}=(0,-1,0)^{T}$.
For the left renal artery (resp. right) we kept branches whose local direction respected:

$$
\begin{equation*}
\operatorname{angle}_{x, y}\left(\mathbf{d}_{l o c}\left(b, p^{4}\right), \mathbf{d}\right)<\frac{\pi}{3} \tag{23}
\end{equation*}
$$

with $\mathbf{d}=(1,0,0)^{T}$ (resp. $\left.\mathbf{d}=(-1,0,0)^{T}\right)$.
For each candidate we had the following indicator:

$$
I_{\mathrm{C}}= \begin{cases}x^{+}\left(b, p^{4}\right)-\left|b_{z}-u_{z}^{r r a}\right| & \text { for left RA if } u^{r r a} \neq \varnothing \tag{24}\\ x^{+}\left(b, p^{4}\right) & \text { for left RA if } u^{r r a}=\varnothing \\ x^{-}\left(b, p^{4}\right) & \text { for right RA. }\end{cases}
$$

What was left to determine was if the remaining branches fitted other exclusion criteria. We rejected a branch in the following cases:

- the primary branch ended with a leaf, $\operatorname{dist}\left(b, n^{k}\right)<22 \mathrm{~mm}$ and $\frac{I_{\mathrm{C}}}{I_{\mathrm{RA}}} \leq 0.94$,
- the primary branch ended with a bifurcation node and $\operatorname{dist}\left(b, n^{k}\right)<15 \mathrm{~mm}$,
- $I_{\mathrm{C}} \leq-19$,
$-0 \leq I_{\mathrm{C}} \leq 15, \operatorname{dist}\left(b, n^{k}\right)<25 \mathrm{~mm}$ and $\frac{I_{\mathrm{C}}}{I_{\mathrm{RA}}} \leq 0.2$,
$-\frac{I_{\mathrm{C}}}{I_{\mathrm{RA}}} \geq 1$,
where I_{RA} is the indicator (24) of the left (resp. right) renal artery identified by the matching algorithm. If more than one branch remained, we kept the longest. The distribution of the branches according to the 5 conditions can be found in Table 2 All the thresholds were determined by experience on our dataset.
Finally we checked the euclidean distance between the lowest renal artery and the aortic bifurcation: if it was less than 75 mm , a warning was sent to ask for validation.

Condition	Total number of branches	Non-anatomical branches
1	21	19
2	3	3
3	2	2
4	11	11
5	2	2

Table 2 Distribution of the branches according to the 5 conditions described in Section 2.3

3 Results

The accuracy of the proposed method was evaluated by comparing the results with manual annotations provided by human experts. Among the 239 segmentations, 213 cases (89.1%) were correctly annotated by our automatic branch detection method. In the remaining 26 cases, at least one of the arteries was misidentified. We detail the reason for these errors in the following.

	Accuracy
Common iliac arteries	97.9%
Celiac and superior mesenteric arteries	97.5%
Renal arteries (cases without polar renal artery)	94.4%
Renal arteries (cases with polar renal arteries)	Principal renal artery
	Polar renal artery
Infrarenal zone	70.8%
All arteries	94.6%

Table 3 Summary of the results of the proposed method over the 239 segmentations of the dataset.

Fig. 12 Example of vascular tree correctly annotated: vascular tree (black), branches corresponding to the CA (blue), SMA (red), left RAs (yellow), right RA (orange) and CIAs (green).

Common iliac arteries. The CIAs and the corresponding aortic bifurcation were correctly identified by the matching algorithm in 234 cases (97.9%). Of the incorrect cases, 3 are due to the presence of non-anatomic bifurcations as illustrated in Figure 13. These ones result from a contact point between the CIAs and divide the left or right CIA into two separate branches. The vascular tree then no longer properly represents the topology of the arterial system, and the matching algorithm identified the longest branches since they lead to a higher score. These branches represent a large portion of the left and right CIAs, respectively, but they do not originate from the aortic bifurcation. In the 2 other cases, the segmentation was cut just below the aortic bifurcation. It results that the CIAs are very short (less than 33 mm), and the matching algorithm identified a bifurcation with longer branches. In theses two cases, a warning suggesting to check the result was raised because of the small distance between the wrong aortic bifurcation and the other bifurcations.

Fig. 13 Example of non-anatomic bifurcation: segmentation (grey), vascular tree (black), branch corresponding to the left CIA (red), branches corresponding to the right CIA (blue and green), aortic bifurcation (yellow) and non-anatomic bifurcation (orange).

Celiac and superior mesenteric arteries. The CA and SMA were correctly identified in 233 cases (97.5%). Of the cases in which at least one of the two arteries was misidentified, 2 are due to the presence of non-anatomic bifurcations occurring when the SMA descends and comes too close to the aorta. As for the CIAs, the matching algorithm identified the branch originating from the non-anatomic bifurcation and corresponding to the longest part of the SMA. In 3 other cases, the segmentation did not contain CA or SMA, but a non-anatomic branch was identified as a CA or SMA because it leads to a higher score. Finally, the last incorrect case is due to a SMA which is oriented to the left and was mistaken for a left RA.

Renal arteries. Over the 215 cases without polar RAs, the method correctly identified the RAs in 203 cases (94.4%). On the one hand, the matching algorithm wrongly identified the

RAs in 6 cases. Of the incorrect cases, 4 are due to the presence of non-anatomic bifurcations or non-anatomic branches, 1 is due to a RA that points to the anterior direction, and 1 is due to a SMA oriented to left and mistaken for a left RA. On the other hand, the decision-rule based algorithm wrongly identified non-anatomical branches as additional RAs in 6 cases. These branches have the same characteristics (position, angle, length) as a small RA and could not be distinguished from a real one.

Over the 24 cases with polar RAs, the method correctly identified the principal and polar RAs in 16 cases (66.7%). In all cases, a first (principal or polar) RAs was correctly identified by the matching algorithm. Of the cases where the second RAs were not identified, 1 is due to very short CIAs. As a result, the second left RAs was already identified as the left CIA by the matching algorithm. In addition, the decision-rules based algorithm missed to identify the second left or right RA in 7 case. The three main reasons were an angle that did not fit in the predetermined interval, an artery that was too close to the aortic bifurcation or one that was too short (less than 25 mm).

Infrarenal zone. The infrarenal zone is defined as the portion of the aorta between the lowest RA and the aortic bifurcation. The lowest RA was well identified in 229 cases (95.8%). Combined with the results concerning the aortic bifurcation, we recovered the infrarenal zone in 226 cases (94.6%).

4 Discussion

The previous results show that the errors of our method come mainly from the presence of non-anatomic bifurcations, non-anatomic branches, and arteries that do not have the direction they are supposed to have. In particular, we identified 3 cases where a non-anatomic bifurcation was mistaken for the aortic bifurcation. However when we removed this nonanatomic bifurcation from the vascular tree, the aortic bifurcation was correctly identified. Similarly, if the non-anatomic branches are removed from the vascular trees, our method will no longer identify them. This means that any improvement in the quality of both the segmentation and the vascular tree could lead to better results. Regarding the direction of the branches, we have chosen large angle intervals to prevent this kind of error as much as possible. However, if an artery has a very atypical angle, our method will fail to identify it.

In this work, the vascular trees were extracted from the full segmentation, that is lumen and thrombus. Nevertheless, our method can also be applied to vascular trees computed only from the lumen. However, these vascular trees contain more non-anatomic bifurcations and non-anatomic branches, as shown in Figure 14 It follows that our method makes more errors. For example, a non-anatomic branch was identified as a second RA in 12 cases, against 7 cases for the full segmentation. In addition, the vascular trees extracted from the lumen do not contain the aortic bifurcation in 5 cases. This is due to either the absence of a CIA in the lumen segmentation or the presence of an endoprothesis in the post-operative scan, as illustrated in Figure 14

Fig. 14 Comparison of vascular trees extracted from the lumen (left) and full segmentations (right): segmentation (grey), vascular tree (black) and aortic bifurcation (green).

Although an error on the aortic bifurcation does not necessarily lead to errors on the other branches, we check the distance between the lowest RA and the aortic bifurcation to detect potential errors. A warning was raised in 6 cases because of the small distance between the aortic bifurcation and the other bifurcations. In 2 cases the aortic bifurcation was wrongly identified, in 2 other the distance was short because of a low polar renal artery. In the 2 last cases there was no renal artery found nor segmented. We expose the distance between the lowest renal artery and the aortic bifurcation for all the segmentations of the dataset in Figure 15.

Fig. 15 Distance between the identified lowest renal artery and the aortic bifurcation. The black line represents the threshold value at 75 mm . The separation between rising or not a warning is clear.

5 Conclusions

In this work, we have presented a new method to automatically identify different arteries present in an abdominal aortic segmentation. In this approach, the arterial system is first represented by the vascular tree extracted from the full segmentation, that is lumen and thrombus. Then, a matching algorithm finds the branches of the vascular tree that best anatomically match the different arteries located along the aorta: CA, SMA, RAs, and CIAs. A decision rule-based algorithm finally looks for the presence of additional RAs to obtain the complete description of the arterial system.

The method has been evaluated on 239 segmentations from 102 different patients. The results demonstrate the accuracy of the method, capable of delivering an error of less than 2.5% for the identification of the CA and SMA, 2.1% for the CIAs, 8.4% for the RAs, 5.4% for the infrarenal zone and 10.9% for all arteries. In addition, we have seen that these errors come mainly from the presence of non-anatomic bifurcations or non-anatomic branches, so any improvement in the quality of both the segmentation and the vascular tree could lead to better results.

The accuracy of the method could be further improved by exploiting more information from branch diameters. These could notably avoid confusing the CIAs with smaller RAs. Moreover, the diameters could also be used to identify the aorta, allowing to extend the method to vascular trees that do not contain the aortic bifurcation, for example, when the segmentation is cut in the middle of the sac.

Author contribution

Method: Sébastien Riffaud (Matching algorithm), Gwladys Ravon (Decision rule-based algorithm) ; Supervision: Florian Bernard, Angelo Iollo ; Results: Sébastien Riffaud, Gwladys Ravon, Thibault Allard, Caroline Caradu ; Initial draft writing: Sébastien Riffaud, Gwladys Ravon ; All authors contribute to editing and improving the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Aylward, S.R., Jomier, J., Weeks, S., Bullitt, E.: Registration and analysis of vascular images. International journal of computer vision 55(2), 123-138 (2003)
2. Caradu, C., Spampinato, B., Vrancianu, A.M., Bérard, X., Ducasse, E.: Fully automatic volume segmentation of infrarenal abdominal aortic aneurysm computed tomography images with deep learning approaches versus physician controlled manual segmentation. Journal of Vascular Surgery 74(1), 246256 (2021)
3. Chaikof, E.L., Dalman, R.L., Eskandari, M.K., Jackson, B.M., Lee, W.A., Mansour, M.A., Mastracci, T.M., Mell, M., Murad, M.H., Nguyen, L.L., et al.: The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. Journal of vascular surgery 67(1), 2-77 (2018)
4. Charnoz, A., Agnus, V., Malandain, G., Soler, L., Tajine, M.: Tree matching applied to vascular system. In: International Workshop on Graph-Based Representations in Pattern Recognition, pp. 183-192. Springer (2005)
5. Dehmeshki, J., Amin, H., Ebadian-Dehkordi, M., Jouannic, A., Qanadi, S.: Automatic detection, segmentation and quantification of abdominal aortic aneurysm using computed tomography angiography. Proc. Med. Image Understand. Anal pp. 32-36 (2009)
6. Elattar, M., Wiegerinck, E., van Kesteren, F., Dubois, L., Planken, N., Vanbavel, E., Baan, J., Marquering, H.: Automatic aortic root landmark detection in CTA images for preprocedural planning of transcatheter aortic valve implantation. The international journal of cardiovascular imaging 32(3), 501-511 (2016)
7. Jomier, J., Aylward, S.R.: Rigid and deformable vasculature-to-image registration: A hierarchical approach. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 829-836. Springer (2004)
8. Lalys, F., Esneault, S., Castro, M., Royer, L., Haigron, P., Auffret, V., Tomasi, J.: Automatic aortic root segmentation and anatomical landmarks detection for TAVI procedure planning. Minimally invasive therapy \& allied technologies 28(3), 157-164 (2019)
9. Nordon, I.M., Hinchliffe, R.J., Loftus, I.M., Thompson, M.M.: Pathophysiology and epidemiology of abdominal aortic aneurysms. Nature reviews cardiology 8(2), 92-102 (2011)
10. Pisupati, C., Wolff, L., Mitzner, W., Zerhouni, E.: Tracking 3-D pulmonary tree structures. In: Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 160-169. IEEE (1996)
11. Tahoces, P.G., Santana-Cedrés, D., Alvarez, L., Alemán-Flores, M., Agustín, T., Carmelo, C., Carreira, J.M.: Automatic detection of anatomical landmarks of the aorta in CTA images. Medical and Biological Engineering and Computing 58(5), 903-919 (2020)
12. Tahoces, P.G., Varela, R., Carreira, J.M.: Deep learning method for aortic root detection. Computers in Biology and Medicine 135, 104533 (2021)
13. Tschirren, J., Palágyi, K., Reinhardt, J.M., Hoffman, E.A., Sonka, M.: Segmentation, skeletonization, and branchpoint matching - a fully automated quantitative evaluation of human intrathoracic airway trees. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 12-19. Springer (2002)
14. Van Linden, A., Kempfert, J., Blumenstein, J., Möllmann, H., Kim, W.K., Alkaya, S., Hamm, C., Walther, T.: Manual versus automatic detection of aortic annulus plane in a computed tomography scan for transcatheter aortic valve implantation screening. European Journal of Cardio-Thoracic Surgery 46(2), 207-212 (2014)
Sébastien Riffaud is a postdoctoral researcher at Inria - Bordeaux Sud-Ouest in Memphis team. He graduated with a Ph.D. in applied mathematics and scientific computing from University of Bordeaux in 2020. His current research focuses on the development of efficient and accurate methods for modeling blood flow in the aorta.

Gwladys Ravon completed a PhD in applied mathematics at the University of Bordeaux. The subject mixed inverse problems and cardiac electrophysiology. She has currently a post-doctoral position at Inria Bordeaux Sud-Ouest in Memphis Team. Her main research topic is applied mathematics to medicine and health care.

Thibault Allard graduated from University of Technology of Troyes as materials engineer. After getting an experience in big companies such as l'Oreal and an MBA in Data Science from MBA ESG, he joined Nurea as Data Scientist. He's very enthusiastic about new technologies and consider that artifical intelligence is a great resource that can help improving patient care.

Florian Bernard completed a PhD in applied mathematics at University of Bordeaux and a PhD in fluid dynamics at Politecnico di Torino in 2015. He's now CEO of Nurea, a company dedicated to the development of decision making support software for physicians to improve diagnostic, follow up and pronostic of cardiovascular diseases.

Angelo Iollo is professor of Applied Mathematics at the University of Bordeaux and head of team Memphis at Inria, the national institute for applied mathematics and computer science.

Dr. Caroline Caradu is a M.D. Ph.D. working as a vascular surgeon at the University Hospital of Bordeaux. Her research interests include the endovascular treatment of complex aortic aneurysms, the use of artificial intelligence in the treatment of vascular pathologies, aortic infections, and the role of endothelial cell dysfunction in the pathophysiology of critical limb ischemia.

[^0]: Sébastien Riffaud and Gwladys Ravon contributed equally to this work.

