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1 Introduction

Micro- and nanoscale phenomena of moving conductive 
and non-conductive liquids with an interface between 
them are of particular practical interest. Multi-phase 
flows in micro-scale systems have recently found numer-
ous applications in a wide range of fields like bio-
chemical processing, such as lab-on-chip reactors [1–4], 
mixers [5,6], DNA extraction [7], drug delivery [8], oil 
extraction from porous rock formations [9,10]. Minia-
turized bioanalytical systems attempt to incorporate 
many of the necessary components and functionality on 
the surface of a typical laboratory substrate. Micro 
Total Analysis Systems (µTAS) components include 
reaction chambers, pumps, flow sensors, micromixers, 
diluters, and preconcentrators. Analyses requiring rapid 
mixing include immunoassays, DNA hybridization, and 
general cell-molecule interaction. Application of these 
techniques requires mixing of reagents that have rela-
tively low diffusion coefficients.

Rapid homogeneous mixing becomes increasingly 
important [11–24]. Such a mixing can be caused by 
either mechanical vibration through hydrodynamical 
instability [25–27] or by a special type of hydro-electro 
instability [28–33]. Electroconvective mixing may result 
from many physical factors, such as the first kind elec-
troosmotic flow [34], the second kind electroosmotic flow 
[35,36], buoyant convection [37], conductivity gra-dient 
[38], and electric permittivities [39]. The slow dif-fusion 
mechanism of mixing is thus complemented by much faster 
advection mixing.

The electrohydrodynamic instability of liquid flows with 
conductivity gradients stems from pioneer works by 
Hoburg and Melcher [28] which are based on classi-cal 
models by Melcher and Taylor [29] (see also [30,31]). 
Hoburg and Melcher [28] described the key mechanism of 
this instability as caused by charge accumulation at the 
perturbed interface, and made qualitative compar-isons of 
their theory to experiments, but they neglected the diffusion 
of electric conductivity. As a result, in their calculation, the 
threshold of instability was absent. This was improved later 
by Baygents and Baldessari [32] with a more realistic model. 
However, Baygents and Baldessari [32] wrongly assumed 
the principle of exchange of stability in their linear stability 
analysis. This was corrected subsequently by Chang et al. 
[40] and Sharan et al. [41]. Research on this electrohydro-
dynamic instability was continued by Santiago’s team [16–
20,33]. A flow in a long rectangular-cross-section 
microchannel with a conductity gradient orthogonal to the 
main flow direction and an external electric field was 
considered both experimentally and theoretically in [16]. 
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It was found experimentally that such a system exhibits a 
critical electric field above which the flow is unstable. In the 
theoretical part, the previous model was generalized in [32]. 
The volume charge was assumed small enough to be 
neglected in the ion transport equations, but not in the 
equations of fluid motion, where the Coulomb body force, 
based on the residual charge, was taken into consideration.

The electrohydrodynamic instability of liquid flows 
with conductivity gradients stems from pioneer works 
by Hoburg and Melcher [28] which are based on classi-
cal models by Melcher and Taylor [29] (see also [30,31]). 
Hoburg and Melcher [28] described the key mechanism 
of this instability as caused by charge accumulation at 
the perturbed interface, and made qualitative compar-
isons of their theory to experiments, but they neglected 
the diffusion of electric conductivity. As a result, in their 
calculation, the threshold of instability was absent. This 
was improved later by Baygents and Baldessari [32] 
with a more realistic model. However, Baygents and 
Baldessari [32] wrongly assumed the principle of 
exchange of stability in their linear stability analysis. 
This was corrected subsequently by Chang et al. [40] 
and Sharan et al. [41]. Research on this electrohydro-
dynamic instability was continued by Santiago’s team 
[16–20,33]. A flow in a long rectangular-cross-section 
microchannel with a conductity gradient orthogonal to 
the main flow direction and an external electric field was 
considered both experimentally and theoretically in [16]. 
It was found experimentally that such a system exhibits 
a critical electric field above which the flow is unstable. 
In the theoretical part, the previous model was 
generalized in [32]. The volume charge was assumed 
small enough to be neglected in the ion transport 
equations, but not in the equations of fluid motion, where 
the Coulomb body force, based on the residual charge, was 
taken into consideration. A general linear stability analysis 
of miscible sys-tems is not trivial due to the fact that the 
base state of the problem is time-dependent and the 
correspond-ing linear system ceases to be of classical type. 
Specif-ically, the case considered in this paper differs, in two 
ways, from the usually considered above-mentioned cases 
of electrohydrodynamic instability: (a) the liquids are 
dielectrics rather than conductors and, hence, the Maxwell–
Wagner stresses are created by the nonuni-formity of the 
dielectric permittivity; (b) the liquids are miscible and the 
boundary separating them spreads with time by diffusion. 
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Fig. 1 Schematic of the
mixing channel, taken as
the computational domain

2 Formulation

We consider two viscous miscible dielectric liquids in 
a 2h̃ gap between conducting impermeable walls, see 
Fig. 1. Notations with tilde are used for the dimen-sional 
variables, as opposed to their dimensionless coun-
terparts without tilde. (x̃, ỹ) are the Cartesian coordi-
nates, where x̃ is directed along the channel and ỹ  is 
normal to it.

A potential difference ΔṼ  is applied between the 
walls; any external forces (such as gravity), except the 
electrical one, are neglected. It is assumed that at the 
initial time, t̃  = 0, the interface is a straight line ỹ  = 0 
perturbed with small-amplitude natural “room 
perturbations” and the first liquid is located in the

−h̃ < ỹ < 0 region, while the second liquid is in the
region 0 < ỹ < h̃. These liquids are denoted by the
indices of 1 and 2, respectively. At time t̃ > 0, the inter-
face is subject to mutual diffusion of these liquids and
an electrohydrodynamic instability may arise. The fol-
lowing two-dimensional equations describe the mixture
behavior,

ρ̃

(
∂w

∂t̃
+ Ũ

∂w

∂x̃
+ Ṽ

∂w

∂ỹ
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)]
, (3)

These factors make the problem more difficult, but also more 
interesting. Besides the practical part connected with the 
desire of reducing the mixing time, this problem raises some 
fundamental questions, namely, wether it is possible or not 
to obtain instability in miscible flows with nonuniformly 
distributed permittivity of these dielectric liquids. To our 
knowledge, the stability problem of the interface of two 
viscous miscible liquids with different electric per-
mittivities has not yet been addressed in the past.

The present paper considers a two-phase microflow of 
dielectric miscible viscous liquids with different elec-tric 
permittivities bounded by two flat solid walls in an 
external electric field, normal to the interface. The 
interface is initially expanding due to diffusion and this 
process can be described by a self-similar solution. The 
expanded solution takes into account the nonuniformity 
of the permittivity of the two liquids which, in principle, 
can trigger an instability. There is an obvious mathe-
matical difficulty in the solution of the given stability 
problem: in the self-similar solution, the coefficients of the 
stability equations depend exponentially on time and an 
exponential growth rate of the perturbations is thus 
expected. The classical frozen coefficient approach [42,43] 
is not applicable in our case. We use sophis-ticated ad hoc 
method proposed by Shtemler [44] to  solve our 
stability problem. In order to accomplish our 
investigation and to prove the results of the linear anal-
ysis, we apply a numerical integration of the full prob-lem 
without any simplification. These analytical results are 
then complemented by direct numerical simulation 
solutions of the full non-linear problem, and an estimation of 
the mixing efficiency is proposed as a function of the 
separation amplitude.



∂
(
ρ̃ Ũ

)
∂x̃

+
∂

(
ρ̃ Ṽ

)
∂ỹ

= 0, (4)

∂

∂x̃

(
ε̃Ẽx

)
+

∂

∂ỹ

(
ε̃Ẽy

)
= 0, (5)

˜ ˜ ˜ Φ̃

where w is the mass fraction of the liquid 1 in the mix-
ture with 0 ≤ w ≤ 1; D̃, ρ̃, μ̃ and ε̃  are the diffusion, 
the density, the dynamic viscosity and the dielectric 
permittivity of the mixture, respectively; ( Ũ ,  Ṽ ) are
the components of the velocity vector, Π̃ is the pressure 
and T̃ij is the viscous stress tensor. The first equation 
describes the mixing by diffusion and advection ([45]), 
the next three equations are Navier–Stokes equations 
with Maxwell forces in the right-hand side and the 
continuity equation. The channel is micron-sized and, 
thus, the Reynolds number is small so that Stokes’ 
approximation for the creeping flow can be applied. The 
last equation is the Maxwell equation for the electric field 
which should be completed by the relation,
(Ex, Ey) = −∇Φ̃, where is the electric potential.

In this work, we restrict our analysis to the partic-ular 
case where the densities of the fluids are equal to each 
other (this hypothesis will be further verified with 
experimental data, see Sect. 4.3.4). The liquids are 
assumed to be Newtonian, but the viscosity μ̃ of their 
mixture depends on the mass fraction w, as well as the 
dielectric permittivity ε̃. Both dependecies are assumed 
to be linear functions of w,

μ̃ = μ̃1w + μ̃2(1 − w) = μ̃2 + (μ̃1 − μ̃2)w,

ε̃ = ε̃1w + ε̃2(1 − w) = ε̃2 + (ε̃1 − ε̃2)w. (6)

The system (1–5) can be rewrittten into the following 
form,
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∂ỹ
= D̃

(
∂2w

∂x̃2
+

∂2w

∂ỹ2
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∂ỹ

)2
⎤
⎦ , (9)
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(
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∂Ũ
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(
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∂ỹ

⎡
⎣

(
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∂ỹ
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∂Ũ

∂x̃
+

∂Ṽ

∂ỹ
= 0. (11)

This system must be complemented by relations (6) and 
proper boundary conditions (BCs). The solid surfaces 
ỹ  = ±h̃ are assumed to be impermeable to the mixture, 
and the no-slip conditions for the velocity are applied at 
these surfaces. The potential difference ΔṼ  is applied 
between the walls. These conditions can be written as 
follows,

ỹ = ±h̃ : Ũ = Ṽ = 0,
∂w

∂ỹ
= 0;

Φ̃
∣∣∣
ỹ=h̃

− Φ̃
∣∣∣
ỹ=−h̃

= ΔṼ . (12)

We neglect the net flow along the x̃-direction in order 
to consider only the impact of electric forces on mixing. 
The spatial domain is assumed to be infinitely large in 
the x̃-direction, and the boundedness of the solution as x̃ 
→ ±∞ is imposed. Therefore, periodic conditions will be 
assumed with respect to x̃ in the numerical simula-tions 
described in Sect. 4.2.

Adding initial conditions for the fraction w completes 
the system (7)–(12). At t̃ = 0,

w = 1  at  − h̃ <  ỹ < 0,

w = 0 at 0 < ỹ < h̃ (13)

3 Simplified analytical solution

3.1 A one-dimensional self-similar solution

At the initial time t̃ = 0, liquids 1 and 2 are separated
by a sharp boundary at ỹ = 0. At subsequent moments,
t̃ > 0, mutual diffusion of liquids occurs, which leads to
the formation of a thin diffusion layer δ̃(t̃). Note that
at this period of time, the influence of walls can be
neglected and the system has no characteristic size and
its solution is thus self-similar.

As long as the diffusion layer is uniform, ∂/∂x̃ = 0
and its thickness δ̃ is a good choice for the dynamic
characteristic length, δ̃ = 2

√
D̃t̃. The spatial variable

ỹ is normalized to δ̃, and the self-similar variable is
introduced as, η = ỹ/δ̃. The derivatives with respect to
t̃ and ỹ can be written as,

∂

∂t̃
= − ỹ

4t̃
√

D̃t̃

∂

∂η
,

∂

∂ỹ
=

1

2
√

D̃t̃

∂

∂η
. (14)

Equation (7) turns into the following ordinary differen-
tial equation and BCs,

d2w

dη2
+ 2η

dw

dη
= 0, η → −∞ : w → 1,

η → +∞ : w → 0. (15)



The solution of Eq. (15) is a well-known error function,

w =
1
2

[1 − erf(η)] . (16)

The permittivity and the viscosity in the mixing layer 
can readily be found from relations (6),

ε̃ =
ε̃2 − ε̃1

2
erf(η) +

ε̃2 + ε̃1

2
,

μ̃ =
μ̃2 − μ̃1

2
erf(η) +

μ̃2 + μ̃1

2
. (17)

By introducing dimensionless parameters β and γ as,

β =
ε̃1

ε̃2
− 1, γ =

μ̃1

μ̃2
− 1, (18)

we get the dimensionless solution of the permittivity
and the viscosity,

ε =
β

2
[1 − erf(η)] + 1, μ =

γ

2
[1 − erf(η)] + 1.

(19)

The electric potential Φ̃ is completely determined from 
the permittivity field ε̃  (Eq. 8) and the corresponding 
BC (Eq. 12),

∂

∂ỹ

[
ε̃
∂Φ̃
∂ỹ

]
= 0, Φ̃|ỹ=−h̃ = 0, Φ̃|ỹ=+h̃ = ΔṼ .

(20)

This problem is readily solved,

Φ̃ = C̃

∫ ỹ

−h̃

dỹ

ε̃
, (21)

where C̃ is a constant of integration, which is found
from the BCs at ỹ = ±h̃,

ΔṼ = C̃

∫ +h̃

−h̃

dỹ

ε̃
= C̃

[
J̃ + h̃

(
1
ε̃1

+
1
ε̃2

)]
, (22)

in which,

J̃ =
∫ 0

−h̃

(
1
ε̃

− 1
ε̃1

)
dỹ +

∫ h̃

0

(
1
ε̃

− 1
ε̃2

)
dỹ, (23)

We can reduce Eq. (23) to dimensionless form using 
(14), (18), (19),

ΔṼ = C̃
2
√

D̃t̃

ε̃2

(
J + H

2 + β

1 + β

)
, (24)

where H = h̃/δ̃ and,

J =
∫ 0

−H

(
1
ε

− 1
1 + β

)
dη +

∫ H

0

(
1
ε

− 1
)

dη.

(25)

Assuming that δ̃ � h̃, the finite limits of integration
can be approximated by infinite ones,

J =
∫ 0

−∞

(
1
ε

− 1
1 + β

)
dη +

∫ ∞

0

(
1
ε

− 1
)

dη,

(26)

which means that J depends only on β, but not on H.
The unknown of integration C̃ can then be deduced 

from Eq. (24),

C̃ =
ε̃2ΔṼ

2
√

D̃t̃

1 + β

(2 + β)H + (1 + β)J
, (27)

with its following dimensionless form,

C =
1 + β

(2 + β)H + (1 + β)J
, (28)

where C = 2
√

D̃t̃

ε̃2ΔṼ
C̃.

Gravity forces are absent and the problem can thus 
be taken as symetric and without loss of generality, the 
bottom and the top liquids can be swapped. Therefore, 
only positive β can be considered, J(β) is evaluated 
numerically and tabulated (see Table 1).

The hydrodynamics is decoupled from the one-
dimensional solution and the velocity components are 
vanishing (see Eqs. 9–10), but the Coulomb forces pro-
duce a nonzero pressure field from Eq. (10). The cor-
responding solutions for the velocity and pressure field 
can be written as follows,

Ũ = Ṽ = 0, Π̃ =
1
4
ε̃

(
∂Φ̃
∂ỹ

)2

. (29)

3.2 Stability of the self-similar solution

The interface between the two liquids is always slightly 
disturbed by natural “room perturbations”. These 
small disturbances can either decay or grow. In the lat-
ter case, the 1D solution is unstable and must evolve 
into some more complex state, than the one obtained 
in Sect. 3.1.

We consider the linear stability of the 1D self-similar 
solution and we slightly perturb it in the x̃-direction. It 
is more convenient to use different reference values in x̃ 
and ỹ-directions,

l̃0 = 1/α̃0 : length in x̃-direction;



Table 1 The function J for different values of β

β 0.10 0.20 0.40 0.70 1.0 2.0 5.0 10.0
J − 0.0035 − 0.0121 − 0.0383 − 0.0870 − 0.138 − 0.289 − 0.580 − 0.830

δ̃ = 2
√

D̃t̃ : length in ỹ-direction;
Ũ0 = D̃/l̃0 : velocity in x̃-direction;
Ṽ0 = D̃ δ̃/l̃20 : velocity in ỹ-direction;
Π̃0 = D̃μ̃2/δ̃2 : pressure;
ΔṼ : drop of potential.

Here α̃0 is some characteristic wavenumber and t̃0 is
some characteristic time (we used t̃0 = l̃20/D̃, but the
resulting dimensionless equations do not depend on its
choice). New independent variables and their deriva-
tives are introduced,

τ =
t̃

t̃0
, ξ = x̃α̃0, η =

ỹ

δ̃
=

ỹ

2
√

D̃t̃
,

∂

∂t
=

∂

∂τ
− 1

2τ
η

∂

∂η
,

∂

∂x̃
= α̃0

∂

∂ξ
, (30)

∂

∂ỹ
=

1
δ̃

∂

∂η
. (31)

In self-similar variables, Eq. (7) turns into the following 
one,

4τ
∂w

∂τ
− 2η

∂w

∂η
+ α2

(
U

∂w

∂ξ
+ V

∂w

∂η

)

= α2

(
∂2w

∂ξ2
+

∂2w

∂η2

)
. (32)

The dimensionless dielectric permittivity ε and the 
dimensionless viscosity μ are linear functions of w and 
can be found from (6),

ε = 1 + βw(τ, ξ, η), μ = 1 + γw(τ, ξ, η). (33)

The electric potential (Eq. 8) turns into,

α2 ∂

∂ξ

(
ε
∂Φ
∂ξ

)
+

∂

∂η

(
ε
∂Φ
∂η

)
= 0. (34)

The dimensionless parameter α = δ̃α̃0 can have 
two different interpretations: (i) a dimensionless dif-

fusion length (derived from δ̃) or (ii) a dimensionless 
wavenumber (derived from α̃0). We will use the sec-
ond choice. This wavenumber depends on time and 
for sufficiently large time it is assumed to be a slow 
parameter. The diffusion layer between the two liquids 
expands exponentially and, therefore, the stability of 
the self-similar solution cannot be investigated by clas-
sical methods as in Refs. [42,43]. The details can be

found in Ref. [44], and the corresponding method was 
successfully applied in [46] and [47]. Details on this will 
be given later.

Introducing the stream function Ψ from the rela-
tions,

U =
∂Ψ
∂η

, V = −∂Ψ
∂ξ

, (35)

and substituting them into Eqs. (9)–(10), we get,

∂2

∂η2

(
μ

∂2Ψ

∂η2

)
+ 4α2 ∂2

∂ξ∂η

(
μ

∂2Ψ

∂ξ∂η

)
+ α4 ∂2

∂ξ2

(
μ

∂2Ψ

∂ξ2

)

−α2 ∂2

∂ξ2

(
μ

∂2Ψ

∂η2

)
− α2 ∂2

∂η2

(
μ

∂2Ψ

∂ξ2

)

= Λ
∂ε

∂ξ

(
∂Φ

∂η

∂2Φ

∂η2
+ α2 ∂Φ

∂ξ

∂2Φ

∂ξ∂η

)

−Λ
∂ε

∂η

(
∂Φ

∂η

∂2Φ

∂ξ∂η
+ α2 ∂Φ

∂ξ

∂2Φ

∂ξ2

)
. (36)

Here, the parameter, Λ = ε̃2ΔṼ 2

D̃μ̃2
is introduced. It char-

acterises the coupling between hydrodynamics and elec-
trostatics and for fixed physical properties, it corre-
sponds to the square of the dimensionless potential 
drop.

Imposing small perturbations on the 1D self-similar 
solution, substituting them into Eqs. (32)–(36) and lin-
earizing with respect to the perturbations turns this 
system into a linear system with the coefficients inde-
pendent of the coordinate ξ. It allows seeking sinusoidal 
elementary solution with respect to ξ-coordinate but its 
dependence on time must be changed from exponen-tial 
to the power one. The reason comes from the fact that in 
this linear stability analysis, the coefficient of the time 
derivative depends itself on time [4τ ∂w in Eq.

∂τ

(32)]. As a result, the linear perturbations will not grow 
exponentially with time, as we used to have in most 
of the classical linear stability hydrodynamic problems, 
but in form of power law in time,

w = w0(η) + ŵ(η)eiξτλ, Φ = Φ0(η) + Φ̂(η)eiξτλ,

Ψ = −iΨ̂(η)eiξτλ, (37)

where subscript 0 refers to the 1D self-similar solu-tion 
and λ is the growth rate. The factor −i before the 
amplitude of the stream function is introduced in order to 
make all the system coefficients real. Upon substi-tution 
of the expressions (37) into Eqs. (32), (34) and  (36), 
omitting the subscript ‘0’ and after linearization, we get 
the following system of ODEs,



Fig. 2 Growth rate λ vs
the wavenumber α for a
Λ = 1500, β = 2.25 and
γ = 0 and different values
of the dimensionless
half-width of the channel
H and, b Λ = 1500, H = 2
and different values of
dimensionless viscosity γ

4λŵ − 2ηŵ′ + α2w′Ψ̂ = ŵ′′ − α2ŵ, (38)

(εΦ̂′ + ε̂Φ′)′ − α2εΦ̂ = 0, (39)

μ
(
Ψ̂IV − 2α2Ψ̂′′ + α4Ψ̂

)

+γ
(
w′′Ψ̂′′ + 2w′Ψ̂′′′ − 2α2w′Ψ̂′ + α2w′′Ψ̂

)

= ΛΦ′(ε̂Φ′′ − Φ̂′ε′), (40)

where the prime means the derivative with respect to
η. The BCs are,

ŵ = 0, Φ̂ = 0, Ψ̂ = 0, Ψ̂′ = 0 at η = H. (41)

Here from the self-similar solution,

ε = 1 +
β

2
[1 − erf(η)] + 1, μ = 1 +

γ

2
[1 − erf(η)] + 1,

Φ′ = C(H,β)
1
ε
. (42)

h̃

responds to a new type of instability in miscible fluids.
According to the classification of Cross and Hohen-

berg [48], the instability described above is a short-wave 
instability: the long waves and the very short waves are 
stable, while the intermediate ones are unstable. This 
classification determines the behavior of the perturba-
tions in time. The peculiarity of our case is that while 
the dimensional wavenumber α̃ and the channel width 
are fixed, their dimensionless counterparts α = α̃δ̃  and 
H = h̃/δ̃  are slowly changing in time. The fact that H 
and α are time-dependent is justified both experimen-
tally and in numerical simulations. In Fig. 3 the results 
are presented in the coordinates,

1
H

=
2
h̃

√
D̃t̃, α = 2α̃0

√
D̃t̃,

for different fixed parameters Λ and β, which are inde-
pendent of time.

The ratio k = α/H−1 does not depend on time, but
the position of the point on this k-line depends on time.
Each straight line, emanating from the origin (0, 0),
with the inclination k,

(
α = k 1

H

)
, characterizes the sce-

nario of the time evolution of the imposed perturbation
with dimensional and constant in time wavenumber α̃0.
The point (1/H,α) on each straight line moves away
from the origin as a square root of time,

√
t̃.

For sufficiently large k > k∗ (which corresponds to
short waves) the straight line with inclination k will
be in the stable region. The corresponding perturba-
tion on the entire line will decay. For k < k∗ (interme-
diate and long waves), the straight line will cross the
unstable region, but at small times, the perturbation
will always decay, reflecting the short-wave instability.
For the marginal case, k = k∗, the straight line only
touches the instability region, but does not cross it.
Hence, this results in a rather sophisticated behavior.
Depending on the value of k, two different scenarios
are possible: (a) stable, when the perturbation always
decays; (b) unstable, when the perturbation originally
decays, then grows and eventually decays again. Such
behavior will be confirmed later in our direct numerical
simulation.

The formulated spectral stability problem is described by 
four outer parameters, β, γ, H and Λ and one inner 
parameter, the wavenumber, α (C(H, β) is defined via 
J(β) (see Eq. 28) and is presented in Table 1). Note that 
β characterizes the ratio of the permittivity of the two 
liquids, γ is the ratio of their viscosity, Λ is the normalized 
strength of the electric field, H and α are slowly changing 
parameters with time.

The eigenvalue problem for the growth rate λ was 
solved numerically by the shooting method, using λ as a 
parameter, conditions (41) at η = −H as the initial 
conditions for the Cauchy problem and the correspond-
ing conditions at η = +H as the target.

The dependence of the growth rate λ on the wavenum-
ber α for equal viscosity of liquids γ = 0 for differ-ent 
dimensionless channel widths H = h̃/δ̃  is presented in 
Fig. 2a. The influence of different viscosities on the 
dependence λ(α) is shown in Fig. 2b. Increasing the value 
of γ = μ̃1/μ̃2 − 1 leads  to a system which  is 
more and more stable. Note that for equal liquid per-
mittivity β = 0 the flow is stable for any value of other 
parameters. This fact allows us calling this instability as 
the electric-permittivity-based instability which cor-



Fig. 3 Marginal stability curves for β = 2.25 and γ = 0 in
coordinates α–1/H. The wavenumber α and 1/H are chang-
ing along the straight line as it is shown by the red arrows; λ
during this evolution successively transfers between stable,
unstable and again stable regions

4 Direct numerical simulation

To make the analysis complete, the 1D self-similar ana-
lytic solution and its stability investigation are supple-
mented by the direct numerical simulation (DNS) of the
full nonlinear problem.

4.1 Dimensionless equations

In order to render the system dimensionless, the fol-
lowing characteristic quantities are chosen in our direct
numerical simulations,

h̃ : half-width of the channel;
h̃2/D̃ : time;
Ũ0 = D̃/h̃ : velocity;
Π̃0 = D̃μ̃2/h̃2 : pressure;
ε̃2 : permittivity of the fluid 2;
ΔṼ : drop of potential over the channel width.

Unlike Sect. 3, we select a time-independent character-
istic width here, which will simplify the interpretation 
of the results. The problem is described by the following 
dimensionless equations,

∂w

∂t
+ U

∂w

∂x
+ V

∂w

∂y
=

∂2w

∂x2
+

∂2w

∂y2
, (43)

∂

∂x

(
ε
∂Φ
∂x

)
+

∂

∂y

(
ε
∂Φ
∂y

)
= 0, (44)

−∂Π
∂x

+ 2
∂

∂x

(
μ

∂U

∂x

)
+

∂

∂y

(
μ

∂U

∂y

)
+

∂

∂y

(
μ

∂V

∂x

)

=
Λ
2

∂ε

∂x

[(
∂Φ
∂x

)2

+
(

∂Φ
∂y

)2
]

, (45)

−∂Π
∂y

+ 2
∂

∂y

(
μ

∂V

∂y

)
+

∂

∂x

(
μ

∂U

∂y

)
+

∂

∂x

(
μ

∂V

∂x

)

=
Λ
2

∂ε

∂y

[(
∂Φ
∂x

)2

+
(

∂Φ
∂y

)2
]

, (46)

∂U

∂x
+

∂V

∂y
= 0. (47)

The BCs are,

y = ±1 : U = V = 0,
∂w

∂y
= 0;

Φ|y=+1 − Φ|y=−1 = 1. (48)

and initial conditions are as follows,

t = 0 : w = 1 at − 1 < y < 0,

w = 0 at 0 < y < 1, (49)

where small perturbations in the x-direction on the 
interface are assumed to be superimposed on this BC.

The problem is characterized by three dimensionless 
parameters: β, γ and Λ, all defined previously in Sect. 3. 
The latter can be rewritten as,

Λ ≡ ε̃2ΔṼ 2

D̃μ̃2

=
ΔṼ 2

D̃μ̃2/ε̃2

=
ΔṼ 2

ΔṼ 2
0

,

which represents the square of the dimensionless drop of
the electric potential with the electroviscous potential

ΔṼ0 =
√

D̃μ̃2/ε̃2.
In order to distinguish between dimensionless

wavenumbers defined in the self-similar analysis and the
present DNS model, we denote the wavenumber here as
k = α̃h̃ in contrast to α = α̃δ̃ in the self-similar basis,
so that k = α

1/H , where H = h̃/δ̃.
Note that k is a dimensionless wave number in the 

present basis not only but has also another meaning: it 
represents the inclination as defined in Sect. 3 (see Fig. 
3).

Besides, if we consider the dependence between α, k 
and t, then α2 = α̃24D̃ t̃  or α2 = 4k2t and we can then 
obtain the following useful relation,

t =
α2

4k2
. (50)

The problem is solved for the following physical prop-
erties (the same viscosity has been taken for both flu-
ids for the sake of comparison with the analytical solu-
tion): μ̃1 = μ̃2 = 1 × 10−3 kg/(m s), D̃ ≈ 10−9 m2/s,
ε̃2 = 2 × 10−10 C2s2/(kg m3), ΔṼ0 = 0.097 V. β = 2.25
is used in computations. These properties loosely cor-
respond to water (ε̃1) and ethanol (ε̃2).

The potential drop is varied within ΔṼ = 0−20 V.
Thus, the dimensionless parameter Λ changes from 0 to
42,500.

The case of different viscosity will be used in
Sect. 4.3.4 for sake of comparison with experimental
data.



Fig. 4 Evolution of the 
1D permittivity solution 
for different time instants 
with β = 2.25. Solid line 
stands for the DNS and 
dashed line, for the 
analytical solution (Eq. 27)

4.2 Numerical methodology

The numerical solution is based on the finite-difference 
method proposed in [49]. The space derivatives are 
approximated by a two-point difference scheme of the 
second order on a staggered grid. Spatial discretization 
with fine resolution leads to stiff problems and requires 
implicit methods for time advancement. Fully implicit 
methods produce a set of nonlinear coupled equations 
for the problem variables on the new time level, and are 
usually prohibitively costly for long-term calculations of 
the multi-parameter problems. Semi-implicit methods, 
in which only a part of the operator is treated implic-
itly, constitute a reasonable compromise for this class of 
problems. The semi-implicit third-order Runge-Kutta 
method [50] is used for time integration. The functions Φ 
and Ψ are found by a direct solution of the sparse system 
of linear algebraic equations, directly following from the 
discretization of the equations.

The infinite spatial domain is modelled by a finite 
domain that has dimensionless length l (so that waves 
with wavenumbers starting from kmin = 2π / l can be 
captured in simulations). The condition that the solu-
tion at x → ∞ is bounded, is changed to periodic 
boundary conditions. The length of the domain has to 
be taken large enough to make the solution independent 
of the domain size. The value l = 4π was typically cho-
sen in most calculations, whereas l = 8π was used to 
verify the results.

4.3 Results

4.3.1 Linear stage of evolution

For subcritical values of Λ and β, all perturbations in 
x-direction decay and the 1D solution is observed. How-
ever, this solution does not fully correspond to the self-
similar solution due to the influence of the walls that 
breaks down the validity of the latter. The dimension-

2

D

the diffusion is the only one mechanism to mix the two
fluids for the 1D solution.

Small perturbations are superimposed on the inter-
face between the liquids in the numerical simulations.
Two kinds of such perturbations are considered:

(a) The initial disturbances which are natural from
the viewpoint of the experiment. The so-called “room
perturbations” determining the external low-amplitude
and broadband white noise are imposed on the surface.

(b) Artificial forced monochromatic perturbations
with a fixed wavenumber α̃. These artificial perturba-
tions allow better understanding of the behavior of the
system.

For the supercritical parameters, a special kind
of electro-hydrodynamical instability takes place. The
instability triggers an additional mechanism of mix-
ing, by advection, which is more powerful and strongly
reduces the time for mixing. In all subsequent calcu-
lations, the initial conditions are defined as follows for
both monochromatic and room perturbations,

w0 =
1
2

(1 − sign (y))

+A0 (1 − |tanh (ay)|) (sign (y) + s (x)) ,

where s (x) is either a uniformly distributed random 
value in the range [−1,+1], or a monochromatic sinu-
soidal wave. We define the following function (which will 
be also used in Sect. 4.3.2),

A(t) = max
(y)

(
max
(x)

w(t, x, y) − min
(x)

w(t, x, y)
)

.

A0 = A (0) is a small parameter specifying the ampli-
tude of disturbances, and ‘a’ controls the initial mixing 
layer thickness. Numerical simulations were performed 
with a = 99.

Let us first consider simulations for the monochro-
matic perturbations as initial conditions. For such con-
ditions, the initial perturbation is set up by a sinusoidal 
perturbation in x-direction with one single wavenum-
ber k. These perturbations are artificial, but they allow 
us to understand the nature of the instability. So we 
return to the interpretation of the results of our self-
similar analysis in Fig. 3. Keeping the wave number

less time of the order of t̃  ∼ 0.1 h̃
˜ still provides per-

fect matching between self-similar and DNS solutions 
when representing the permittivity as a function of the 
y-direction, see Fig. 4. The dimensionless time of full 
mixing is estimated of the order t ∼ 0.5. Evidently,



Fig. 5 a Solid line stands for the marginal stability of
the self-similar solution, triangles (DNS simulations) stand
for the time when monochromatic perturbations with the
wavenumber k change their decay to growth. The filled cir-
cles stand for the wavenumber kr realized for the room dis-

Fig. 6 Marginal stability wavenumber k∗ vs Λ for β = 
2.25. Solid line corresponds to the self-similar solution and 
triangles for the DNS solution

k constant, originally along the straight line in Fig. 3, 
the disturbance decays first and after some time it may 
grow. As it can be seen from Fig. 5a even for the unsta-
ble parameters there is a latent period of time when 
perturbations do not grow up to a certain time. These 
observations are in good correspondence with the linear 
analysis of the self-similar solutions (see Fig. 5a).

The second kind of perturbations is the natural 
“room disturbances”. In our case, all other perturba-
tions practically decay in comparison with the most 
dangerous one with the wavenumber kr, see Fig. 5a. 
Thus, any evolution results in an almost monochro-
matic perturbation with the wavenumber kr. It is close 
to the wavenumber observed in DNS (Fig. 5b).

The results of the numerical simulation of the non-
linear system (43)–(49) with the natural white noise 
initial conditions are in good correspondence with the 
linear stability results. Both are presented in Fig. 6.

turbances as intitial conditions, β = 2.25 and Λ = 1500; 
b Permittivity at the cross-section (y = 0) for Λ = 1500,
β = 2.25, εmix = 1+β/2 is the permittivity of the mixture. 
The disturbances are fully developed, t ≈ 0.14

4.3.2 Nonlinear evolution

The linear filtering mechanism singles out only one wave 
number kr with minimal time to instability, see Fig. 5a. 
When the amplitude of the perturbation becomes 
sufficiently large, the nonlinear stage of evolu-tion takes 
place.

For monochromatic disturbances, the function A(t)
(defined in Sect. 4.3.1) is two times the amplitude of 
those disturbances. It is easy to see that A(t) is exactly 
zero for any 1D solution (including fully mixed state), 
and the range of its possible values is [0, 1]. The max-
imal value, 1, is reached when both pure liquids 1 and 2 
are present at some y = const. The temporal evolu-tion 
of the amplitude as a function of its initial value and of 
the voltage is shown in Fig. 7. After the initial stage, 
which, in accordance to the linear stability anal-ysis, 
consists of a characteristic decay and followed by a 
growth, the disturbances reach saturation and then 
decay again. This decay seemingly justifies the picture 
in Fig. 2b, where all perturbations decay at sufficiently 
large times. In reality, the mechanisms differ. On the one 
hand, for a long-time process the perturbations are 
always nonlinear: the interface between the two phases 
becomes too bent for linearization to be valid. On the 
other hand, the diffusion smooths out the difference in 
concentration of the two liquids. The final stage of the 
evolution corresponds to the uniformly distributed 
(fully mixed) fluids.

If the potential difference is large enough, Λ > Λ∗ 

(approximately 5000), the amplitude can reach unity, 
i.e. the system contains areas filled with pure liquids 1 
and 2 along some y-cross-section. Calculations show 
that these areas extend in “stripes” to almost the full 
microchannel width (Fig. 8e), and in this case the dif-
fusion process occurs along x (Fig. 8f).  For  Λ  < Λ∗, 
transverse diffusion develops for sufficiently long time



Fig. 7 Development of A (t) as a function of a initial amplitude A0 (1—A0 = 10−5, 2—10−4, 3—10−3, 4—10−2, 5— 10−1) 
and for β = 2.25 and Λ = 37000, bΛ: 1—Λ = 37,000, 2—16,500, 3—6100, 4—4000, 5—2500, 6—1500, 7—1000, A0 = 10−5. The 
marked points are depicted in Fig. 8

Fig. 8 Temporal development of the fraction w for fluid 1 for β = 2.25, A0 = 10−5. a t = 0,  b 0.0071, c 0.0092, d 0.0149, e 
0.0328, f 0.2. Snapshots (b–f) correspond to the markers in Fig. 7. Left column: Λ = 16,500, center column: Λ = 32,000, right 
column: Λ = 65,500

(see Fig. 9d′) and the concentration gradient does not 
reach sufficient high values to form “stripes” (Fig. 9e′).

4.3.3 Mixing efficiency

In order to estimate mixing efficiency, we introduce the 
separation amplitude,

Asep(t) =
1

xmax

∫∫ ∣∣∣∣w − 1
2

∣∣∣∣ dxdy, (51)

enough, Λ > Λ∗. As mentioned earlier, the value of Λ∗
is connected with the appearance of the “stripes”, so
these “stripes” are responsible for mixing enhancement
over low-voltage regimes. However, with increasing Λ,
this enhancement becomes small.

The dynamics of the solution in time sequentially
goes through four stages:

I. A self-similar expansion of the diffusion layer 
according to Eq. (16) occurs. The solution does not 
depend on the strength of the external electric field 
and is determined only by the diffusion of the two 
layers. If we take the characteristic time associated 
with diffusion t̃D = h̃2/D̃ , then the curves in Fig. 10 
shrink into one line and Eq. (51) for

where the integration is performed over the whole sim-
ulation domain. This amplitude also varies from 0 to 1, 
where ‘0’ means complete mixing and ‘1’ means com-
plete separation.

Our calculations (Fig. 10) show that the mixing effi-
ciency practically does not depend on Λ unless it is large



Fig. 9 Temporal 
development of the fraction 
w for fluid 1: β = 2.25,
Λ = 4000, A0 = 10−5. The  
snapshots are marked in 
Fig. 7

self-similar solution (16) can be written as,

Asep(t) = erf
(

1
2
√

t

)
+ 2

√
t

π

(
exp

(
− 1

4t

)
− 1

)
.

(52)

2
2h̃2

0

II. If the external field is strong enough, then the self-
similar solution loses its stability. The initial 
disturbances grow until the velocity components 
become large enough.

III. At some time t = t∗, the disturbances become large 
enough to affect the convective terms and, hence, 
Asep. For t > t∗ it is convenient to switch to a 
different characteristic time, namely, t̃c = μ̃ 

2 . ε̃2ΔV 
With this time, the parameter Λ disappears from 
the right hand-side of Eqs. (45–46) but appears on 
the right-hand side of the diffusion-convection 
equation of the fraction w (Eq. 43),

∂w

∂t
+ U

∂w

∂x
+ V

∂w

∂y
=

1
Λ

(
∂2w

∂x2
+

∂2w

∂y2

)
. (53)

For Λ → ∞, the solution of the system of equations 
does not depend on Λ and all curves (see Fig. 10) 
shrink into one. The diffusion is negligible for this 
case.

IV. Diffusion of the formed regular structures. As the 
liquids are mixing at stage III, the “stripes” of the 
fraction w are eventually formed, where w 
practically does not depend on the y-coordinate, see 
Fig. 8. Also, dw/dy = 0 at the horizontal boudaries, 
so the velocity field vanishes, U = V =
1. Mixing is thus carried out only by the diffusion,
hence the diffusion time t̃D = h̃2/D̃ must be taken 
as the characteristic one. Curves 1, 2 and 3 turn 
into parallel straight lines in semilogarithmic coor-
dinates, see inset of Fig. 10a.
It is possible to show it with trivial case. If we con-
sider the diffusion problem and keep only the main 
harmonics in the series along x with wavenumber 
k,

w0 =
1
2
(cos(kx) + 1), (54)

then this problem can be solve analytically and
Asep takes the following form,

Asep =
2
π

exp
(−k2t

)
. (55)

One can see that the dotted line in Fig. 10 is 
parallel to the others with non-zero Λ. It means 
that curves differ only by a multiplication con-
stant, which transform into an additive constant 
in the logarithmic scale.

4.3.4 Mechanism of the instability

In order to understand the physical mechanism of the 
instability shown in Fig. 7, we consider a simplified the-
ory. Note that there two competitive time-dependent 
phenomena in this process are: (i) the mixing length
when the diffusion layer is expanding in the ỹ-direction
as 2

√
D̃t̃ and (ii) the amplitude of the unstable per-

turbation in the x-direction which is increasing in time. 
The first one depends only on the diffusivity (D̃) and  
does not depend on the voltage (ΔṼ  ) and the sec-
ond depends strongly on ΔṼ  and with its increase, the 
growth rate also increases. For sufficiently large ΔṼ  , the  
first characteristic time is much slower than the second 
one and, qualitatively, the instability can be considered 
with some frozen constant δ̃ . This is well illustrated in 
Fig. 7 in which one can see that the mixing layer is 
practically not changing with time while the instabil-
ity runs into the non-linear phase of its evolution. The 
second assumption of this simplified theory is that we 
restrict ourselves with the long-wave perturbations.

The instability is connected with the ratio of permit-
tivity ε̃1/ε̃2 which is taken as very large. Hence, our 
assumptions are the following,

(a) ΔṼ � ΔṼ0, ΔṼ0 =
√

D̃μ̃2/ε̃2,

(b) ∂/∂x̃ � ∂/∂ỹ,

(c) ε̃1/ε̃2 � 1.



Fig. 10 Separation amplitude dynamics for different Λ
and β = 2.25as a function a of time, and b Λt. 1: Λ = 16,500,
2: 13,000, 3: 8100, 4: 0. Dashed line corresponds to the self-

similar solution (Eq. 51). Dotted line corresponds to the 
diffusion of vertical structures (53) in region IV with k = 3

Let us consider the permittivity dependence as a piece-
wise linear function,

ε̃ =

⎧⎨
⎩

ε̃1 for − h̃ < ỹ < Δ̃1,
ε̃1+ε̃2

2 + ε̃1−ε̃2
ã

(ỹ − ã) for Δ̃1 < ỹ < Δ̃2,

ε̃2 for Δ̃2 < ỹ < h̃.

(56)

Δ̃ Δ̃where 1 = −δ̃/2 + ã(x̃, t̃) and  2 = δ̃/2 +  ã(x̃, t̃)(see 
Fig. 11 for details). Under the above assumptions, Eq. 
(8) can be integrated twice and the constants of 
integration can readily been found from the BCs, Eq.
(12),

∂Φ̃/∂ỹ ≡ Ẽ =
ε̃2ΔṼ

h̃

B

ε̃
, (57)

where B is a dimensionless constant of integration
which is given by,

B =

[
1 − 1

2
δ̃

h̃
+

δ̃

h̃

ln ε̃1/ε̃2

ε̃1/ε̃2
− ε̃1

ε̃2

ã(x̃, t̃)
h̃

]−1

. (58)

The terms connected with velocity Ṽ  and (∂Φ̃/∂x̃)2 can be 
omitted and the Maxwell pressure Π̃ can  be  found 
from Eq. (10). Moreover, by simple algebra, we can show 
that, Π̃2/ Π̃1 = ε̃1/ε̃2 � 1. In accordance with the 
hypothesis (c), Π̃1 can be neglected in comparison with 
Π̃2. Hence, the pressure field Π̃2 can be calculated from 
Eq. (10) and Eq. (51) with the above assumptions,

Π̃2 =
1
2

ε̃2
2ΔṼ 2

h̃2
B2. (59)

The Maxwell pressure Π̃2 is directly proportional to
the squared voltage and inversely proportional to the

Ẽ

Fig. 11 Simplified sketch for the mechanism of instability of 
Fig. 7

width of the channel h̃ (the smaller is the width of the
channel, the larger is Π̃2). Note also that Π̃2 (x̃, t̃) has  a 
maximum which coincides the maximum of ã(x̃, t̃), the 
same applies with the minimum. Thus if the layer of 
liquid II becomes thinner because of some localized 
disturbance (as shown in Fig. 11), the electric field in this 
region becomes intense which, in turn, creates a high 
Maxwell pressure spot, see Fig. 11. This high-pressure 
spot drives the liquid away from it, the layer nearby the spot 
becomes very thin and the Maxwell pressure increases 
again, providing positive feedback. This mechanism of 
instability is expected to be stabi-lized by viscosity at 
short length scales.

The behavior described above is perfectly confirmed 
with DNS for initial stages of evolution at Λ > Λ∗, see 
Fig. 12a. However, whenever the assumption (56) fails (Λ 
is small or t is large), the resulting distribution becomes 
different, see Fig. 12b, c.



Fig. 12 Fraction (w) and Maxwell pressure distribution for Λ = 32,000 (b, e) and Λ = 4000 (e′). The snapshots are marked 
according to Fig. 7.

5 Conclusion

Mixing of dielectric miscible viscous liquids with dif-
ferent permittivities has been investigated analytically 
and numerically. Since the mixing layer is expanding 
with time, its instability is not described by the usual 
exponential law, but rather by the power law. This layer 
has been proven to be stable with respect to short-
and long-wave disturbances. Intermediate waves have 
been found to be unstable for a finite period of time. 
The influence of walls does not allow to see the end 
of instability in practice, but the initial period, when 
all perturbations decay, has been confirmed with DNS. 
We have found by numerical simulations that with a 
strong enough electric field the amplitude of the waves 
grows, so that their edges reach the walls. Due to the 
Maxwell pressure between the top of the wave and the 
wall, the liquids reorganize into alternating stripes. This 
scenario of distinct stripes has not, to our knowledge, 
been identified previously, and our simplified theory has 
explained it. Mixing is enhanced with higher applied 
electric field as expected. However, the “stripes” of sep-
arated liquids may slow down the mixing, so moderate 
fields lead to better mixing in the long-time process. 
Moreover, we have verified that our results are consis-
tent with experiments from [43] with transformer and 
silicone oils with respect to the mixing index and time 
evolution of instability. The obtained results can be used 
in microfluidic applications as, for example, the control 
over on-chip assays that require rapid mixing of fluids.
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