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Turbulent flow in rib-roughened channel under the effect
of Coriolis and rotational buoyancy forces

Filippo Coletti,1,a) David Lo Jacono,2 Irene Cresci,1,b) and Tony Arts1

1Turbomachinery and Propulsion Department, von Karman Institute for Fluid Dynamics,
72 Chaussée de Waterloo, 1640 Rhode-Saint-Genèse, Belgium
2Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, UPS, Université de Toulouse,
Allée Camille Soula, F-31400 Toulouse, France

The turbulent flow inside a rotating channel provided with transverse ribs along

one wall is studied by means of two-dimensional time-resolved particle image ve-

locimetry. The measurement set-up is mounted on the same rotating disk with the

test section, allowing to obtain the same accuracy and resolution as in a non-rotating

rig. The Reynolds number is 15 000, and the rotation number is 0.38. As the ribbed

wall is heated, both the Coriolis force and the centrifugal force play a role in the

fluid dynamics. The mean velocity fields highlight the major impact of the rotational

buoyancy (characterized by a buoyancy number of 0.31) on the flow along the lead-

ing side of the duct. In particular, since the flow is directed radially outward, the

near-wall layers experience significant centripetal buoyancy. The recirculation area

behind the obstacles is enlarged to the point of spanning the whole inter-rib space.

Also the turbulent fluctuations are significantly altered, and overall augmented, with

respect to the non-buoyant case, resulting in higher turbulence levels far from the rib.

On the other hand the centrifugal force has little or no impact on the flow along the

trailing wall. Vortex identification, proper orthogonal decomposition, and two-point

correlations are used to highlight rotational effects, and in particular to determine

the dominant scales of the turbulent unsteady flow, the time-dependent behavior of

the shear layer and of the recirculation bubble behind the wall-mounted obstacles,

the lifetime and advection velocity of the coherent structures.

I. INTRODUCTION

Turbulent flows in rotating frames are of considerable interest in a variety of industrial and

geophysical applications, from turbomachinery to atmospheric dynamics. The system rotation leads

to the appearance of Coriolis and centrifugal forces. The impact of the Coriolis force on the shear

layer stability depends on the magnitude and orientation of the background vorticity (i.e., the angular

velocity of the rotating system, Ä) with respect to the mean flow vorticity in the relative frame (ω).

Rotation is named cyclonic (anti-cyclonic) when Ä and ω are parallel (anti-parallel), in which case

the turbulence is inhibited (enhanced) by rotation. In internal flows, this effect was elucidated in

previous experimental and numerical studies of canonical channel flows (large or infinite aspect

ratios) under spanwise rotation.1, 2 In channels of finite aspect ratio the unbalance of Coriolis force

and transverse pressure gradient near the lateral walls produce secondary flows, which drive the

core flow from the leading wall towards the trailing wall of the duct.3 Studies concerned with

separating/reattaching flows in spanwise rotation4, 5 highlighted the major impact of the Coriolis

force on both mean flow (e.g., the extent of the separated region) and turbulence properties.
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In situations where local density variations are negligible, the centrifugal acceleration field has

only a hydrostatic effect, adding to the pressure field a constant gradient in the radial direction.

However the centrifugal force might have a strong influence on the fluid dynamics in flows with

large density gradients. A case of high technological relevance is the flow in a heated channel in

orthogonal rotation (i.e., where the main flow direction is perpendicular to the axis of rotation). The

hotter (lower density) fluid close to the wall experiences a weaker centrifugal force with respect to

the cooler (higher density) fluid in the core. This situation, similar to the flow through a stationary

vertical duct in the gravitational field, results in a rotation-induced buoyancy that drives the near-

wall fluid radially inward (centripetal buoyancy), possibly resulting in reverse flow even for smooth

channels. The resulting flow is effectively in a mixed convection regime. Evidence of the significance

of centrifugal buoyancy in orthogonally rotating ducts was presented in early experiments.6 Later

the centrifugal buoyancy effect on fully developed flow and heat transfer in smooth ducts was

demonstrated by perturbation analysis7 and similarity analysis.8 More recently the turbulent flow

and heat transfer in heated rotating smooth ducts was simulated via two-equation closure9 and Large

Eddy Simulation (LES).10 It was found that the outward flow can experience near-wall reversal due

to centripetal buoyancy. To support such calculations, one can only compare with experimental heat

transfer levels at the wall,11, 12 as detailed flow measurements are not available in these regimes.

One of the applications in which rotational effects on channel flows are most relevant is the

internal cooling of turbine blades: the coolant air streams through serpentine passages cast inside the

airfoil, extracting heat by forced convection and so keeping the metal temperature within acceptable

limit. The internal cooling channels are most often roughened with ribs, which trip the boundary

layer and enhance the turbulence transport. A large body of literature exists addressing the effects

of rotation on channel geometries relevant to blade cooling.12 Several numerical investigations

simulated the turbulent flow and the heat transfer in this type of configurations with a variety of

approaches, from two-equation closure13 to LES.14

From the experimental standpoint, numerous reports presented wall temperature distributions

and heat transfer levels in rotating ducts.11, 12 In comparison, flow measurements of rotating internal

flows are scarce, due to the practical difficulties of measuring velocity fields in a rotating frame.

In most existing experimental studies concerned with spanwise rotating channels, either hot wire

anemometry15 or laser Doppler velocimetry16 were used as velocimetry techniques. These single-

point techniques cannot identify instantaneous coherent structures or instantaneous spatial velocity

gradients. This limitation is especially undesirable for separated flows, where Taylor hypothesis

cannot be invoked. Particle Image Velocimetry (PIV) is the prime technique allowing to acquire

full field velocity measurements along planes. However, in most reported PIV investigations on

rotating channel flows, the image grabbing system is located in the laboratory frame,17 which

entails significant inaccuracies in transforming from absolute to relative velocities, unless special

pre-processing image strategies are adopted.18 Recently, the strategy of mounting the PIV system on

the same rotating platform with the test rig has made possible to investigate in detail a diffuser,19 a

backward-facing step,5 and a rib-roughened duct.20 In these configurations the flow was isothermal

and therefore centrifugal forces did not play a significant role in the fluid dynamics. Moreover, these

authors did not provide information on the temporal evolution of these flows.

From the above, it appears that limited information is available on the fluid dynamics of

turbulent separated flows under the effect of centrifugal and Coriolis forces, especially in non-

isothermal configurations that result in strong rotational buoyancy. Several investigations focused on

the heat transfer are available, but only few of them address the internal aerodynamics. Experimental

studies that describe the velocity field in this type of flows are almost absent. Even the numerical

simulations are limited (Ref. 21 is the only numerical study that reports detailed velocity fields

in such a configuration) and attend validation. Most importantly, since up to date only the mean,

single point statistics have been reported, there is the need to investigate the underlying dynamics,

including the spatial and temporal scales and the time-dependent behavior of the flow, which is

strongly unsteady in nature.

The objective of the present contribution is to investigate the turbulent flow in a rotating ribbed

channel under the action of Coriolis and rotational buoyancy forces, by means of PIV. The non-

buoyant case has been presented previously, although at a somewhat lower rotation regime.20 Here



the focus is twofold: the effects of the radial buoyancy induced by rotation when the rib-roughened

wall is heated; and the space-time behavior of the flow features. To the authors’ best knowledge, this

study represents the first flow field measurements in a rotating duct subject to Coriolis and rotational

buoyancy, and the first fully time-resolved measurements of turbulent velocity fields in a rotating

channel flow. Novel flow patterns are found and analyzed using instantaneous realizations, single-

point statistics, and proper orthogonal decomposition (POD), two-point correlations, and space-time

diagrams. The paper is organized as follows. The considered flow configuration is presented in Sec. II.

In Sec. III the experimental methodology is described, illustrating the apparatus and the measurement

technique. Section IV contains the results of the study, in terms of mean velocity fields, Reynolds

stresses, POD modes, space-time evolution of flow features, and two-point correlations. The main

conclusions are drawn in Sec. V.

II. CONSIDERED CONFIGURATION

The flow configuration under investigation is schematically sketched in Fig. 1, which illustrates

the expected flow behavior, based on previous studies. A rectangular channel of nearly square cross-

section is provided with ribs along one wall, oriented perpendicularly to the flow direction. The

channel is brought to steady rotation around the spanwise axis (i.e., the direction along which the

ribs are oriented). The flow is radial outward with respect to the center of rotation. The ribs induce

the separation of the boundary layer which, at the relatively large rib spacing considered here and

in the well documented non-rotating case, reattaches on the channel floor before facing the next

obstacle. The presence of the lateral walls, combined with the streamline curvature forced by the

ribs, produces two counter-rotating secondary flow cells. The mean flow features for the non-rotating

case are described in detail in literature.22, 23 In presence of rotation, Coriolis-induced secondary

flow cells appear and superimpose to the rib-induced one. Depending on the rib blockage ratio (rib

height over channel height) and rotation regime, one or the other type of secondary flow motion

dominates. Moreover, the direction of rotation of the Coriolis-induced secondary flow (in the relative

frame) depends on the direction of rotation of the channel (in the absolute frame). The impact of the

Coriolis forces is measured by the rotation number:

Ro =
ÄD

U0

,

which is the inverse of the Rossby number, commonly used in geophysical flows, where Ä is the

modulus of the angular velocity of the system, U0 is the relative bulk flow velocity, and D is the

characteristic length (in this case the channel hydraulic diameter). At the considered rotational

regime and blockage ratio (see Sec. III for details) the secondary flow cells due to Coriolis forces are

expected to be preponderant over the rib-induced cells. In this case the mean velocity profile in the

central part of the channel is skewed as depicted in Fig. 1, due to the fact that the fast-moving core

of the flow is pushed towards the trailing side of the channel. A more subtle but equally important

effect of the Coriolis forces is the stabilization/destabilization of the shear layers: in the present

FIG. 1. Schematic illustration of the mean flow features in a rotating rib-roughened channel.



configuration the impact of this phenomenon is large, especially for the reattachment length and

turbulence intensity levels of the separated shear layer past the rib.20

In the present study we consider the case in which the ribbed wall is heated to a temperature

level higher than the bulk temperature of the fluid, a situation relevant to internal cooling channels

of gas turbine airfoils. A density variation is generated in the near wall layers: the hotter (lower

density) fluid close to the wall experiences a weaker centrifugal force with respect to the cooler

(higher density) fluid. This situation results in a rotation-induced buoyancy force that drives the

local fluid radially inward (Fig. 1). The non-dimensional parameter characterizing the effect of

rotational buoyancy is the so-called buoyancy number:

Bo = Ro
2 r

D

Tw − T f

T f

, (1)

where r is the radius of rotation, Tw is the channel wall temperature, and Tf is the bulk fluid temper-

ature. Bo is analogous to the Richardson number Ri = Gr/Re
2 (where Gr is the Grashof number

and Re is the Reynolds number), with the centrifugal acceleration substituting the gravitational

one. The nomenclature adopted here is preferred in order to avoid confusion with the rotational

Richardson number.24

Several authors focused on the effect of heating one or more of the channel walls at different

levels12, 25 and found that the influence on the heat transfer was significant. It was conjectured that

this was due to the Coriolis-induced secondary flows, which altered the local coolant temperature

by carrying cooler/hotter fluid toward the leading/trailing wall (depending on flow direction and

wall heating conditions). Since most studies addressing this issue lack aerodynamic data, it is

unclear if the changes of heat transfer levels are also due to an alteration of the flow field. In a

further study spatially resolved thermal patterns in a rotating ribbed channel were presented for

different wall heating configurations26 (heating only the ribbed wall, heating also the opposite wall,

or heating the four walls): the heat transfer distributions appeared altered in absolute level but the

pattern was essentially the same for the different cases, suggesting that the main flow features in

the vicinity of the ribbed wall remained substantially unchanged when heating the other walls. In

the present case only the ribbed wall is heated, the focus being on the local effect of buoyancy on

the separating/reattaching flow. This choice is dictated by practical and methodological reasons.

Heating all four walls would impede optical access. Heating both leading and trailing walls would

cause hot fluid to flow over the lateral wall, which could not be well insulated without compromising

the optical access: severe losses would make the thermal boundary conditions uncertain. Heating

the wall opposite to the ribbed one would also result in a difficult access for illumination. We shall

remark that the present choice of thermal boundary conditions has important consequences on the

heat transfer, and possibly on the flow pattern in the buoyant cases, because not heating the three

walls causes larger temperature differences with respect to a fully heated channel. However, the

intent of the paper is to deepen the understanding of the flow physics at play, rather than reproducing

the most realistic industrial application. We therefore chose the thermal boundary condition that

could be specified in the most consistent way.

III. METHODOLOGY

A. Experimental installation

The measurements are carried out in a facility designed to perform PIV in rotating channel

flows.19 It consists of a disk of 2.5 m in diameter which is put in rotation around a horizontal axis by

a DC motor. A centrifugal fan supplies the air which flows through the test section in the outward

radial direction. Two-dimensional velocity fields are obtained by means of the on-board PIV system

consisting of a 25 W continuous laser diode and a CMOS high-speed camera with an internal

memory. The triggering signal for the camera and the electrical power for the instrumentation are

transmitted to the rotating frame via a slip ring. A detailed description of the facility can be found

in previous publications.19, 20 The test section for the present study (Fig. 2) consists of a 760 mm

long rectangular channel made of Plexiglas, except for the ribbed wall which is machined out of
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FIG. 2. Test section: (a) Schematic sketch, (b) regions of interest and axis definition, and (c) three-dimensional view.

copper. The hydraulic diameter D is 79 mm and the cross-section aspect ratio is 0.9 (75 mm in

spanwise direction and 83 mm in wall-normal direction). One wall is provided with 8 ribs of square

cross-section, placed perpendicular to the flow direction; their height is h = 8 mm and their spacing

is 10h = 80 mm. The Reynolds number based on the bulk velocity U0 is Re = U0 D/ν = 15 000, ν

being the air kinematic viscosity. In geometries of this type the major flow features show a certain

dependence on the Reynolds number up to Re = 15 000, but they are mostly unaffected by further

increase of Reynolds number.27 Measurements in rotation are performed at 134 rpm, corresponding

to a rotation number Ro = 0.38. The axis of rotation is parallel to the direction of alignment of the

ribs (spanwise direction). The measurement station is at about 1 m from the axis of rotation, therefore

in the expression of the buoyancy number, Eq. (1), we have r = 1 m. The facility can rotate in both

clockwise and counter-clockwise directions, with the ribbed wall becoming the leading and trailing

side, respectively. During the tests addressing the effect of rotational buoyancy, the copper wall is

heated by six electric resistances (MINCO) attached to the wall backside and powered through the

slip ring by an AC supply located in the fixed frame. Four Pt100 temperature sensors are embedded

in the copper wall at different locations spanning the full length. Thermal contact between sensors

and copper is guaranteed by using highly conductive paste (OMEGA). Heat losses are minimized

by sandwiching the resistances between the copper wall and a 8 mm thick Bakelite slab (thermal

conductivity of 0.2 W m−1 K−1). The wall temperature is kept constant thanks to a PID (proportional-

integral-derivative) controller located on the rotating disk and connected to the Pt100 sensors and the

AC supply. The temperature reading is performed in the fixed frame, allowing to monitor spatial and

temporal variations of the wall temperature during rotation. Maximum variations along the wall are

smaller than 0.5 K and temporal variations during each measurement run are within 1 K. Heating up

the ribbed wall at 368 K allows achieving a buoyancy number Bo = 0.31. The power input ranges

between 1900 and 2800 W m−2 depending on the rotational regime. The inlet flow temperature is

measured with a K-type thermocouple. For the hot tests the mean flow temperature in the channel

is evaluated from an energy balance, given the mass flow, the power input, and an estimation of the

thermal losses. Conduction losses are deemed less than 1% of the power input, and radiation losses

about 3%. The five tested flow regimes are summarized in Table I.

TABLE I. Summary of the flow conditions for the investigated cases.

Case Position of ribbed wall Re Ro Bo

1 Non-rotating 15 000 0.00 0.00

2 Leading side 15 000 0.38 0.00

3 Trailing side 15 000 0.38 0.00

4 Leading side 15 000 0.38 0.31

5 Trailing side 15 000 0.38 0.31
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FIG. 3. Streamwise velocity profiles at X/h = 0 and X/h = 10 for buoyant configurations along the leading and trailing walls.

B. PIV measurements

Velocity measurements are performed by PIV along the symmetry plane. The continuous light

from the laser diode is redirected by an optical fiber to a compact multi-lense module, which issues

a 1 mm thick laser sheet. A magnification factor of about 14 pixels/mm is achieved using a 50 mm

objective mounted on the CMOS camera. The PIV processing is realized by means of an iterative

interrogation algorithm with windows offset and deformation.28 The final resolution is about 1.3

× 1.3 mm2. The use of an external memory gate connected to the camera allows operating the system

in two different modes: for ensemble-averaged measurements and for time-resolved measurements.

In the former, one thousand uncorrelated realizations are acquired at 3 Hz and averaged to obtain

the mean flow statistics and the two-point spatial correlations. In the latter, 2000 time-resolved

realizations are obtained at 3.3 kHz, operating the PIV system in cinematographic mode (i.e., the

second image of each pair is the first of the successive pair). These type of data allow to record

the spatio-temporal evolution of the flow, and to calculate space-time two-point correlations. The

maximum error due to finite sampling is 2% for the mean velocity and 5% for the rms fluctuations,

based on a 95% confidence level. Two partially overlapping measurements stations (positions a and

b in Fig. 2), each about 45 × 30 mm2, cover the area between the 6th and 7th rib, extending in wall-

normal direction up to 3.5 rib heights. The Cartesian coordinates X, Y, and Z denote the streamwise,

wall-normal, and spanwise directions, respectively, with the origin located at the bottom corner

downstream of the 6th rib. The previous study on the non-heated configuration20 showed that the

flow was streamwise periodic for both rotating and non-rotating conditions after the 6th obstacle. For

the heated cases, full streamwise development cannot be achieved due to the presence of centripetal

buoyancy. In fact, because the radius of rotation varies along the test section, the buoyancy number

also varies. However, within the investigated area, this variation amounts to about 7% and is deemed

to have a minor impact on the flow. As a matter of fact, a direct comparison of streamwise velocity

profiles between locations X/h = 0 and X/h = 10 shows marginal streamwised development (Fig. 3).

IV. RESULTS

A. Mean flow statistics

In this section the results of the ensemble-averaged single-point statistics are presented. These

include the mean velocities and the normal components of the Reynolds stress tensor. The Reynolds

shear stresses indicate similar trends with respect to the normal stresses and are not reported. The

quantities U (u) and V (v) denote the mean (fluctuating) velocity components along the streamwise

direction X and the wall-normal direction Y, respectively. The data are normalized by the rib height h
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FIG. 4. In-plane mean streamtracers: non-rotating case (a), non-heated leading side (b), non-heated trailing side (c), heated

leading side (d), and heated trailing side (e).

and the bulk velocity U0. Figure 4 displays the mean in-plane streamtracer patterns in the investigated

area for the five considered cases: the non-rotating configuration, the rotating channel with the ribbed

wall as leading edge, the rotating channel with the ribbed wall as trailing edge, and the two rotating

cases with the ribbed wall heated. In the non-rotating case the typical features of the flow over a

rib-roughened wall are visible: the acceleration in the vena contracta, the large recirculation region

behind the rib, and the corner vortices at the bottom of the obstacles. When the Coriolis force acts

alone it modifies the flow field in the way described in Ref. 20: the secondary flows sweep the

high momentum core of the coolant towards the trailing side; moreover the stability of the free

shear layer generated by the obstacle is altered, resulting in a reduction of the reattachment length

along the trailing side, and an extension along the leading side. For the present rotational regime the

recirculation, which extends to X/h = 3.75 in the non-rotating case, shrinks down to X/h = 3.45 along

the trailing side, while it grows up to X/h = 6 along the leading side. For a lower rotation number

(Ro = 0.31) the reattachment along the leading side takes place earlier (X/h = 5.65),20 but about the

same location along the trailing side. This confirms that in anti-cyclonic rotation the recirculation

asymptotes to a minimum extension.29

Under the action of rotational buoyancy the flow field along the leading side changes completely.

The core streamtracers do not follow the usual contraction/expansion pattern over the obstacles. Vice

versa, the mean recirculation spans the whole inter-rib region. The corner vortex upstream of the 7th

rib has disappeared, absorbed by the larger structure. The size of the recirculation increases also in



FIG. 5. Schematic model for the mean flow streamlining the leading wall, with Coriolis and centripetal buoyancy forces.

wall-normal direction, extending well above the rib height. We remark that the streamtracers in the

main recirculation region are spiraling out of the focus; this is true also for the large recirculation in

the heated leading wall case. Therefore the Coriolis-induced secondary flows, although they cause

significant cross-plane flow, do not invert the fundamental topology of the focus, which remains

(along the symmetry plane) a source of mass.

Similar trends were shown by LES calculations21 for a similar configuration and flow parameters.

The regime considered in Ref. 21 was Re = 20000, Ro = 0.3, and Bo = 0.45; the thermal boundary

conditions were different with respect to the present case, as the four walls were heated and a uniform

heat flux was imposed. Also, both walls were ribbed. However, there is a stark similarity between the

streamtracer pattern presented in Fig. 4 of Ref. 21 and the present results. Those authors considered

a number of rotational and heating regimes and showed how, for Bo larger than 0.25, the main

recirculation bridged to the following corner vortex, spanning the full inter-rib floor. The structure

moved downstream for higher buoyancy number. Indeed, at their Bo = 0.45, the center of the

recirculation is located further downstream than in the present case. They argued that this larger

recirculation is responsible for the increase in heat transfer level found in experiment in similar

geometries for Bo > 0.25.30

Concerning the underlying mechanism behind this flow pattern, a schematic model is depicted

in Fig. 5: the rib-roughened wall heats up the adjacent fluid layers, which are driven upstream

by centripetal buoyancy (this condition is also referred to as opposing buoyancy, because it acts

in direction opposite to the main flow direction). The reverse flow interacts with the main stream

flowing above the ribs, creating a buoyant mixing layer. Due to the reverse flow spanning the whole

floor, the mixing layer is not curved towards the wall as in the non-buoyant rotating case, but is

sustained until the next rib. Approaching the obstacles the streamtracers bend, bridging both streams

and creating the recirculating path. The source point at the center of the recirculation highlights

the three-dimensional nature of the flow, which can be captured only partially by the present planar

technique. Nevertheless, as the measured velocity field lies on the symmetry plane, it is expected to

capture the main dynamics in the considered configuration.

It is worth noting that wall-mounted obstacles placed at the considered spacing are usually

considered as k-type roughness.31 In this type of roughness the main recirculation downstream of

the ribs occupies only a fraction of the space in between the elements. However from Fig. 4 it is

evident that the opposing buoyancy produces a mean flow pattern rather reminiscent of the d-type

roughness, with a single recirculation spanning the full inter-rib floor.

Another significant aspect of Fig. 4 is the very limited effect of buoyancy on the flow field along

the trailing wall. In fact, based on the LES simulation of a ribbed channel flow in a similar regime,

it has been argued that, for radial outward flows in rotating heated channels, the fluid adjacent to the

trailing wall experiences aiding buoyancy:32 when the cool core of the flow is pushed towards the

hot trailing wall, since it has lower density than the neighboring fluid, it experiences a centrifugal

(aiding) buoyancy. In the present case it is expected that the cooler core mixes rapidly with the

hotter near-wall fluid, also due to the strong turbulence fluctuations along the trailing wall (see

Fig. 7 below), smoothing out the temperature and density gradients, and reducing the local radial

acceleration (either aiding or opposing). Also, it should be noted that the flow along the trailing

side of the channel is significantly faster than along the leading side, due to the Coriolis-induced

secondary flows. It is likely that the shorter residence time of the fluid layers in the proximity of the

hot wall limits their increase in temperature, and so the effect on the flow is also limited.

Further understanding of the flow can be gained considering the in-plane mean velocity contours.

Considering the streamwise velocities, Fig. 6 (left), it is apparent how the Coriolis-induced secondary

flows increase the through-flow velocity along the trailing side, and vice versa along the leading
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FIG. 6. (Left) Contours of streamwise mean velocity component: non-heated leading wall (a), non-rotating wall (b), non-

heated trailing wall (c), heated leading wall (d), and heated trailing wall (e). (Right) Contours of wall-normal mean velocity

component: non-heated leading wall (a), non-rotating wall (b), non-heated trailing wall (c), heated leading wall (d), and

heated trailing wall (e).

side. The shrinking of the recirculation region along the trailing side results in a more abrupt

expansion, whereas on the leading side the vena contracta effect is less pronounced, and streamwise

accelerations are reduced. On the leading side the centripetal buoyancy drives upstream the hot fluid

adjacent to the wall, creating a continuous reverse flow from the 7th rib to the 6th. The mean flow

resembles closely (at least in the investigated plane) a two-dimensional mixing layer between two

counter-current streams. Buoyancy does not appear to alter significantly the streamwise velocity

along the trailing side. Figure 6 (right) shows the wall-normal component of the mean in-plane

velocity: the Coriolis force produces an intense downwash motion along the trailing wall after the

6th rib, and a strong upward deflection of the streamtracers just before the 7th rib. Along the leading

wall the wall-normal component is largely damped, and even more so when buoyancy is active: in

this case V is large only in the vicinity of the ribs, where the blockage imposed by the obstacles forces

the streamtracer to turn abruptly. Along the trailing side the effect of buoyancy results in smaller

wall-normal velocity (in absolute value), although the differences with respect to the non-heated

case are negligible.

B. Reynolds stresses

Rotation alters the mean flow pattern as well as the turbulence properties. The strong impact

of the Coriolis force on the streamwise and wall-normal fluctuations in the considered channel

geometry was demonstrated for a lower rotation regime:20 along the rib-roughened trailing wall

the destabilizing effect of rotation augments turbulent activity in both X and Y directions, and



X/h X/h

Y

h

Y

h

Y

h

Y

h

Y

h

(e)

(d)

(c)

(b)

(a)

FIG. 7. (Left) Contours of streamwise Reynolds stresses: non-heated leading side (a), non-rotating case (b), non-heated

trailing side (c), heated leading side (d), and heated trailing side (e). (Right) Contours of wall-normal Reynolds stresses:

non-heated leading side (a), non-rotating case (b), non-heated trailing side (c), heated leading side (d), and heated trailing

side (e).

vice versa for the leading wall. This is illustrated for the present case in Fig. 7 (left), displaying

the normal components of the Reynolds stress tensor along X and Y directions. It is particularly

evident how rotation affects the turbulent fluctuations in the free shear layer behind the rib. With

rotational buoyancy the distributions of both Reynolds stress components are significantly altered

along the ribbed leading wall. Both 〈uu〉 and 〈vv〉 are damped in the region downstream the 6th

rib and enhanced approaching the 7th rib. This is clearly shown in Fig. 8, that presents profiles of

uu /U2

0

X/h

Y

h

FIG. 8. Profiles of streamwise Reynolds stresses extracted at X/h = 0, 4.5, and 8, for the non-heated leading wall (triangles)

and heated leading wall (circles).
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FIG. 9. Profiles of streamwise mean velocity extracted at X/h = 0, 4.5, and 8, for the non-heated leading wall (triangles)

and heated leading wall (circles).

streamwise normal stresses at three locations along the leading wall, for both heated and non-heated

cases. The marked peak in turbulence activity right downstream of the rib in the non-heated case

becomes much milder with streamwise development. Vice versa, in the heated case, the turbulence

intensity grows gradually and largely exceeds the levels of the non-heated wall in the downstream

half of the inter-rib space. The origin of this trend is found in the different development of the shear

layer past the obstacle. Figure 9 shows profiles of streamwise velocity at the same locations of the

profiles in Fig. 8, for both the heated and non-heated leading walls. In the non-heated case the local

velocity gradient above the recirculation is high, but it diminishes significantly as the vena contracta

re-expands. Instead the shear associated to the heated case is maintained almost constant across the

domain, due to the reverse flow spanning the whole inter-rib space. In the non heated wall, both shear

and, consequently, turbulence levels are elevated in a relatively confined region (Y/h < 1.5). On the

other hand, the heated case shows a consistent level of turbulence much further into the core of the

flow. This considerations are further supported by Fig. 10, showing profiles of 〈uu〉 at Y/h = 3 for

all considered cases (except the heated trailing wall, negligibly different from the non-heated case).

Remarkably, both the rotating non-heated cases have lower turbulence intensity than the stationary

case. Along the leading wall, the turbulence agitation is quenched by the stabilizing action of the

Coriolis force. Along the trailing wall, although the turbulence intensity is much higher for Y/h < 1.5,

the secondary flows push the fluid along the symmetry plane towards the ribbed wall, and somewhat

confine the turbulence activity to the near-wall region. Vice versa, along the heated leading wall the

streamwise Reynolds stresses grow steadily as the shear layer develops, and above the downstream

obstacle they reach similar levels as in the steady case. We shall notice that, unlike the other cases,

the turbulence along the heated leading wall appears far from being developed (as indicated by the

lack of streamwise periodicity of 〈uu〉 in streamwise direction). Therefore even higher levels of

turbulence activity may be expected further downstream.

X/h

uu

U2
0

FIG. 10. Profiles of streamwise Reynolds stresses extracted at Y/h = 3, for the non-rotating case (squares), the non-heated

leading wall (triangles), the non-heated trailing wall (diamonds), and the heated leading wall (circles).



Finally, we remark that the near-wall flow reversal caused by rotational buoyancy inverts the

direction of the Coriolis force acting on this fluid layer: considering the direction of the local shear,

the Coriolis force is expected to have a destabilizing effect. Although the Reynolds stress levels are

found to be low in the immediate proximity of the heated leading wall, the local mean velocity is

also very low. It is difficult to infer whether, in absence of Coriolis force, the turbulence intensity

would be larger or smaller for an analogous flow pattern.

As in the mean velocity fields, along the trailing side the changes in turbulence structure due

to buoyancy are minor: for both 〈uu〉 and 〈vv〉 the highly turbulent plume is somewhat longer for

the heated wall. Similar conclusions with respect to the above are drawn from the distributions of

Reynolds shear stresses 〈uv〉, which are not reported here for sake of brevity.

These findings substantially confirm the conclusions of a previous study,21 where a similar

configuration was investigated. In the remainder of the paper we attempt to elucidate some of the

dynamics underlying the above single-point statistics, also leveraging the time-accurate velocity

measurements.

C. Proper orthogonal decomposition

In order to highlight the characteristic flow motions in the considered cases, we use the POD

method. This projects an ensemble of N samples of a vector field variable u = (u(x, t), v(x, t)),

onto N orthogonal spatial modes ϕn(x). An introduction to the technique can be found in Ref. 33.

By taking advantage of the PIV setup leading to a snapshot technique,34 the eigenvalue problem is

rewritten as
∫

〈u(x, t) · u(x, t)〉an(t ′)dt ′ = λnan(t),

where 〈 · 〉 is the spatial autocorrelation, an(t) are the time-varying amplitude coefficients, and λn

are the eigen values which represent the energy content of each mode n. Once these are obtained,

the POD modes ϕn are then retrieved by projecting the time-varying coefficients onto the original

data ensemble using

ϕ
n(x) =

1

Nλn

∫

an(t)u(x, t)dt.

The POD modes, ordered according to their respective eigenvalues, provide an optimal basis for

expansion of the flow, because they capture more energy than any other basis. Therefore, we associate

the most energetic modes with large-scale, energy-containing structures in the present flow.

Table II shows the cumulative energy contained in the first eight POD modes for the various

cases. Considering that this is about half of the total energy, POD is expected to capture many of the

important aspects of the unsteady motion.

We begin the POD analysis by illustrating the most energetic modes of the non-rotating case.

The first eight modes are reported in Fig. 11, together with the mean flow field (the zeroth mode). The

wall-normal velocity component is considered here, as it illustrates more clearly some of the salient

flow features and the differences among the various cases. Since the amount of energy contained in

each mode varies, the color scale is adjusted to display clearly the structures in each figure. In order

to compare the intensity of the various modes, their fractional energy content is plotted in Fig. 12.

TABLE II. Cumulative energy of the first eight POD modes for the various

cases: non rotating, leading side and trailing side, buoyant (hot wall) and

non-buoyant.

Hot Hot

Non rotating LS TS LS TS

ϕ L Sϕ T Sϕ L S ϕ̂ T S ϕ̂

54% 40% 52% 50% 52%



ϕ
0

v ϕ
1

v ϕ
2

v

ϕ
3

v ϕ
4

v ϕ
5

v

ϕ
6

v ϕ
7

v ϕ
8

v

Y
h

X/h X/h X/h

Y
h

X/h X/h X/h

Y
h

X/h X/h X/h

FIG. 11. Mean flow and first eight POD modes of the wall-normal velocity component in the non-rotating case. These modes

represent 54.7% of the total energy.

The first mode describes a motion that spans the whole inter-rib domain. This is consistent with the

results of a recent study dedicated to this geometry in a non-rotating frame:23 the separated shear

layer past the rib grows up to the following obstacle, and its flapping produces large scale motions

which persist for the entire inter-rib region and beyond. Further modes indicate the multi-scale

nature of the flow, with large energetic features breaking down into smaller, less energetic ones. The

eighth mode shows an alternation of upward and downward motions, with size of the order of the

rib height, traveling downstream. This is again consistent with the picture of the flow gathered for

this baseline non-rotating case.23

The effects of Coriolis and buoyancy forces, clearly visible in the single-point statistics in

Fig. 7, are reflected in the energy-containing modes. Figure 13 shows representative modes (first,

second, sixth, and eighth) for the non-heated leading side, non-heated trailing side, and heated

leading side. Once again, the heated trailing side does not possess significantly different features

with respect to the non-heated case, and therefore is not shown. These modes are chosen to illustrate

both the large energetic motions of the primary modes, and the smaller features of the further modes.

The distribution of the energy content among the modes for the rotating cases is very similar to

the one shown in Fig. 12. The first mode in the non-heated rotating cases indicates an extended

motion spanning the entire domain. With respect to the non-rotating case, the size of the downward

motion past the rib is larger or smaller depending on the sense of rotation. This is related to the size

of the recirculation region, which shrinks along the trailing wall and increases along the leading
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FIG. 12. Energy content of the first eight POD modes of the wall-normal velocity components for the non-rotating case.
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FIG. 13. First, second, sixth, and eight POD modes of the wall-normal velocity component: non-heated leading side (left

column), non-heated trailing side (middle column), and heated leading side (right column).

wall. At higher modes the flow structures are located closer to the wall when this corresponds

to the trailing side. This is a consequence of the Coriolis-induced secondary motions, that push

the core of the flow towards the trailing wall (Fig. 1). The opposite is true for the leading wall.

These structures appear slightly smaller along the trailing wall. This is in agreement with the view

suggested by the instantaneous realizations and two-point correlations of swirling strength20 for the

same configuration and at similar rotation regimes.

For the heated leading side, the first mode reveals strongly different features with respect to

the other cases. The first mode does not span the full inter-rib domain and it appears more blurred,

suggesting that the shear layer is associated to a less energetic oscillation in wall-normal direction.

The further modes show very different patterns from the non-heated cases, and indicate the presence

of elongated structures in streamwise directions, rather than an alternation of compact structures

shed from the shear layer.

D. Spatio-temporal evolution of the flow structures

So far we have reported ensemble-averaged quantities, based on statistically independent real-

izations. However the separated turbulent flow under consideration is expected to be characterized by

coherent structures.33 The latter leave a footprint on the flow statistics, as they contribute critically to

both to the production and transport of turbulent energy. In order to characterize these structures we

will use the temporally resolved velocity fields. We are especially interested in the length scales and

time scales of the vortical coherent structures, and their advection velocity. Since the flow separation

and reversal is a signature feature of the present configuration (and is known to have major influence

on the heat transfer at the wall), we also analyze the temporal evolution of the separated/reverse flow

regions.

The time-resolved stack of acquired 2D velocity fields constitutes a three-dimensional set of data,

where the third dimension is the time T. In the XYT space, XY planes correspond to PIV realizations,

while XT and YT planes provide spacetime diagrams, which are presented in the following. This

fashion of presenting the temporal evolution of two-dimensional velocity fields was described in

greater detail in Ref. 23. In this section, for ease of representation, only 400 consecutive realizations

(out of the 2000 acquired) will be visualized, corresponding to about 42 time units h/U0. They are
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FIG. 14. Space-time diagrams of velocity fluctuations at Y/h = 1.2, for the non-heated leading wall (a), non-rotating wall

(b), non-heated trailing wall (c), and heated leading wall (d).

however representative of the trends found in the entire XYT volume recorded. The data for the heated

trailing wall are not reported, as they closely follow the trends of the corresponding non-heated case.

Figure 14 displays contours of streamwise velocity fluctuations over a streamwise section

at Y/h = 1.2, i.e., along the shear layer past the rib. The fluctuations are obtained subtracting

the ensemble-averaged velocity field from the time-resolved data set. The alternation of streaks

of positive and negative fluctuations indicates that the shear layer is flapping, as expected in the

separated flow downstream of the obstacle.23 The inclination of the streaks in the XT plane is related

to the advection velocity of the structures. For the non-rotating case, there appear to be mainly two

classes of events: negative u fluctuations traveling at slower velocity than the local mean velocity

(about 0.4U0 versus 0.6U0), and positive u fluctuations traveling at significantly higher velocity (up

to 0.85U0). A very similar trend is found in the non-heated leading wall case, with the intensity of

the fluctuations being lower due to the inhibited turbulence levels, and the advection velocity being

smaller due to the lower local mean velocity. The large range of velocity scales suggests that some of

the events are generated locally by the rib-boundary layer interaction, while others are the signature

of structures traveling from rib to rib.23 For the non-heated trailing wall case, besides noticing that

the fluctuations are more vigorous, we remark that both the positive and negative u structures move

with approximately the same velocity as the local mean flow (about 0.9U0). This would suggest

that the rib-to-rib interaction is weakened in this case; support to this deduction is provided below.

Finally, the heated leading wall case displays a much slower (and milder) alternation of positive and

negative fluctuations, suggesting that the shear layer flapping is modulated by a lower frequency

with respect to the other cases.
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FIG. 15. Space-time diagrams of velocity fluctuations at X/h = 3, for the non-heated leading wall (a), non-rotating wall

(b), non-heated trailing wall (c), and heated leading wall (d).

Figure 15 shows contours of wall-normal velocity on a wall-normal section at X/h = 3. The

flow along the trailing wall presents major downwash events that extends over 3 rib heights, and

impinge on the inter-rib floor with high vertical velocity. The downwash motions in the non-rotating

case and in the non-heated leading wall case are less abrupt. Again, with respect to the other cases,

the heated leading wall experiences relatively slow and mild vertical velocity fluctuations.

Figure 16 depicts the streamwise velocity just above the tip of the 7th rib (Y/h = 1.1). For the

non-heated leading wall the near-wall flow is mostly directed forward, but mild and long-lasting

flow reversals may occur. In the non-rotating case, the frequent and intense reverse flow events

suggest the presence of intermittent recirculation, which at times can span the whole tip surface.

This recirculation is seen often in instantaneous realizations, but its high unsteadiness (and small

wall-normal extension) prevents from seeing its footprint on the ensemble-average field. Along the

non-heated trailing wall the reverse flow displays an even more irregular behavior: backflow occurs

over very short periods and very sporadically. Over the ribs of the heated leading wall flow reversal

is unlikely to happen, mostly because of the completely altered flow topology with respect to the

non-heated cases.

In order to describe the behavior of the reverse flow, Figs. 17 and 18 show isosurfaces at

U/U0 = −0.1 in the XYT volume, colored by wall-normal distance, for positions a and b, respec-

tively. In Fig. 17 (downstream of the 6th rib), the non-rotating and the non-heated leading wall cases

present again somewhat similar features, especially concerning the wall-normal extent of the recir-

culation. The instantaneous bubble extends further downstream in the latter case than in the former,

consistently with the larger time-average recirculation. Also, while the bubble along the non-heated

leading wall is fairly persistent in time, the non-rotating case shows strong intermittency, with the

reverse flow region shrinking or even disappearing at times (at the chosen threshold). This can be

interpreted as an oscillation of the reattachment point, although even the definition of instantaneous

reattachment is not trivial, due to the multiple structures arriving on the wall at any given time.
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FIG. 16. Space-time diagrams of velocity fluctuations at Y/h = 1.1, for the non-heated leading wall (a), non-rotating wall

(b), non-heated trailing wall (c), and heated leading wall (d).

Such unsteady behavior is even more pronounced along the non-heated trailing wall, which indeed

is characterized by much higher turbulence levels. In this case the bubble is not only shorter in

streamwise direction, but also confined to smaller wall-normal distances, as a consequence of the

core of the flow pushing towards the ribbed wall. Along the heated leading wall, the reverse flow

is much larger than for the other cases, both in X and Y directions, as expected from the mean flow

pattern. Also it is confirmed that the reverse flow is modulated by a low frequency motion.

In Figure 18, the U/U0 = −0.1 isosurface highlights the recirculation upstream of the 7th

rib. In the non-rotating and non-heated leading wall cases, there is a persistent flow reversal over

most of the displayed temporal sequence, confined at the corner between the rib and the floor. This

highlights the continuous presence of the recirculation structure generated by the separation of the

flow approaching the obstacle. In the non-heated trailing wall case, there is rather a sporadic bursting

of reverse flow events. This reflects the state of the highly turbulent flow streamlining the bottom

wall and approaching the rib. On the other hand, along the heated leading wall there is again a

massive flow reversal over the whole temporal segment. Combined with the picture provided by

position a, we conclude that this reverse flow region is a continuous feature, constantly spanning the

whole inter-rib floor. The upper portion of the isosurface appears quite beveled, probably due to the

development of the free shear layer that grows more turbulent in streamwise direction.

We now turn our attention to the coherent vortical structures, which play a major role in turbulent

flows as they carry a significant fraction of Reynolds stresses, vorticity, and production of turbulent

kinetic energy. Along the investigated symmetry plane a large portion of the vortices are expected to

be oriented spanwise, and 2D-PIV is a suitable tool for detecting such structures. Streamwise vortices
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FIG. 17. Isosurface of instantaneous velocity U/U0 =−0.1 in the space-time volume recorded at position a, for the non-heated

leading wall (a), non-rotating wall (b), non-heated trailing wall (c), and heated leading wall (d).

play also an important role in the dynamics of the separating/reattaching flow, but they can hardly

be captured by planar PIV. Therefore we confine our analysis to the spanwise vortical structures.

To identify the vortex cores, we evaluate the swirling strength λci, i.e., is the imaginary part of the

locally calculated complex conjugate eigenvalues of the velocity gradient tensor.35 Figures 19 and

20 display three-dimensional views of isosurfaces of swirling strength in the space-time domain,

for positions a and b, respectively. This plotted values correspond to 10% of the maximum swirling

strength (in absolute value). Vortices that have positive vorticity (rotating counter-clockwise in the

XY plane) are coloured in red, whereas vortices with negative vorticity (rotating clockwise) are

coloured in blue. Unlike point-wise measurements or uncorrelated PIV realizations, the present

approach provides an indication of both spatial and temporal coherence of the structures. We can
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FIG. 18. Isosurface of instantaneous velocity U/U0 =−0.1 in the space-time volume recorded at position b, for the non-heated

leading wall (a), non-rotating wall (b), non-heated trailing wall (c), and heated leading wall (d).

observe how vortices travel in space-time, pairing frequently to form larger structures. As expected,

a majority of clockwise rotating vortices are found, due to the mean shear of the separated flow. The

clockwise vortices originate probably from streamwise structures in the separated turbulent flows,

which are tilted towards the spanwise direction by the secondary flows. Fast-moving structures are

observed above the rib height, carried by the main stream, while near the floor vortical structures

are moving slower or even remain at the same location (as they appear aligned with the time axis).

Along the non-heated leading wall the vortices move slower, reflecting the lower velocity of the

flow past the ribs. The stabilizing effect of rotation on the shear layer results in well-defined vortex

cores, that travel for long distance in space and time without losing coherence. Along the non-heated

trailing wall, the spanwise vortices travel faster due to the higher velocity levels, but the structures

are quickly disrupted by the three-dimensional turbulent motion excited by the destabilizing rotation.
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FIG. 19. Vortical structures identified by isosurfaces of swirling strength (10% of maximum value) in the space-time volume

recorded at position a, for the non-heated leading wall (a), non-rotating wall (b), non-heated trailing wall (c), and heated

leading wall (d).
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FIG. 20. Vortical structures identified by isosurfaces of swirling strength (10% of maximum value) in the space-time volume

recorded at position b, for the non-heated leading wall (a), non-rotating wall (b), non-heated trailing wall (c), and heated

leading wall (d).

In this case, unlike on the non-rotating and the non-heated leading wall, no coherent vortex appear to

survive up to the following rib, disrupted by the high shear and by the strong background turbulence.

This confirms that the trailing wall case is the most unlikely to show rib-to-rib interaction. Along

the heated leading wall, the rotational buoyancy pushes the flow upstream, drastically reducing the

velocity at which the vortices are advected downstream. Actually, in the region close to the wall the



vortical structures appear to travel upstream, following the mean recirculation that spans the whole

inter-rib region. The structures along the heated leading wall are even more persistent than in its

non-heated counterpart, especially in position a, where the lowest turbulence levels are found.

E. Two-point correlations

In order to highlight the statistical footprints of the instantaneous flow features, we consider the

streamwise two-point velocity correlation function:

Ruu(X0,1X) =
u(X0)u(X0 + 1X)
√

u(X0)2

√

u(X0)2

, (2)

where X0 is the position vector of a fixed reference point, and 1X is the distance vector between

a moving point and the reference point. Here the overbar indicates the ensemble-average over 1000

uncorrelated PIV realizations. Contours of Ruu(X0, Y0; X, Y) at three reference points are displayed

in Fig. 21 for the various cases. In order to focus on the evolution of the free shear layer and on the

recirculation upstream of the rib, the reference points are chosen as: (X0/h, Y0/h) = (1, 1.2), (4.5,
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FIG. 21. Contours of two-point correlation of streamwise velocity at location (X0/h, Y0/h) = (1, 1.2), (4.5, 1.1), and (8, 0.5),

for the non-heated leading wall (a), non-rotating wall (b), non-heated trailing wall (c), and heated leading wall (d).



1.1), and (8, 0.5). Contours below Ruu = 0.4 are blanked, marking a conventional extent of the large

scale motions at each reference point. Along the non-heated leading wall the length scales are much

smaller than in the non-rotating case, especially in the developed free shear layer, suggesting that the

reduced turbulence activity limits the area affected by the spanwise rollers and by the flapping of the

shear layer. The non-heated trailing wall case shows similar Ruu contours to the non-rotating case,

but the orientation of the pattern downstream of the 6th rib is influenced by the fact that the core

of the flow pushes towards the ribbed wall. The opposite trend is observed along the heated leading

wall, where the large extension of the recirculation bubble in Y direction accounts for the increased

size of the correlated region with respect to its non-heated counterpart, especially in the early phases

of the shear layer. Remarkably, in the non-rotating case, unlike in all the other configurations, the

recirculation upstream of the 7th rib is correlated to large scale motions above the obstacle. This is

likely a consequence of the large scales associated to the flow that impinge on and overtake the rib,

and could have consequences on the local heat transfer. The other case with equally large length

scales is the non-heated trailing wall, but the high turbulence levels may disrupt the space-time

coherence of the recirculation (see Fig. 18).

Having a spatio-temporal data set allows to compute space-time correlations. In order to add

statistical relevance to the previous considerations about the vortical structures, we calculate space-

time two-point correlations of the swirling strength as

Rλλ(X0,1X,1T ) =
λci (X0, T0)λci (X0 + 1X, T0 + 1T )

√

λci (X0, T0)2

√

λci (X0, T0)2

, (3)

where T0 is a reference time and 1T0 is the time delay with respect to T0. The overbar indicates

average over 2000 time-resolved realizations. Since the considered turbulent process is stationary

(in the mean sense) the correlation coefficient is independent of T0. Figure 22 displays isosurfaces

of Rλλ = 0.5 for the reference point (X0/h, Y0/h) = (1, 1.2). The latter is chosen because is close to

the maximum of turbulence intensity for all non-heated cases. The selection of different points in the

shear layer does not affect the global trends. The value Rλλ = 0.5 is taken as a conventional definition

of length and time scale of the spanwise vortices, marking the region of the spatio-temporal domain

where the swirling events are strongly correlated with the one happening at (X0, Y0). As one can
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FIG. 22. Isosurfaces of two-point space-time correlation of swirling strength (Rλλ = 0.5) at location (X0/h, Y0/h) = (1, 1.2),

for the non-heated leading wall (a), non-rotating wall (b), non-heated trailing wall (c), and heated leading wall (d).



TABLE III. Advection velocities of spanwise vortical structures and corre-

sponding mean flow velocities at the location (X0/h, Y0/h) = (1, 1.2) for the

different cases.

Configuration Advection velocity Local mean velocity

Non-rotating 0.59 U0 0.72 U0

Non-heated leading wall 0.42 U0 0.60 U0

Non-heated trailing wall 0.90 U0 1.13 U0

Heated leading wall 0.30 U0 0.27 U0

see, the destabilizing effect of rotation along the trailing wall reduces the space-time coherence of

the spanwise vortices shed from the rib, diminishing dramatically both length and time scale of the

swirling structures. The opposite is true for the leading wall. When rotational buoyancy is acting,

the length scale and even more the time scale of the vortices are greatly increased. This is due to the

reduced transverse velocity gradient in the mixing layer: shear can stretch and tear the vortices apart

unless they are at least as strong as the shear itself. The high shear in the trailing wall case reduces

the lifetime of the vortices, while in the leading wall case the milder shear (especially for the heated

case) allows the vortices to survive longer. The slope of the isosurface pattern in the 1X − 1T

plane corresponds to the local advection velocity, i.e., the velocity at which the vortical structures

are advected by the flow (in streamwise direction). These velocities are listed in Table III for the

different cases, and compared to the mean flow. For the non-heated cases the advection velocities

are found to be significantly slower than the local mean flow (between 18% and 30%), while for the

heated leading wall the coherent vortical structures move 10% faster than the local mean flow. The

fundamentally dissimilar topology and possibly the density variations along the heated leading wall

are deemed responsible for this qualitative difference, although the specific mechanisms responsible

for the trend are not obvious.

V. CONCLUSIONS

We have investigated the turbulent flow in a rotating ribbed duct by means of particle image

velocimetry. By heating the rib-roughened wall, temperature and density gradients are produced in

the air flow, resulting in significant effects of the centrifugal force on the velocity field. The direction

of the flow is radial outward, which causes a centripetal buoyancy force acting on the near-wall

layers of fluid heated by the wall. There is a strong coupling between Coriolis and buoyancy forces:

depending on the sense of rotation, the Coriolis force causes secondary flows that either increase

or decrease velocity and turbulence intensity of the fluid flow near the heated wall. In the latter

case, the buoyancy leads to flow reversal in the near wall region, inverting the sense of the Coriolis

force. A precise breakdown of the various contributions and reciprocate influences would require

a detailed budget of the turbulence production, but to this end we would need the instantaneous

temperature/density information, which is challenging to obtain.

However, the coupling between Coriolis and buoyancy is demonstrated by the fact that the

classical picture of separating and reattaching in between the obstacles is modified substantially,

far beyond the effect of the Coriolis force alone. At the considered regime, along the leading wall

the recirculation region extends over the whole inter-rib distance, and grows even in wall-normal

direction much beyond the obstacle height. This flow pattern results from the interaction of the core

flow with the near-wall fluid directed upstream, creating a quasi-planar mixing layer. The hot fluid

is pushed from the near-wall layers into the coolant core and, vice versa, the hot fluid near the wall

is injected into the main stream, in a process that greatly enhances the mixing. We also observe that,

with respect to both non-heated rotating cases, the buoyant flow along the leading wall is associated

with a higher turbulence intensity in the region of the developed shear layer that grows toward the

core of the flow. The combination of these factors contributes to the improvement in heat transfer

along the heated leading wall, found by thermal measurements for similar geometries and regimes.



These conclusions are in line with the results of the LES simulations21 in a similar configuration at

comparable flow regimes, which up to now had not been confirmed by experiments.

Along the trailing wall the effect of rotational buoyancy does not impact the flow in a sizeable

manner. This is the consequences of two facts: the flow is more turbulent due to the destabilizing

action of the Coriolis force, and the consequent high mixing smoothes out local density variations.

Also, the near-wall velocity is higher due to Coriolis-induced secondary flows, and therefore the

residence time of the fluid in the vicinity of the heated wall is shorter, limiting its temperature rise.

Characteristic flow motions are extracted by proper orthogonal decomposition, confirming the

features previously deduced by the authors in the non-rotating case and in the rotating case with

unheated walls: large scale motions about the size of the obstacles are created in the separated

shear layer, and advected downstream. Along the heated leading wall, the most energetic modes

show that the flow is characterized by a very long wavelength of large-scale streamwise motion.

This is confirmed by the inspection of the time-resolved velocity fields, visualized in the space-time

volume: the reverse flow region is shown to be a persistent feature, continuously spanning the whole

inter-rib floor and mildly modulated by a low frequency oscillation. The latter is especially visible

in the flapping of the shear layer, imaged along space-time diagrams. Since the flow along the

heated leading wall presents a d-type topology, it is possible that temporal fluctuation of the large

“bubble” is controlled by the inter-rib distance (whereas in the other configurations the rib height is

the controlling length scale). Further investigation is warranted in this direction. In the non-buoyant

cases the time-dependent behavior of the recirculation bubble is more intermittent (especially along

the trailing wall) resulting in large oscillations of the instantaneous reattachment point. Along the

trailing wall the high shear and the strong background turbulence disrupt the spanwise vortical

structures generated in the separated shear layer, which die before reaching the next obstacle. On the

other hand, in the non-rotating case and in the leading wall cases many vortical structures maintain

their coherence as they are advected downstream, and may interact with the flow separating above

the following rib.

The spatial extension of the large scale motions is strongly affected by the stabiliz-

ing/destabilizing effect of the system rotation. The alteration of the flow field caused by rotational

buoyancy has the consequence of expanding the large scale motions through the shear layer, which

results in a better mixing also in a non-local sense. The space-time two-point correlation centered

in the shear layer indicates that the non-heated leading wall case produces larger and more robust

spanwise rollers, while the opposite is true for the non-heated trailing wall. The flow along the heated

leading wall, with its mild but consistent shear and limited unsteadiness, produces the largest and

most persistent vortices, which contribute to the transport and mixing. For all non-heated cases, and

irrespective of rotation, such vortical coherent structures are advected with velocity significantly

lower than the local mean flow; vice versa along the heated leading wall they move somewhat faster

than the local mean flow. The present regime, characterized by mixing convection coupled with

rotation, represents a challenge for classic turbulence closure schemes. To date, calculations of such

flows could only be verified with the aid of thermal measurements at the wall (which do not give

sufficient confidence about the robustness of the flow solution), or by high fidelity simulations (which

however require validation). The reported measurements represent the first experimental flow field

data in a duct flow with rotational buoyancy, and therefore they should be useful to the modelers.

In view of high-fidelity, time-accurate simulations, the reported behaviors, and their interpretation

should help discerning whether the spatio-temporal evolution of the flow is accurately reproduced.
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