
HAL Id: hal-03520679
https://hal.science/hal-03520679v1

Submitted on 11 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gene regulated car driving: using a gene regulatory
network to drive a virtual car
Stephane Sanchez, Sylvain Cussat-Blanc

To cite this version:
Stephane Sanchez, Sylvain Cussat-Blanc. Gene regulated car driving: using a gene regulatory network
to drive a virtual car. Genetic Programming and Evolvable Machines, 2014, 15 (4), pp.477-511.
�10.1007/s10710-014-9228-y�. �hal-03520679�

https://hal.science/hal-03520679v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 13161

To link to this article : DOI:10.1007/s10710-014-9228-y
URL : http://dx.doi.org/10.1007/s10710-014-9228-y

To cite this version : Sanchez, Stephane and Cussat-Blanc, Sylvain Gene
regulated car driving : using a gene regulatory network to drive a virtual
car. (2014) Genetic Programming and Evolvable Machines, vol. 15 (n° 4).
pp. 477-511. ISSN 1389-2576

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Gene regulated car driving: using a gene regulatory

network to drive a virtual car

Stéphane Sanchez • Sylvain Cussat-Blanc

Abstract This paper presents a virtual racing car controller based on an arti-

ficial gene regulatory network. Usually used to control virtual cells in devel-

opmental models, recent works showed that gene regulatory networks are also

capable to control various kinds of agents such as foraging agents, pole cart,

swarm robots, etc. This paper details how a gene regulatory network is evolved

to drive on any track through a three-stages incremental evolution. To do so, the

inputs and outputs of the network are directly mapped to the car sensors and

actuators. To make this controller a competitive racer, we have distorted its

inputs online to make it drive faster and to avoid opponents. Another interesting

property emerges from this approach: the regulatory network is naturally resis-

tant to noise. To evaluate this approach, we participated in the 2013 simulated

racing car competition against eight other evolutionary and scripted approaches.

After its first participation, this approach finished in third place in the

competition.

Keywords Gene regulatory network � Virtual car racing � Machine learning �
Incremental evolution

1 Introduction

The simulated racing car competition (SRC) aims to design a controller in order to

race competitors on various unknown tracks. This competition is based on the open-

S. Sanchez (&) � S. Cussat-Blanc
IRIT - CNRS UMR 5505, University of Toulouse, Toulouse, France

e-mail: stephane.sanchez@irit.fr

S. Cussat-Blanc

e-mail: sylvain.cussat-blanc@irit.fr

source racing car simulator (TORCS1). Both scripted and evolutionary approaches

can be used to control the virtual car. Within the frame of this competition, we have

proposed a new approach based on gene regulation evolved with a genetic algorithm

to produce a virtual car controller. Gene regulatory networks are bio-inspired

approaches usually used to control virtual cells in developmental models. However,

over the past few years, they have been found to be competitive approaches to

control agents that have to deal with uncertainty. To our knowledge, this work is the

first attempt to use such a controller to drive a virtual car. The competition offers a

very unique frame to compare this approach to other ones within a common

benchmark. The remainder of this section presents the existing approaches based on

an evolutionary process. Further details about them, and about other fully hand

scripted, supervised learning or imitation based controllers can be found in [23, 24]

Amongst the existing controllers for virtual car racing games that use an

evolutionary process to optimize the driver behavior, we can broadly consider two

kind of controllers. The first kind are indirect controllers where the inputs are not

directly linked to the outputs of the virtual racing car. The inputs, such as track

sensors, angle sensors, and speed sensors, are computed and transmitted to driving

policies based on hand-coded rules or heuristics that manage steering and throttle

controls. Usually, these controllers already know how to drive but an evolutionary

algorithm is used to improve and tune the driving policies in order to obtain a

competitive driver. They learn how, or are evolved, to drive better than their initial

design. The driver presented in [5], COBOSTAR, is such a controller. It is based on

two hand coded driving strategies, one for on-track driving and the other for off-

track driving. The parameters of these strategies are then optimized with CMA-ES.

The controllers Autopia in [26] and Mr. Driver in [29, 30] are both based on a

modular architecture. The modules are hand-coded heuristics or sets of rules in

charge of the basic control of the car (gear, steering wheel, opponents management,

etc.). A learning module then detects the segments of the track and adapts the target

speed of the car to drive as fast as possible. These kind of controllers are efficient

and they have been at the top of the SRC competition since 2009.

The second kind of controllers are direct controllers where sensors are directly

mapped to the car effectors. These direct controllers actually learn how to drive the

car using its sensors and actuators. These direct controllers can be based on evolved

artificial neural networks [2, 34], genetic programming [1] or the NEAT algorithm

[6, 8, 32, 33]. These methods have produced controllers that are specialized and

efficient on one specific track. The one in [32] approaches curves from the outside

and then cuts inside to reach the curve apex and maximize its speed. However, they

can also produce more generalized controllers that drive on most of the tracks but on

a safer race line rather than on the optimal race line of the tracks [6]. Because

evolving a direct controller from scratch that can drive on-track and manage all car

controls and race events is difficult, these controllers are sometimes mixed with

hand-coded policies that modify the controller outputs to handle crash recovery or

opponents, or that manage specific controls such as gear handling.

http://torcs.sourceforge.net/.

The controller we present in this paper is a direct controller. Instead of designing

complex hand-coded heuristics, we prefer to evolve the controller to drive the car by

using a standard genetic algorithm. In this work, the controller is based on a Gene

Regulatory Network (GRN). In order to optimize this GRN, we have used an

incremental evolution (as in [5, 34]) based on different fitnesses that gradually refine

the controller’s behavior. The experiments presented in this paper show that this

controller is able to drive on every kind of track. The performance of the GRN has

also been improved by the means of hand-coded contextual modifications of its

inputs to make it drive faster and overtake opponents.

The paper is organized as follows. Section 2 presents gene regulatory networks in

general, describing the existing computational models and the problems they are

currently handling. This section also introduces the computational model we have

used in this work. Section 3 describes how the GRN is connected to the car sensors

and actuators and how the GRN is incrementally trained with a genetic algorithm to

produce a basic driver. This section also demonstrates the capacity of the GRN to

naturally handle noisy sensors without any noise filter in-between the GRN and the

sensors. Then, Sect. 4 shows how we biased the GRN’s inputs to improve its

capacity to drive fast and avoid opponents. A comparitive study follows, showing

how the GRN performs in comparison to other approaches involved in the past years

competition. A discussion about how the obtained GRN works and about the

advantages and the weaknesses of our approach is provided in Sect. 6. Finally, the

paper concludes how this approach could be improved to produce a more efficient

car controller and how the GRNs are becoming a competitive alternative to other

common evolutionary approaches.

2 Gene regulatory network

Gene regulatory networks (GRNs) are biological structures that control the internal

behavior of living cells. They regulate gene expression by enhancing and inhibiting

the transcription of certain parts of the DNA. For this purpose, the cells use protein

sensors dispatched on their membranes; these provide crucial information to guide

the cells through their cycle. Figure 1 presents the functioning of the network. Many

modern computational models of these networks exist. They are used both to

simulate real gene regulatory networks [3, 14, 31] and to control agents [10, 12, 13,

16, 19, 25].

When used for simulation purpose, a GRN is usually encoded within a bit string,

as DNA is encoded within a nucleotid string. As in real DNA, a gene sequence starts

with a particular sequence, called the promoter in biology [21]. In the real DNA,

this sequence is represented with a set of four protein: TATA where T represents the

thymine and A the Adenine. In [31], Torsten Reil is one of the first to propose a

biologically plausible model of gene regulatory networks. The model is based on a

sequence of bits in which the promoter is composed of the four bits 1010. The gene

is coded directly after this promoter whereas the regulatory elements are coded

before the promoter. To visualize the properties of these networks, he uses graph

visualization to observe the concentration variation of the different proteins of the

system. He points out three different kinds of behavior from randomly generated

gene regulatory networks: stable, chaotic and cyclic. He also observes that these

networks are capable of recovering from random alterations of the genome,

producing the same pattern when they are randomly mutated. In 2003, Wolfgang

Banzhaf formulates a new gene regulatory network heavily inspired from biology

[3]. He uses a genome composed of multiple 32-bit integers encoded as a bit string.

Each gene starts with a promoter coded by any integer ending with the sequence

‘‘XYZ01010101‘‘. This sequence occurs with a 2ÿ8 probability (0.39 %). The gene

following this promoter is then coded in five 32-bits integers (160 bit) and the

regulatory elements are coded upstream to the promotor by two integers, one for the

enhancing and one for the inhibiting kinetics. Banzhaf’s model confirms the

hypothesis pointed out by Reil’s one; the same properties emerges from his model.

From these seminal models, many computational models have been initially used

to control the cells of artificial developmental models [13, 14, 19]. They simulate

the very first stage of the embryogenesis of living organisms and more particularly

the cell differentiation mechanisms. One of the initial problem of this field of

research is the French Flag problem [36] in which a virtual organism has to produce

a rectangle that contains three strips of different colors (blue, white and red). This

simulates the capacity of differentiation in a spatial environment of the cells. Many

models addressed this benchmark with cells controlled by a gene regulatory network

[9, 19, 20]. More recently, gene regulatory networks have proven their capacity to

regulate complex behaviors in various situations: they have been used to control

virtual agents [12, 18, 25] or real swarm or modular robots [10, 16].

2.1 Our model

The gene regulatory network used to control a virtual car in this paper is a simplified

model based on Banzhaf’s model. It has already been successfully used in other

applications. It is capable of developing modular robot morphologies [10],

producing 2-D images [11], controlling cells designed to optimize a wind farm

Protein
sensors

Regulation

Regulation sites

Target gene

Transcription

Produced protein

Proteins

Expression
Cell

functions

Fig. 1 In real cells, the gene regulatory network uses external signals to enhance or inhibit the

transcription of target genes. The expression of these genes will determine the final behavior of the cell

layout [35] and controlling reinforcement learning parameters in [17]. This model

has been designed for computational purpose only and not to simulate a biological

network.

This model is composed of a set of abstract proteins. A protein a is composed of

three tags:

• the protein tag ida that identifies the protein,

• the enhancer tag enha that defines the enhancing matching factor between two

proteins, and

• the inhibitor tag inha that defines the inhibiting matching factor between two

proteins.

These tags are coded with an integer in ½0; p� where the upper bound p can be tuned

to control the precision of the network. In addition to these tags, a protein is also

defined by its concentration that will vary over time with particular dynamics

described later. A protein can be of three different types:

• input, a protein whose concentration is provided by the environment, which

regulates other proteins but is not regulated,

• output, a protein with a concentration used as output of the network, which is

regulated but does not regulate other proteins, and

• regulatory, an internal protein that regulates and is regulated by others proteins.

With this structure, the dynamics of the GRN are computed by using the protein

tags. They determine the productivity rate of pairwise interaction between two

proteins. For this, the affinity of a protein a for another protein b is given by the

enhancing factor uþab and the inhibiting factor uÿab calculated as follows:

uþab ¼ pÿ jenha ÿ idbj; uÿab ¼ pÿ jinha ÿ idbj ð1Þ

The proteins are then compared pairwise according to their enhancing and inhibiting

factors. For a protein a, the total enhancement ga and inhibition ha are given by:

ga ¼
1

N

X

N

b

cbe
buþ

ab
ÿuþmax ; hi ¼

1

N

X

N

b

cbe
buÿ

ab
ÿuÿmax ð2Þ

where N is the number of proteins in the network, cb is the concentration of the

protein b, uþmax is the maximum observed enhancing factor, uÿmax is the maximum

observed inhibiting factor and b is a control parameter which will be detailed

hereafter. At each timestep, the concentration of a protein a changes with the

following differential equation:

dca

dt
¼

dðga ÿ haÞ

U

where U is a normalization factor to ensure that the total sum of the output and

regulatory protein concentrations is equal to 1. b and d are two constants that

influence the reaction rates of the network. b affects the importance of the matching

factors and d is used to modify the production level of the proteins in the differential

equation. In summary, the lower both values are, the smoother the regulation is; the

higher the values are, the more sudden the regulation is.

Figure 2 summarizes how the model functions. The edges represent the

enhancing (in green) and inhibiting (in red) matching factors between two proteins.

Their thickness represents the distance value: the thicker the line, the closer the

proteins.

3 Using a GRN to drive a virtual car

3.1 Linking the GRN to the car sensors and actuators

The GRN can be seen as any kind of computational controller: it computes inputs

provided by the problem it is applied to and it returns values to solve the problem. To

use the gene regulatory network to control a virtual car, our main wish is to keep the

connection between the GRN and the car sensors and actuators as simple as possible.

In our opinion, the approach should be able to handle the reactivity necessary to drive

a car, the possible noise of the sensors and unexpected situations. The car simulator

provides 18 track sensors spaced 10° apart and many other sensors such as car fuel,

race position, motor speed, distance to opponents, etc. However, in our opinion, all of

the sensors are not required to drive the car. Reducing the number of inputs directly

reduces the complexity of the GRN optimization. Therefore, we have selected the

following subset of sensors provided by the TORCS simulator:

• 9 track sensors that provide the distance to the track border in 9 different

directions,

• longitudinal speed and transversal speed of the car.

Figure 3 represents the sensors used by the GRN to drive the car. Before being

computed by the GRN, each sensor value is normalized to ½0; 1� with the following

formula:

normðvðsÞÞ ¼
vðsÞ ÿ mins

maxs ÿ mins
ð3Þ

where vðsÞ is the value of sensor s to normalize, mins is the minimum value of the

sensor and maxs is the maximum value of the sensor.

Once the GRN input protein concentrations are updated, the GRN’s dynamics are

run one time in order to propagate the concentration modification to the whole

network. The concentrations of the output proteins are then used to regulate the car

actuators. Four output proteins are necessary: two proteins ol and or for steering (left

and right), one protein oa for the accelerator and one ob for the brake. The final

values provided to the car simulator are computed as follow:

steer ¼
cðolÞ ÿ cðorÞ

cðolÞ þ cðorÞ
ð4Þ

accel ¼
0 if ab\ ¼ 0

ab otherwise

�

ð5Þ

brake ¼
ÿab if ab\ ¼ 0

0 otherwise

�

with ab ¼
cðoaÞ ÿ cðobÞ

cðoaÞ þ cðobÞ

ð6Þ

where steer is the final steering value of the car in ½ÿ1; 1�, accel is the final acceleration
value in ½0; 1�, brake is the final brake value in ½0; 1�, cðo�Þ is the concentration of the
output protein o�. Figure 4 shows the connection of the GRN to the virtual car.

Finally, the gear value is hand-written as it is a very simple script to develop; when

themotor is over a given threshold that depends of the current gear, the driver shifts up.

Under another threshold, the driver shifts down. The thresholds are detailed in Table 1.

Whereas other approaches use a noise reduction filter in addition to the standard

anti-locking braking system (ABS) and the traction control systems (TCS), the GRN

approach does not need any noise filter: it is naturally noise-resistant. The ABS and

TCS are switched on because they provide a large support in the braking and

acceleration zones. The impact of noise on the GRN reaction is detailed in Sect. 3.4.

The code of the GRNDriver is avalailable online on the SRC competition http://scr.

geccocompetitions.com. However, some improvements (minor bug corrections)

have been made for this particular paper.

3.2 GRN genome

Before it can drive, the regulatory network needs to be optimized. In this work, we use

a standard genetic algorithm to optimize the GRN’s protein tags, enhancing tags and

inhibiting tags. The GRN can be easily encoded in a genome. The genome contains

two independent chromosomes. The first one is defined as a variable length

P1
id=8

enh=25
inh=4

P2
id=15
enh=6
inh=23

P3
id=24
enh=6
inh=4

P4
id=2

enh=15
inh=30

P5
id=6

enh=2
inh=24

P6
id=19

enh=14
inh=1

P1
id=8

enh=25

inh=4

P4
id=2

enh=15

inh=30

P6
id=19

enh=14

inh=1

Input protein

Regulatory

protein

Output

protein

Enhances

Inhibits

Fig. 2 Graphical representation of a GRN: the nodes are the proteins and the edges represents the

enhancing and inhibiting affinity between two proteins. The bigger the edges, the closer the proteins

(Color figure online)

chromosome of indivisible proteins. Each protein is encoded with three integers

between 0 and p that correspond to the three tags. In this particular work, p is set at 32

and the genome proteins are organized with the input proteins first, followed by the

output proteins and then regulatory proteins. The inputs and outputs presented in the

previous section will be always be linked to the same protein, as represented in Fig. 5.

This chromosome requires particular crossover and mutation operators (repre-

sented in Fig. 6):

• a crossover can only occur between two proteins and never between two tags of

the same protein. This ensures the integrity of both subnetworks when the GRN

is subdivided into two networks. When assembling another GRN, local

connections are kept with this operator and only new connections between the

two networks are created.

• three mutations can be equiprobably used: add a new random regulatory protein,

remove one protein randomly selected in the set of regulatory proteins, or mutate

a tag within a randomly selected protein.

 Speed X

S
p

e
e
d

 Y

Fig. 3 Sensors of the car

connected to the GRN. The red

plain arrows are used track

sensors whereas the gray dashed

ones are the track sensors also

available in the simulator but not

used by the GRN. The plain

arrows Speed X and Speed Y are

respectively the longitudinal and

the transversal car speeds (Color

figure online)
...9 track sensors

Longitudinal speed

Transversal speed

GRN
Left steering

Right steering

Accelerator

Brake

Fig. 4 The GRN uses 9 track

sensors and the longitudinal and

transversal speeds to compute

the steering, the acceleration and

the brake of the car

Table 1 Motor speed

thresholds to shift down and up a

gear

Current gear Shift down

threshold (rpm)

Shift up

threshold (rpm)

1 - 9,500

2 4,000 9,500

3 6,300 9,500

4 7,000 9,500

5 7,300 9,000

6 7,300 -

A second chromosome is used to evolve the dynamics variables b and d. This

chromosome consists of two double-precision floating point values and uses the

standard mutation and crossover methods. These variables are evolved in the

interval ½0:5; 2�. Values under 0:5 produce unreactive networks whereas values over

2 produce very unstable networks. These values are chosen empirically through a

series of test cases.

3.3 Incremental evolution

In order to optimize the GRN to drive a car, we use an incremental evolution in

three stages.2 During these stages, the same parameters have been used to tune the

Car actuators

Car sensors

Protein Chromosome

Protein 1

id: [0,32]

enh: [0,32]

inh: [0,32]

type: input

...

Protein 9

id: [0,32]

enh: [0,32]

inh: [0,32]

type: input

Protein 10

id: [0,32]

enh: [0,32]

inh: [0,32]

type: input

Protein 11

id: [0,32]

enh: [0,32]

inh: [0,32]

type: input

Protein N

id: [0,32]

enh: [0,32]

inh: [0,32]

type: regul.

...

Left Right Accel. Brake

...
Track

sensor 1
Track

sensor 9
Speed X Speed Y

Protein 12

id: [0,32]

enh: [0,32]

inh: [0,32]

type: output

Protein 13

id: [0,32]

enh: [0,32]

inh: [0,32]

type: output

Protein 14

id: [0,32]

enh: [0,32]

inh: [0,32]

type: output

Protein 15

id: [0,32]

enh: [0,32]

inh: [0,32]

type: output

Protein 16

id: [0,32]

enh: [0,32]

inh: [0,32]

type: regul.

Fig. 5 Organization of the protein chromosome and link to the car sensors and actuators: the tags (in red)

are evolved by the genetic algorithm whereas the types (in green) are fixed and always plugged to the

same car sensors (for input proteins) and the same car actuators (for output proteins) (Color figure online)

Protein chromosome A

Prot

 a1

Prot

 a2

Prot

 a3

Prot

 a4

Prot

 a5

Prot

 a6

Protein chromosome B

Prot

 b1

Prot

 b2

Prot

 b3

Prot

 b4

Prot

 b5

Cross

over

Protein chromosome C

Prot

 a1

Prot

 a2

Prot

 a3

Prot

 b5

Protein chromosome D

Prot

 b1

Prot

 b2

Prot

 b3

Prot

 b4

Prot

 a4

Prot

 a5

Prot

 a6

Protein chromosome X

Protein 1

id=10
enh=7
inh=14

type=input

Protein i

id=8
enh=3
inh=6

type=regulatory
......

Protein chromosome X'

Protein 1

id=10
enh=7
inh=14

type=input

Protein i

id=8
enh=31
inh=6

type=output
......

Protein chromosome Z

Protein 1

id=10
enh=7
inh=14

type=input

Protein i

id=8
enh=3
inh=6

type=regulatory
......

Protein chromosome Z'

Protein 1

id=10
enh=7
inh=14

type=input

Protein n-1

id=23
enh=14
inh=18

type=regulatory
...

Mutate:
remove a
protein

Mutate:
modify a
protein

Protein chromosome Y'

Protein 1

id=10
enh=7
inh=14

type=input

Protein n+1

id=19
enh=1
inh=4

type=regulatory
...

Protein chromosome Y

Protein 1

id=10
enh=7
inh=14

type=input

Protein n

id=7
enh=13
inh=18

type=regulatory
...

Mutate:
add a
protein

Fig. 6 Crossover and mutation operators applied to the protein chromosome. A crossover (on the left-

hand side) can only occur between two proteins and a mutation (on the right-hand side) consists of

adding, removing or changing a protein

2 Videos of this evolution are available online: http://www.irit.fr/*Sylvain.Cussat-Blanc/GRNDriver/

index_en.php.

genetic algorithm. Only the fitness function is modified. The genetic algorithm

parameters are:

• Population size: 500,

• Mutation rate: 15 %,

• Crossover rate: 75 %,

• GRN Size: [4, 20] regulatory proteins plus inputs and outputs.

3.3.1 Stage 1: learning to drive on one simple track

The first stage consists of training the GRN to drive as far as possible, with a

minimum speed, on one track. We use CGSpeedway, the left-hand side track of

Fig. 7, which is simple with long turns and straight lines. In our opinion, this track

is interesting for learning to drive. It is a relatively easy track with long fast turns

and with fast straight lines to learn how to steer and to accelerate, and with more

difficult short turns to learn how to slow down and to brake. Each GRN is tested

on this track for 31 km (about 10 laps) maximum. The simulation is stopped as

soon as the car leaves the track or gets damaged (by hitting a rail for example).

To ensure the car is driving fast enough, we use a ticket system in which the GRN

must cover 500 � nLap meters per 1000 simulation steps, where nLap is the

current lap number. This pushes the GRNs that go far to accelerate. If a GRN

cannot reach this objective, the simulation is stopped. When the simulation ends,

the fitness function is given by the distance covered by the GRN along the central

line of the track. If a GRN has traveled all 31 km, a bonus is added. The bonus is

inversely proportional to the number of simulation steps needed to completed the

race.

The top curve in Fig. 8 presents convergence of the genetic algorithm with this

fitness. In order to avoid plateauing, we have implemented a restart function which

renews the entire population with the best individual, 25 individuals mutated from

the best one and 474 new genomes. The effects of the restart function can clearly be

seen on the convergence curve with a drastic drop of the fitness average, pointed by

the symbol (a).

In this convergence curve, five stages clearly appear. The first stage, denoted (b),

represents the time to learn to accelerate and to steer to avoid the track border of the

very first turn (turn 1 on Fig. 7). The second stage, denoted (c), represents the time

needed to learn to steer in order to go through turn 2. Once this is done, the GRN

can go through the complex series of turns 3, 4 and 5. At the third stage, denoted (d),

the best GRN can finish one lap, but the GRN stops in the second lap between turn 4

and turn 8. The GRN is too slow and is eliminated from the race by the ticket

system. The GRN then learns to drive faster until it can finish the second lap. At this

point, the ticket system increases the speed pressure on the GRN and the evolution

reaches a new stage (e). The best GRNs are once again stuck in turns 3–5 part of the

circuit. A smooth optimization of the GRN is observable in stage (f): the GRN

optimizes the trajectory in order to increase the car speed and go further. However,

it is not sufficient to finish the third lap.

At this point of the evolution, two GRNs are remarkable:

• the best GRN of stage (e) is able to drive endlessly on this track, without the

speed pressure. It is a safe driver that regulates its speed so that it can go through

all the turns of this track.

• the best GRN of stage (f) is able to drive faster than the previous one but takes

more risks. It optimizes the trajectories specifically to this track. In our opinion,

this controller is overspecialized: whereas the first one can cover some other

easy tracks, this one cannot.

Moreover, as presented on Fig. 9, the car is slightly shifted to the right side of the

track. That might explains why the GRN cannot generalize its driving to other

tracks: most of the turns on the training track are to the left. Thus, staying on the

right side is better. However, on tracks with hard right turns, this position can be

dangerous, the angle for right turns being closed. Moreover, some significant

oscillations on the steering can be noticed. Even if they do not imply oscillations on

the car track position, this behavior is unwanted and can be harmfull in a car race.

The aim of the next evolution stages is to correct these defects.

3.3.2 Stage 2: generalization on three tracks

From the previous observation, we want a GRN able to safely cover all possible tracks,

with all possible kindsof turns.With this aim inmind,weevolved the twopreviousGRNs

a second timewith the same evolutionary process but on three different tracks. The tracks

used are CGSpeedway (in order not to lose the driving capacity of the previous GRN),

Alpine and Street, whose layouts are presented in Fig. 7. The fitness function consists of

summing the fitnesses of the first evolution stage successively applied to the three tracks.

The middle curve of Fig. 8 plots the evolution of the population’s best, worst and

average fitnesses. The restart mechanisms has also been applied: this explains the

average fitness drops on the blue curve. Plateauing can be noticed during this

evolution. It also corresponds to the successive difficulties of the tracks:

• the beginning hair pins of Alpine,

• the three turns at the top of Street,

• the very slow hair pin at the end of the long straight line of Street.

CGSpeedway Alpine

Street

Turn3

Turn4

Turn6

Turn8

Turn9

Turn1
Turn2

Turn7

Turn5

Fig. 7 Tracks used to train the GRN. All of them are provided by TORCS

First optimization on 1 track

(c)

(d)
(e) (a)

 Max Average Min (f)

Second optimization on 3 tracks

Final optimization

Generalization

Cleaning

(b)

 Max Average Min

 Max Average Min

Fig. 8 Evolution of the fitnesses over the three evolution stages of the GRN. First, the GRN is evolved on

one track to learn to drive. Then, the GRN is generalized on three different tracks. Then, the GRN

behavior is cleaned up in order to reduce oscillatory issues

At the end of this evolution, the best GRN is able to drive on every possible track. It

drives very safely, going at a suitable speed to go through every kind of turn and

braking when it detects a turn. However, the best GRN has an oscillatory behavior

and is slightly shifted to the right hand side of the track. Whereas oscillatory

behaviors are common in gene regulatory networks, both these issues could be

harmful during a car race. This oscillation can be observed in Fig. 9 where the

trajectories and the steering of the car are plotted during the second lap on the

learning track (CGSpeedway). This oscillatory behavior can still be noticed on the

steering plot in which the blue curve, which represents the second stage of

evolution, strongly oscillates. The result is some parasitic behavior of the car on the

trajectory, especially at the end of the turns. The final cleaning stage aims to reduce

these parasitic behaviors.

3.3.3 Stage 3: cleaning the GRN’s imperfections

To minimize the oscillatory behavior, we evolve the best GRN one last time. This

time we add to the fitness function another test case that penalizes the continuous

oscillations of the car on straight lines and long turns or fast multiple steering

changes from full right to full left. As with the ticket system or the damage control

used in the previous fitness functions, we simply stop the evaluation if we detect

oscillatory behavior.

The detection routine proceeds as follows. A potential oscillatory behavior is

detected when the steering wheel crosses its neutral position (i.e. if goes from left to

right or from right to left). This initiates a countdown of 50 simulation steps. Within

this 50 simulation steps, if the steering wheel crosses the neutral position more than

three times and the sum of the steering variations is greater than a specified

threshold (here empirically set up to 2.0, which corresponds to one steering switch

from full right to full left), the oscillatory behavior is confirmed and the evaluation

stops.

-1

0

1

 0 500 1000 1500 2000

CGSpeedway (Asphalt) - Trajectory

Stage 1 Stage 2 Stage 3
-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000

CGSpeedway (Asphalt) - Steering

Stage 1 Stage 2 Stage 3

Turns 4 to 8
Turns

9 and 1
Turn 2 Turn 3

Fig. 9 Evolution of the car behavior during the three different stages of evolution. The left-hand side plot

represents the track position of the car along the distance from the start line: 0 means the car is on the

track centerline, -1 means the car is on the right edge of the track and 1 means the car is on the left one.

The right-hand side plot is the steering output value along the distance from start. -1 means the steer is

fully rotated to the right and 1 means fully rotated to the left (Color figure online)

The green line on Fig. 9 shows the steering values of the best GRN on the

CGSpeedway track at the end of this evolution stage. The steering spikiness of the

previous evolution (blue curve) that is visible in the first two fast curves is smoothed

and the steering does not oscillate anymore from full right to full left in the track

section from turn 4 to turn 8 and from turn 9 to turn 1 (see Fig. 7).

It can be noted that this last evolution stage reinforces the generalization stage by

improving the central position of the car. The GRN is also faster than before

because the oscillations reduce the car speed in general. These multiple evolution

stages were then strongly efficient to produce a GRN able to drive the car efficiently

on most of the tracks. Table 2 shows the time performed by the best GRN on the

learning tracks and on the 2012 SRC Competition tracks without further learning.

The time represents a 10-laps race without opponents, fuel management, or

damages. The GRN can also adapt to various kinds of track surfaces such as rock

and sand. Here again, no re-optimization is necessary; the GRN naturally handles

these new conditions. The next section shows how this GRN is able to naturally

handle noisy sensors.

3.4 Noise resistance

All of the evolutions presented above have been performed without noisy sensors.

The aim was to reduce the computational effort: noise implies multiple evaluations

of the same individual in order to lower the effects of randomness. Moreover, we

were expecting the GRN to be particularly resistant to noise. To verify this

hypothesis, we have compared the time performed by the best GRN previously

evolved during two 10-laps races on multiple tracks: one without noisy sensors and

one with noisy sensors. According to SRC client and server manual [22], when

noisy option is enabled, sensors are affected by independent and identically

distributed normal noises with a standard deviation equal to 10 % of sensors range

(track sensors) or to 2 % of sensors range (opponents sensors). We never use the

focus sensors that are only affected by a 1 % standard deviation. When the GRN is

used in a noisy environment, no filter is used between the noisy sensors and the

GRN inputs: the noisy values are directly provided as non-noisy ones.

Table 2 compares the results obtained without noisy sensors and with noisy

sensors.3 In a 10-lap race, the time loss due to the noise management is not

substantial. In some cases, on Kerameikos-mountain for example, the noise is even

beneficial to the GRN: this track, a slippery stony road with harsh hairpin turns, is

particularly difficult. The noise helps the GRN by creating micro oscillations that

allow the GRN to escape from difficult situations. More generally, Fig. 10 presents

the trajectories of the GRN without (gray dashed line) and with (red plain line)

noise. The trajectories are represented by the distance to the track centerline: 0

means the car is on the centerline, -1 means the car is on the right edge of the track

and ?1 means the car is on the left edge of the track. The trajectories of the driver

without and with noise are very similar on the four tracks tested. Some minor micro

3 A video of the capacity of the GRN to handle the noise is available on-line: http://www.irit.fr/

*Sylvain.Cussat-Blanc/GRNDriver/index_en.php.

oscillations appear with noisy sensors but they are not sufficient to destabilize the

car. Some larger oscillations appear in a particular section: on Kerang-desert, at the

position 2,750, the car oscillates more than usual but the GRN is able to stabilize

quickly after three periods of oscillations. The same phenomenon, less pronounced,

appears on Noceda-city at position 1,750 and on Mikegrady-hill at position 2,250.

The same recovery behavior can be noticed: the GRN stabilizes the car once again

in two oscillation periods. These results are very satisfactory, keeping in mind that

the GRN is used without a filter on the inputs.

We have compared the effect of noise on our driver and on six other approaches.

These are Mr Racer’s CMA-ES based approach [29, 30], Autopia’s fuzzy controller

[26, 27], Cobostar CMA-ES optimized hand-coded strategies [5], Cardamone’s

NEAT driver [6–8], Ready2Win’s modular architecture [4] and Mariscal’s expert

system [15]. All these drivers have competed either in the 2013 competition or in

older editions. They are six successful approaches used in the SRC competition

(winner to third position). These drivers have been downloaded from the

competition website. Table 3 presents the gain percentage (a positive percentage

means the driver drives slower with noise than without and vice-versa) of the drivers

on the different tracks. The results are obtained by running each driver on the tracks

for a 10-laps race with damages, without opponents and fuel management. At the

end of the 10-laps with noise and then without noise, the percentages are computed

with the global elapsed time of the races. It has to be notice that the GRNDriver is

directly connected to the simulator inputs without any filter nor the use of the focus

sensors (that reduce the noise in one chosen direction). Actually, few drivers use a

noise reduction system: only Mr Racer uses a quadratic regression to handle the

noise [28] and Ready2Win use a simple noise remover method based on averaging

Table 2 Time of the GRNDriver on various tracks with and without noisy sensors (elapsed time of a

10-lap race without opponents, fuel management, or damages)

Track name Track type Time without

noisy sensors

Time with

noisy sensors

Difference

Alpine Asphalt 28:54.98 29:02.55 ?00:07.57 (?0.4 %)

CGSpeedway Asphalt 07:34.09 07:35.23 ?00:01.14 (?0.2 %)

Street Asphalt 16:00.25 16:21.68 ?00:21.43 (?2.2 %)

Emero-city Asphalt 12:31.35 12:37.35 ?00:06.00 (?0.8 %)

Illschwang-desert Sand 15:40.51 14:44.48 -00:56.03 (-6.0 %)

Kerameikos-mountain Rocks 20:36.40 18:43.22 -01:53.18 (-9.1 %)

Kerang-desert Sand 14:03.42 14:08.65 ?00:05.23 (?0.6 %)

Mikegrady-hill Asphalt 14:53.56 14:59.47 ?00:05.91 (?0.7 %)

Mueda-city Asphalt 12:56.05 13:04.54 ?00:08.49 (?1.1 %)

Noceda-city Asphalt 12:02.79 12:05.80 ?00:03.01 (?0.4 %)

Senhor-hill Asphalt 17:46.20 18:32.03 ?00:45.83 (?4.3 %)

Zvolenovice-mountain Rocks 13:14.08 13:20.66 ?00:06.58 (?0.8 %)

Average -00:04.84 (-0.3 %)

Time format: mm:ss.ms

Table 3 Comparison of the resistance to noise of the GRNDriver and 6 other approaches

GRN

driver (%)

Mr

Racer

(%)

Autopia

(%)

Cobostar

(%)

Cardamone

(%)

Ready2Win

(%)

Mariscal

(%)

Alpine ?0.4 DNF ?0.4 ?3.5 ?0.9 DNF -13.2

CGSpeedway ?0.2 ?0.2 ?0.7 ?4.0 ?1.6 -0.9 ?0.5

Street ?2.2 -0.3 ?1.6 ?2.6 ?3.6 ?7.1 ?11.6

Emero-city ?0.8 ?0.2 -0.4 ?2.8 ?0.5 -0.3 ?2.8

Illschwang-

desert

-6.0 -0.1 0.0 ?12.2 ?1.5 -0.8 DNF

Kerameikos-

mountain

-9.1 DNF ?0.1 ?8.4 ?1.4 DNF ?0.8

Kerang-desert ?0.6 -7.5 ?0.4 -8.1 ?3.4 -4.4 DNF

Mikegrady-

hill

?0.7 ?0.1 ?1.6 ?4.9 ?1.5 -0.9 ?4.8

Mueda-city ?1.1 -4.9 ?0.6 ?3.8 ?2.1 ?1.4 ?4.6

Noceda-city ?0.4 -0.5 ?1.5 ?9.6 ?1.7 DNF ?3.9

Senhor-hill ?4.3 ?2.1 -0.2 -9.8 ?1.3 DNF ?0.6

Zvolenovice-

mountain

?0.8 -0.2 -0.1 ?6.0 ?1.0 ?3.1 -12.3

Average -0.3 -1.1 ?0.5 ?3.3 ?1.7 ?0.5 ?0.4

Each value of the table is a percentage that represents how much time the driver is taking with noisy

sensors to finish a 10-laps race with damages but without opponents, fuel management than without noisy

sensors. DNF means that the driver did not finish the race due to damages. Averages are thus computed

without DNF races

-1

 0

 1

 0 1000 2000 3000

Noceda-city (Asphalt)

No noise Noisy
-1

 0

 1

 0 1000 2000 3000 4000

Mikegrady-hill (Asphalt)

No noise Noisy

-1

 0

 1

 0 1000 2000 3000

Mueda-city (Asphalt)

No noise Noisy
-1

 0

 1

 0 1000 2000 3000 4000

Kerang-desert (Sand)

No noise Noisy

Fig. 10 Trajectories of the GRNDriver on four different tracks, during one lap, without (gray dashed

line) and with (red plain line) noise. Abscissa represents the distance from the start line and ordinate

represents the position of the car on the track (Color figure online)

values that are 5 % higher or lower than the 5 past averaged values. As the

GRNDriver, all other drivers have a direct connection of the inputs to the control

systems. Comparing the average values, the GRNDriver and Mr Racer are the only

two drivers to gain time with the noise. Whereas Mr Racer’s quadratic noise

reduction system provides it a strong advandage, the GRNDriver is not really

affected by the noise and even gain few seconds avoiding crashes as stated

previously. In comparison, other approaches loose few seconds handling noise.

Three other approaches handle the noise quite well: Autopia, Ready2Win and

Mariscal are almost unsensitive to the noise with an average gain percentage lower

than 0.5 %. In conclusion, GRNDriver handles the noise well in comparison to other

approaches without noise resistance systems.

4 Optimizing the GRN for racing

4.1 Learning to drive fast

The gene regulatory network optimized with the previous method is a safe driver,

able to finish almost any kind of tracks, with or without noisy sensors. However, this

GRN is not fast enough to compete with opponents. In order to make it drive the car

faster, we have distorted the GRN longitudinal speed. The idea is to trick the GRN

about its speed to make it accelerate and brake in particular areas of the track. To do

so, the speed sensor value is multiplied by a coefficient. The bigger the coefficient

is, the faster the GRN thinks the car is going and the most it tries to slow down by

braking. Actually, this proves the GRN perfectly correlates its speed and the

dangerousness of the current car state (track sensors, lateral speed, etc.). This

coefficient is calculated according to a target speed learned during the warm-up

stage of the race.4 The GRN speed perception is distorted in order to reach the target

speed as follows:

• If the car speed is 10 km/h under the target speed, the GRN’s speed sensor is set

to zero in order to make it accelerate as much as it can handle it.

• If the car speed is 10km/h over the target speed, the speed sensor provided to the

GRN is multiplied by 1þ ds=50 where ds is the difference between the current

speed and the target speed. The GRN is then pushed to reduce its speed but not

too drastically. For example, if the car is in a turn, it would be counter-

productive to brake (the car will spin).

To learn the target speeds, we use a scripted approach. This approach is

comparable to Butz et al. method [5] in which crash points are detected during the

race and the car is slowed down in these areas in order to secure the car behavior. In

our approach, this optimization is made during the warm-up stage. To do so, the

4 The warm-up stage consists of 100,000 timesteps that can be used by the competitors in order to collect

data about an unknown track.

track is first divided into 25 m long sectors. The target speeds are all initialized to

300 km/h in order to push the GRN to drive as fast as possible. When the

GRNDriver spins or leaves the track, the sectors of a zone which contain the current

sector and the 5 sectors upstream are marked as ‘‘reducing’’. When marked, the

target speeds of these sectors are reduced by 125 km/h. When the target speeds of

this zone reach a minimal value of 50 km/h, one sector is added to the zone and its

target speed is decreased. With this method, we can guarantee that the GRN can

handle every kind of turns, even when it approaches very fast and has to brake

quickly. Once the zone is passed, all sectors of the zone are marked as ‘‘increasing’’

and the target speeds of all sectors are gradually increased by 20 km/h until the

GRNDriver crashes again in this zone. When this happens, the previously added 20

km/h is subtracted and the sectors are marked as ‘‘braking’’. The final step consists

of reducing the possibly too long braking zone. To do so, the target speed of the

zone’s first sector is set to 300 km/h: the braking zone will be reduced each time the

GRNDriver is able to go through the modified zone. When the GRNDriver crashes

once again in this zone, the previous target speed is restored and the zone is marked

as ‘‘locked’’. When locked, the GRNDriver can still crash because of the noise. If

this happens, the target speeds are reduced by 5 km/h to secure the zone. Figure 11

presents an example of the optimization mechanism.

Downgrading
target speed of 5
sectors

Downgrading
target speed of the
entire zone

Upgrading the
zone until the car
crashed

Reducing the
braking zone until
the car crashes

Backtrack on the
braking zone and
Lock the zone

25m long sector
with its target speed

Locked sector

G
R

N
 D

G
R

N
 D Car trajectory

Car crash

300 km/h

175 km/h

50 km/h

110 km/h

Target speeds:

S1

S2

S3

S4

S5

S6

S7
S8 S9

GRN D

GRN D

Stage 1

S1

S2

S3

S4

S5

S6

S7
S8 S9

GRN D

GRN D

Stage 2

S1

S2

S3

S4

S5

S6

S7
S8 S9

GRN D

GRN D

Stage 3

S1

S2

S3

S4

S5

S6

S7
S8 S9

GRN D

GRN D

Stage 4

S1

S2

S3

S4

S5

S6

S7
S8 S9

GRN D

GRN D

Stage 6

S1

S2

S3

S4

S5

S6

S7
S8 S9

GRN D

GRN D

Stage 7

S1

S2

S3

S4

S5

S6

S7
S8 S9

GRN D

GRN D

Stage 5

Backtracking
(removing
20 km/h)

Fig. 11 Example of target speed optimization on one turn: the target speed is first initialized to maximum

speed (300 km/h). If the GRN cannot go through a turn, the speed is gradually reduced by 125 km/h until

reaching 50 km/h (Stages 1 and 3). When the car can manage the turn, the target speed is gradually

increased by 20 km/h until the car crashes again (Stage 3 and 4, here only represented on one picture).

Then, the braking zone is reduced as much as possible (Stages 5 and 6). When the car crashes again, the

braking zone is backtracked to the previous size and all sectors are locked (Stage 7)

The process can be pipelined along multiple runs: if the car crashes on the third

zone, itmeans that the third zonemust bemodified but it also implies that theGRNwas

able to handle the first two zones. Thus, they can be optimized by potentially going to

the next step. The marking process is linear per zone (a mark of a zone can only be

increased, never downgraded to a previous stage) expect for the first zonewhich can be

marked as ‘‘reducing’’ when the car crashes in this zone after it finishes a lap. This

ensures that the first turn is perfectly covered, even if it is after a long straight line.

Table 4 presents the timeperformedby the bestGRNonvarious tracks taken from the

2012 competition with and without this speed optimization. To do so, the GRN is tested

without target speed andwith target speed on all trackswith noisy sensors. For the target

speed optimization, we use the standardwarm-up procedure that consists of running the

optimization for 100,000 simulation steps; then the GRN with the optimized target

speed vector is run in race mode without opponents for 10 laps. Damages and fuel are

disabled but the GRN has to handle the noise, as in the competition. By learning the

target speed for the different sectors of the track, the GRN runs on average 2min 51 s or

18.7 % faster than the default GRN. The gain is significant in all tested tracks.

Figure 12 presents the track position and the longitudinal speed of the car on 4

different tracks, with and without target speed optimization. The speed gain of this

approach is undeniable in all the sectors of the tracks. The GRN is accelerating

earlier and stronger and brakes later. Moreover, it may be noted that the increase of

the speed drives the GRN to use the full width of the track, the speed dragging the

car to the outside edge of the track.

4.2 Avoiding opponents

In order to compete efficiently, the driver must avoid or overtake opponents. The

GRN controller has learned to drive without such considerations and, even if it can be

fast using the ‘‘target speeds’’ method, it needs to be able to change trajectories in

order to avoid or to overtake opponents. The GRN controller we chose to compete

Table 4 Comparison of the best lap out of three with and without target speed optimization

Track name Track

type

Time without

target speeds

Time with

target speed

Difference

Emero-city Asphalt 12:37.35 10:51.85 -01:45.50 (-13.9 %)

Illschwang-desert Sand 14:44.48 11:08.05 -03:36.43 (-24.5 %)

Kerameikos-mountain Rocks 18:43.22 14:43.77 -03:59.45 (-21.3 %)

Kerang-desert Sand 14:08.65 12:32.10 -01:34.55 (-11.1 %)

Mikegrady-hill Asphalt 14:59.47 13:00.87 -01:58.60 (-13.2 %)

Mueda-city Asphalt 13:04.54 10:46.48 -02:18.06 (-17.6 %)

Noceda-city Asphalt 12:05.80 09:35.98 -02:29.82 (-20.6 %)

Senhor-hill Asphalt 18:32.18 13:26.18 -05:05.85 (-27.5 %)

Average -02:51.03 (- 18.7 %)

Format of the lap time: mm:ss.ms

presents an interesting and usable feature: two track sensors, one on each side of the

car, are linked to the steering actuators in order to keep the car on the centerline of the

track. This characteristic is common to almost every GRN that was evolved through

the process previously described, although the track sensors used to center the car on

the track might differ and are not necessarily symmetric. In order to modify the car

trajectory toward the left or the right hand side of the track, we can alter both sensors

as we altered the longitudinal speed sensor to make the GRN drive faster in the

previous section. For example, we can trick the GRNDriver into thinking that the

track is much larger on the left by making the input from left track sensor greater, but

keeping the one from the right sensor unchanged. The GRNDriver will then believe

that it is driving on the right side of the track instead of in the middle of the track and

it will turn left to reach the new imaginary centerline. Moreover, the others sensors

-1

 0

 1

 0 1000 2000 3000

Noceda-city (Asphalt) - Trajectory

Optimized Basic

-1

 0

 1

 0 1000 2000 3000 4000

Mikegrady-hill (Asphalt) - Trajectory

Optimized Basic

-1

 0

 1

 0 1000 2000 3000

Mueda-city (Asphalt) - Trajectory

Optimized Basic

-1

 0

 1

 0 1000 2000 3000 4000

Kerang-desert (Sand) - Trajectory

Optimized Basic

 0
 0 1000 2000 3000

Noceda-city (Asphalt) - Speed

Optimized Basic
 0

 100

 200

 300

 0 1000 2000 3000 4000

Mikegrady-hill (Asphalt) - Speed

Optimized Basic

 0

100

200

300

100

200

300

 0 1000 2000 3000

Mueda-city (Asphalt) - Speed

Optimized Basic
 0

 100

 200

 300

 0 1000 2000 3000 4000

Kerang-desert (Sand) - Speed

Optimized Basic

Fig. 12 Trajectories (top) and longitudinal speed (bottom) of the car on 4 different tracks with and

without target speed optimization

being untouched, the controller still automatically compensates steering and throttle

output levels to keep the car inside the track limits.

The two chosen sensors for this purpose are presented by bold arrows in Fig. 13.

By multiplying the left sensor value by 1.65 (empirically chosen through several

tests), the car shifts its trajectory by the width of a car to the left. Multiplying the

right sensor value by 2.65 (empirically chosen) shifts the car trajectory by the width

of a car to the right. Figure 14 presents the trajectory of the car on Noceda without

modification to the track sensors (plain red line), the one produced by applying the

1.65 factor to the left sensor (dashed blue line) and the one produced by applying the

2.65 factor to the right sensor (dashed green line). The car shifts its trajectory as

expected but is still able to drive through all the track. The GRN adapts its behavior

in order to keep the car on track even with the modified sensor inputs.

Based on this observation, this method is used to modify the car trajectory

according to the opponents detected in the car neighborhood. If an opponent is

detected within a 25 m range, the car deviates in the opposite direction to the one the

opponent is detected in. This procedure only applies if the front track sensor value is

[50 m. If it’s not, overtaking is detected as unsafe and the car will stay behind the

opponent car with a procedure described hereafter. If overtaking occurs, the

opponent car is tracked during the whole operation and the track sensors return to

their real value when the front and side opponent sensors do not detect any opponent

nearby. Figure 15 shows this procedure and Fig. 16 shows the trajectory taken by

the car in a real situation extracted from TORCS.

If opponents are detected on both sides of the car or if the distance ahead is not

sufficient, the GRNDriver will stay behind the closest opponent ahead (Fig. 17). To

keep the GRNDriver behind an opponent, we adjust the speed of the car using the

same method we used in Sect. 4.1. In this case, the longitudinal speed sensor is

adjusted according to the speed of the closest opponent as follows:

speedX ¼

5 � speedX if d\5

speedX � max tr; 4ÿ
4d

25

� �

if 5� d\25

speedX � tr if d� 25

8

>

>

<

>

>

:

ð7Þ

where speedX is the value of the longitudinal speed, tr is the value of speed factor in

the current sector (see Sect. 4.1), d is the distance between the car and the closest

opponent in front of the car. The factor applied to the longitudinal speed when the

opponent is closer than 5 m forces emergency braking to avoid a collision. It might

be that the GRN is stuck behind an opponent while overtaking another one as

represented in Fig. 17b. In this case, the three concerned inputs (left track sensor,

right track sensor and longitudinal speed) are simultaneously modified according to

the overtaking and staying behind rules.

4.3 Recovering from a crash

During a race with opponents, the car can go off the track for different reasons

(collision, braking or steering errors due to the noise, etc.). In this case, a track

recovery routine is applied to get the car back on track. The track sensors provided

by TORCS when the car is off the track are all equal to -1. Because of that, the

GRN cannot learn to go back on the track. Instead, we have implemented a simple

Unused track sensors

Track sensors used by the GRN

Track sensors used for positioning

GRN Driver

GRN Driver

Fig. 13 Two track sensors (in

plain red) can be modified in

order to change the car

trajectories. For example,

increasing the left sensors value

will automatically modify the

GRN behavior, tricking it about

its position on the track. Thus, it

will change its trajectory while

maintaining a global coherent

behavior (stay on the track)

(Color figure online)

-1

 0

 1

 0 1000 2000

Noceda-city (Asphalt) - Avoidence trajectories

Original Avoid left Avoid right

Fig. 14 The plain red line

represents the normal racing line

computed by the GRNDriver on

Noceda Track. The dashed blue

line is the altered racing line

using a fixed 1.65 factor on the

left track sensor. The dashed

green line is the altered racing

line using a fixed 2.65 factor on

the right track sensor (Color

figure online)

GRN Driver

GRN Driver

X 1.

Overtaking done!
Go back to

standard trajectory ...GRN Driver

GRN Driver

X 1.65

Overtaking
left side!

GRN Driver

GRN Driver

X 1.65

Overtake left side! (a) (b) (c)

Fig. 15 Three phases in avoidance routine: a The GRNDriver detects a car on the right and begins to

overtake on the left side. b The GRNDriver overtakes, keeping the car on the left of the track.

c Overtaking is done, the GRNDriver resumes its normal racing behavior. The blue and red angular

sectors represent the opponent sensors as described in the SRC competition client. Only the useful sensors

are represented for clarity matters (Color figure online)

script that turns the car in the direction of the middle of the track and drives forward.

Once the track sensor values are coherent again, the GRN takes control of the car

back and resumes race.

5 Comparative study

To evaluate the model presented in this paper, we have compared the GRNDriver

with other approaches that have competed during the past Simulated Car Racing

competitions. As in Sect. 3.4, the selected drivers for this comparative study are Mr

Racer, Autopia, Cobostar, Cardamone, Ready2Win and Mariscal. The comparative

study is based upon:

• the best lap times in qualification mode,

• the elapsed times on a 10-laps race with noise, damages and without fuel

management nor opponents,

• the final positions on 10-laps races with all the opponents, with noise, damages

and without fuel management.

Fig. 16 The GRNDriver avoids the red car. The plain line is the normal trajectory, the dotted line is the

altered trajectory using a 2.65 factor on the right track sensor used to position the car in the middle of the

track (Color figure online)

GRN Driver

GRN Driver

X 1.65

But stay behind!
Brake if necessary...

GRN Driver

GRN Driver

Stay behind !
Brake if necessary ...(a) (b)

Fig. 17 a The GRN detects opponents slower than it but no sides are free to overtake, it then slows to

stay behind. b The GRN is overtaking the blue car on the right, but another slower opponent blocks the

line, it then slows to stay behind the car on the left, keeping its altered trajectory to still overtaking the car

on the right (Color figure online)

All these comparison have been made after independent warm-up stages for each

driver on each track. These results might differ from the results obtained during the

competition due to minor bug resolution in our code for this paper. The three next

sections present these comparisons.

5.1 Qualifications: best lap comparison

In this first comparison, the drivers are alone on a track and are running for 10-laps.

Fifteen tracks have been selected to have various types of coatings (asphalt, rock

and sand) and different profiles (city, mountain, etc.). Table 5 presents the best lap

of each driver at the end of these 10 laps.

In this table, the GRNDriver is compared before and after the target speed

optimization presented in Sect. 4.1. Without target speeds optimization, the

GRNDriver competes with the slowest drivers with an average final position of 6.40

over 8 participants. The main observation that can be made is that the GRNDriver

can drive on any kind of tracks, without prior learning on these tracks. However, it

has a safe driving behavior that does not allow it to compete with the best

approaches.

With target speed optimization, the GRNDriver is still not the fastest driver but it

is usually well ranked: it finishes amongst the first three fastest drivers 13 times out

of 15. The GRNDriver competes particularly well on slippery tracks such as

mountain (rocks) and desert (sand) tracks. We can note that the GRNDriver has only

been trained on asphalt tracks (CGSpeedway, Alpine and Street) and never on

slippery tracks. Moreover, there is no specific parameters or sub-routines to handle

slippery tracks. The GRN controller is used as is. This emphasizes the capacity of

the GRN to adapt its behavior under unknown conditions.

5.2 10-laps races without opponents

In this second comparison, the drivers are running for a 10-laps race with noise and

damages and without fuel management or opponents. Prior to each race, a warm-up

has been run so that each driver starts on a fresh learning basis. Table 6 presents the

results of each driver on 15 different tracks.

The GRNDriver without target speed is evaluated first. Whereas some drivers

cannot reach the finish line of the race (see DNF signs in the table) even after a

warm-up session, the GRNDriver without target speed optimization, and thus

without any a-priori knowledge of the tracks, finishes all tracks. Moreover,

GRNDriver is faster than one of the opponent (Cardamone): its average final

position is 5.8 in comparison to 6.87 for Cardamone.

With the target speed optimization, the GRNDriver still finishes all the races and

it is very competitive: its average final position is 1.80 and it finishes 14 races out of

15 in the top three pilots. Whereas other approaches defeats the GRNDriver on a

one-lap race, the GRNDriver is more competitive on longer runs. This shows the

capacity of the GRN to keep a stable behavior on long noisy runs. Once again, we

can notice that the GRNDriver beats all other drivers when the track conditions

Table 5 Comparison of the best laps (in seconds)

GRND. w/o TS GRND. w. TS Mr Racer Autopia Cobo star Carda-mone Ready2Win Maris-cal

Alpine 1 173.49 156.67 147.93� 142.3 H 199.37 182.02 147.34� 153.69

CGSpeedway 44.97 41.02� 49.39 40.54 H 40.99� 51.18 42.94 43.03

Street 1 94.92 91.46 86.85� 86.3� 95.49 106.97 84.72 H 87.05

Emero-city 75.17 66.87 64.11 H 66.53� 65.47� 85.92 66.67 68.93

Mueda-city 89.55 64.59� 64.55 H 64.78� 65.54 86.77 68.76 70.38

Noceda-city 71.73 57.35� 56.95 H 59.77� 68.64 80.6 85.3 62.7

Sancassa-city 76.69 67.68� 69.02� 65.85 H 89.58 86.84 119.72 71.18

Alsoujlak-hill 90.45 75.13� 73.5 H 74.81� 92.79 95.26 78.84 78.65

Mikegrady-hill 104.99 74.36� 72.66 H 77.04 76.51� 97.82 77.31 80.55

Senhor-hill 91.21 79.16 H 79.19� 79.23� 80.46 100.65 256.71 83.6

Keiramekos-mountain 102.38 85.42 H 90.38� 90.51� 101.78 111.36 93.1 99.69

Zlovenovice-mountain 89.93 76.18� 86.11 75.85 H 85.39 92.59 80.52� 124.57

Arraias-desert 78.06 67.69� 65.07 H 68.48� 73.4 78.26 68.68 142.22

Illschwang-desert 88.23 64.72 H 76.46 68.38� 76.05 81.73 72.38� 98.92

Kerang-desert 83.93 75.37 H 82.44 77.32� 84.89 95.19 77.85� 102.48

Average position 6.40 2.47 2.67 2.27 4.93 7.20 4.47 5.67

Bold-stared values are best over all approaches, bulleted ones are seconds and circled ones are thirds. GRNDriver is tested with and without target speeds optimization

(TS)

become slippery (mountains and desert). That shows the capacity of the GRN to

adapt to the changing track conditions without further learning.

5.3 10-laps races with opponents

In this last comparison, all the drivers compete against each other in 10-laps races

on three different tracks. Each race is run nine times: 3 times with the same initial

starting grid based on the 10-laps races results presented in Table 6 and 6 times with

different starting positions (based on a circular rotation of all the drivers). For

computational reasons, the three tracks of the 2013 SRC competition have been

selected: one on asphalt (Sancassa-city), one on sand (Arraias-desert) and one in

mountain (Alsoujlak-hill). Only the GRNDriver with target speed optimization and

with the opponent management is evaluated in this section. Table 7 shows the

starting and final position of the drivers for all the runs on these three tracks. Runs

aÿ c are runs starting with the best 10-laps solo races positions and runs d ÿ i are

the one with circular starting positions.

Globally, the GRNDriver is very competitive with an average finishing position

of 1.67. In comparison, the second best driver, Autopia, finishes at an average finish

position of 1.89. This shows the capacity of the GRN to use modified inputs to

handle opponents. Even if the GRNDriver is starting on the back of the grid, it is

able to gain positions, because it is fast on long run races (see Table 6) and because

the modification of the inputs is well managed by the GRN. In comparison to

modifying the outputs, modifying the inputs allows the GRN to keep its regulatory

ability. Thus, the GRN adapts its outputs to specific situations such as overtaking an

opponent, but its driving behavior remains globally the same and the GRNDriver

almost never goes out of track. For example, it can slow down if the car state

becomes dangerous while overtaking an opponent in a turn to make its behavior

more conservative to avoid a collision or going out of track. Locally, we can notice

that in most cases (the only counter example being run d on Alsoujlak-hill), the

GRNDriver always gains positions and finishes all the races. That shows its capacity

to avoid opponents and dangerous situations in order to keep its damage level low

and thus finish the race.

6 Discussion and analysis of the GRN

After the comparison with all the other approaches, this section discusses the GRN

used in this work. Since it is obtained through evolution, we discuss the global

regulation flows to explain the global functioning of the GRN. In a second part, we

also discuss the advantages and weaknesses of this approach.

6.1 Analysis of the GRN

Figure 18 represents proteins and enhancement and inhibition bends of the GRN

controller that competed in 2013 SRC competion.

The first observation is that all the evolved networks, as well as the one presented in

this paper, contain few proteins. As a matter of fact, most of the GRN that are able to

drive a car in TORCS present five to fifteen regulatory proteins. However, analyzing

how the GRN works can be complex: a protein enhances and inhibits the linked

proteins accordingly to the sum of enhancements and inhibitions it receives from other

proteins in the GRN (see Sect. 2). The stronger an enhancement is (or the stronger an

input is), the more it enhances and inhibits the linked proteins. A protein that is totally

inhibited or that is not enhanced (an input with no signal) does not enhance nor inhibit

the linked proteins. Moreover, according to the equations that compute enhancements

and inhibitions in Sect. 2, and considering the control parameters b ¼ 1:07965 and

Table 6 Comparison of the elapsed times (mm:ss) of 10-laps races

GRND.

w/o TS

GRND.

w. TS

Mr

Racer

Autopia Cobo

star

Carda-

mone

Ready2Win Maris-

cal

Alpine 1 29:00 26:19� DNF 23:54

H

34:23 30:26 DNF 27:06�

CGspeedway 07:35 06:55� 08:18 06:51

H

07:21 08:39 07:16 07:12�

Street 1 16:07 15:22� 14:36

H

14:52� 16:11 18:23 15:38 16:01

Emero-city 12:37 11:17 11:01

H

11:13� 11:26 14:34 11:16� 11:38

Mueda-city 15:00 10:52

H

11:13� 10:55� 11:23 14:34 11:49 11:52

Noceda-city 12:05 09:39� 09:38

H

10:05� 11:38 13:45 DNF 10:35

Sancassa-city 12:53 11:21� 11:46� 11:08

H

15:05 14:43 DNF 12:04

Alsoujlak-hill 15:10 12:37� 12:32

H

12:36� 15:44 15:59 13:23 13:20

Mikegrady-hill 17:35 12:31� 12:11

H

12:58� 13:08 16:25 12:59 13:49

Senhor-hill 16:00 13:18

H

13:33� 13:23� 14:10 16:54 DNF 14:09

Keiramekos-

mountain

17:38 14:28

H

DNF 15:23� 17:09� 19:13 DNF 21:45

Zlovenovice-

mountain

15:08 12:52

H

15:13 12:54� 14:21 15:34 13:56� 34:33

Arraias-desert 13:09 11:26

H

13:36 11:56� 12:33 14:10 11:49� DNF

Illschwang-desert 14:49 10:57

H

12:57 11:36� 13:21 13:45 12:16� 18:17

Kerang-desert 14:08 12:41

H

16:09 13:17� 14:50 16:14 13:17� DNF

Average position 5.80 1.80 2.07 3.80 5.13 6.87 5.00 5.53

Bold-stared values are best over all approaches, bulleted ones are seconds and circled ones are thirds.

DNF means that the driver did not finish the 10 laps due to damages

Table 7 Simulated races between the opponents

Sancassa-city Arraias-desert Alsoujlak-hill Avg

a b c d e f g h i avg a b c d e f g h i avg a b c d e f g h i avg

GRNDriver with TS Grid 2 2 2 1 7 6 5 4 3 1 1 1 7 6 5 4 3 2 3 3 3 2 1 7 6 5 4

Finish 1 2 2 1 2 2 2 1 1 1.56 1 1 1 1 1 3 1 1 1 1.22 3 2 2 3 2 2 2 1 3 2.2 1.67

Autopia Grid 1 1 1 7 6 5 4 3 2 3 3 3 2 1 7 6 5 4 2 2 2 1 7 6 5 4 3

Finish 2 1 1 2 1 1 1 2 2 1.44 2 4 2 3 3 2 4 2 2 2.67 2 3 1 1 1 1 1 2 2 1.56 1.89

Mr Racer Grid 3 3 3 2 1 7 6 5 4 5 5 5 4 3 2 1 7 6 1 1 1 7 6 5 4 3 2

4 4 4 6 3 4 5 5 4 4.33 5 6 6 6 7 6 6 6 4 5.78 1 1 3 2 3 4 3 3 1 2.33 4.15

Cobostar Grid 6 6 6 5 4 3 2 1 7 4 4 4 3 2 1 7 6 5 6 6 6 5 4 3 2 1 7

Finish 6 5 6 5 5 5 4 4 5 5 3 3 3 2 2 1 2 3 6 2.78 6 6 6 6 6 6 6 5 6 5.89 4.56

Cardamone Grid 5 5 5 4 3 2 1 7 6 6 6 6 5 4 3 2 1 7 7 7 7 6 5 4 3 2 1

Finish 5 6 5 4 6 6 6 6 7 5.67 6 5 5 4 4 4 3 4 3 4.22 5 7 7 7 5 7 5 6 7 6.22 5.37

Ready2win Grid 7 7 7 6 5 4 3 2 1 2 2 2 1 7 6 5 4 3 5 5 5 4 3 2 1 7 6

Finish 7 7 7 7 7 7 7 7 6 6.89 4 2 4 5 5 5 5 5 5 4.44 4 5 4 4 4 3 4 7 4 4.33 5.22

Mariscal Grid 4 4 4 3 2 1 7 6 5 7 7 7 6 5 4 3 2 1 4 4 4 3 2 1 7 6 5

Finish 3 3 3 3 4 3 3 3 3 3.11 7 7 7 7 6 7 7 7 7 6.89 7 4 5 5 7 5 7 4 5 5.44 5.15

Races tagged aÿ c are races with a starting position from best lap comparison (see Table 5) and races d ÿ i are races with circular starting grids, equivalent to the one used

in the competition. Grayed cells are unfinished races due to damages. Averages are the averaged final position over the 9 runs and the last column represents the global

averaged final positions

d ¼ 0:712952 of this particular network, a protein in the presented GRN can

significantly enhance or inhibit neighbor proteins until�3 around its tag value (some

of the evolved GRN present a significant influential range of�5 around the protein tag

value with a greater b value). Thus, the dynamics of enhancement and inhibition flows

can become extremely complex inside a GRN. At the time of this paper, we are still

investigating how to represent and to analyze accurately how aGRNworks. This study

will be the subject of future scientific publications. Nevertheless, the Fig. 18 gives an

insight of how the GRN presumably works.

6.1.1 General structure

The presented GRN shows several interesting structural features. Firstly, the GRN can

duplicate a protein in order to amplify (by addition) its enhancing and inhibiting

strengths. It is the case in this GRN of proteins R6 and R7 that are both duplicated

(represented on Fig. 18 by the black background). Secondly, this network contains

regulatory proteins with the same tag values but different proteins to enhance and to

inhibit. The aim is to extend their enhancing and/or inhibiting influential ranges. In the

presented GRN, the regulatory proteins R6 and R7 combine their actions, having the

same tag value (15) but different proteins to enhance (tags 17 and 22), extending the

enhancement range from 14 to 25. Thirdly, some proteins such as R8 or R11 enhance

themselves and amplify enhancement and inhibition of linked proteins. In contrast,

some proteins such asR7 inhibit themselves when enhanced. This gives them a special

role: a protein needs two steps to inhibit itself because the effect on the concentration is

only visible at the next regulatory step. In other words, this protein regulates on one

step before inhibiting itself on the next step. That produces an oscillatory behavior.

Finally, the proteinR9 is only regulated but does not regulate any other proteins within

a�3 identifier range. We can consider this protein as a evolutionary side effect since

this protein does not participate to the regulatory process.

6.1.2 Steering regulation

An interesting spatialization of the network can also be observed with half the

regulatory proteins mostly regulating left steering output protein OL and the other

half mostly regulating right steering output protein OR. Proteins represented with a

gray background activate principally left steering. White ones activate principally

right steering. Gray proteins are mostly enhanced by left input proteins (named from

IL1 to IL4) and enhance output protein OL. These proteins also inhibit white

regulatory proteins that activate right steer. Symmetrically, right input proteins

(named from IR1 to IR4) enhance mostly regulatory proteins R5, R6, R7 and R8 that

directly enhance right steer output protein OR, or that enhance protein R10 that

enhances output protein OR. They also directly inhibit gray regulatory proteins that

activate left steer or enhance white regulatory protein R11 that inhibit gray ones.

This means that if left track sensors indicate a farther distance than right side

sensors, the GRN enhances steering to the left and inhibits the regulatory proteins

that enhance steering to the right. If right track sensors indicate a farther distance

than left track sensors, the opposite effect occurs. If sensors from both sides sense

close or equal distances, left and right outputs are equals, steering wheel is in middle

position.

The role of the lateral speed input protein ISy is also important in the steering

regulation. When the car slides, ISy concentration increases. The interesting fact is

that this protein inhibits proteins R1 and R4, which are proteins involved in the left

steering behavior. The effect is to reduce the left steering, and consequently reduces

the global use of right steering as well by propagation in the whole network in the

very few next regulatory steps. This might explain the capacity of the GRN to

properly drive the car in various track coating such as sand or rock.

6.1.3 Thrust regulation

The braking output protein OB is linked to regulatory proteins R3, R5 and R8 and

thus to track sensors from left and right sides of the car. This provides a constant,

seemingly weak, enhancement. However, right input protein IR4 directly provides a

ISx

R4 R5 R6 R7 R8 R10 R11

OL OR OB OA

Longitudinal speed sub
regulatory network

IM
30 2 17

IL4
2 13 12

IL3
24 30 3

IL2
9 6 29

IL1
22 5 29

IR1
29 21 7

IR2
13 15 9

IR3
10 2 8

IR4
7 17 25

ISx
26 27 18

ISy
19 8 4

R1
4 31 14

R2
13 3 30

R3
5 24 3

R4
24 16 17

R5
20 18 15

R6
15 17 12

R7
15 22 15

R8
22 22 13

R9
17 8 10

R10
27 20 8

R11
28 30 4

OL
24 7 0

OR
19 9 11

OB
25 26 29

OA
0 22 25

IX

Ri

OX

Input protein

Regulatory

protein

Output

protein

Enhances

Inhibits

Fig. 18 Graphical representation of the GRN obtained through evolution. Nodes are the proteins (renamed

Ix for input, Ri for regulatory and Ox for output proteins) and edges represent the affinity between the two

proteins for enhancement (in plain green) and for inhibition (in dashed red) (Color figure online)

strong inhibition to the brake output OB. The farther the distance sensed by input

protein IR4 (rightmost track sensor) is, the less the GRNDriver brakes (and vice

versa).

The acceleration output protein OA is directly enhanced by the middle track

sensor (input protein IM) and the second rightmost sensor (input protein IR3): the

farther the sensed distance is, the more GRNDriver accelerates. Left side sensors

seem to have a lesser influence: second leftmost sensor (input protein IR3) and

regulatory proteins R2 and R3 (linked to left side sensors) inhibit and enhance the

accelerate output protein, possibly canceling their mutual actions.

Another important protein for thrust regulation is the longitudinal speed input

protein, named ISx. For better understanding, we have zoomed the graph of Fig. 18

with the only significant regulation proteins involved directly or indirectly with this

protein (see bottom-right box). Firstly, the steering is not affected by input ISx, since

ISx inhibits OR and enhances OR through R10. Therefore, the regulation flows negate

each other. All other enhancing flows to both steering output proteins are inhibited

by the inputs. However, concerning the car thrust, this input protein enhances R10

(both directly and through R11) that enhances R8 and that finally enhances slightly

OB. However, since the R8 is self-catalyzed, the final reaction can be substantial. In

summary, the longitudinal speed protein ISx enhances the brake so that when the car

goes too fast, the driver slows down.

6.2 Advantages and weaknesses of the approach

In this paper, we showed that the GRN is suitable to drive efficiently a simulated

racing car. We proved the GRN naturally handles noisy sensors as well on-the-fly

modification of its inputs with the aim to improve its behavior. Since the inner

dynamics of the GRN can be compared to neural network with inter-connected

neurons activated and inhibited by a given function, the main advantage of this

approach is the compact structure of genomes. Whereas each neuron and each

connection between two neurons have to be encoded in a neural network, the

encoding of the GRN builds all protein interactions with only three numbers.

Modifying the architecture of the protein network is therefore easier: a simple

mutation on any tag value in a protein globally modify the structure of the GRN.

Moreover, when subject to evolution, crossing two networks is extremely simple

and efficient since all connections are coded within the proteins. However, this

advantage has a side effect: some regulatory flows are hard to dissociate, due to the

low number of available protein tags. For example, in Fig. 18, left steering output

protein OL and braking out protein OB have respectively 24 and 25 tag values. This

means that every protein that influences OL influences OB as well (and vice versa).

In order to avoid that the GRNDriver brakes each time it turns left (or turns left each

time it brakes), the evolutionary process has produced complex enhancement and

inhibition flows to compensate this default. Unfortunately, our GA-based evolution

is not always so effective and dissociation artifacts can remain. This is particularly

the case with more complex problems that involves large networks. We are

currently working on modifying the protein affinity formula (distance between the

protein tag values) so that more regulation channels can be added by only modifying

a variable (that could be subject to evolution too).

Another evolutionary side effect is the global imperfection of produced solutions:

most evolved GRN present contradictory regulation flows. For example, in the GRN

presented in Fig. 18, IL4 is enhancing and inhibiting R2 in the same time and we can

notice that the enhancer identifier of IL4 (which is 13) is almost equal to its

inhibiting identifier (equal to 12). This means that almost all proteins enhanced by

this protein will be also inhibited. This behavior is not efficient and could be

improved by defining new mutation operator that would check this kind of

inconsistency and solve them adequately (by generating an identifier out of the

range for example).

One more advantage of the GRN is that all the GRN’s variables are subject to

evolution and thus do not have to be set up. The only parameters that need a set up

are the ones involved in the evolutionary algorithm used to optimize the network,

such as the crossover and mutation rates, the population size, the selection

algorithm, etc. Using a GRN is then very easy for people with experience in

evolutionary algorithms: the main difficult aspect of using a evolutionary algorithm

to evolve a GRN is the formulation of the adequate fitness. But this is a usual

difficulty with problems that involve an evolutionary algorithm.

However, the GRN still has weaknesses that should be addressed in order to

make them more efficient or easier to use. The main difficulty about using a GRN is

the connection of the input and output proteins to the problem it has to solve. As

presented in this paper, since the sum of the regulatory and output protein

concentrations is always equal to 1, it is usually necessary to have two outputs to

obtain a continuous values: one is used as a self-adjusted threshold and the second is

used to evaluate the final value according to the threshold. We are currently working

on this negative aspect of the regulation by modifying the network dynamics.

7 Conclusion

In this paper, we have showed how to used a gene regulatory network to drive a

virtual car. The connections between the car and the GRN have been kept as simple

as possible. The GRN has been naturally resistant to sensor noise: the impact of

noise on the GRN’s capacity to drive the car is very low. Moreover, the GRN is able

to generalize a behavior learned on asphalt tracks to other types of surfaces such as

sandy and rocky tracks. The GRN evolved through a 3-steps evolutionary process

has been found to be a safe driver. To make it become a real racer, we have

distorded the GRN inputs to make it more aggressive with the break and accelerator

and to create multiple trajectories in order to make it overtake or avoid other cars. A

recovery procedure has also been implemented in order to put the car back on track

when the GRN fails to handle a complex situation.

To improve this work, multiple options have to been investigated. Our goal is to

design a driver with as much automatic learning as possible. First, the use of the

GRN as a racing driver requires the design of a track learning method to speed up

the wise GRNs we generally obtain by evolution. We would like to teach the GRN

to go faster by the use of a hierarchical architecture: a second GRN, pre-optimized

on multiple tracks and reoptimized during the warm-up stage, could modify the

inputs and/or the outputs of the driving GRN according to the current car state. The

specialization capacity of the GRN observed in the first evolutionary step could be

helpful during this warm-up stage.

This GRN must also be improved in order to correctly handle opponents. For

now, the perception of the GRN is modified by a hand-written script in order to

overtake or avoid an opponent detected too close to the car. This approach is

innovative in comparison to most other approaches because they usually directly

impact the car actuators. Modifying the inputs instead of the output keeps the

controller as the center piece of the algorithm. However, we want the GRN to learn

to handle this move by itself because most overruns are currently due to this script.

Having all the information the car can detect and letting the GRN decide the best

move could reduce this issue.

A full detailed study on how the GRN actually handles noise could be interesting

to conduct. Our first hypothesis is that the granularity between the protein affinities

helps the network to compensate for input distortions. Studying this phenomenon

precisely could help us to better understand the dynamics of the evolved GRNs and

possibly to prove their capacity to handle noisy inputs.

According to past experiences using the GRN as an agent controller (in

developmental models, foraging agents, pole carts, etc.), we believe this approach is

now ready to be used in a wide range of agent-based problems. This method can

handle uncertainty because of the kinetics of the network. The GRN is thus easy to

plug to any kind of agent; the only requirement is being able to convert the input and

output signals into normalized concentration values. The strength of the GRN is also

in handling cooperative and conflicting behavior within the same network. In our

opinion, this method can compete with neural networks, genetic programming, and

other evolutionary approaches on multiple domains.

References

1. A. Agapitos, J. Togelius, S.M. Lucas, Evolving controllers for simulated car racing using object

oriented genetic programming. In Proceedings of the 9th Annual Conference on Genetic and Evo-

lutionary Computation. ACM (2007), pp. 1543–1550

2. C. Athanasiadis, D. Galanopoulos, A. Tefas, Progressive neural network training for the open racing

car simulator. In IEEE Conference on Computational Intelligence and Games (CIG), 2012. IEEE

(2012), pp. 116–123

3. W. Banzhaf, in Artificial regulatory networks and genetic programming, eds. by R.L. Riolo, B.

Worzel. Genetic Programming Theory and Practice, chap 4 (2003), pp. 43–62

4. M. Bednár, A. Brček, B. Marek, M. Florek, V. Juhász’, J. Kosmel’, I. Valenčı́k, The modular

architecture of an autonomous vehicle controller.

5. M.V. Butz, T.D. Lönneker, Optimized sensory-motor couplings plus strategy extensions for the torcs

car racing challenge. In Proceedings of the 5th International Conference on Computational Intelli-

gence and Games, CIG’09.IEEE Press, Piscataway, NJ, USA (2009), pp. 317–324

6. L. Cardamone, D. Loiacono, P.L. Lanzi. Evolving competitive car controllers for racing games with

neuroevolution. In: Proceedings of the 11th Annual conference on Genetic and evolutionary com-

putation, GECCO ’09 pp. 1179–1186. ACM, New York, NY, USA (2009)

7. L. Cardamone, D. Loiacono, P.L. Lanzi, On-line neuroevolution applied to the open racing car

simulator. In Proceedings of the Eleventh conference on Congress on Evolutionary Computation,

CEC’09. IEEE Press, Piscataway, NJ, USA (2009), pp. 2622–2629

8. L. Cardamone, D. Loiacono, P.L. Lanzi, Learning to drive in the open racing car simulator using

online neuroevolution. IEEE Trans. Comput. Intell. AI in Games 2(3), 176–190 (2010)

9. S. Cussat-Blanc, N. Bredeche, H. Luga, Y. Duthen, M. Schoenauer, Artificial gene regulatory net-

works and spatial computation: a case study. In Proceedings of the European Conference on Artificial

Life (ECAL’11). MIT Press, Cambridge, MA (2011)

10. S. Cussat-Blanc, J. Pollack, A cell-based developmental model to generate robot morphologies. In

Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation. ACM New

York, NY, USA (2012)

11. S. Cussat-Blanc, J. Pollack, Using pictures to visualize the complexity of gene regulatory networks.

Artif. Life 13, 491–498 (2012)

12. S. Cussat-Blanc, S. Sanchez, Y. Duthen, Simultaneous cooperative and conflicting behaviors handled

by a gene regulatory network. In IEEE Congress on Evolutionary Computation (CEC), 2012, pp. 1–8.

IEEE (2012)

13. R. Doursat, Organically grown architectures: creating decentralized, autonomous systems by em-

bryomorphic engineering. In Organic Computing, IX (Springer, 2008), pp. 167–200

14. P. Eggenberger Hotz, Combining developmental processes and their physics in an artificial evolu-

tionary system to evolve shapes. In On Growth Form and Computers (Elsevier 2003), pp. 302–318

15. D.M. Fernández, A.J. .Fernández-Leiva, Una experiencia de diseño de controladores en juegos de

carreras de coche mediante algoritmos evolutivos multiobjetivos y sistemas expertos. In VIII

Congreso Español sobre Metaheurı́stica, Algoritmos Evolutivos y Bioinspirados, ed. by J.A. Gámez

et al. (UCLM, Albacete, 2012), pp. 683–690

16. H. Guo, Y. Meng, Y. Jin, A cellular mechanism for multi-robot construction via evolutionary multi-

objective optimization of a gene regulatory network. BioSystems 98(3), 193–203 (2009)

17. K.I. Harrington, E. Awa. S. Cussat-Blanc, J. Pollack, Robot coverage control by Evolved Neuro-

modulation. In IJCNN 2013 (2013)

18. M. Joachimczak, B. Wróbel, Evolving gene regulatory networks for real time control of foraging

behaviours. In Proceedings of the 12th International Conference on Artificial Life (2010)

19. M. Joachimczak, B. Wróbel, Evolution of the morphology and patterning of artificial embryos:

scaling the tricolour problem to the third dimension. In Advances in Artificial Life. Darwin Meets von

Neumann. ECAL 2009, Budapest, Hungary, Revised Selected Papers, Part II, ed. by G. Kampis, I.

Karsai, E. Szathmary (Springer, 2011), pp. 35–43

20. J. Knabe, M. Schilstra, C. Nehaniv, Evolution and morphogenesis of differentiated multicellular

organisms: autonomously generated diffusion gradients for positional information. Artif. Life XI 11,

321 (2008)

21. R. Lifton, M. Goldberg, R. Karp, D. Hogness, The organization of the histone genes in drosophila

melanogaster: functional and evolutionary implications. In Cold Spring Harbor Symposia on

Quantitative Biology, Cold Spring Harbor, NY, vol 42 (1978), pp. 1047–1051

22. D. Loiacono, L. Cardamone, P.L. Lanzi, Simulated car racing championship: competition software

manual. CoRR (2013)

23. D. Loiacono, P.L. Lanzi, J. Togelius, E. Onieva, D.A. Pelta, M.V. Butz, T.D. Lönneker, L. Carda-

mone, D. Perez, Y. Sáez et al., The 2009 simulated car racing championship. IEEE Trans. Comput.

Intell. AI in Games2(2), 131–147 (2010)

24. D. Loiacono, J. Togelius, P.L. Lanzi, L. Kinnaird-Heether, S.M. Lucas, M. Simmerson, D. Perez,

R.G. Reynolds, Y. Saez. The wcci 2008 simulated car racing competition. In: IEEE Symposium on

Computational Intelligence and Games, 2008. CIG’08. IEEE (2008), pp. 119–126

25. M. Nicolau, M. Schoenauer, W. Banzhaf, Evolving genes to balance a pole. In A.I. Esparcia-Alcazar,

A. Ekart, S. Silva, S. Dignum, A.S. Uyar (eds.) Proceedings of the 13th European Conference on

Genetic Programming, EuroGP 2010 ,vol 6021. LNCS, (2010), pp. 196–207

26. E. Onieva, D.A. Pelta, J. Alonso, V. Milanés, J. Pérez, A modular parametric architecture for the

torcs racing engine. In Proceedings of the 5th International Conference on Computational Intelli-

gence and Games, CIG’09. IEEE Press, Piscataway, NJ, USA (2009), pp. 256–262

27. E. Onieva, D.A. Pelta, J. Godoy, V. Milanés, J. Pérez, An evolutionary tuned driving system for

virtual car racing games: the autopia driver. Int. J.Intelli. Syst. 27(3), 217–241 (2012)

28. M. Preuss. J. Quadflieg. G. Rudolph. Torcs sensor noise removal and multi-objective track selection

for driving style adaptation. In: IEEE Conference on Computational Intelligence and Games (CIG),

2011. IEEE (2011), pp. 337–344

29. J. Quadflieg. M. Preuss, O. Kramer, G. Rudolph. Learning the track and planning ahead in a car

racing controller. In: 2010 IEEE Symposium on Computational Intelligence and Games (CIG), IEEE

(2010), pp. 395–402

30. J. Quadflieg, M. Preuss, G. Rudolph, Driving faster than a human player. In Proceedings of the 2011

International Conference on Applications of Evolutionary Computation-Volume Part I. Springer

(2011), pp. 143–152

31. T. Reil, Dynamics of gene expression in an artificial genome-implications for biological and artificial

ontogeny. Lecture notes in computer science (1999), pp. 457–466

32. K. Stanley, R. Sherony, N. Kohl, R. Miikkulainen, Neuroevolution of an automobile crash warning

system. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) (2005)

33. K.O. Stanley, R. Miikkulainen. Evolving neural networks through augmenting topologies. Evol.

Comput. 10, 99–127 (2002)

34. J. Togelius, S.M. Lucas, Evolving robust and specialized car racing skills. In IEEE Congress on

Evolutionary Computation. CEC 2006. IEEE (2006), pp. 1187–1194

35. D. Wilson, E. Awa, S. Cussat-Blanc, K. Veeramachaneni, U.M. O’Reilly. On learning to generate

wind farm layouts. In Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary

Computation Conference. ACM (2013), pp. 767–774

36. L. Wolpert, Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol.

25(1), 1 (1969)

