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Abstract

Benchmarking and performance analysis play an important role in understanding the be-
haviour of iterative optimization heuristics (IOHs) such as local search algorithms, genetic and
evolutionary algorithms, Bayesian optimization algorithms, etc. This task, however, involves
manual setup, execution, and analysis of the experiment on an individual basis, which is la-
borious and can be mitigated by a generic and well-designed platform. For this purpose, we
propose IOHanalyzer, a new user-friendly tool for the analysis, comparison, and visualization
of performance data of IOHs.

Implemented in R and C++, IOHanalyzer is fully open source. It is available on CRAN and
GitHub. IOHanalyzer provides detailed statistics about fixed-target running times and about
fixed-budget performance of the benchmarked algorithms with a real-valued codomain, single-
objective optimization tasks. Performance aggregation over several benchmark problems is
possible, for example in the form of empirical cumulative distribution functions. Key advantages
of IOHanalyzer over other performance analysis packages are its highly interactive design, which
allows users to specify the performance measures, ranges, and granularity that are most useful
for their experiments, and the possibility to analyze not only performance traces, but also the
evolution of dynamic state parameters.

IOHanalyzer can directly process performance data from the main benchmarking platforms,
including the COCO platform, Nevergrad, the SOS platform, and IOHexperimenter. An R pro-
gramming interface is provided for users preferring to have a finer control over the implemented
functionalities.

1 Introduction

Optimization problems not admitting exact solution approaches affect almost all aspects of our
daily lives. They appear, for example, in product design, scheduling, data analysis, and machine
learning (e.g., hyper-parameter tuning). For instance, it is sometimes important to analyze the
optimization procedure when training a neural network, which helps us understand the learning
process. The intractability of these problems can have various reasons, e.g., a lack of problem-
specific knowledge, limited access to problem data, or the inherent complexity of the underlying
problem. Iterative optimization heuristics (IOHs) are algorithms designed to search for high-quality
solutions of such problems. IOHs are characterized by a sequential structure, which aims to evolve
good solutions by iteratively sampling the decision space. The distribution from which the solution

1



candidates are sampled is adjusted after each iteration, to reflect the new information obtained
from the last evaluations.

IOHs are often randomized, both with respect to candidate generation and with respect to
selecting the information stored from one iteration to the next. The optimization behavior of IOHs
is therefore a highly complex system with many dependencies. This makes it very difficult to predict
how well a particular IOH performs on a given problem. Existing theoretical results are limited to
rather simple algorithms and/or problems, which are typically not representative for the complex
strategies used in practice (see [DN20, AD11, NW10] for recent surveys of theoretical results).
To gather a good understanding of the performance and the search behavior of realistic IOHs
and applications, we are therefore often restricted to an empirical evaluation of these solvers, from
which we may extrapolate accurate performance predictions. Supporting such empirical evaluations
through a systematic experimental design is one of the primary goals of algorithm benchmarking.
Algorithm benchmarking addresses the selection of problem instances that are most suitable for
an accurate performance extrapolation, the experimental setup of the data generation, the choice
of the performance indicators and their visualizations, the choice of the statistics used to compare
two or more algorithms, etc. In practice, those various aspects of algorithm benchmarking make
it laborious and demanding for researchers to handle the details of experimentation, which calls
for a standard and easy-to-use software implementation of algorithm benchmarking that would
drastically reduce the manual work for practitioners.

1.1 IOHanalyzer: Overview and Availability

In this work, we present IOHanalyzer, a versatile, user-friendly, and highly interactive platform for
the assessment, comparison, and visualization of IOH performance data. IOHanalyzer is designed
to assess the empirical performance of sampling-based optimization heuristics in an algorithm-
agnostic manner. Our key design principles are 1) an easy-to-use software interface, 2) interactive
performance analysis, and 3) convenient export of reports and illustrations.

IOHanalyzer is developed as the data analysis component of IOHprofiler, a benchmarking plat-
form that aims to integrate various elements of the entire benchmarking pipeline, ranging from
problem (instance) generators and modular algorithm frameworks over automated algorithm con-
figuration techniques and feature extraction methods to the actual experimentation, data analysis,
and visualization [DWY+18]. An illustration of the interplay between these different components
is provided in Figure 1. Notably, IOHprofiler already provides the following components:

• IOHproblems: a collection of benchmark problems. This component currently comprises (1)
the PBO suite of pseudo-Boolean optimization problems suggested in [DYH+20], (2) the 24
numerical, noise-free BBOB functions from the COmparing Continuous Optimizers (COCO)
platform [HAR+20], and (3) the Wmodel problem generator proposed in [WW18].

• IOHalgorithms: a collection of IOHs. For the moment, the algorithms used for the bench-
mark studies presented in [DYH+20, ADD21, dNVW+21] are available. This subsumes text-
book algorithms for pseudo-Boolean optimization, an integration to the object-oriented al-
gorithm design framework ParadisEO [KMRS02], and the modular algorithm framework for
CMA-ES variants originally suggested in [vRWvLB16] and extended in [dNVW+21]. Further
extensions for both combinatorial and numerical solvers are in progress.

• IOHdata: a data repository for benchmark data. This repository currently comprises the
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Figure 1: IOHanalyzer is a module of the IOHprofiler benchmarking environment, which targets
different steps of the benchmarking pipeline.

data from the experiments performed in [DYH+20], a sample data set used in this paper,
and some selected data sets from the COCO repository [HAB20]. IOHdata also contains
performance data from Facebook’s Nevergrad benchmarking environment [RT18], which can
be fetched from their repository upon request.

• IOHexperimenter: the experimentation environment that executes IOHs on IOHprob-
lems or external problems and automatically takes care of logging the experimental data. It
allows for tracking the internal parameter of IOHs and supports various customizable logging
options to specify when to register a data record.

• IOHanalyzer: the data analysis and visualization tool presented in this work.

IOHanalyzer takes as input benchmarking data sets, generated, e.g., by IOHexperimenter,
through the COCO platform, or through the Nevergrad environment. Of course, users can also use
their own experimentation platform (the formatting requirements for the input files are described
in Appendix A). IOHanalyzer provides an evaluation platform for these performance traces, which
allows users to choose the performance measures, the ranges, and the precision of the displayed

3



data according to their needs. In particular, IOHanalyzer supports both a fixed-target and a fixed-
budget perspective, and allows various ways of aggregating performances across different problems
(or problem instances). In addition to these performance-oriented analyses, IOHanalyzer also of-
fers statistics about the evolution of non-static algorithmic components, such as, for example, the
hyperparameters suggested by a self-adjusting parameter control scheme. These features will be
described in more detail in Section 3, where the reader can also find illustrated examples.

The R programming interface of IOHanalyzer offers a fine control on the data and functionalities
implemented therein. IOHanalyzer is written in R and C++ and makes use of the two R packages
plotly [Sie18] and shiny [CCA+19]. The version of the software described in this paper is v0.1.6.1,
which has been made available on zenodo [VWY+21]. This repository also contains all datasets
used for the examples illustrated in this paper. For users less experienced with programming in R
we offer a web-based graphical user interface (GUI), to which users can load their own data or use
data from the IOHdata repository.

The stable release of the IOHanalyzer package is distributed through CRAN (https://CRAN.
R-project.org/package=IOHanalyzer). It can be easily installed in an R console:

R> install.packages("IOHanalyzer")

The latest version is hosted on GitHub (https://github.com/IOHprofiler/IOHanalyzer, part
of the IOHprofiler project), which can be installed using the devtools library as follows:1

R> devtools::install_github("IOHprofiler/IOHanalyzer")

An up-to-date documentation is maintained on the wiki page, available at https://iohprofiler.
github.io/. The web-based GUI of IOHanalyzer is hosted at http://iohprofiler.liacs.nl.

The first use case of IOHanalyzer was the comparison of different variants of the (1 + λ) evo-
lutionary algorithm (EA) [DYvR+18]. A number of improvements were made subsequently, and
the first study of an important number experiments was reported in [DYH+20]. In the meantime,
IOHanalyzer has been used in a number of studies, including [HBS19, YDB19, CSC+19]. It is
under constant development. Some of the major ongoing extensions will be discussed in Section 4.

1.2 Related Benchmarking Environments

As argued above, benchmarking IOHs is an essential task towards a better understanding of IOHs.
It is therefore not surprising that a large number of different tools have been developed for this
purpose. For reasons of space, we can only summarize a few of them and concentrate on those
which come closest to IOHanalyzer in terms of functionality and scope.

In evolutionary computation, the arguably best established benchmarking environment is the
already mentioned COCO platform [HAR+20]. Originally designed to compare derivative-free op-
timization algorithms operating on numeric optimization problems [HAR+10], the tool has seen
several extensions in the last years, e.g., towards multi-objective optimization [TBHA16], mixed-
integer optimization [TBH19], and large-scale optimization [VEB+20]. COCO consists of an ex-
perimentation part that produces data files with detailed performance traces, and an automated
data analysis part in which a fixed number of standardized analyses are automatically generated.

1The GitHub-page gets updated more frequently with minor changes, while the CRAN-version is generally only
updated only when major modifications are made.
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The by far most reported performance measures from the COCO framework are empirical cumu-
lative distribution function (ECDF) curves, see Section 2 for definitions. The COCO software has
a strong focus on fixed-target performances [HAB+16], i.e., on the time needed to find a solution
of a certain quality.

COCO has been a major source of inspiration for the development of IOHprofiler. What con-
cerns the performance assessment, the key difference between COCO and our IOHanalyzer is in the
interactive interface that allows users of IOHanalyzer to study different performance measures, to
change their ranges, and granularity. As mentioned, COCO performance files can be conveniently
analyzed by IOHanalyzer.

Another important software environment for benchmarking sampling-based optimization heuris-
tics is the Nevergrad framework [RT18]. As with COCO, Nevergrad implements functionalities for
both experimentation and performance analysis, accommodating continuous, discrete, and mixed-
integer problems. It has a strong focus on noisy optimization, but also comprises several noise-free
optimization problems. In addition to studying IOHs, Nevergrad has a special suite to compare
one-shot optimization techniques, i.e., non-iterative solvers. The current focus of Nevergrad is to be
seen on the problem side, as it offers several new benchmark problems, such as the structured opti-
mization problems which are aggregated in their own test suite. Nevergrad also provides interfaces
to the following benchmark collections: LSGO [LTO+13], YABBOB [LMP+20], Pyomo [HLW+17],
MLDA [GS18], and MuJoCo [TET12]. The performance evaluation, however, is much more basic
than those of COCO or IOHanalyzer, in that only the quality of the finally recommended point(s)
is stored, but no information about the search trajectory. That is, apart from taking a fixed-budget
perspective, Nevergrad does not store performance traces, but only the final output. IOHanalyzer
can interpret and visualize the csv files produced by Nevergrad. An extension of Nevergrad to
allow for the same tracking features as IOHanalyzer is currently under construction, in a joint
collaborative effort between the Nevergrad and the IOHanalyzer development teams.

Focusing on the algorithm design task, HeuristicLab [WKB+14] provides a relatively large
collection of various IOHs (e.g., population-based search algorithms) as well as machine learning
algorithms (e.g., Support Vector Regression), which are represented as graphs of operators. In
HeuristicLab, new algorithms can be constructed by combining existing operators in a graphical
user interface, avoiding the laborious coding details. While IOHprofiler mainly targets the black-
box optimization problem, HeuristicLab incorporates a very diversified set of benchmark problems,
ranging from the symbolic regression to data analysis problems. It implements the parallel execution
of algorithms for the ease of benchmarking. In contrast to IOHanalyzer, which is available via a
web interface and contains many detailed performance analyses and interactive plots, HeuristicLab
is distributed via platform-dependent applications and includes some basic static plots (e.g., box
plots) for assessing the empirical performance from a fixed-budget perspective.

Several other tools have been developed for displaying performance data and/or the search
behavior in decision space. However, all tools that we are aware of allow much less flexibility with
respect to the performance measures, the ranges, and the granularity of the analysis or focus on
selected aspects of performance analysis only (e.g., [CCL18, EKK17] study statistical significance,
whereas [FGLP11, SGK21] aim to visualize performance with respect to multiple objectives). The
ability of IOHanalyzer to link the evolution of algorithms’ parameters to the evolution of solutions’
quality seems to be unique.
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Algorithm 1 Blueprint of an iterative optimization heuristic (IOH) optimizing a function f : S →
R.

1: procedure ioh
2: t← 0 . iteration counter
3: H(0)← ∅ . search history information
4: choose a distribution Λ(0) on N . distribution of the number of samples
5: while termination criterion not met do
6: t← t+ 1
7: sample λ(t) ∼ Λ(t− 1) . nbr. of points to be evaluated
8: Based on H(t− 1) choose a distribution D(t) on Sλ(t) . choice of sampling distribution
9: sample

(
x(t,1), . . . , x(t,λ(t))

)
∼ D(t) . candidate generation

10: evaluate f
(
x(t,1)

)
, . . . , f

(
x(t,λ(t))

)
. function evaluation

11: choose H(t) and Λ(t) . information update
12: end while
13: end procedure

2 Background

This section provides the background and motivation for developing IOHanalyzer. In particular,
we discuss black-box problems and their optimization and we recall the most relevant performance
indicators that will be used in subsequent sections.

2.1 Iterative Optimization Heuristics

We study the optimization of problems of the type f : S → R, i.e., we assume our problem to be
a single-objective, real-valued objective function (i.e., problems for which the quality of possible
solutions is rated by real numbers), defined over a search space S. We do not make any assumption
on the set S; it can be discrete or continuous, constrained or unconstrained. We do not require that
f is explicitly modeled, i.e., f can very well be a black-box optimization problem, i.e., a problem
for which we are able to evaluate the quality of points x ∈ S (e.g., through computer simulations
or through physical experiments) but for which we do not know the mapping x 7→ f(x) without
performing such evaluations. Intermediate gray-box settings are also possible, i.e., problems for
which some information about the mapping x 7→ f(x) is available (see, for example, the discussion
in [WCG16], where a setting is analyzed in which users have information about the interaction
between different variables). To ease notation, we nevertheless speak of black-box optimization in
such cases, i.e., even when some a priori information about the problem f is available. We emphasize
that the sampling-based optimization algorithms studied in our work can be competitive even when
the problem f is explicitly known. The low auto-correlation binary sequence (LABS) problem is a
good example for such a problem that can be defined in two lines, but for which the best known
solvers are sampling-based [PM16]. The only important feature of the performance traces that can
be analyzed by IOHanalyzer is that they rely on the evaluation of possible solution candidates –
regardless of how these have been created.

For convenience of presentation, we consider in this document maximization as objective.
Note, though, that IOHanalyzer automatically detects whether minimization of maximization is
considered, and adjusts the plots and statistics accordingly. For example, the COCO and Never-
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grad data sets typically consider minimization, whereas the PBO suite of IOHproblems studies
maximization.

The class of algorithms that we are interested in are Iterative Optimization Heuristics (IOHs).
IOHs are entirely sampling-based, i.e., they sample the search space S and use the function values
f(x) of the evaluated samples x to guide the search. Algorithm 1 provides a blueprint for IOHs.
Classical examples for IOHs are deterministic and stochastic local search algorithms (this class in-
cludes Simulated Annealing [KGV83] and Threshold Accepting [DS90] as two prominent examples),
genetic and evolutionary algorithms [ES15], Bayesian Optimization and related global optimization
algorithms [Jon01], Estimation of Distribution algorithms [LL02], and Ant Colony Optimization
algorithms [DS04].

2.2 Selected Performance Indicators

Unlike in optimization scenarios in which problem data is accessible without function querying and
where solutions are hence typically generated constructively (as opposed to the sampling-based
approach taken by IOHs), the most commonly studied performance measures in black-box opti-
mization are based on the number of function evaluations. That is, instead of counting arithmetic
operations or CPU time, we measure performance by counting the number of function evaluations
that are performed to reach a certain quality threshold (fixed-target setting) or we measure the
quality of the best found solution that could be recommended after a certain budget of function
evaluations has expired (fixed-budget setting). Measuring the performance in the number of func-
tion evaluations is a classic assumption made in the black-box optimization literature [HAB+16].
In contrast to CPU time, this measure is machine-independent and not (or at least much less)
sensitive with respect to the actual implementation.

As discussed above, many state-of-the-art IOHs are randomized in nature, therefore yielding
random performance traces even when the underlying problem f is deterministic. The performance
space is spanned by the number of evaluations, by the quality of the assessed solutions, and by the
probability that the algorithm has found within a given budget of function evaluations a solution
that is at least as good as a given quality threshold.

Basic Notation To define the performance measures covered by IOHanalyzer we use the follow-
ing notation.

• F denotes the set of problems under consideration. Each problem (or problem instance,
depending on the context) f ∈ F is assumed to be a function f : S → R. The dimension of
S is denoted by d. We often consider scalable functions that are defined for several or all
dimensions d ∈ N. In such cases, we make the dimension explicit.

• A = {A1, A2, . . .} is the set of algorithms under consideration. A can be finite or infinite.
Often, A is a configurable meta-algorithmic framework, which allows users to specify param-
eters such as the degree of parallelism, the intensity of the local perturbations, the memory
size, the use (or not) of recombination operators, etc.

• We denote by r the number of independent runs of an algorithm A ∈ A on problem f ∈ F in
dimension d.

• T (A, f, d,B, v, i) ∈ N∪{∞} is a fixed-target measure. It denotes the number of function eval-
uations that algorithm A performed, in its i-th run and when maximizing the d-dimensional
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variant of problem f , to find a solution x satisfying f(x) ≥ v. When A did not succeed in
finding such a solution within the maximal allocated budget B, T (A, f, d,B, v, i) is set to ∞.
Several ways to deal with such failures are considered in the literature, as we shall discuss in
the next paragraphs.

• Similarly to the above, V (A, f, d, t, i) ∈ R is a fixed-budget measure. It denotes the function
value of the best solution that algorithm A evaluated within the first t evaluations of its i-th
run, when maximizing the d-dimensional variant of problem f .

Descriptive Statistics We next recall some basic descriptive statistics.

• The average function value given a budget value t is simply

V̄ (t) = V̄ (A, f, d, t) =
1

r

r∑
i=1

V (A, f, d, t, i).

As we do with all other measures, we omit explicit mention of A, f , and d when they are
clear from the context.

• The Penalized Average Runtime (PAR-c score, where c ≥ 1 is the penalty factor) for a given
target value v is defined as

PAR-c(v) = PAR-c(A, f, d,B, v) =
1

r

r∑
i=1

min {T (A, f, d,B, v, i), cB} , (1)

i.e., the PAR-c score is identical to the sample mean when all runs successfully identified
a solution of quality at least v within the given budget B, whereas non-successful runs are
counted as cB. In IOHanalyzer, we typically study the PAR-1 score, which, in abuse of
notation, we also refer to as the mean.

• Apart from mean values, we are often interested in quantiles, and in particular in the sample
median of the r values {T (A, f, d,B, v, i})ri=1 and {V (A, f, d, t, i})ri=1, respectively. By de-
fault, IOHanalyzer calculates the 2%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, and 98% percentiles
(denoted as Q2%, Q5%, . . . , Q98%) for both running times and function values.

• We also study the sample standard deviation of the running times and function values, re-
spectively.

• The empirical success rate is the fraction of runs in which algorithm A reached the given
target v within the maximal number B of allowed function evaluations. That is, in the case
of a maximization problem,

p̂s = p̂s(A, f, d,B, v) =
1

r

r∑
i=1

1(V (A, f, d,B, i) > v) =
1

r

r∑
i=1

1(T (A, f, d,B, v, i) <∞), (2)

where 1(E) is the characteristic function of the event E .
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Expected Running Time An alternative to the PAR-c score is the expected running time
(ERT). ERT assumes independent restarts of the algorithm whenever it did not succeed in finding
a solution of quality at least v within the allocated budget B. Practically, this corresponds to
sampling indices i ∈ {1, . . . , r} (i.i.d. uniform sampling with replacement) until hitting an index
i with a corresponding value T (A, f, d,B, v, i) < ∞. The running time would then have been
mB + T (A, f, d,B, v, i), where m is the number of sampled indices of unsuccessful runs. The
average running time of such a hypothetically restarted algorithm is then estimated as

ERT(A, f, d,B, v) =

∑r
i=1 min {T (A, f, d,B, v, i), B}

rp̂s

=

∑r
i=1 min {T (A, f, d,B, v, i), B}∑r
i=1 1(T (A, f, d,B, v, i) <∞)

. (3)

Note that ERT can take an infinite value when none of the runs was successful in identifying a
solution of quality at least v.

Cumulative Distribution Functions For the fixed-target and fixed-budget analysis, IOHana-
lyzer estimates probability density (mass) functions and computes empirical cumulative distribu-
tion functions (ECDFs). For the fixed-budget function value, its probability density function is
estimated via the well-known Kernel Density Estimation (KDE) method, which approximates the
density function by a superposition of kernel functions (e.g., Gaussian functions with a fixed width)
centered at each data point [HTF09]. Intuitively, a set of crowded data points would lead to a very
peaky empirical density due to massive superpositions of the kernel, while a set of distant points can
only generate a relatively flat curve. For the fixed-target running time (an integer-valued random
variable), we estimate its probability mass function by treating it as a real value and applying the
KDE method. For a set {T (A, f, d, v, i)}ri=1 of fixed-target running times, its ECDF is defined as
the fraction of runs which successfully found a solution of quality at least v within a budget of at
most t function evaluations. That is,

ECDF(A, f, d, v, t) =
1

r

r∑
i=1

1(T (A, f, d, v, i) ≤ t).

ECDF values are most typically used in aggregated form. IOHanalyzer uses the following two
aggregations:

• The aggregation over a set V of target values:

ECDF(A, f, d,V, t) =
1

r|V|
∑
v∈V

r∑
i=1

1(T (A, f, d, v, i) ≤ t), (4)

i.e., the fraction of (run,target value) pairs (i, v) for which algorithm A has identified a solution
of quality at least v within a budget of at most t function evaluations.

• Given a set of functions F and a mapping V : F → 2R that specifies the target values to
consider for each function, the ECDF can be further aggregated by the following definition:

ECDF(A,F , d,V, t) =
1

r
∑

f∈F |V(f)|
∑
f∈F

∑
v∈V(f)

r∑
i=1

1(T (A, f, d, v, i) ≤ t). (5)
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The aggregated ECDFs for function values V (A, f, d, t, i) can be defined in the similar manner. By
default, IOHanalyzer can generate the targets in a linear or log-linear way, as well as the predefined
targets commonly used in the COCO framework. However, all of these targets can be changed by
the user.

3 Graphical User Interface

The web-based Graphical User Interface (GUI) may be the most convenient access to IOHana-
lyzer for users who are not sufficiently familiar with programming in R, as well as for users who
are more interested in comparing (with) data from the existing data sets collected in the perfor-
mance data repository IOHdata. In this and the next section we use an exemplary data set called
“sample data” prepared for this article, which comprises selected performance data from the study
presented in [DYH+20]. This data set is already available in the web-based GUI and the user can
load it from the “Load Data from Repository” box therein (see the bottom right part in Figure 2).
More precisely, we have selected from this data set the performance files for two algorithms (Ran-
domized Local Search (RLS) and the Genetic Algorithm (GA) variant (1, λ) GA, see [DYH+20]
for a detailed description and references) on four problems in two dimensions d ∈ {16, 100}.
All problems analyzed in [DYH+20] are of the type f : {0, 1}n → R, and both the problem
suite as well as the dataset are named PBO (for pseudo-Boolean optimization) in IOHproblems
and IOHdata, respectively. To use this data set locally, users need to create a folder named
repository/sample_data under the home directory (i.e., ∼/repository/sample_data), download
the data set from https://github.com/IOHprofiler/IOHdata/blob/master/sample_data.rds,
and move the data set to this location.

The IOHanalyzer GUI is invoked through the following commands:

R> library(IOHanalyzer)

R> runServer()

Loading required package: shiny

Listening on 127.0.0.1:3943

This will start the GUI server on the local machine (hence using IP address 127.0.0.1) and a
random port number. The web browser will be launched and connect to this address immediately
after starting the server. The screenshot of the “welcome page” is shown in Figure 2. The perfor-
mance statistics are arranged in four major sections, which can be chosen in the side menu on the
left. The side menu is organized as follows.

1. Upload Data: In this section users can upload their own performance data files and/or
choose the data from the repository against which the data shall be compared. The format
of the data files which can be uploaded is discussed in Appendix A.

2. General Overview: On this tab, we show a summary of algorithms, function/problems,
dimensions, the number of runs, and the best reached function values per function and algo-
rithm appearing in the data set loaded by the user.

3. Fixed-Target Result: This section covers the fixed-target performance statistics summa-
rized in Table 1. A detailed description will be given in Section 3.2.
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Figure 2: Screenshot of the GUI immediately after launching the GUI server. Some general
information, such as the current version and relevant links are provided at the top. The user can
choose a data set from our online data repository in the drop-down menu of right column, or upload
local data using the column on the left.

4. Fixed-Budget Results: This section covers the fixed-budget statistics summarized in Ta-
ble 2.

5. Position Information: A parallel coordinate plot allows the user to display the final point
resulting from each run of an algorithm. This can be used for comparing the distribution of
the final solutions found across many algorithms.

6. About: A concise description of the IOHanalyzer and installation guide are included here,
together with information on the development team, the license, and acknowledgements.

7. Settings: Here, the user can change the color schemes, the font size, and the image size used
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in plotting and other general settings controlling the calculation of descriptive statistics.

In general, the interactive plotting (enabled by the plotly library) is turned on by default,
displaying more details in the plot when the user hovers the mouse over it, e.g., the value of a
curve at the mouse cursor. The interactive plotting also allows the user to zoom in/out and to
hide/show a curve from some algorithms, which will be helpful when many algorithms are rendered
simultaneously. Also, all plots can be downloaded in the following formats: pdf, png, eps, and
svg. Most data tables can be downloaded in csv format.

3.1 The “Upload Data” Section

The GUI interface to load the experimental data is shown in Figure 2. in which the user is asked
to upload a compressed archive. The following compression formats are supported: *.zip, *.bz,
*.tar, *.xz, *.gz and *.rds (previously processed . Note that, when the user’s data set is very
large to handle, it is possible to speed up the uploading (and hence plotting) procedure by toggling
option Efficient mode on, in which the original data set is downsampled uniformly at random.
Note that the data-uploading module will automatically detect whether maximization or mini-
mization has been the objective, given the uploaded data set follows the formatting requirements
described in Appendix A.

When using the online version of GUI (http://iohprofiler.liacs.nl/), the user can also
load the data sets from IOHdata, using the “Load Data from Repository” box on the right (see
Figure 2).

After loading the data, IOHanalyzer will prompt a summary table of loaded data sets in the
“List of Processed Data” box on the bottom of the page (not shown in Figure 2). This allows users
to check if the data loading process has been performed correctly.

3.2 The “Fixed-Target Results” Section

In the fixed-target section, the user can analyze the number of function evaluations that the al-
gorithms performed before finding for the first time a solution meeting a certain quality criterion.
This section has two main subsections, one for the performance evaluation of a single function and
one for the evaluation of performance data for multiple functions. Table 1 summarizes the main
fixed-target performance statistics that IOHanalyzer offers.

3.2.1 The “Single Function” Subsection

The single function subsection offers six different types of fixed-targets results, which are grouped
as follows: (1) data summary, (2) expected runtime, (3) probability mass function, (4) cumulative
distribution, (5) algorithm parameters, and (6) statistics. These groups will be described in the
following paragraphs. Note that, in the header of IOHanalyzer, there are two drop-down menus
that allow the user to select the dimension and function, respectively. They are available in the
sidebar when data has been loaded.

Group 1: Fixed-Target Results I Single Function I Data Summary: This group provides
basic statistics on the distribution of the fixed-target running time, which are grouped in 3 different
tables:
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Section Group Functionality Description

S
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Data
Summary

Data Overview
The best, worst, mean, median values and suc-
cess rate of selected algorithms.

Runtime Statistics
The mean, median, quantiles, success rate and
ERT at an evenly spaced sequence of targets
controlled by fmin, fmax and ∆f .

Runtime Samples
The running time sample at an evenly spaced
sequence of targets controlled by fmin, fmax

and ∆f .

Expected
Runtime

ERT: single function
The progression of ERT over targets, whose
range is controlled by the user.

Expected Runtime
Comparisons

Comparing the ERT values of selected algo-
rithms at pre-computed targets across all prob-
lem dimensions on a chosen problem.

Probability
Mass
Function

Histogram
The histogram of the running time at a target
specified by the user on one function.

Probability Mass Func-
tion

The probability mass function of the running
time at a target specified by the user on one
function.

Cumulative
Distribution

ECDF: single target
On one function, the ECDF of the running
time at one target specified by the user.

ECDF: single function
On one function, ECDFs aggregated over
multiple targets.

Algorithm
Parameters

Expected Parameter
Value

The progression of expected value of parame-
ters over targets, whose range is controlled by
the user.

Parameter Statistics
The mean, median, quantiles of recorded pa-
rameters at an evenly spaced sequence of tar-
gets controlled by fmin, fmax and ∆f .

Parameter Sample
The sample of recorded parameters at an
evenly spaced sequence of targets controlled by
fmin, fmax and ∆f .

Statistics Hypothesis Testing

The two-sample Kolmogorov-Smirnov test ap-
plied on the running time at a target value for
each pair of algorithms. A partial order among
algorithms is obtained from the test.
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Data
Summary

Multi-Function Statis-
tics

Descriptive statistics for all functions at a sin-
gle target value.

Multi-Function Hitting
Times

Raw hitting times for all functions at a single
target value.

Expected
Runtime

ERT: all functions
The progress of ERTs are grouped by functions
and the range of targets are automatically de-
termined.

Expected Runtime
Comparisons

The ERTs at the best target found on each
function (one fixed dimension) is plotted
against the function ID for each algorithm.

Cumulative
Distribution

ECDF: all functions
On all functions, ECDFs aggregated over
multiple targets.

Deep Statistics

Ranking per Function
Per-function statistical ranking procedure
from the Deep Statistical Comparison Tool
(DSCTool) [EPK20].

Omnibus Test
Use the results of the per-function ranking to
perform an omnibus test using DSC.

Posthoc comparison
Use the results of the omnibus test to perform
the post-hoc comparison.

Ranking Glicko2-based ranking

For each pair of algorithms, a running time
value at a given target is randomly chosen from
all sample points in each round of the compar-
ison. The glicko2-rating is used to determine
the overall ranking from all comparisons.

Portfolio
Contribution to portfo-
lio (Shapley-values)

Calculate the approximated Shapley values in-
dicating the contribution of each algorithm to
the overall portfolios ECDF.

Table 1: The functionalities implemented in the fixed-target results section of IOHanalyzer.
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Figure 3: Screenshot of the overview table of function values reached in the “sample data” data
set on function 1 in 16D.

• Table Data Overview: A screenshot of this table is given in Figure 3. It simply summarizes
the range of function values observed in the data set, with the purpose to offer its users
a quick overview of the quality of the solutions that were evaluated by the algorithms. In
Figure 3, we show the data overview of the “sample data” data set, where the following values
are listed for each triple of function, dimension, and algorithm: (1) the total number of runs,
(2) the worst of all function values recorded in any of the runs (“worst recorded”), (3) the
worst of the best function values reached in any of the runs (“worst reached”), (4) the best
function value reached in any of the runs (“best reached”), (5) the mean (with respect to all
runs) best function values (“mean reached”), (6) the median (with respect to all runs) best
function value (“median reached”), and (7) the number of runs which successfully hit the
“best reached” function value (“succ”).

• Table Runtime Statistics at Chosen Target Values: A screenshot of this table is given
in Figure 4. The user can set the range and the granularity of the results in the box on the left.
The table shows fixed-target running times for evenly spaced target values2. More precisely,
the table provides the success rate and the number of successful runs as defined in Eq. (2),
the sample mean, median, standard deviation, the sample quantiles: Q2%, Q5%, . . . , Q98%,
and the expected running time (ERT) as defined in Eq. (3). The user can download this table
in csv format, or as a LATEX table.

• Table Original Runtime Samples: This table uses the same principle as the Runtime

Statistics, but instead displays the values for each individual run. For this table, the
user can choose between a “long” (all sample points are arranged in a column) and a “wide”
format (all sample points are arranged in a row).

2These target values are evenly spaced between the user-specified minimum and maximum values (whose default
values are set to be the extreme values found in the data) on a linear or log scale, based on the difference in order
of magnitude between the extreme values found for the specified function. This same principle is used in all similar
tables and plots where both a minimum and maximum target can be chosen by the user. A notable exception are
the cumulative distribution functions, where arbitrary sets of target values can be chosen by the user
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Figure 4: Screenshot of the data summary table of some descriptive statistics on the running time.
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Group 2: Fixed-Target Results I Single Function I Expected Runtime: An interactive
plot illustrates the fixed-target running times. An example of this plot is shown in Figure 5. The
interactive plot can be adjusted in the menu on the left as shown in the figure. These options
include showing/hiding mean and/or median values along with standard deviations and scaling
the axes logarithmically. The user selects the algorithms to be displayed as well as the range of
target values within which the curves are drawn. By default, this range is set as [Q25%, Q75%] of
all function values measured in the data set. The displayed curves can be switched on and off by
clicking on the legend on the bottom of the plot.

Figure 5: Screenshot of the expected running time plot.

Group 3: Fixed-Target Results I Single Function I Probability Mass Function: For
a selected target value v, the histogram of the running time, as displayed in Figure 6, shows
the number of runs i for which the running time falls into a given interval [t, t + ∆t), namely∑r

i=1 1(t ≤ T (A, f, d, v, i) < t + ∆t). The bin size ∆t is determined according to the Freedman-
Diaconis rule [FD81], which is based on the interquartile range of the sample {T (A, f, d, v, i)}ri=1.
The user has two options: 1) an overlayed display, where all algorithms are displayed in the same
plot, or 2) a separated one, where each algorithm is displayed in an individual sub-plot, as shown
in Figure 6.

In addition to the histogram, the probability mass function (Figure 7) might be helpful to get a
finer look at the shape of the empirical distribution of T . The user can switch on/off the illustration
of all sample points (depicted as dots), or only the empirical probability mass function itself. It is
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important to point out that the probability mass function is estimated in a “continuous” manner,
where running time samples are considered as R-valued and then the Kernel Density Estimation
(KDE) method is taken to estimated the function.3

Figure 6: Screenshot of the histogram of running time (given a fixed target of 10 on Function 1 in
dimension 16).

Group 4: Fixed-Target Results I Single Function I Cumulative Distribution The
empirical cumulative distribution function (ECDF) of the running time is computed for target
values specified by the user. In addition to calculating ECDFs for a single target value, it is
recommended to aggregate ECDFs over multiple targets, to obtain an overall performance for
solving different targets. For the default target values, the tool takes 10 evenly spaced values in
[Q25%, Q75%] of all measured function values in a data set. Such a functionality is exemplified in
Figure 8: a set of evenly spaced target values can be generated by specifying the range and step-size
of the target value.

In this example, with the following setup, fmin = 4, fmax = 16, and ∆f = 1.33, the target value
sequence, 4, 5.33, 6.66, . . . , 16 is used to calculate the ECDF. These values are shown in the bar on
the top of the plot, as can be seen in Figure 8. In the same figure it can be seen for algorithm RLS
(blue curve) that within a budget of 24 function evaluations, around 76% of (target, run) pairs
have been successful. For algorithm (1, λ) GA (purple curve) this value is only 53%.

3Strictly speaking, this method gives imprecise estimations when there are many duplicated values, which can be
quite likely in discrete optimization (such as in our examples). Improvements are planned for the future version.
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Figure 7: Screenshot of the empirical probability mass function of running time for target value
10 on Function 1 in dimension 16).
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Figure 8: Screenshot of aggregated ECDF curve over multiple targets.

Group 5: Fixed-Target Results I Single Function I Algorithm Parameters One of the
key motivations to build IOHprofiler was the ability to analyze, in detail, the evolution of control
parameters which are adjusted during the search. Such dynamic parameters can be found in most
state-of-the-art heuristics. While in numerical optimization a non-static choice of the search radius,
for example, is needed to eventually converge to a local optimum, dynamic parameters are also more
and more common in discrete and mixed-integer optimization heuristics [KHE15, DD20]. In the
fifth group of fixed-target results for a single function, the evolution of the parameters is linked to
the quality of the best-so-far solutions that have been evaluated. In the experimentation (i.e., data
generation) phase, the user selects which parameters are logged along with the evaluated function
values. These values are then automatically detected by IOHanalyzer and can be chosen in this
group for analysis.

As with the interactive plots on expected running time, the user can choose the range of targets,
which parameters and algorithms to plot, and the scale (either logarithmic or linear) of x- and y-
axis. We omit the example for parameters as the GUI is similar to the one in Figure 5. As with
“Fixed-Target Results I Single Function I Data Summary”, this subsection also provides for each
parameter tables of descriptive statistics (sample mean, median, standard deviation, and some
quantiles) as well as the original parameter values.

Group 5: Fixed-Target Results I Single Function I Statistics To address the robustness
of empirical comparisons, the samples from all algorithm must undergo a proper statistical test
procedure [HWC13]. In IOHanalyzer, a standard multiple testing procedure is implemented to
compare the fixed-target running time for each pair of algorithms on a single function, for which
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the well-known Kolmogorov-Smirnov test is applied to the ECDFs of running times. Moreover,
the Bonferroni procedure is used to correct the p-value in multiple testing. To demonstrate this
functionality, we show, in Figure 9, the testing outcome of a data set on 12 reference algorithms.4

on the PBO problem set from [DYH+20], instead of the exemplary two-algorithm data set used
previously. Here, the test is conducted across all 12 algorithms on function f1 and dimension 64
with a confidence level of 0.01. The result of this procedure is illustrated by a table of pairwise
p-values, a color matrix of the statistical decision, and a graph depicting the partial order induced
by the test (i.e., an arrow pointing from Algorithm 1 to Algorithm 2 is to be read as Algorithm 1
dominating Algorithm 2 with statistical significance. As with all tables and figures in IOHanalyzer,
these can be downloaded in several formats, including *.tex and *.csv for tables and *.pdf and
*.eps for figures.

3.2.2 The “Multiple Functions” Subsection

This subsection contains three groups of fixed-target results for multiple functions: (1) expected
runtime comparison across all functions for one dimension, (2) aggregated Empirical Cumulative
Distribution over all functions, and (3) Glicko2-based ranking.

Group 1: Fixed-Target Results I Multiple Functions I Expected Runtime: In this
group, the tool depicts the ERT values against multiple functions as a radar-plot, as shown in
Figure 10. For each function, the target value used for calculating the ERT is determined by
default as follows: firstly, for each algorithm, we obtained the 2% percentile of the best function
values reached in multiple runs. Secondly, we took the largest value among all such 2% percentiles
as the target value on this function. In this radar-plot, we revert the axis such that the bigger
ERT values are further away from the center of the circle compared to smaller ones, indicating that
better algorithms will cover a larger area.

Group 2: Fixed-Target Results I Multiple Functions I Cumulative Distribution: In
this group, ECDFs of running times are aggregated across multiple functions, as defined in Eq. (5).
This functionality is illustrated in Figure 11: a table of pre-calculated target values are provided
for each function (all test functions are included by default). This table of targets can easily be
edited directly in the GUI, or by a downloading-editing-uploading procedure (which should, of
course, not change the format of the tables, just the values). Note that for these ECDF-figures, the
corresponding Area Under the Curve (AUC) can also be calculated to get a single value for each
algorithm. These AUC-tables are available in the same tab as the ECDF plot.

Group 3: Fixed-Target Results I Multiple Functions I Ranking: This group provides a
ranking functionality to compare algorithms across multiple functions and dimensions, in which we
employ the Glicko-2 rating system [Gli12] (commonly used in chess games) to rank the algorithms,
based on multiple simulated games between them (25 by default). In each game, for every function
and dimension, the winner of each pair of algorithms is determined by sampling from the running
time values (given a target value) uniformly at random and checking which random sample is

4This data set is available at https://github.com/IOHprofiler/IOHdata/blob/master/iohprofiler/

2019gecco-ins1-11run.rds It can be loaded to the web-based GUI by selecting the PBO data set in the “upload
data” section. The data set comprises the results of the experimental study described in [DYH+20].
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better. An overall rating is computed from those games’ outcome, which is then used to rank the
algorithms. Algorithms with a better rank win more rounds than those with a poor rank, indicating
that when sampling a runtime on an arbitrary function, these algorithms tend to perform better.
This way of ranking allows us to aggregate performance over an arbitrary number of functions and
targets, while inherently managing uncertainty of the performance metrics by doing the repeated
rounds and comparing individual values for each ’game’.

3.3 The “Fixed-Budget Results” Section

The fixed-budget section offers performance analysis for the quality of the best solution that the
algorithms could identify within a given budget of function evaluations. The results are similar
to those presented in the fixed-target section (Section 3.2) except that subsection “Fixed-Budget
Results I Multiple Functions I Cumulative Distribution” is still under development and hence not
yet available at the time of writing. Table 2 summarizes the main functionalities.

3.4 The “Position Information” Section

Within this section, the user can visualize the final search points in their decision space in a parallel
coordinate plot. In version 0.1.6.1, this functionality is only supported for data generated by the
SOS-framework [CI20]. A processed dataset in this format is available on IOHdata.5 This dataset
contains a DE-variant which was generated for the analysis of Structural Bias in DE [VKC+21],
which can be confirmed visually using the parallel coordinate plot functionality.

Development on extending this position-based functionality to other data sources and more
types of analysis is in progress.

3.5 Command-Line interface

In addition to the web-based graphical interface, we provide a command-line interface (CLI) via
a feature-rich R-package, which allows for more fine-grained control of various types of analysis
and visualization described in this section. All functionality discussed in this paper can also be
accessed through this CLI. A demonstration of the key aspects of this CLI on an example data set
is available on the wiki page https://iohprofiler.github.io/IOHanalyzer/R/.

4 Discussion and Outlook

We have presented IOHanalyzer, a highly versatile environment for evaluating the performance
data of iterative optimization heuristics. IOHanalyzer – and, more generally, the whole IOHprofiler
project – are under continuous development. Extensions planned for the near future comprise, most
notably, an increased compatibility with the following benchmarking environments and
platforms:

• General-purpose benchmarking platforms. As mentioned, IOHanalyzer has already
been extended to visualize data sets generated with Facebook’s Nevergrad platform [RT18].
We are now working on various other interfaces, which will allow Nevergrad users to use the

5https://github.com/IOHprofiler/IOHdata/tree/master/SOS
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Section Group Functionality Description
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Data
Summary

Data Overview
The minimum and maximum of running times
for selected algorithms.

Target Value Statistics
The mean, median, quantiles of the function
value at a sequence of budgets controlled by
Bmin, Bmax and ∆B.

Target Value Samples
The function value samples at an evenly
spaced sequence of budgets controlled by
Bmin, Bmax and ∆B.

Expected
Target
Value

Expected Target Value:
single function

The progression of expected function values
over budgets, whose range is controlled by the
user.

Probability
Density
Function

Histogram
The histogram of the function value a user-
chosen budget.

Probability Density
Function

The probability density function (using the
Kernel Density Estimation) of the function
value at a user-chosen budget.

Cumulative
Distribution

ECDF: single budget
On one function, the ECDF of the function
value at one budget specified by the user.

ECDF: single function
On one function, ECDFs aggregated over
multiple budgets.

Area Under the ECDF
On one functions, the area under ECDFs of
function values that are aggregated over mul-
tiple budgets.

Algorithm
Parameters

Expected Parameter
Value

The progression of expected value of param-
eters over the budget, whose range is con-
trolled by the user.

Parameter Statistics
The mean, median, quantiles of recorded pa-
rameters at an evenly spaced sequence of bud-
gets controlled by Bmin, Bmax and ∆B.

Parameter Sample
The sample of recorded parameters at an
evenly spaced sequence of budgets controlled
by Bmin, Bmax and ∆B.

Statistics Hypothesis Testing

The two-sample Kolmogorov-Smirnov test ap-
plied on the running time at a target value for
each pair of algorithms. A partial order among
algorithms is obtained from the test
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Data
Summary

Multi-Function Statis-
tics

Descriptive statistics for all functions at a sin-
gle target value.

Multi-Function Hitting
Times

Raw hitting times for all functions at a single
target value.

Expected
Target
Value

Expected Target Value:
all functions

The same as above expect that the expected
function values are grouped by functions and
the range of budgets are automatically deter-
mined.

Expected Target Value:
Comparison

The expected function value at the largest
budget found on each function is plotted
against the function ID for each algorithm.

Deep Statistics

Ranking per Function
Per-function statistical ranking procedure
from the Deep Statistical Comparison Tool
(DSCTool) [EPK20].

Omnibus Test
Use the results of the per-function ranking to
perform an omnibus test using DSC.

Posthoc comparison
Use the results of the omnibus test to perform
the post-hoc comparison.

Ranking Glicko2-based ranking

For each pair of algorithms, a function value
at a given budget is randomly chosen from all
sample points in each round of the compari-
son. The glicko2-rating is used to determine
the overall ranking from all comparisons.

Table 2: The functionalities implemented in the fixed-budget results of IOHanalyzer.22



logging functionalities of IOHprofiler and to access the problems made available in IOHpro-
filer. Likewise, we are working towards an interface that allows users of IOHprofiler to more
easily access the benchmark problems of Nevergrad.

• Modular algorithm frameworks and automated configuration tools. The modular
algorithm framework ParadisEO [CMT04] and the modular CMA-ES framework proposed
in [vRWvLB16] have already been integrated into IOHprofiler. An integration of other modu-
lar algorithm frameworks such as those presented in [NDV15, SL19, GP06, FDG+12], together
with automated algorithm configuration tools such as irace [LIDLC+16], SMAC [HHL11], hy-
perband [LJD+17], and MIP-EGO [WvSEB17], will pave the way to a more generic research
environment for automated configuration of optimization algorithms. For supervised learning
approaches, we shall interface IOHprofiler and feature-extraction techniques such as those
collected in the R package flacco [KT16].

• Collections and generators of benchmark problems. As we are doing for the
Nevergrad platform, we are working on easier interfaces with other collections of bench-
mark problems as well as with generators of these. Already implemented are the 23 dis-
crete problems described in the PBO suite from [DYH+20], a (slight variation of the) W-
model [WW18] (see https://iohprofiler.github.io/ for details of our implementation),
and the 24 numeric optimization problems from the BBOB suite [HFRA09] of the COCO
platform [HAR+20]. Extensions to other problem types, such as multi-objective or noisy
optimization, are also being considered.

• Other statistical evaluation techniques. Several interfaces of IOHanalyzer with tools
aimed at visualizing or analyzing the performance data are currently under consideration. For
example, an integration of the software to efficiently compute empirical attainment functions
provided by [FGLP11] could help to visualize the time-quality-robustness trade-off of IOHs.

Building on the initial study [CSC+19] we are considering the integration of the rank-based
Bayesian inference statistics, which were introduced to the evolutionary computation com-
munity via [CCL18]. Other advanced statistical procedures may also be added, e.g., the Deep
Statistical Comparison tool (DSCtool) suggested in [EKK17].

• Performance aggregation and anytime performance measures. Finally, we are also
implementing different ways to aggregate performances over multiple test problems. In this
respect we are, among others, looking into so-called performance profiles [MW09], which
is the empirical cumulative distribution of normalized performance values across problems.
Related to this, we observe an increasing interest in measuring and/or optimizing for anytime
performance metrics [JLDP20, BKT20]. We are carefully observing this development and
are considering different ways to extend the statistics of IOHanalyzer with other suggested
anytime performance measures.

Computational details The results in this paper were obtained using R 4.1.1 and version
0.1.6.1 of IOHanalyzer with the following packages, Rcpp 1.0.7, shiny 1.6.0 and plotly 4.9.4.1. For
the C/C++ compiler, gcc version 10.3.0 is used (for Rcpp).
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A Supported Data Format

IOHanalyzer aims to be as flexible as possible, and to achieve this, it supports data from many
different sources. This means that data can be presented in many different formats. At the time
of writing, the list of supported formats is as follows:

• IOHprofiler data format, which is motivated by and modified from the COCO data format.

• COCO data format as defined in [HAFR09].

• The Nevergrad format from [RT18].

• The SOS format from [CI20].

• A “two-column” format is a simplified version of the IOHprofiler format. We describe this
format in the upcoming paragraph on “Raw-data”.

29



When loading the data in the programming interface (and in the graphical user interface as well),
it is not necessary to specify its format as IOHanalyzer attempts to detect this automatically.
For most data formats,6 data files are organized in the same manner within the file system. The
structure of data files is as follows:

./

IOHprofiler f1.info

data f1

IOHprofiler f1 DIM64.dat

IOHprofiler f1 DIM64.cdat

IOHprofiler f1 DIM100.dat

IOHprofiler f1 DIM100.cdat

. . .
IOHprofiler f2.info

data f2

IOHprofiler f2 DIM64.dat

IOHprofiler f2 DIM64.cdat

IOHprofiler f2 DIM100.dat

IOHprofiler f2 DIM100.cdat

. . .
IOHprofiler f3.info

. . .
Generally, in the folder (e.g., ./ here) that contains the data set, the following files are manda-

tory for IOHanalyzer:

• Meta-data (.info) files summarize the algorithmic performance for each problem instance,
with the following naming convention: IOHprofiler_f1.info for problem f1. Note that one
meta-data file can consist of several dimensions. Please see the details below.

• Raw-data (.dat, .cdat etc) are csv-like files that contain performance information indexed
by the running time. Raw-data files are named in a similar manner as the meta-data files, for
example, IOHprofiler_f1_DIM100.dat for problem f1 and dimension 100. Raw-data files
are organized in sub-folders for each problem. It is important to note that those three data
formats only differ in the structure of the raw-data files.

Meta-data When benchmarking, it is common to specify a number of different dimensions,
functions and instances, resulting in a quite large number of data files (e.g., *.dat files). It would
make the data organization more structured if some meta data are provided. Here, the meta data
are implemented in a format that is very similar to that in the well-known COCO environment. The
meta data are indicated with suffix .info. A small example is provided as follows:

suite = ’PBO’, funcId = 19, DIM = 16, algId = ’self_GA’

%

data_f19/IOHprofiler_f19_DIM16.dat, 1:16001|3.20000e+001, 1:16001|3.20000e+001,

1:16001|3.20000e+001, 1:16001|2.80000e+001, 1:16001|3.20000e+001

suite = ’PBO’, funcId = 19, DIM = 100, algId = ’self_GA’

6The IOHprofiler, COCO and the two-column formats have the same basic structure, while Nevergrad uses pure
csv files instead, and will thus not be discussed in this section.
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%

data_f19/IOHprofiler_f19_DIM100.dat, 1:100001|1.92000e+002, 1:100001|1.88000e+002,

1:100001|1.80000e+002, 1:100001|1.76000e+002, 1:100001|1.76000e+002

Note that the IOHanalyzer relies on the meta-data present in the info-files for its processing of
associated data. Thus, it is crucial to ensure that these files are correct, especially when converting
data from other formats into IOHprofiler or two-column formats. The meta data is structured
in the following “three-line” format (two examples of this “three-line” structure are provided in
the example above), storing the high-level information on all instances of a tuple of (dimension,
function).

• The first line stores some meta-information of the experiment as (name, value) pairs. Note
that such pairs are separated by commas and three names, funcId, DIM and algId are case-
sensitive and mandatory.

• The second line always starts with a single %, indicating what follows this symbol should
be the general comments from the user on this experiment. By default, it is left empty.

• The third line starts with the relative path to the actual data file, followed by the meta-
information obtained on each instance, with the following format:

1︸︷︷︸
instance ID

: 1953125︸ ︷︷ ︸
running time

| 5.59000e+ 02︸ ︷︷ ︸
best-so-far f(x)

By default, the data files (*.dat, *.cdat, *.tdat, dots) are organized in the group
of test functions, which are again stored in sub-folders with naming convention:
data_[function ID]/, e.g., data_f10/. Moreover, when several dimensions are tested, the
corresponding information above is written into the meta data one after the other.

Raw-data Despite the fact that different methods can be used to store data (resulting in four
types of data file, which also determines the extension, e.g. .dat or .cdat), the files take the same
format, which is adapted from csv format to accommodate multiple runs/instances. An example
of the structure of these files is shown below.

Note that, each separation line (line that starts with "function evaluation") serves as a
separator among different independent runs of the same algorithm. Therefore, it is clear that
the data block between two separation lines corresponds to a single run on a combination of
dimension, function, and instance. In addition, a parameter value (named "parameter") is also
tracked in this example and recording more parameter value is also facilitated (see below). Columns
"current f(x)" and "best-so-far f(x)" stand for the current function value and the best one
found so far, respectively. Here, "current f(x)" stands for the function value observed when
the corresponding number of function evaluation is performed while "best-so-far f(x)" keeps
track of the best function value observed since the beginning of one run. Only two columns,
"function evaluation" and "best-so-far f(x)" are mandatory in this format. The two-
column data format mentioned previously is to describe the minimal case where only those two
columns are present in the raw data.

In order to emulate the data format generated by IOHexperimenter, it is very important to pay
attention to the following principles for the data format:
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"function evaluation" "current f(x)" "best-so-far f(x)" "parameter" . . .
1 +2.95000e+02 +2.95000e+02 0.000000 . . .
2 +2.96000e+02 +2.96000e+02 0.001600 . . .
4 +3.07000e+02 +3.07000e+02 0.219200 . . .
9 +3.11000e+02 +3.11000e+02 0.006400 . . .
12 +3.12000e+02 +3.12000e+02 0.001600 . . .
16 +3.16000e+02 +3.16000e+02 0.006400 . . .
20 +3.17000e+02 +3.17000e+02 0.001600 . . .
23 +3.28000e+02 +3.28000e+02 0.027200 . . .
27 +3.39000e+02 +3.39000e+02 0.059200 . . .

"function evaluation" "current f(x)" "best-so-far f(x)" "parameter" . . .
1 +3.20000e+02 +3.20000e+02 1.000000 . . .
24 +3.44000e+02 +3.44000e+02 2.000000 . . .
60 +3.64000e+02 +3.64000e+02 3.000000 . . .

"function evaluation" "current f(x)" "best-so-far f(x)" "parameter" . . .
. . . . . . . . . . . . . . .

• The double quotation (") in the separation line shall always be kept and it cannot be replace
with single quotation (’).

• The numbers in the record can either be written in the plain or scientific notation.

• To separate the columns, a single space or tab can be used (only one of them should be used
consistently in a single data file).

• If the performance data is tracked in the improvement-based scheme, where a row is written
only if the "best-so-far f(x)" is improved, the user must make sure that each block of
records (as divided by the separation line) ends with the last function evaluation. This allows
the used budget to be extracted from the data-file when required.

• Each data line should contain a complete record. Incomplete data lines will be dropped when
loading the data into IOHanalyzer.

• The parameter columns, which record the state of (dynamic) internal parameters during the
search, are fully customizable. The user can specify which parameter to track when running
their algorithm using the IOHexperimenter. For more details on how to setup this parameter
tracking in IOHexperimenter, please refer to our wiki page (https://iohprofiler.github.
io/IOHexp/Cpp/#using-logger).

• In case the quotation mark is needed in the parameter name, a single quotation (’) should
be used.
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Figure 9: Screenshot of the multiple testing procedure applied on all 12 reference algorithms on
function f1 and dimension 625. The table shows the p-values resulting from the pairwise KS-test
between each pair of algorithms. Then, based on the α = 0.01, the resulting hypothesis-rejections
are shown in both the matrix-plot and the network.
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Figure 10: Screenshot of ERT of RLS and the (1, λ) GA on four PBO problems, where the ERT
values are shown for each selected problem in a radar plot with inverted axis (values are decreasing
when moving away from the center). Loosely speaking, an algorithm with a larger span on the plot
is considered better, e.g., RLS dominates (1, λ) GA on problem F01, F02, and F23 while the latter
is superior on F19.
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Figure 11: Screenshot of aggregated ECDF curve across multiple functions and targets.
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