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Abstract

The present work aims at reproducing the local dynamics of a dense granular media

evolving in a viscous fluid from the grain scale to that of thousands of grains,

encountered in environmental multiphase flows. To this end a soft-sphere

collision/immersed-boundary method is developed. The methods are validated alone

through various standard configurations including static and dynamical situations. Then,

simulations of binary wall-particle collisions in a fluid are performed for a wide range

of Stokes number ranging in [10–1, 104]. Good agreement with available experimental

data is found provided that a local lubrication model is used. Finally, three- dimensional

simulations of gravity/shear-driven dense granular flows in a viscous fluid are presented.

The results open the way for a parametric study in the parameter space initial aspect

ratio-initial packing.

1. INTRODUCTION

Particle-laden flows are encountered in a large number of industrial and natural applications,

including chemical engineering, aeronautics, transportations, biomechanics, geophysics and

oceanography. Modeling solid-fluid interaction is often difficult because of the complexity of the

solid shape and motion in the fluid flow.

Methods for modeling solid-fluid interaction may be divided within two main groups,

depending on the way the solid-fluid interfaces are described. One group, usually referred to as

“body-fitted grid methods” makes use of a structured curvilinear or unstructured grid to conform

the grid to the boundary of the fluid domain. In situations involving complex moving boundaries,

one needs to establish a new body-conformal grid at each time-step leading to a substantial

computational cost and subsequent slowdown of the solution procedure. In addition, issues

associated with regridding arise such as grid-quality and grid-interpolation errors.

The second group of methods is referred to as “fixed-grid methods”. These techniques make use

of a fixed grid, which avoid any regridding procedure, while the presence of the solid objects is

taken into account via adequately formulated source terms added to the fluid flow equations. Fixed-

grid methods have emerged in recent years as a viable alternative to body-conformal grid methods.

In this group, one can mention immersed-boundary method (IBM) [1-4], among others.

In the present work, we attempt to simulate the local dynamics of such systems from the grain

scale to that of thousands of grains approximately. To this end a simple soft-sphere

collision/immersed-boundary method is presented. The immersed-boundary method consists in a

direct forcing method, using a continuous solid volume fraction to define the boundary. The granular

media is modeled with a discrete element method (DEM) based on a multi-contact soft-sphere

approach.

The paper is structured as follow. First we describe the numerical techniques used here, then

preliminary test cases are presented to show the ability of both methods independently. In a third

part, binary wall-particle collisions in a fluid are simulated for a wide range of Stokes number and

a discussion about the use of a local lubrication model is done. Finally, three-dimensional

simulations of dense granular flows in a viscous fluid are presented.
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2. NUMERICAL APPROACHES

2.1 Immersed-boundary method (IBM)

Assuming a Newtonian fluid, the evolution of the flow is described using the Navier-Stokes

equations, namely

— . V = 0, (1)

(2)

where V, p, r and m are the local velocity, pressure, density and dynamic viscosity in the flow,

respectively, g denotes gravity and f is a volume force term used to take into account solid-fluid

interaction. (1)-(2) are written in a Cartesian or polar system of coordinates. These equations are

enforced throughout the entire domain, comprising the actual fluid domain and the space occupied

by the particles. In the following, the term f will be formulated in such way as to represent the

action of the immersed solid boundaries upon the fluid.

Let us consider a solid particle of density r
p
, volume J

p
and mass m

p
, the centroid of which

being located at x
p
, moving at linear and angular velocity u

p
and w

p
, respectively. The local velocity

U in the object is then defined by U = u
p

+ r ¥ w
p
, r being the local position relative the solid

centroid. The motion of the particle is described by the Newton’s equations for linear and angular

momentum of a rigid body, viz [4]

(3)

(4)

(5)

(6)

where F
h

(resp. G
h
) is the acceleration (resp. torque) due to hydrodynamic forces.

The time integration of the momentum equations for the fluid (2) and the solid (3-4) is

performed via a third-order Runge-Kutta method for all terms except the viscous term for which a

second-order semi-implicit Crank-Nicolson scheme is used. The incompressibility condition (1) is

satisfied at the end of each time step through a projection method. Domain decomposition and

Message Passing Interface (MPI) parallelization is performed to facilitate simulation of large

number of computational cells. The detailed description of the resolution of (1)-(2) is given in [5]

and will not be repeated here.

In general, the location of the particle surface is unlikely to coincide with the grid nodes, so that

interpolation techniques are usually employed to enforce the boundary condition by imposing

constraints on the neighboring grid nodes (see [4] for instance). Here we adopt another strategy, by

introducing a function denoted as “solid volume fraction”, which is equal to one in cells filled

with the solid phase, zero in cells filled with the fluid phase, and 0 < < 1 in the region of the

boundary. In practice, the transition region is set-up to be of one-to-three grid cells approximately

[6]. The forcing term then reads

(7)
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Recall that U is the local velocity obtained from (3)-(4) and imposed to the immersed solid

object while V is the predictive local velocity found for the fluid without considering the solid

object; Dt is the time step used for the time-advancement. The present choice, which may be viewed

as a smoothing of the immersed boundary, is an alternative way to using a regularized delta

function in conjunction with a Lagrangian marking of the boundary. The latter technique is largely

used in immersed-boundary methods in order to allow for a smooth transfer of momentum from the

boundary to the fluid (see e.g. [2, 4]). The advantage of the present choice is that it is simple to

implement and no interpolation is performed so that the computational cost is reduced.

In the following, spherical particles will be considered. The corresponding solid volume fraction

 is defined by [6],

(8)

(9)

(10)

where n = (n
x
, n

y
, n

z
) is a normal outward unit vector at a surface element, s is a parameter

controlling the thickness of the transition region and D is a characteristic grid size (D = 21/2 Dx when

the grid is uniform). More explicitly, in a grid cell, the unit vector n is simply computed using the

location of the sphere center and that of the local grid cell, since here we only consider spheres.

Iso-contours of as defined in (8) are shown in the inset of figure 2. With the present choices, the

transition region is of three grid cells approximately.

2.2 Soft-sphere approach (DEM)

As shown later, the coupled IBM-DEM method may not be accurate in capturing the detailed flow

structure in the liquid film that is drained when the particles approach each other because of the

somewhat limited spatial resolution of the flow in the narrow gap. Moreover, solid particles may

collide through solid-solid interaction if their inertia overcome dissipative effects induced by the

above mentioned drainage flow. In these specific cases, equations (3)-(4) have to be modified to

incorporate the resulting interaction forces. In this section, we describe the discrete element method

(DEM) developed here to deal with these local forces in the case of multi-grain interactions.

2.2.1 Solid-solid interaction

We first describe the method used for dealing with solid contacts in a system of n
p

particles which

is based on a standard DEM approach described in [7]. Here, the modeling of the solid-solid

interaction is done via a soft-sphere approach. Briefly, we assume the particles to be non-

deformable but being able to overlap each other. This overlap is then used to compute the normal

and tangential contact forces, using a local linear mass-spring system and a Coulomb type model,

respectively. When coupling is performed, an extra force F
c

and torque G
c

is added in (3) and (4)

for each particle labeled i, namely

(11)

(12)

where F
i-j

is the contact force between particles i and j, F
wall

the wall-particle interaction force,

G
i-j

and G
wall

are the corresponding torques. F
i-j

and G
i-j

are computed using a local system of

coordinates (n, t) depicted in figure 1 as follows
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Figure 1: Sketch of a typical particle-particle collision and notations used in the 

soft-sphere approach.

(13)

(14)

(15)

(16)

where R
i

is the i-th particle radius, d
n

(d
t
) is the normal (tangential) distance of overlap, m

c
is the

friction coefficient, k
n

(resp. k
t
) is the normal (resp. tangential) stiffness and g

n
is the damping

coefficient of the mass-spring model. Note that F
wall

and G
wall

are treated in a similar manner by

taking an infinite radius and mass for the wall. The constants of the mass-spring model g
n
, k

n
and

k
t
are calculated thanks to two additional parameters, namely the coefficient of normal restitution

e
n

and the contact time t
c
. These quantities are characteristic of the elastic properties of the particles.

(17)

(18)

where m
* 

= m
i
m

j
/(m

i
+ m

j
) is the effective mass involved in the contact. Finally, the tangential

stiffness coefficient k
t
is assumed to be proportional to the normal stiffness coefficient k

n
[8]. In the

present work, we set k
t 
= 0.2k

n
. To summarize, in the present soft-sphere approach, one needs to

specify e
n
, t

c
and m

c
in addition to the size and density of the particles for the model to be closed.

2.2.2 Lubrication force

As mentioned above, the lubrication force induced by approaching spheres can become dominant

prior solid contact, while the IBM method is not able to accurately describe the flow on such short

distance of interactions (generally smaller than the grid size). An extra lubrication force may

therefore be added in (3) to compensate for this [9]. Here we use the following model of lubrication

force [10] between two approaching particles i and j of velocity u
p, i

and u
p, j

and radius R
i
and R

j
,

= +k
m

t m4
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c
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(19)

where h is an effective roughness length accounting for the roughness height of real grains. This

parameter is added in the model in order to mimic real particles roughness and avoid the divergence

of the force when contact occurs (d
n

= 0). Depending on the type of material used for the particles,

the relative roughness height h/R is roughly in the range [10–6; 10–3] (see e.g. Ref [11]). The present

lubrication force is used when the distance between particles is in the range 0  d
n 

 R/2. We

checked that the specific value of the upper bound of the force application (within the range [Dx;

R]) does not affect the results significantly. Results with the lubrication force (19) are presented in

figures 6-7 and 8-9, which will be detailed in section 4.

3. PRELIMINARY TESTS WITHOUT COUPLING

3.1 Falling sphere in a viscous liquid initially at rest

We set the physical properties of the particle and the fluid so the density ratio is r
p
/r = 4 and the

Archimedes number Ar = r(r
p
–r)gD3/m2 = 800. As shown later, this corresponds to a Reynolds

number, based on the terminal velocity of the sphere, of Re = rm
p
D/m = 20 approximately, for which

the wake flow is axisymmetric leading to a rectilinear trajectory of the falling particle. Here, we

compare our results with those of a boundary-fitted approach which has been validated in previous

papers [12]. This method fully resolves the flow around the falling sphere in the reference frame of

the moving object, thanks to a spherical curvilinear grid which is refined in the vicinity of the rigid

boundary. The particle motion is solved via the Kirchhoff equations of motion. In this method a

88 ¥ 34 ¥ 66 spherical grid was used and the outer boundary was located at a distance of 20D from

the sphere center.

In the present case, the simulation is performed in a cylindrical computational (r, z)-domain of

20D ¥ 40D size with a 128 ¥ 800 grid points. The spatial resolution is constant along the z-direction

parallel to gravity as well as in the region 0 r/D 1.5 (D/Dx = 20). For 1.5 r/D 20, the grid

size is varied following an arithmetic progression up to the outer wall. Free-slip boundary

conditions are imposed at all boundaries. The time-step used for the simulation is Dt(g/D)1/2 = 0.04.

Inset of figure 2 shows the grid used and iso-contours of the solid volume fraction defined in (8).

Initially, the sphere is located at a distance 5R from the upper wall and the fluid is at rest.

One can estimate the initial acceleration of the sphere at early times, assuming that only the

buoyancy force and the added-mass force are at play. The initial vertical acceleration reads

(20)
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Figure 2: Time evolution of the particle velocity: —, present IBM method, - - -, boundary-

fitted approach [12], , analytical solutions (20)-(21). Inset: close-up view of the grid

used for the IBM simulation, with iso-contours of  = 0.01, 0.25, 0.5, 0.75 and 0.99.



where C
M

is the added-mass coefficient equal to 1/2 for a sphere. When the sphere has reached a

terminal velocity, the drag force is balanced by the buoyancy force so the terminal velocity can be

computed as follows

(21)

where m
p

and m are the mass of the spherical particle and the mass of the fluid contained in the

same volume, respectively. C
D

is the drag coefficient which can be classically estimated using

Schiller and Naumann’s correlation [13]. Using this correlation together with the definition of the

Reynolds number Re = rm
p
D/m and (21), one can determine the theoretical terminal velocity of the

sphere. Figure 2 shows the temporal evolution of the sphere velocity with the boundary-fitted

approach and the present immersed boundary method. For comparison, analytical solutions (20)

and (21) are also plotted. Excellent agreement is observed with respect to both the numerical and

analytical solutions. The present method is shown to satisfactorily reproduce the dynamics of a

free-moving object in a viscous fluid, from the acceleration phase up to the steady-state regime.

3.2 Binary collision between two spheres

Binary collisions between two spheres have been investigated through experiments [8] and DEM

simulations [14], in the limit of no-effect of the surrounding fluid. In Ref [8], Foester et al.

measured, for different materials, the tangential component of the relative velocity before (
1
) and

after (
2
) impact, normalized by the normal component of the relative velocity before impact.

The soft-sphere approach presented in section 2 is used, considering only “dry collisions”, that

is we solve (3) after having removed F
h

and G
h

and introduced solid-solid contacts F
c

and G
c
,

respectively. In the present case, we compute the collision between two acetate spheres of radius 

R = 1.5 ¥ 10-3m. Material properties are r
p

= 1319 kg.m-3, m
c 
= 0.25, e

n 
= 0.87 as in the experiments

of [8]. Moreover, t
c

is set to 10-5s.

The evolution of 
2

as a function of 
1

obtained from the present soft sphere method is shown

in figure 3 together with experiments of [7]. Good agreement is observed. The first part of the curve

(
1
< 1.5) corresponds to a change of sign of the tangential velocity during contact due to the

elasticity of the material. During the collision, the spheres partially slip on each other. For 
2 

= 0,

slip-free rolling exists. The positive linear part (
1 

>1.5) corresponds to slip. In that case, the

Coulomb criterion is verified during all the contact duration. Overall, the present soft-sphere method

is able to quantitatively reproduce experimental observations of binary collisions in the dry case.
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Figure 3: 
2
as a function of 

1
in the case of dry binary collisions. O: experiments of

[8]; + present soft sphere method.



3.3 Granular pressure in a silo

Again, only solid-solid interactions are considered here, using the soft sphere approach. This test case

correspond to the filling of a silo of dimension 0.1 ¥ 0.1 ¥ 5m (figure 4) by 56000 particles of density

r
p 

= 1317 kg.m-3 and mean radius R = 5 mm under gravity g = 9.81 m/s2. The radius is varied from

one particle to another in a range of ±10% to avoid crystallization phenomena. Here we set the collision

parameters to m
c
= 0.25, e

n 
= 0.3 and t

c
= 10-4s. The walls were covered by fixed particles of equivalent

size as those injected in the silo.

When the granular column is at rest, a coarse-graining technique is applied (see e.g. [15]) to

measure the local granular stress tensor and the subsequent granular pressure (spherical part of the

tensor). We plot in figure 4 the horizontally-averaged granular pressure in the silo. Going from the top

of the column (z  5m) down to the bottom (z = 0m), the granular pressure first follows a “hydrostatic”

linear distribution on a depth corresponding to one silo diameter (4.9m z 5m), then the pressure

quickly reaches a plateau and remains roughly constant on a distance of 4m down to z  0.7m. Below

this height, the pressure monotonously increases as one gets to the bottom boundary. This behavior is

attributed to the fact that in this region, particles have interacted with the bottom wall so the friction

with the vertical wall was reduced and the pressure increased accordingly.

The prediction of the granular pressure in the silo has been the subject of considerable work

because of its obvious practical interest. One conventional model, namely the Janssen model, has

proved to reproduce reasonably well the pressure distribution in a silo. In this model one assumes

that (i) the grain assembly is a continuous medium of equivalent density r
gm 

= Cr
p
, C being the

global compactness in the granular column, (ii) the vertical stresses are redistributed toward the

horizontal directions by a factor K and (iii) the wall friction is at the threshold of motion. Under

these assumption, the vertical distribution of the granular pressure reads,

(22)

where S (P) is the horizontal cross-section (perimeter) of the silo, fw is the wall friction coefficient,

K is the coefficient of stress redirection and h is the height of the granular column. Note that the

coarse-graining technique allows us to directly measure f
w

and K while these quantities are difficult
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Figure 4: Soft-sphere simulation. (a) Silo filling with 56000 particles colorized by their

velocity (blue: low velocity, red: high velocity). (b) Horizontally-averaged granular

pressure distribution in the silo (when the granular medium is at rest): O, present DEM

method, —, analytical solution (22), - - -, equivalent hydrostatic distribution.



to determine a priori or in a real experiment. Therefore, we plotted in figure 4 the analytical solution

(22) by estimating the parameter f
w
K using a best fit of the numerical results. This gives a value of

f
w

K  0.30 ± 0.06. The direct calculation of f
w

K from the numerical data gives, including the

dispersion error, f
w

K  0.38 ± 0.11, a value which is in reasonable agreement with the best-fit

estimate. This shows the capability of the present soft-sphere method to accurately reproduce the

behavior of a dense granular media at rest.

3.4 Collapse of a granular column

The collapse of a granular column of height H
0

and half-length R
0

is a common academic

configuration used to provide empirical laws of the final deposit of geophysical granular systems

(figure 5). Assuming the ambient fluid plays no role in the dynamics, DEM methods have been

shown to be an efficient tool to simulate this configuration [16-18].

Here, the soft-sphere method is used for simulating two- and three-dimensional dry granular

collapses under gravity g = 9.81 m/s2 in planar configurations. We use 7 ¥ 103 to 120 ¥ 103 (resp.

103 to 8 ¥ 103) spheres in our 3D (resp. 2D) columns (figure 5a). Material properties are r
p 

= 2500

kg.m–3, e
n 

= 0.5, t
c 

= 10-4s and R = 5 mm. Again, the radius is varied from one particle to another

in a range of 10% to avoid crystallization phenomena. The friction coefficients between spheres

and between a sphere and the wall were set to µ
c 

= 1. Columns were always filled following the

same protocol consisting of the sedimentation of particles, initially at rest, randomly placed in the

computational domain bounded by walls. In the 2D case all frontiers are walls, while in the 3D

cases, periodic conditions are imposed in the spanwise direction z. The initial column is filled up

to a height H
0

in a box of horizontal length 2R
0
. In the 3D case, the domain has a spanwise length

of 12D. At time t = 0, the two vertical walls are removed and the granular column symmetrically

collapses on the horizontal plane. Snapshots of the granular media in the initial and final state are

shown in figure 5a. When the particles are at rest, we measure the final height H and length R .

The normalized final deposit, referred to as the run-out distance defined as (R –R
0
)/R

0
, is plotted

in figure 5b as a function of the initial aspect ratio a = H
0
/R

0
. Comparisons are made with two-

dimensional simulations of [16] who used a contact-dynamic method and found good agreement

with experiments. Both models give the same final deposit and corresponding scaling laws.

Interestingly, three-dimensional effects do not seem to influence the run-out distance. We conclude

that the dynamics of the granular flow is well capture by the present method.

4. RESULTS

In the following, the immersed boundary method (IBM) is coupled with the soft-sphere approach

(DEM). Assuming the characteristic contact time step t
c

to be much smaller than the characteristic

fluid time scale t
f
, we separately solve equations (1)-(2) and (3)-(4), adding (11) and (19) in (3) as

(a) (b) 
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Figure 5: Collapse of a granular column. (a) Initial and final configurations. 

(b) Dimensionless distance of run-out as a function of initial aspect ratio: d, present DEM

method (2D); O, present DEM method (3D); +, two-dimensional DEM simulations of [16].



source terms (and the corresponding torques accordingly). The fluid velocity and pressure are

computed with the IBM approach, and then hydrodynamic forces and torques on each particle are

computed and sent to the DEM code, which computes the new position and velocity of the particles

on several solid time steps up to the fluid time step which can be chosen here larger that the solid

time step since one assumes t
f  

>> t
c
, and taking into account possible contacts and lubrication force.

The position and velocity of the particles is then sent back to the IBM solver.

4.1 Bouncing of a solid sphere on a wall in a viscous fluid

In this section, we present results of the simulation of one spherical particle bouncing on a wall in

a viscous liquid initially at rest. The simulation is performed with the same grid as that shown in

figure 2. Here the resolution is D/Dx = 20. Note that tests with D/Dx = 10 and 40 have been done

and showed that the results were not affected by spatial resolution in the range considered here.

Free-slip boundary conditions are imposed at all boundaries except at the bottom wall where

bouncing occurs, for which a no-slip condition is applied. We set the physical properties of the

particle and the fluid so that we cover a range of density ratios 2  r
p
/r  102, Reynolds numbers

0.1 Re = ru
p
D/µ  O(102) and Stokes numbers 1  St  104. Here Stokes number is defined as,

(23)

where C
M

= 1/2 is the added-mass coefficient of a spherical particle.

The evolution of the vorticity field around the particle during impact is presented in figure 6,

for the case r
p
/r = 8, St = 53 and Re  60. Here the collision parameters were set to e

n 
= 0.97,

t
c 
= 10–4s, µ

c 
= 0.25, and the relative roughness height used in the lubrication model (19) was set to

( )
=

+
St

C V D

9
,

p M T

t = 19.74 t = 19.89 t = 20.02

t = 20.07 t = 20.17 t = 20.25

t = 20.48 t = 21.06 t = 21.27

Figure 6: Vorticity field around a sphere impacting a wall (r
p
/r = 8, St = 53, Re  60,

D/Dz = 20.). Contour levels are set from –17.8 to 17.8 in increments of 3.9. Here, time
and vorticity are scaled by (D/g)1/2 and (g/D)1/2 , respectively.



h/R = 4 ¥ 10–4. In the following, time is scaled by (D/g)1/2. At t = 19.74, the flow field around 

the particle is not influenced by the wall and vice versa. However, when the sphere gets closer to

the wall, the fluid is pushed away from the centerline and vorticity is created at the wall. This is

visible in figure 6 at time t = 19.89 as the particle is at a distance from the wall of R approximately.

Note that at this time instance, the grid resolution is of 4-5 grid cells in the liquid film. When

collision occurs at t = 20.02 (d
n 

 0), vorticity is maximum in the region close to the impact zone,

indicating strong shear stress as fluid is pushed away parallel to the wall. Right after impact 

(20.07  t  20.25) a thin layer of vorticity of opposite sign develops at the particle surface and at

the wall, while vorticity in the wake of the particle decreases, though still present. At t = 20.48, 

the particle has reached its maximum height after the first bouncing and falls back again toward the

wall. Afterwards (t  21.06), the vorticity around the particle quickly disappear because of

significant viscous dissipation.

The corresponding time evolution of the particle velocity is displayed in figure 7. Clearly, the

particle reaches a steady-state velocity, denoted V
T
, before bouncing on the wall. It can be noticed

that before the collision effectively occurs the particle velocity decreases from V
T

to an impact

velocity, denoted V
C
, which is about 12% less than V

T
in the present case. During the bouncing, the

particle velocity changes sign but does not recover its initial velocity. This rebound velocity is

denoted V
R
. Right after the impact, there is a strong decrease of the particle velocity followed by a

milder trend. Finally, one can see on figure 7 a second rebound (t  21), which is hardly detectable

from the flow visualization.

The simulation presented in figures 6 and 7 were first repeated for two specific density ratios r
p
/r

= 8 and 16 (St and Re varying in the abovementioned range) and one specific Reynolds number

Re = 1, without any lubrication model (19). We plot in figure 8 the restitution coefficient

e/e
n 

= –V
R
/V

T
(see figure 7 for definitions) as a function of Stokes number (23). For comparison, we

included available experiment data of the rebound of a spherical inclusion with a wall or another

particle. While the numerical results are in good agreement with experimental data for St  200, the

restitution coefficient is clearly overestimated at lower St. This can be attributed to the low resolution

of the flow field when the gap between the particle and the wall is of the order of the grid size. As a

consequence, the film pressure stemming from the drainage of the liquid in the gap is underestimated

so the particle rebound is artificially enhanced. This issue is overcome when one adds a lubrication

force (19) in (3). Figure 9 shows the results obtained with the coupled IBM- DEM method with

the lubrication model (19) for the case r
p
/r = 8. The numerical results fall in the range of the

experimental data.

Overall, one may conclude from figure 9 that the present IBM-DEM method is able to reproduce

the rebound of a particle in a viscous fluid provided a suitable lubrication model is added to

compensate the inability of the flow solver to capture the small scale flow field in the gap during

the film drainage.
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Figure 7: Temporal evolution of the particle vertical velocity (same case as figure 6).

Inset: close-up view of the velocity during bouncing. Also defined are the particle

terminal velocity V
T
, the velocity at contact V

C
and the rebound velocity V

R
.



4.2 Immersed granular flow on an inclined plane

The final case corresponds to the simulation of an immersed granular flow on an inclined plane. The

simulation is performed in a three-dimensional (x,y,z)-computational domain of size 10D ¥ 3D ¥ 10D

in the streamwise, spanwise and vertical directions, respectively, discretized with 100 ¥ 30 ¥ 100 grid

points (figure 10a). We set the physical properties of the particle and the fluid so the density ratio is

r
p
/r = 8 and the Archimedes number Ar = r(r

p
–r)gD3/µ2  9. This choice leads to an a posteriori

value of Stokes number of 0.5 and Reynolds number Re = ru
p
D/µ  10, approximately. Hence, one

expects the present granular flow to be in the viscous limit regime according to Courrech Du Pont et

al.’s classification [22] (as shown in figure 10b). The collision parameters are e
n 

= 0.87, t
c
(g/D)1/2 =

4.5 ¥ 10–3, µ
c 

= 0.25, and the relative roughness height used in the lubrication model (19) is set to

h/R = 4 ¥ 10– 4. Periodic boundary conditions are imposed in the streamwise x- and spanwise 

y-direction, while a no-slip (resp. free-slip) boundary condition is imposed at the bottom wall (resp.

top wall). The gravity vector makes an angle b of 22° with the z-direction in the (x, z)-plane. Thirty

half-spheres are fixed at the bottom wall in order to resemble natural rough bottoms, while 200 quasi-

monodispersed moving particles are initially positioned as in a settling bed of grains, the fluid being

initially at rest. Note that with the present angle of inclination, the bed of grain would have been

motionless if there were no fluid flowing down.

Depending on the angle of inclination and the properties of both the solid phase and the fluid

phase, the granular flow can be either driven by gravitational forces (avalanche) or shear induced
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Figure 8: Restitution coefficient e/en for spherical inclusions versus the Stokes number

St. Present IBM-DEM simulations without lubrication force: T, r
p
/r = 16; b, r

p
/r = 8; c

Re
p

 1. Experiments with solid spheres: +, Joseph et al. [11]; O, Gondret et al. [19]; ¥,

Foerster et al. [8]. Experiments with drops: •, toluene drops in water (Legendre et al.

[20]); , liquid drop in air (Richard & Quéré [21]). Other experiments: j, spherical balloon

filled with a mixture of water and glycerol (Richard & Quéré [21]).
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/  = 8 and a various relative roughness height  /R = 2 × 10–4.



by the fluid at the surface of the bed of grains (erosion). In the present configuration, the temporal

evolution of the granular flow is as follow: the fluid is first put into motion due to gravity and the

presence of periodic boundary conditions, creating a boundary layer at the surface of the static

granular bed (figure 11a). When shear is large enough, the upper layer of particles starts to move,

entraining the lower layers of grains step by step. At some point, the whole bed of grains is abruptly

put in motion (at t(g/D)1/2  50), indicating the triggering of an avalanche (not shown). At later

times, t(g/D)1/2  100, the height of the bed becomes inhomogeneous and exhibits patterns looking

like ripples, the amplitude of which being of 2-3 particle diameters and the wavelength being of the

size of the computational box (figure 11b). Obviously, simulations in a larger domain are needed

to obtain quantitative prediction of the growth-rate and most unstable wavelength of the instability

of the bed surface.

In figure 12, we plot the particles and fluid mean streamwise velocity as a function of height for

three spatial resolutions, namely D/Dx = 5, 10 and 15. Here, a spatial averaging is made in

Inertial limit regime
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Figure 10: (a) Numerical setup of the simulation of the gravity/shear-driven granular flow.

(b) Regime of the granular flow according to Courrech Du Pont et al.’s classification [22]:

q, present simulation; other symbols, experiments of [22].
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Figure 11: Topology of the bed of grains at (a) t(g/D)1/2  10, and (b) t(g/D)1/2  256.The

computational domain is represented by the gray lines. In (a) (resp. (b)), the background

(resp. bed of grains) is colored by the local streamwise velocity of the fluid (blue: low

values; red: large values).



horizontal planes and a time averaging is done from t(g/D)1/2  200 tot(g/D)1/2  350. The velocity

profiles for the two highest resolutions are close to one another, the maximum difference in velocity

being of 1.6% for the fluid phase. This indicates that the spatial resolution used here (D/Dx = 10)

is adequate for the present set of physical parameters.

The vertical profile of the streamwise velocity is presented for both phases at time t(g/D)1/2 = 102

in figure 12a. As expected, the velocity in the fluid is maximum at the top boundary (recall that a

free-slip condition is imposed), with a strong decrease as one goes down to the surface of the

granular bed, where the viscous shear is maximum. Variations of the fluid velocity are still observed

inside the bed while the fluid velocity is vanishing as one approaches the bottom wall. The particle

velocity is found to be of the same order of magnitude as that of the fluid at the same vertical

location. Interestingly, the particle velocity is slightly but noticeably larger than that of the fluid at 0

 z/D  6, suggesting that the fluid is entrained by the particles in this region (as in a flow of

avalanche type), while particles and fluid velocities are almost identical in the region 6  z/D  7,

indicating a transport of erosion type. This is line with the results of figure 12b, where the flow

regime of the present simulation is plotted in the parameter space defined by the angle of inclination

b and the Shields number = µg
.
/(r

p
–r

f
)g D, g

.
being the vertical fluid velocity gradient at the bed

surface and µ the dynamic viscosity of the fluid. Loiseleux et al. [23] performed experiments in order

to investigate the onset of erosion and avalanche for an inclined granular bed sheared by a

continuous laminar flow, and found five flow regimes depending on these parameters, namely no

motion (I), erosion (II), avalanche (III), and both erosion and avalanche (IV-V). Our present

simulation lies in the regime II (erosion), close to the frontier between regimes II and V, suggesting

that both erosion and avalanche are likely to play a role in the transport of particles.

5. CONCLUSIONS

We presented a simple soft-sphere immersed-boundary method capable of describing the flow of a

three-dimensional dense granular media evolving in a viscous fluid. Both methods separately are

able to accurately reproduce available experimental and numerical data. Simulations of wall-

particle collisions in a fluid are shown to be in good agreement with experiments for the whole

range of investigated parameters, provided that a local lubrication model is used. Simulations of

gravity- and shear-driven dense granular flows in a viscous fluid were presented and a comparison

was attempted with experiments. In the investigated regime of mixed erosion-avalanche, the
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Figure 12: Particles (symbols) and fluid (lines) mean streamwise velocity as a function of

height for three spatial resolutions: - - - (blue), grid 50 ¥ 15 ¥ 50 (D/Dx = 5); ––(red), grid

100 ¥ 30 ¥ 100 (D/Dx = 10); - - - (black), grid 150 ¥ 45 ¥ 150 (D/Dx = 15). Spatial

averaging is made in horizontal planes and time averaging is done from t(g/D)1/2  200

to t(g/D)1/2  350. For the highest resolutions, the maximum difference in velocity is of

1.6% (resp. 11.5%) for the fluid (resp. granular) phase. 



surface of the granular bed becomes unstable and ripples are formed. The wavelength of the surface

pattern is of the computational domain size, and simulations in larger size domains are needed to

obtain quantitative prediction of this granular flow quantity. Notwithstanding the somewhat modest

spatial resolution used in the present work, the results open the way for a parametric study in the

parameter space initial aspect ratio - initial packing with a larger number of better-resolved

particles, in order to investigate immersed granular avalanches encountered in real situations.
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