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Abstract

Uncertainty about urban environments stems not only from imprecise pose es-

timation and noisy information in images but also from the lack of semantic

information. This article presents an approach to improve the perception capa-

bility of intelligent vehicles in complex urban environments. The new method

uses the meta-knowledge extracted from semantic context images associated

with depth information to model occupancy grids from stereo vision. It uses

the evidential formalism of the Dempster-Shafer theory to manage uncertain-

ties involved in grid discretization, partial observation of the environment and

also dynamic elements present in the scene. Real experiments carried out in a

challenging urban environment using the KITTI benchmark are reported, from

which meaningful evaluations can be made to illustrate the validity and appli-

cability of this approach.
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1. Introduction

The development of autonomous vehicles capable of getting around on ur-

ban roads can provide important benefits in reducing accidents, increasing life

comfort and providing cost savings. For example, intelligent vehicles often base

their decisions on observations obtained from various sensors such as LIDAR,

GPS and cameras. Attention is currently focusing increasingly on camera sen-

sors because they are inexpensive, easy to use and provide rich data. Inner-city

environments represent an interesting but also very challenging scenario in this

context, since the road layout may be highly complex, the presence of obsta-

cles such as trees, bicycles and cars may generate partial observations, and also

because these observations are often noisy or even missing due to significant

obstructions. Thus, the perception process must be able to deal with uncer-

tainties about the world surrounding the car. While autonomous navigation on

highways using prior knowledge of the environment has advanced significantly,

understanding and navigating in general inner-city scenarios based on little prior

knowledge remains an unsolved problem.

In this context, a dynamic local perception system is developed to build the

representative model of the environment around the car. The metric represen-

tation based on occupancy grid mapping is implemented. This representation

uses the evidential formalism proposed by the Dempster-Shafer theory, which

has been receiving considerable attention. This formalism allows one to man-

age uncertainties associated with grid discretization, partial observation of the

environment, and also dynamic elements of the scene.

This paper contributes by proposing a new strategy based on the fusion of

semantic context information extracted from the machine learning procedure

and depth information obtained from epipolar geometry to build a local percep-

tion that uses meta-knowledge to influence the formulation of the belief mass

in the evidential grid, directly considering semantic, dynamic and uncertainty

aspects in the representation.

The article is organized as follows. Section 2 presents an overview of related

works pertaining to the scope of this work, positioning the proposed approach

vis-à-vis previous ones. The proposed method is outlined in Section 3, which

describes the conception of the newly developed system. Section 4 characterizes
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the inclusion of semantic context information obtained from imagens into the

evidential grid, explaining the inverse sensor model considering meta-knowledge

and also the updating of temporal fusion. Section 5 presents the experimental

results of the dynamic local perception. Finally, Section 6 presents our conclu-

sions and future prospects.

2. Related Works

This work focuses on modeling the local environment during the vehicles

navigation and movement, using visual strategies. It is denoted by mapping

in the context of Simultaneous Localization and Mapping (SLAM). Although

most of the environmental representations are metric, some approaches also use

2D and 3D topological representations that have produced outstanding results,

such as those reported by Meilland et al. [1]. This paper presents the main

modes of geometric representation and their use in existing perception systems,

which are divided into feature-based and grid-based approaches.

Feature-based approach: This method uses geometric features to rep-

resent the environment. The type of feature employed depends on the target

application, the environment in question, the required accuracy and the com-

putational power. Birds-eye view modeling is employed in many cases [2]. As

explained, this method depends on feature extraction and matching to ensure

the consistency of the mapping at each moment of time.

Many feature-based SLAM systems, such as that proposed by Montemerlo

et al. [3], use a representation of the environment based on natural features. In

this type of approach, the environment is represented by a state vector contain-

ing the coordinates of these landmarks. The state vector is filtered over time

using a Kalman filter [4] or particle filter [5]. The upgrade process between

detections consists of the aforementioned problem of data association, which

is processed in different ways [6, 7]. In other systems, this representation per-

tains to obstacle detection using 2D or 3D shape-models, and depends on the

intended application. Petrovskaya and Thrun [8] and Fayad and Cherfaoui [9]

are interested not only in vehicle detection using laser sensors, in which objects

are modeled as rectangular boxes, but also in performing tracking over time.

Therefore, as can be seen, the problem with SLAM is that it considers the key-
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points as fixed. To avoid errors caused by the inclusion of moving entities, the

SLAMMOT algorithm, as presented by Lin and Wang [10], is proposed as a way

to improve the mapping, avoiding the use of these keypoints in the localization

process. According to Moras [2], some of the pros and cons of feature-based

representation are as follows:

- Advantages:

• Simple representation;

• Easy propagation over time;

• Mobile objects are considered;

• Low memory consumption.

- Disadvantages:

• Non-exhaustive representation, and therefore, inadequate for naviga-

tion;

• Very high sensitivity to the results of the matching process;

• Lack of precision for safe local autonomous navigation tasks.

Grid-based approach: In this approach, the environment is modeled as

a grid of cells with no parametric object representation, in which each cell

contains information indicating whether or not the given associated portion of

the environment is occupied [11]. The occupancy state of each cell is evaluated

independently. The update process considers all the modeled cells of the grid.

In general, the cells are square, but some works, such as that of Herrmann et al.

[12], consider grids with different geometries.

Works on occupancy grids using a 2D grid to build and update the map

of the environment were first proposed by Elfes [11, 13, 14]. Initially limited

by its computational complexity, this approach has recently been widely used

for navigation. In the works of Bourgault et al. [15], Thrun et al. [16], Steux

and El Hamzaoui [17], and Levinson and Thrun [18], the authors have mod-

eled a fixed grid that allows the position to be corrected based on each new

measurement. Coué et al. [19] propose mobile object tracking using a vehicle-

to-grid reference. The update process is performed considering the occupation
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and also the speed vector of each cell. The object is then regrouped consid-

ering the occupation, speed vector and position of the cells. Gate [20] uses a

grid to perform the SLAMMOT. Alternatively, some studies consider the 3D

space in which the grid is represented as a cube [21], or else define the grid as

a QuadTree [22], aiming to reduce the memory space and the calculation for

homogeneous areas. Basically, the grid-based representation approach has the

following characteristics [2]:

- Advantages:

• A comprehensive representation that enables precise local autonomous

navigation tasks to be performed;

• No assumptions about the geometry of the elements in the environ-

ment.

- Disadvantages:

• It has a complex propagation of model, motion and perception un-

certainties over time;

• It is difficult to consider moving objects;

• Its computational cost and memory use are considerable.

Most of the earlier studies have used the probabilistic model to represent oc-

cupancy uncertainties in the grid. According Moras [2], how these uncertainties

are represented has important implications on how the information contained in

the grids is processed. In this sense, in addition to the probabilistic model, the

literature presents two other approaches involving accumulation methods and

evidential methods. For completeness, a brief overview of these three method-

ologies is given here.

The formalism of accumulation is quite simple, based on the principle of

voting: the more occupied the cell appears to be the more likely it is to be

occupied. Albeit rarely used, it is possible to find original contributions using

this formalism. Borenstein and Koren [23] use accumulation grids for the nav-

igation of an experimental indoor robot equipped with sonar. Xie et al. [22]

employ accumulation grids to map an external environment using a scanning
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laser rangefinder. Online localization is ensured by grid matching using mul-

tiresolution grids (QuadTree).

The probabilistic approach is based on Bayes’ theory [24] and is the one

most widely used in the field of robotics. It was the first formalism of uncer-

tainty management used in occupancy grids. The first author who proposed

this scheme was Elfes [11, 13]. This type of approach defines the state of a

cell based on two mutually exclusive possibilities, occupied O or free F . Each

cell of the occupancy grid contains a probability of occupancy P (O) and/or

non-occupancy P (F ), and all the cells are assumed to be independent of each

other. Different formulations exist, using either a direct sensor model or an

inverse sensor model [25], and also considering static or dynamic environments,

as explained earlier.

The third method, the evidential approach, derives from the Dempster-

Shafer theory and the Transferable Belief Model (TBM) [26, 27, 28], which

is a generalization of probabilities. The underlying problem of all grid-based

approaches has to do with the conflicts generated by sensing the presence of

moving objects in the scene [29, 30]. The approaches proposed by Moras et al.

[31], Kurdej et al. [32, 33] have presented satisfactory results using heuristics

that combine several sources of information. However, these approaches con-

sider the following hypotheses: (i) They are restricted to places for which prior

digital map information of the environment must be available. (ii) The precise

pose estimation of the ego-car must also be supplied (using differential GPS) in

order to combine and update the evidential grid. (iii) The perception system is

not able to accurately distinguish the feasible navigable area in urban scenarios,

i.e., the street area.

A reliable perception with the annotation of relevant objects could be used

as an alternative source to improve safety in urban scenarios. In general, the

vision-based approaches to perception cited in the preceding paragraphs re-

veal the lack of ability to annotate the environment with semantic information

and maintain a satisfactory level of precision. Based on previous works and

considering these assumptions, which are required to perform mapping, the

methodology proposed in this article uses the evidential method to deal with

uncertainties in a grid-based approach. This grid is built online, performing
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local ego-centered mapping to avoid drift errors and associating the Semantic

Context which associates automatically collected meta-knowledge in the grid,

providing the required accuracy for an application in autonomous navigation.

This approach enables the uncertainties of different entities in a complex urban

scenario to be managed using only a pair of stereo cameras.

3. Overview of the Proposed System

This article, as part of the field of visual perception for car-like robots or so-

called intelligent vehicles, pertains to the field of mobile robotics and computer

vision. Following these multidisciplinary domains that are merged to reach

desired outcomes, it proposes a solution by means of the system depicted in

Figure 1. As can be seen, a set of tasks have been designed to accomplish an

appropriate perception scheme. The solution approach is divided into two main

tasks, defined as (I) Semantic Context and (II) Dynamic Evidential Grid.

The task of the (I) Semantic Context is to understand urban road scenes. In

this layer, two modules are reported that produce meta-knowledge from a pair

of stereo images. The first module, Disparity Map, is used to obtain the map

os disparities from the pair of stereo images captured from cameras in front of

the intelligent vehicle.

The task of the (I) Semantic Context is to understand urban road scenes. In

this layer, two modules are reported that produce meta-knowledge from a pair

of stereo images. The first module, Disparity Map, is used to obtain the map

os disparities from the pair of stereo images captured from cameras in front

of the intelligent vehicle. The Machine Learning module receives the pair of

stereo images to be classified in an implemented classifier. Using this structure,

the principle to obtain meta-knowledge is employed to understand the seman-

tic urban road scene. The output result of the (I) Semantic Context task is

illustrated in Figure 1(a). It should be highlighted that the meta-knowledge

presented by the color image is not just a superpixel/segments obtained from

image processing. Each color represents an estimated object class addressed by

the output of an implemented machine learning algorithm.

The purpose of the (II) Dynamic Evidential Grid task is to perform the local

perception mapping and characterization of static and moving obstacles, using
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Figure 1: Proposed solution for Dynamic Scene Perception using only a pair of stereo camera

sensors.

the output responses elicited by the layer (I). This layer comprises three mod-

ules that are employed to model a dynamic local occupancy grid, applying the

Dempster-Shafer theory. The Structure from Motion (SfM) module is applied

to achieve rigid transformation between two successive pairs of images. The

Sensor Grid module builds a novel inverse sensor model that projects 3D points

obtained from the disparity map onto a metric grid, taking into account the

noise in the stereo measurements and the uncertainty linked with stereo geome-

try reconstruction, where exponential error is observed with increasing distance.

Furthermore, the meta-knowledge extracted from urban road scene understand-

ing is associated with this proposed inverse sensor model, in which it provides a

better and reliable representativeness of navigable, infrastructure and obstacles

areas. After that, the Perception Grid module performs the temporal fusion

and mobile cell detection. The output result of this layer (II) is illustrated in

Figure 1(b) and described in detail in Section 4, in which concentrates the main

contributions of the paper.

4. Dynamic Local Perception using Evidential Grids

This section describes the approach employed to deal with local perception

mapping, relative localization and characterization of static and moving obsta-
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cles, using stereo vision cameras.

Unlike other works, this approach does not require prior digital mapping in-

formation, pose estimation, or vehicle tracking. As mentioned in Section 3 and

illustrated in Figure 1, the main contributions of this section are the proposed

technique to build a new sensor model that provides reliable urban environ-

ment sensing, notwithstanding uncertainties in distance measurements associ-

ated with the epipolar geometry of stereo vision and the combination/update

rules for meta-knowledge that characterize the semantic context in evidential

grids. Hence, the new sensor model provides a direct and joint representation

of semantic, dynamic and uncertainty aspects in the grid.

4.1. Architecture of the system based on the egocentric referential approach

In robotics, two strategies are usually employed to define the spatial position

of a robot and the elements that compose this spatial environment. These two

strategies are denoted by allocentric and egocentric frames of reference.

In the allocentric frame of reference, all the objects in the environment have

a spatial position with reference to a fixed point, and this fixed reference point

does not move over time. This kind of strategy is widely used in cartography

or in SLAM-based approaches. In the egocentric frame of reference, all the

objects in the environment occupy a spatial position with reference to a relative

point that moves over time. In this work, the egocentric frame of reference

is adopted to avoid restrictions with respect to precise global localization and

drifts inherent to this strategy.

Consider a car-like robot that operates within a finite domain D of a world

plan. This domain is defined in an Euclidian space that has two dimensions E2,

as can be seen in Figure 2(a). In this case, the Egocentric frame of reference

is determined by associating the reference RM to the fixed point M , which is

defined as the center of the car-like robot in the spatial environment. For the

sake of simplicity, this robot is hereinafter referred to as an ego-car. Thus, the

occupancy grid that is relative to the reference RM will move together with

the ego-car. This approach has the advantage of always covering the same area

around the ego-car, without limiting its field of evolution.

To increase the reliability of the perception while the ego-car moves in the

environment, a temporal filter can be used on grids to take into account ob-
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Figure 2: (a)Egocentric frame of reference for car-like robot (ego-car). The irregular surface

represents the evolution field of the ego-car embedded in the domain D, having a relative

point of reference fixed at the center of the robot. (b)The defined coordinate Systems. (i)

Camera coordinate system, (ii) vehicle coordinate system, (iii) grid coordinate system.

Ego-Motion  Mt Prediction Correction Measure  Zt

GtGt-1

Ĝt

Figure 3: Temporal filter based on predictor-corrector approach.

served redundancies obtained from measurements over time. This approach can

render the occupancy grid more robust against noise and with more complete

information. This temporal filter uses the predictor-corrector type formalism,

as depicted in Figure 3. Thus, this predictor-corrector type formalism is em-

ployed on Recursive Bayesian Filters and here is referred to handle uncertainties

models using the formalism of the Dempster-Shafer theory (DST).

Based on the predictor-corrector approach, the principle of the system pro-

poses the use of two distinct occupancy grids, called Sensor Grid and Perception

Grid, to perform the sequential updating, as depicted in Figure 4. The Sensor

Grid (SG) is built from the measured Zt and merged in the Perception Grid,

which is described in subsection 4.4. The Perception Grid (PG) maintains the

cells state between the different instants of time, thus performing a Dynamic Lo-

cal Perception. To merge the SG and the PG, these two grids must be spatially

and temporally coherent. At every instant of time when a new SG is available,

the current position is estimated and the prediction of PG must be done for the

current time. The variable Mt represents the rigid transformation M = [R|T ],
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Figure 4: Sequential update of the Occupancy Grid.

where R is the rotation matrix and T is the translation vector. The measure Zt

is obtained by a stereo camera.

Prediction for the grid is performed whenever a new measure is available,

and is necessary because of the movement of the ego-car and of the elements of

the scene that compose the dynamic environment. An incorrect prediction may

cause inconsistency in the PG. Therefore, the vehicles movement (ego-motion)

between two sequential sampling measurements must be compensated. This is

done by applying the rigid transformation that includes the cars geometry and

the position of the camera sensors. Moreover, the bilinear interpolation method

is used to better fit the values among the cells of the grid in two instants of the

time. In fact, the matrix of the rotation and translation that composes the rigid

transformation is obtained by employing a Visual Odometry technique based

on Structure from Motion (SfM), which is proposed in the distinguished work

of [34] and applied here.

Although the ego-motion has been compensated, the information contained

in the preceding grid is no longer completely valid because the scene has changed

from one instant to the next. The dynamic of the scene between these two

instants of time remains fixed, thus increasing the uncertainty in the grid. An

advantage of this action is that when the SG and PG are merged, as detailed in

subsection 4.4, there will be a conflict between the values of the same cell. These

conflicting cells indicate a possible moving object in the scene. The mechanism

that manages uncertainties in the form of evidence is the same as the one that

governs this detection procedure.

A brief overview the system architecture was presented. Details about spe-

cific methods are now given in the next sections. Subsection 4.2 describes the
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formalism based on evidence theory to manage the uncertainties and also to de-

tect the mobile cells. Subsection 4.3 presents the inverse model sensor to model

the SG, followed by subsection 4.4, which explains the complete Local Dynamic

Perception proposed in this article.

4.2. Fundamentals of Evidential Grid

Occupancy grids are used to estimate the occupation of space with uncer-

tainties. How these uncertainties are represented has important implications on

how the information in the grid is handled and how the data is then interpreted.

On this basis, the tool to manage uncertainties associated with the responses of

the occupancy grid governed by a mathematical theory of evidence [27]. Specif-

ically, the occupancy grid uses the formalism of the Dempster-Shafer theory

(DST) to model the uncertainties, which is a generalization of the Bayesian

theory of subjective probability [35]. The DST model associated in the occu-

pancy grid is called the Evidential Occupancy grid or the Evidential grid. As

previously explained, there are some works which use evidential grids in the

context of mobile perception [29, 32] and autonomous vehicles [36, 37]. The

reason for this choice is that the approach allows for faster convergence [38],

conflict detection, fusion of unreliable sources, etc. [2].

In the evidential grid, uncertainties are modeled as a belief function. The

proposition in question is defined by Free and Occupied, having a set composed

of Ω = {Occupied(O), F ree(F )}. The frame of discernment (FOD) of Ω is the

set of all possible subsets of Ω and is denoted by 2Ω = {Occupied(O), F ree(F ),

unknown(Ω), conflict(∅)}. There are various forms to represent the belief func-

tion, such as mass, belief, plausibility and communality, and all these represen-

tations are equivalent [2]. In this approach, the mass function mΩ is used, and

has the following property given by Equation (1):

m : 2Ω → [0...1]∑
A∈2Ω m(A) = 1

(1)

The mass function of all the cells of the evidential grid is a vector containing

four masses, defined by IO, whose values represent the belief for each element
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Figure 5: Comparison of belief transition in Bayes’ theorem and DST. (a) The belief transition

in the probabilistic approach. (b) In the DST approach, the transitions are: fusion (1,2),

conflict generation (3,4) and conflict normalization (5,6,7). Source: adapted from [2].

of index i and j in 2Ω:

IOij = { m(F ) m(O) m(Ω) m(∅) } (2)

In Equation (2), the mass of each element corresponds to a belief level that

the cell of the grid (Gij) is in a given state. All the cells of the grid are initialized

with a mass function called Basic Belief Assignment (BBA).

Before explaining the mechanism of decision and fusion in the evidential grid,

it is opportune to make a brief comparison between DST and Bayes’ theorem

(BT). In Bayes’ theorem, the probabilistic method describes the occupation of

a cell using only one probability value per cell, and the belief function requires

the computation of three masses (the fourth mass is obtained by the condition

of equation 1) [39]. In this case, the computation cost required by the evidential

approach is higher, considering memory use and processing time. However, in

the probabilistic approach, the belief transition is possible only between the two

states and is symmetrically restricted. In the evidential approach, the belief

can be transferred among the four states, in which each of these transitions has

a different meaning, dynamic and importance. Figure 5 compared the belief

transition of the Bayes’ theorem and the DST.

As a simple example extracted from [40], considering that one cell contains

3D points from obstacles, according to Bayes’ theorem, P (O) would be some-

what greater than 0.5. Let us assume that P (O) = 0.6. According to the DST,

it has a belief mass of m(O) = 0.6. The fewer 3D points from obstacles one

13



cell contains the lower the certainty that the cell is occupied. This uncertainty

can be represented by m(Ω). Since there is no evidence detected that a cell

is free, it has m(Ω) = 1.0 −m(O) = 0.4. According to Bayes’ theorem, it has

P (F ) = 1.0−P (O) = 0.4. This means that the uncertainty is automatically rep-

resented as free, which is not quite correct. Thus, these comparisons illustrate

the applicability and relevance of the DST approach. It should be highlighted

that both strategies (DST and BT) have their pros and cons, but, in the con-

text of this paper, DST is employed mainly to distinguish between uncertainty

caused by different phenomena like missing or conflicting information. Others

techniques could also be applied to this end [46].

The updating procedure is formalized using Dempster’s rule of combination.

This fusion operator allows for the merging of two independent mass functions

defined in the same FOD. Furthermore, it assumes that all the sources are

reliable and its result leads to a more informative mass function than the two

previous sources [35]. In this sense, two reliable sources can be merged in

two steps: the conjunctive combination rule followed by the normalization of

the conflicting mass function m(∅). In Equation 3, the result is denoted by

m1 ⊗m2(A), taking m1 and m2 as mass functions of two reliable sources and

applying the conjunctive rule ⊗.

m1,2(∅) = 0

m1,2(A) = (m1 ⊗m2)(A) = 1
1−(m1⊗m2)(∅)

∑
B∩C=A6=∅m1(B).m2(C)

(3)

where

(m1 ⊗m2)(∅) =
∑

B∩C=∅

m1(B).m2(C) (4)

It is observed that the merging process using Dempster’s rule of combina-

tion only works with independent mass functions defined in the same FOD. To

include the meta-knowledge extracted from Urban Road Scene Understanding,

it is essential to extend the FOD to incorporate this information. A problem

arises when the set Ω = {F,O} shifts to represent Ω = {F,O, ..., Cn}, since, in

this case, the FOD increases exponentially to 2Ω, depending on the number of

propositions Cn added to the set. This phenomenon has a direct impact on the
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time involved in processing any calculation on the grid. A proposed alternative

to avoid this problem is to maintain the propositions of Free and Occupied, and

then generate a refinement in the Occupied proposition, as described below.

The refinement consists in expanding a subset of propositions with respect

to the Occupied proposition. This subset is defined by r(O) = {V,B, T, S},

which denotes, respectively, (V ) vehicle, (B) building, (T ) vegetation and (S)

sidewalk. It is assumed that each proposition in the occupied refinement subset

is represented by {ori|∀i ∈ r(O)}. It should be noted that the set r(O) is not the

same as the meta-knowledge delivered by the Semantic Context task, i.e., the set

r(O) considers only meta-knowledge defined as obstacle, in this case disregarding

the classes sky, road and void. The combination rule for the occupied refinement

proposition, denoted by Prop(O), is obtained by the ro argument of the highest

mass function between the two items of evidence, conditioned to the fact that

argmax[m1 ⊗m2(A)] = O. The fusion rule for proposition refinement is given

by (5):

Prop1 ⊗ Prop2(A) =

or
∣∣∣∣∣∣ argmax[m1(A),m2(A)] and

argmax[m1 ⊗m2(A)] = O

 (5)

After demonstrating the procedure to update two grids by merging its items

of evidence, it is now possible to introduce the conflict analysis used by [29]

and [32] to detect mobile cells. In fact, the conflict is determined when two

items of information are merged. In DST, the conflict is represented explicitly

by m(∅). If the mass function resulting from the fusion of Dempster’s rule

(before normalization) is m(∅) 6= 0, this means that the merged information is

at least partially contradictory. According to [2], the conflict may be caused by

different factors: a difference in expert opinion or an incorrect system modeling.

In the present case, the source of conflict arises from two principal errors:

- The assumption that the grid is static, since the observed scene contains

dynamic elements.

- The geometric approximation due to discretization in the sensor model and

during the grid propagation.

Considering these errors, [2] proposes breaking down the term (mPG
t−1 ⊗
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Figure 6: Example of the analysis of a conflict generated by a mobile object. Red cells

represent the occupied area, green cells represent free area. Cyan cells represent the conflict

depicted by T2 and pink cells represent the conflict explained by T1.

mSG
t )(∅) into two other terms (Equation 6):

(mPG
t−1 ⊗mSG

t )(∅) = mPG
t−1(F ).mSG

t (O)︸ ︷︷ ︸
T1

+mPG
t−1(O).mSG

t (F )︸ ︷︷ ︸
T2

(6)

The first term T1 corresponds to a cell that was previously free with a certain

confidence level mPG
t−1(F ) and, at the current time t, it is observed to be occupied

with a confidence level of mSG
t (O). If one considers that the conflict arises

from a moving object in the scene, the term T1 means that a free cell becomes

occupied, and therefore, that an object is entering the space represented by

the cell. Likewise, the term T2 means that an occupied cell becomes free and

consequently, that an object is leaving the space represented by the cell.

Taking into account the conflict generated in the cells due to a moving

object, the terms T1 and T2 can be analyzed to provide insights not only about

the conflict itself, but also to determine the direction of a moving object, as

illustrated in Figure 6.

4.3. Sensor Grid Model

This subsection describes the method to build the Sensor Grid (SG). The SG

is built in every instant when the sensor provides a new measurement. It trans-

forms the acquired data to its representation in the evidential grid. Therefore,

in some way it implements the sensor model used in the algorithm.
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Figure 7: Architecture of the Sensor Grid Model.

The general conception is depicted in the diagram of Figure 7. The disparity

map I∆ is obtained by applying a standard algorithm to a pair of rectified

stereo images. Based on the Epipolar Geometry and camera calibration, 3D

reconstruction is performed obtaining the 3D points referenced in the camera.

After that, an affine transformation using homogeneous coordinates is calculated

to represent the points in the reference of the grid RG. Because of restrictions

in camera position and grid dimensions, only 3D points that fall within this

region of interest (ROI) are considered. An improvement is done in the ROI to

consider also specific points that have an associated meta-knowledge, which is

observed in the Semantic Urban Road Scene Understanding and denoted by IR.

Finally, the Inverse Sensor Model is computed, using a Gaussian to represent

the uncertainties associated with the points.

The principle of 3D reconstruction is to recover metric points from associ-

ated pixels of a rectified pair of stereo images, and also to incorporate the meta-

knowledge linked to the Semantic Context. The 3D reconstruction applies the

methodology explained by [41] to obtain the points in the 3D Cartesian space rel-

ative to the camera on the left, with homogeneous coordinates [Xc, Y c, Zc,W ]T .

Incorporating the meta-knowledge associated with the semantic context, a 5-

tuples denoted by P c, where c represents the reference of the camera Rc, is

defined containing the homogeneous 3D point and the information of the oc-

cupied refinement proposition denoted by ro. This transformation is shown in

Equation (7):

P c =



Xc

Y c

Zc

W

or


=



u.Zc

fx

v.Zc

fy

f.b
d

1

IRij


(7)
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where

u = i− cx
v = j − cy

(8)

In Equation 7, f, fx, fy represent the focal lengths in pixels and are obtained

by the off-line calibration process. b represents the baseline of the stereo cameras

(in meters). d represents the value of disparity obtained from I∆. IRij represents

the value of the semantic context at index position i, j. Finally, in equation (8),

cx and cy are the coordinates of the optical axis in the image plane.

The set points P c should be expressed in coordinates of the grid to compute

the subsequent steps. To do this, two relations should be defined, from the

reference of the camera to the reference of the vehicle and from the reference of

the vehicle to the reference of the grid. The coordinate systems of these three

references are defined as illustrated in Figure 2(b), i.e.:

• Camera: x = right, y = down, z = forward

• Vehicle: x = forward, y = left, z = up

• grid: x = right, y = backward, z = up

The first transformation is obtained by defining the position of the camera

with respect to the center of the ego-car. Let us assume that the left camera

is fixed at point 0Pm in the vehicle reference RM . The affine transformation is

built by applying the translation of the point 0Pm followed by two rotations,

β = −90 degrees on the Y axis and α = 90 degrees on the X axis. Therefore,

the affine transformation from camera to vehicle is obtained by Equation (9):

Mcam car =


1 0 0 0

0 cos(−α) −sin(−α) 0

0 sin(−α) cos(−α) 0

0 0 0 1


︸ ︷︷ ︸

Rx

∗


cos(−β) 0 sin(−β) 0

0 1 0 0

−sin(−β) 0 cos(−β) 0

0 0 0 1


︸ ︷︷ ︸

Ry

∗


1 0 0 −0Pmx

0 1 0 −0Pmy

0 0 1 −0Pmz

0 0 0 1


︸ ︷︷ ︸

T

(9)

The second transformation is obtained by defining the position of the ego-

car with respect to the origin of the grid. Let us assume that the ego-car is

fixed at point 0P g in the grid reference RG. The affine transformation is built

by applying the translation of the point 0P g followed by a rotation of θ = −90
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degrees on the Z axis. The Y axis should then be inverted, and finally, a

scale factor should be employed considering the discretization (∆x,∆y) in the

grid. Therefore, the affine transformation from vehicle to grid is obtained by

Equation (10):

Mcar grid =


1/∆x 0 0 0

0 1/∆y 0 0

0 0 1 0

0 0 0 1


︸ ︷︷ ︸

resolution factor

∗


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1


︸ ︷︷ ︸

invert Y axis

∗


cos(−θ) −sin(−θ) 0 0

sin(−θ) cos(−θ) 0 0

0 0 1 0

0 0 0 1


︸ ︷︷ ︸

Rz

∗


1 0 0 −0P gx

0 1 0 −0P gy

0 0 1 −0P gz

0 0 0 1


︸ ︷︷ ︸

T

(10)

To finish the affine transformation between the reference of the camera and

the reference of the grid, the final transformation simply consists in multiply-

ing these two previous matrices. Thus, the set point P c is represented in the

reference of the grid as P g and is obtained by Equation (11):

P g = Mcar grid ∗Mcam car ∗ P c (11)

Due to the restrictions in camera position and grid dimensions, the set com-

posed of all the reconstructed points Pg under filtering molded by a ROI. The

ROI is defined considering the following restrictions:

• Assuming that the plane formed by the optical axis (Z axis) with the

horizontal axis (X axis) is parallel to the road surface, a value of height

from the road surface is defined, at which the points that exceed this

threshold are not considered;

• Observing the grid dimensions, all the points outside of this condition,

0 ≤ P g ≤ Gridsize, are also discarded;

• For the remaining points inside the ROI, only the ones whose semantic

context is associated with obstacles are considered.

Therefore, taking into account the defined ROI, the selected set of points

can be projected onto the grid. This selected set, denoted P s, is defined by (12):

P s = {P g | ∀P g ⊆ ROI and or ∈ r(O)} (12)

To project the P s set onto the grid, an inverse sensor model is described

considering the noise in stereo measurements and also the uncertainty linked
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with epipolar geometry reconstruction, where exponential error is observed as

the distance increases. This method approximates the uncertainties using a

Gaussian distribution, as shown in Figure 8. The inverse sensor model defined by

ψprobO (GSG, P s) has the prob index representing the probability distribution, and

O index representing the Occupied proposition. The function can be described

by Equation (13):

ψprobO (GSG, P s) =

min(
∑

GSG
ij ∩AG

k.expΥ, ϑO) |∀P sn ∈ {P s}

 (13)

where

Υ = (−α.Dx2 + 2β.Dx.Dy + γ.Dy2) (14)

and

α =
cos2θ

2σ2
x

+
sin2θ

2σ2
y

(15)

β = −sin2θ

4σ2
x

+
sin2θ

4σ2
y

(16)

γ =
sin2θ

2σ2
x

+
cos2θ

2σ2
y

(17)

In Equation (13), κ is a constant representing the percentage that a single

3-D point could contribute to the occupancy level of a cell Gij . ϑO is a pa-

rameter that belongs to [0, 1] and reflects the confidence in the measurement (1

if confident). This confidence is linked to the principle of measurement (false

alarm or missed detection). Dx and Dy represent the difference between the

coordinates of P sn and Cij , i.e., Dx = Cij .x − PSn .x and Dy = Cij .y − PSn .y.

The index GSGij ∩ AG at the sum in Equation (13) represents the area of the

Gaussian AG, whose distribution overlaps the cells of the grid GSG. The pa-

rameters σ and θ model the dispersion of the distribution as a function of the

distance and orientation relative to the ego-car. The dispersion of the Gaussian

considering the distance Z of the camera is modeled considering each value of

disparity {di ∈ {d}}, as depicted in Equation (18):

σy =


√∑

n∈N(d)

[(
f.b
di

)
−( f.b

dn
)
]2

card(N(d))−1 |∀di ∈ {d}


σx =

{
σy

di
|∀di ∈ {d}

} (18)
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Figure 8: Model of uncertainty associated with epipolar geometry reconstruction and noise

in stereo measurements.

In Equation (18), N(d) represents the neighborhoods of the disparity and

card(N(d)) represents the cardinality of the set N(d). In the case of parameter

θ, the disparity is modeled by Equation (19):

θ =

∣∣∣∣arctan( 0P g.x− P sx
0P g.y − P sy

)∣∣∣∣ (19)

The inverse sensor model proposed to project the meta-knowledge informa-

tion onto the grid is based on the principle of voting. This method assumes that

the semantic information that best represents the cell is defined by the sum of

votes that a given meta-knowledge has received from the points belonging to

the cell. Therefore, the occupied refinement subset is modeled with proposition

{or ∈ r(O)}, in this case denoted as ψpropO (GSG, P s), as described by (20):

ψpropO (GSG, P s) =

{
argmax

ro
(ω(GSGij , P

s))|∀Gij ∈ GSG
}

(20)

where

ω(GSGij , P
s) =

 ∑
P s

n⊆SSG
ij

δ(P sn.or, orl)|∀orl ∈ r(O)

 (21)

δ(or, orl) =

1 , if or = orl

0 , otherwise

(22)
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In Equation (21), the index P sn ⊆ SSGij represents all the 3D points P sn ∈ {P s}

contained on the surface of the cell SSGij .

Up to this point, the solution is able to manage the probability of occupied

areas using 3D points that correspond to obstacles. It is also able to perform

the occupied refinement, which determines the proposition that best represents

those occupied areas. Based on the principle that the obstacles have already

been processed, a simple but effective method is employed to model the free

areas. If a light ray from the camera sensor reaches a detected obstacle point,

the purpose of this method is that it can be stated, within a given probabil-

ity, that every cell that lies along this line is free. Thus, the solution for free

areas, defined by ψprobF (GSG, FL), where {FL} denotes the set of Free Lines,

is modeled by a function that attributes the free probability to all the cells

that intercept the line generated from the camera sensor position to all the first

obstacles detected. This technique, which is performed using the Bresenham

algorithm [42], is described by Equation (23):

ψprobF (GSG, FL) =

{
max

fl∩GSG
ij

(1, 0− ϑF ))|∀fl ∈ {FL}

}
(23)

In Equation (23), ϑF is a parameter that belongs to [0, 1] and reflects the

confidence in the measurement of the Free area (0 if confident). As previously

explained, this confidence is linked to the principle of measurement (false alarm

or missed detection).

To conclude the inverse sensor model for all the states, the function that

models the unknown state (Ω) should respect the property presented in Equa-

tion (1), and is defined by Equation (24):

ψprobΩ (GSG) = 1.0− ψprobO (GSG, P s)− ψprobF (GSG, FL) (24)

Therefore, the resulting evidential grid, which is modeled to represent the

sensor grid at each instant of a measurement, has its BBA defined as Equa-
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Figure 9: Detailed system architecture proposed for Dynamic Local Perception.

tion (25) :

mSG(O) = ψprobO (GSG, P s)

mSG(F ) = ψprobF (GSG, FL)

mSG(Ω) = ψprobΩ (GSG)

mSG(∅) = 0

PropSG(O) = ψpropO (GSG, P s)

(25)

4.4. Dynamic Local Perception Grid

As introduced in previous subsections, the Perception grid (PG) is respon-

sible for building the final representation of the environment over time. The

complete Dynamic Local Perception (DLP) proposed in this work is a new

conception involving the Semantic Urban Road Scene Understanding with Oc-

cupancy grids. Its architecture is detailed in Figure 9. At each instant t that

a measurement is acquired, the meta-knowledge IRt that represents the Urban

Road Scene Understanding is stored. For the sale of simplicity, this process is

dubbed Semantic Context. The IRt and the Disparity Image I∆
t jointly supply

the necessary information to construct the GSGt , performing the novel Inverse

Sensor Model. The prediction of the ĜPGt is then estimated, after which the

GSGt is updated with this estimation, using the DST methodology to manage

the system’s uncertainties. In the updating procedure, it is possible to detect

the mobile cells based on GPGt .
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Having described the concept of the DLP, the details of the system architec-

ture are presented. The Semantic Context is mentioned in Section 3, and the

Inverse Sensor Model is described in subsection 4.3.

The prediction process estimates the grid GPG to ĜPG as a function of

the displacement generated by the ego-car at instant t − 1 to t. The rigid

transformation (Mt = [R|T ]) that represents this displacement is performed in

two consecutive images, as explained in subsection 4.1. Thus, GPGt−1 → GPGt uses

the affine transformation function f(GPGt−1,Mt) to update the cell information,

given by Equation (26).

m̂PG
t = B(f(mPG

t−1,Mt))

ˆProp
PG

t = $(f(PropPGt−1,Mt))
(26)

where

$(f) = {max(
∑

x=Ncell

δ(orj , orx)) | ∀j ∈ r(O)} (27)

In Equation (26), the function B(.) applies the bilinear interpolation to the

mass function, and the function $(.) performs the same process as B(.), but

in the occupied refinement proposition. Following Equation (27), Ncell stands

for all the neighbors of the cell in the grid, and δ(.) is defined in Equation (22).

In this process, some cells disappear and other cells appear within the scope of

the new grid. These new cells are initialized with the unknown mass function

(Ω = 1.0).

After ĜPGt is computed, the fusion process with GSGt can be performed.

Each cell refers to an occupancy mass function defined on 2Ω plus the refinement

r(O) shown in Equations (3) and (5) of subsection 4.2. The values of the mass

function mPG
t at time t = 0 represent no prior information (28):

mPG
t (O) = 0.0

mPG
t (F ) = 0.0

mPG
t (Ω) = 1.0

mPG
t (∅) = 0.0

PropPGt (O) = ({})

(28)

However, the updating mechanism is achieved in two steps in order to keep
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the conflicting information and also to combine the proposition refinement. The

first step, the fusion process, uses Equation (3) without the normalization factor

to merge the mass function. Equation (5) is applied to obtain the associated

proposition, as demonstrated in Equation (29).

m′
PG
t = m̂PG

t ⊗mSG
t

PropPGt = ˆProp
PG

t ⊗ PropSGt
(29)

In Equation (29), m′
PG
t is the conjunctive fusion, i.e., Dempster’s rule with-

out the normalization factor. The second step, the updating process, is per-

formed by normalizing the mass function by the conflict mass, as shown in

Equation (30). It should be noted that the conflict mass m′
PG
t (∅) is stored for

mobile detection analysis.

m
PG
t (A) =

m′PG
t (A)

1−m′PG
t (∅) A 6= ∅

mPG
t (∅) = 0 A = ∅

(30)

A mobile object is detected by analyzing the conflict mass m′
PG
t . If GPGt−1

and GSGt are contradictory, this indicates the occurrence of a conflict, which

can be analyzed based on the Equation (6). As previously explained, the first

term T1 detects the conflict generated when a moving object leaves the cell,

while the second term T2 detects the conflict generated when a moving object

appears in the cell. Due to noise and imprecise measurements arising from data

acquisition, poor displacement estimation, etc., many false-positive detections

may appear. In this case, using the meta-knowledge associated in the GPGt , the

detection of mobile obstacles can be improved by implementing a restriction

that allows only the r(O) ⊃ V to generate such a conflict.

m′
PGr
t (∅) = {m′PGij |Prop

PG
t (O) ⊆ {V }} (31)

5. Experimental Results

Experiments were carried out in real-life conditions using the common Kitti

benchmark1 [43]. The experiments were conducted and aimed at applications in

1http://www.cvlibs.net/datasets/kitti/ accessed on 06 Dec 2018
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Advanced Driver Assistance Systems (ADAS) and any future driving maneuver

or vehicle control for autonomous navigation.

The validation platform is implemented in C++ and the experiments were

executed on a computer equipped with an Intel I7-7700HQ processor with

2.8Ghz and with 24Gb DDR3, running version 16.04 of the Linux Ubuntu.

The dataset used is composed of 446 images acquired in an inner-city scene,

having a sequence image of 0:45min. The images include common objects such

as cars, trees, and buildings at a resolution of 1392 x 512 pixels. In this dataset,

the sensor camera is characterized by two Point Grey Flea2 FL2-14S3C-C color

cameras with a focal length of 4 mm and a ∼90 degree horizontal opening angle.

The baseline of the stereo camera rigs is approximately 54 cm. The principal

point of the left calibrated camera is in cx = 609.5593 px. and cy = 172.8540

px., and its focal length is fx = fy = 721.5377 px. The mounting position of the

sensors with respect to the vehicle body, which is illustrated in Figure 10(a), is

taken from the work of [43].

For this dataset, the grids are defined to cover an area of 39.9m x 53.1m with

a resolution of 0.3m x 0.3m. The center of the ego-car was positioned on the

grids with coordinates (20m, 50m), keeping in mind that the reference is fixed

on the left upper side of the grid. The transformations between references were

modeled considering the car geometry and positions of sensor cameras described

earlier herein.

The validation and performance analysis of this type of perception system

was carried out comparing the classic evidential grid with the semantic evidential

grid defined by DLP. The classic evidential grid does not take into account

the semantic information. The generation of the classic evidential SG and PG

grids are similar to those described earlier in sections 4.3 and 4.4. The main

differences are how the 3D points are selected to be projected onto the Sensor

Grid. Instead of using Equation 12 to determine the P s set, the procedure was

changed as follows. The P s set is modeled considering as restriction all 3D

points that have only a determined height value from the ground, which defines

those points belong to an obstacle or not. After that, the filtered P s set is then

projected onto the SG as explained, without considering those Equations related

to meta-knowledge information. In the same way, the classic evidential PG grid
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handles the prediction and fusion processes normally as explained, highlighting

that the classic evidential grid does not have the meta-knowledge information

to be managed.

For these experiments, the height parameter of the classic evidential SG

grid was fixed to 0.30m. So, all 3D points with a height higher than 0.30m

are projected in the grid. Therefore, the impact of the semantic information

introduced in the evidential grid can be verified by the temporal analysis of a

given cell’s mass of the grid that remains in a given state and with a specific

proposition, as well its qualitative result of the observed scene. This validation

is observed in both grids, sensor grid (SG) and perception grid (PG).

A simple method is created to better visualize the various items of informa-

tion contained in the DLP. This method proposes to give the HSV color space a

different meaning. Figure 10(c) presents the HSV color space with its axis rep-

resenting the arranged visualization, as follows. The idea is to represent the four

states of the evidential grid considering also the semantic context information,

such as building, sidewalk, road, vegetation and vehicle. To do this, the colors

in the Hue axis, which range from 0 to 360 degrees, are changed to represent the

semantic context information. Consequently, a fixed degree is defined for each

class. Thus, 0, 60, 90, 120 and 300 represent, respectively, building, sidewalk,

road, vegetation and vehicle. The set of degrees {0, 60, 120, 300} belongs to the

occupied state (O) and the 90 degree belongs to the free state (F ). It should

be mentioned that the 210 degree (blue) was inserted just for differentiating

the obstacle detection from the classic evidential grid in comparison to the se-

mantic evidential grid. The Saturation axis, which ranges from 0 to 100%, is

then changed to represent the conflict state (∅), but the values of the axis are

inverted, i.e., the value of Saturation S = 1−m(∅). This means that the greater

the conflict the closer it will be for the white color. To conclude the proposed

conception of visualization, the unknown state (Ω) is presented by the Value

axis, modeled in the same way as the conflict state. This means that complete

ignorance is represented by the color black. In this regard, the variations of the

colors are proportional to the mass value of these respective states.

To illustrate the qualitative results of both methods, the following figures 11, 13

and 16 show on the left the original image, the disparity map contextualiz-
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Figure 10: Sensor Setup. This figure illustrates the dimensions and mounting positions of the

sensors (red) with respect to the vehicle body. Heights above ground are measured in relation

to the road surface, using (a) the KITTI Benchmark [43] and (b) the Local Perception Grid

setup. (c) The proposed visualization method using the HSV color space.

ing the metric information and the semantic context result upon which the

meta-knowledge is based. These results are related to the task of the Seman-

tic Context, regarding the proposed solution diagram (Fig. 1). Considering

the Disparity Map module, it uses the SGBM algorithm [45] to obtain the re-

sulting disparity map and applies the ProbBoost algorithm [44] to achieve the

semantic information, at the Machine Learning module. The motivation behind

these choices lies in the fact that these algorithms are naive ones and are pas-

sive of inaccuracies, leading to uncertainties inserted into the proposed system.

Therefore, it is a way to analyze if the proposed system is able to cope with

uncertainties come from different sources such as the inner-city environment as

well as the system itself. For comparison purpose, on the right are presented

either the classic with the semantic sensor grid (SG) or the classic with the

semantic perception grid (PG).

The first example in Figure 11 illustrates the robustness of the road detec-

tion, which is the main element to perform autonomous navigation. As can be

seen, this figure shows a typical scene of an urban area. The yellow circle high-

lights a problem that should be managed by a perception system using a camera

sensor. The presence of a shadowy area combined with the stronger influence

of the sunlight represents a challenging task to be dealt with. Considering the

temporal analysis depicted in figure 12, upon which the masses were taken up
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Figure 11: DLP result highlighting the road detection. The yellow circle highlights the

presence of a shadowy area jointly with higher influence of the sun, and the sidewalk, which

is quite similar to the road.

from the cell at position addressed by the yellow arrow, it is possible to see

along the time how better become the road detection using semantic informa-

tion to compose the sensor grid generation, compared with the classic sensor

grid. Thanks to these factors, the DLP system is able to maintain a high level

of confidence about the free space without using any other sensor or a prior

digital map to build this perception.

The example in figure 13 demonstrates two cases, the conflicting cells that

are able to detect a mobile vehicle and the robustness of the detection of the

sidewalk. In the first case, represented by number 1, a moving car is passing

by the ego-car, which is also moving. Due to inaccuracies in the estimation

of the ego-motion and errors produced by the phenomenon of discretization

and transformation between grids, several conflicting cells appear, as observed

in both perception grid (Classic and Semantic). In this case, however, using

the semantic context information to improve the detection (as presented by

Equation 31), it is possible to distinguish these type of conflict by considering

that only cells recognized as vehicles could be in movement. The same conclusion

is verified in the temporal analysis in Figure 14. Observing the cell at the center

29



0 20 40 60 80 100 120 140 160

0

0.2

0.4

0.6

0.8

1

Classic SensorGrid (SG)

O
F
Ω

0 20 40 60 80 100 120 140 160

0

0.2

0.4

0.6

0.8

1

Semantic SensorGrid (SG)

F (Road)
Ω
O (SideWalk)
O (Vegetation)
O (Vehicle)
O (Building)

Figure 12: Temporal analysis of belief masses from SensorGrid (SG), considering the com-

parison between the classic evidential approach and the semantic evidential approach.

of the circle 1, the belief masses from the classic perception grid show the conflict

mass that results from Free to Occupied transition and then from the Occupied

to Free transition. For security reasons, it is not prudent to assume that this cell

is moving at that specific interval observed, arising from the issues previously

mentioned. Differently, the semantic perception grid highlights that the cells

considered occupied were due to the fact that they belong to the specific vehicle

class.

The second case, represented by number 2, clearly outline the influences

of the semantic context information into the perception grid. As can be seen

(Figure 13), the classic evidential approach is not able to detect precisely the

sidewalk, since that sidewalk is quite similar to the road and the 3D points

recovered from the disparity map are not distinguishable. On the other hand,

introducing the semantic context information has been possible to accurately

differentiate Free and Occupied areas, improving in this sense the exact road

and sidewalk regions by where an autonomous car should navigate. Figure 15

depicts the temporal dynamic of the cell taken up from the center position

of the ellipse 2. As can be seen, from the semantic evidential approach, the

Occupied belief mass maintains at 1.0 all-time within the analyzed interval,

changing among sidewalk, vegetation and vehicle. Taking a look at the classic

evidential approach, one can observe that the regions of the sidewalk are not
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Figure 13: DLP result highlighting the distinction between mobile and static cells. The yellow

ellipse highlights the presence of a mobile object, and the green ellipse shows the conflicting

cells that can be filter out considering the meta-knowledge of the scene.

satisfactorily represented. Verifying these regions, intervals, they are modeled

as belief mass of the Free proposition, that it is not true regarding the scene

from the original image. The resulting output of the DLP presents the new

conception to substantially improve the representation and understanding of

dynamic urban environments, by the semantic context information usage.

The example illustrated in Figure 16 demonstrates the multi-detection of

mobile objects in a challenging and complex scene. In this environment, the DLP

system presents an outstanding approach, detecting all the vehicles in the scene.

As can be seen in cases 1, 2 and 4, they are correctly detected as moving vehicles.

However, two incorrect cases should be mentioned. Analyzing the third case,

we find that the semantic context result correctly detected the occluded vehicle,

but was unable to detect the vertical signs in front of the car. At the same time,

examining the result of the disparity map, one can see that the distance from the

vertical signs to the stereo camera was calculated correctly. Consequently, the

projection onto the perception grid correctly maps the position of the object but

associates an incorrect meta-knowledge, thus impairing the process of filtering

out the conflicting noise cells. Regarding the case represented by number 5,
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Figure 14: Temporal analysis of belief masses from both approaches, regarding the influ-

ences of the semantic context information to differentiate mobile vehicle and inaccuracies in

the estimation of the ego-motion, errors produced by the phenomenon of discretization and

transformation between grids, regarding the belief masses of the Conflict propositions.

it demonstrates an important risk factor that was not recognized. So far, the

proposed system is not yet able to deal with pedestrian recognition. In this case,

a pedestrian is identified as a poorly classified obstacle, which occupies an area

in the grid that is inadequate to represent this kind of obstacle (as discretized),

because each cell represents a 0.3 x 0.3m space, and its projection is represented

by only 2 or 3 cells, making it difficult to distinguish considering noise.

To conclude these analysis, Figure 17 presents a phenomenon that happens

at the fusion and upgrade processes, concerning the refined propositions man-

agement. Verifying the cell taken up from the center position of the circle 4

(Figure 16), the semantic sensor grid observes a car around the interval time

370, followed by the belief mass of the Unknown proposition. Looking the se-
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Figure 15: Temporal analysis of belief masses from both approaches, regarding the influ-

ences of the semantic context information to improve the representation and understanding

of dynamic urban environments, mainly in non-trivial classes as road and sidewalk.

mantic perception grid at the same interval time, one can note that the belief

mass of an Occupied area is correct, however, at interval time 380 the vehicle

proposition changes to vegetation proposition, despite no evidence addressed in

the semantic sensor grid at the same interval time. Thus, this result is related

to the update process handled by the voting-based approach along the time. As

the ego-car is moving, the past propositions information are propagated from

neighborhood cells to the observed cell, even if in the observed cell there are

not pieces of evidence about. This phenomenon will be handled in future works

by using some temporal discounting and changing the voting-based approach to

another one more sophisticated.

To finish, the computational load considering the aforementioned validation

platform and the naive algorithms implemented to perform the proposed system,
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Figure 16: DLP result highlighting the multi-detection of mobile objects. The yellow ellipse

highlights the presence of mobile vehicles, and the red ellipse show the wrong case to pedestrian

recognition.

the Dynamic Evidential Grid task, including those three modules, takes around

350ms to process each data input. The video containing the complete result of

the DLP for this experiment is publicly available, and can be found at [47] 2.

6. Conclusions

A new perception scheme based on dynamic mapping and relative localiza-

tion using only a pair of stereo cameras has been introduced and applied to

autonomous robotic vehicle navigation. The advantage of using stereo cameras,

the possibility of measuring distances and the availability of image information.

Therefore, the proposed approach, called Dynamic Local Perception, combines

the evidential occupancy grid with meta-knowledge acquired by machine learn-

ing to characterize the uncertainties of occupied areas, while simultaneously

incorporating the semantic context associated with these areas to improve the

representation of dynamic urban environments over time.

In summary, this work contributes to this line of research by offering a novel

2http://youtu.be/H_zJjX8uMtI Accessed on 06 Dec 2018
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Figure 17: Temporal analysis of belief masses regarding the influence of the phenomenon that

happens at the fusion and upgrade processes, concerning the refined propositions management

by the voting-based approach usage.

technique that does not require inertial sensors, laser sensors or prior digital

mapping to implement a robust perception system. Moreover, the new inverse

sensor model considers uncertainties in distance measurements and improves the

occupancy grid with associated meta-knowledge. Finally, using the Dempster-

Shafer Theory, the prediction and updating processes are modeled to combine

semantic context in order to discriminate static and mobile objects in the scene,

making this solution a promising approach for urban scene understanding.

With regard to the prospects for the dynamic local perception system, some

issues were observed. The first has to do with the formalism employed to manage

the meta-knowledge associated with belief masses. Currently, the proposed

method uses a voting-based principle, which is not entirely suitable for this

purpose. An improvement might be to use a probabilistic or evidence formalism
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to upgrade and merge this information. The second issue has to do with the

temporal information propagation in the grid. The mechanism of contextual

discounting may be used in order to represent the variation in information on

the lifetime of objects present in the environment.

Another issue concerns a meaningful evaluation comparing the responses

obtained by the Dynamic Local Perception using the DST and BT strategies.

For future works, it is intended to verify the standard occupancy grids with

respect to the standard evidential grids as well as the applicability of the meta-

knowledge information in these two kinds of occupancy grids. To ends, a deep

study will be conducted to understand and develop an approach that preserves

the meta-knowledge clusters on the occupancy grid and exploits these clusters

in higher levels of fusion as for example the object and situation assessment.
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