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On tangent geometry and generalised continuum
with defects

Van Hoi Nguyen , Guy Casale and Loïc Le Marrec Univ Rennes, CNRS, IRMAR-UMR 
6625, Rennes, France

This paper introduces tools on fibre geometry towards the framework of mechanics of microstructured continuum.

The material is modelled by an appropriate bundle for which the associated connection and metric are induced from

the Euclidean space by a smooth transformation represented by a fibre morphism from the bundle to Euclidean space.

Furthermore, the general kinematic structure of the theory includes macroscopic and microscopic fields in a multiscaled

approach, including large transformation. Defects appear in this geometrical point of view by an induced curvature, tor-

sion and non-metricity tensor in the induced geometry. Special attention is given to transport along a finite path in order

to extend the standard infinitesimal analysis of torsion and curvature to a macroscopical point of view. Both theoretical

and numerical analysis may be handled without additional difficulties. Accordingly, several examples of transformation

involving the distribution of material defects are exhibited and analysed.

Keywords
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1. Introduction

A hundred years ago, Cartan exposed the overall properties of the so-called Riemann–Cartan (RC) manifold
endowed with not only a Riemannian metric (measuring the shape change) but also an affine connection incor-
porating torsion and curvature in the geometrical problem [1]. In this seminal note, the mathematical techniques
are not present (it contains no equations), but the author insists on the crucial interpretation of lack of closure
supported by a moving frame after a parallel transport along an infinitesimal loop. Interestingly, the paper is
devoted to modelling of a material continuum containing infinitesimal universe and particular attention is paid
to mechanical concepts such as energy, equilibrium, forces and torques. The paper was inspired by the Cosserat
brothers who introduced a continuum model involving an independent field of rotation in addition to the stan-
dard displacement field [2]. From a crystalline point of view, the Cartan’s approach is known as closely related
to the work of Burgers brothers [3] even if these latter were more inspired by Volterra’s ideas (on continuum)
[4]. From a geometrical point of view Cartan’s inspiration takes its roots in the general relativity and especially
on the Weyl’s 1918 works in which the author introduced an independence between the affine connection and
metric tensor [5]. Cartan published a series of articles [6–8], where he presented a theory of generalised rela-
tivity in the framework of his formulation of affine geometry. If the geometrical concepts are defined in these
works, there is no more reference to material continuum as it was sketched in the first note of 1922.
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Since the 1950s, the close link between continuum mechanics of solids with a distribution of defect and RC
geometry has been re-activated by Kondo [9], and independently by Bilby, Bullough, and Smith [10]. These
seminal works made the identification of the Cartan circuit with the Burgers circuit, and with the torsion ten-
sor being interpreted as the dislocation density. Later, Kröner [11, 12] highlighted that the Riemannian circuit
brings a perspective for modelling distributions of disclinations in a continuum. In other words, curvature tensor
is identified with disclination density. Hence, disclinations are the rotational counterpart of dislocations (trans-
lational defects) [13]. Application to initially crystalline defects has been extended progressively to defects in
(inhomogeneous) material through more general mathematical supports [12, 14–16].

Among the applications, the elastoplasticity of solids is one of themes most concerned by these approaches.
Indeed, physical considerations of such mechanisms associate the notion of a micro-structure within the solid
together with a notion of defects capable of flowing through the material structure. For finite elastoplastic
deformation, the total deformation tensor is generally decomposed multiplicatively into an elastic and plastic
part F = FeFp, which was originally proposed in [10, 11] and [17]. Here Fp represents the plastic distortion
due to the flow of defects through the material structure, whereas Fe is the local deformation due to the stretch
and rotation of the material structure. Note that Fe and Fp are not defined as the gradients of a continuous
one-to-one mapping, see [18]. From a heuristic point of view, this decomposition introduces an intermediate
configuration: Fp may be interpreted as a local deformation from the initial configuration to an intermediate
one, whereas Fe relates the intermediate state to the current configuration. However, such decomposition may be
recovered without invoking an intermediate configuration, but by a homogenisation process [19] or by invoking
geometrical models [20].

Another well-known approach consists of focusing on the discontinuity of scalar and vectorial fields [15]
by invoking multivalued fields [21]. Such an approach is a microscopic alternative interpretation of the non-
holonomy supported by geometrical quantities (scalar or tensorial) at a scale for which the material may be
interpreted as a continuum [22]. Even if this approach was inspired by the elastoplastic transformation of crys-
tals, its applications have a wider range including relativity and quantum mechanics [13, 23]. In this modelling,
the global C 1-regular embedding is replaced by a multivalued map and, hence, the global coordinate trans-
formation is replaced by a local one dxa = ea

A dX A. Such maps carry flat space to space with curvature and
torsion. It is therefore usual to define connection coefficients as extension of the usual definition Γ̂ A

BC = eA
c ∂Bec

C

and the metric ĜAB = ea
Agabeb

B. The connection is metric compatible. Torsion of the connection may be intro-
duced explicitly [24, 25] or via a distortion field [26]. Even if multivaluation of some fields may introduce some
difficulties, numerical simulations can be performed and lead to applications in solid and fluid mechanics [27].

In linear elasticity, micromorphic theory [28, 29] extends the couple-stresses theory of Mindlin [30]. Fol-
lowing the paradigm of the Cosserat brothers, attention is mainly given to a new degree of freedom illustrating
the versatility of microstructured media. Nowadays, the size effects involved in a natural way in this model have
received increased attention both in statics [31–33] and dynamics [34–36]. Even if micromorphic theories share
mainly the same overall objective as the other formulation, extension to large transformation is at this stage
not completely elucidated [37]. One of the possible reasons is that this theory is constructed on a restrictive
geometrical formulation. The present paper is a contribution in this direction among recent works [22, 38–40].

Indeed a microcontinuum can be modelled as a fibre bundle because it suffices to mention that each point on
the base manifold can be considered endowed with additional degrees of freedom or internal variables. In this
context, the motion of the microcontinuum is formally a fibre morphism [41]. In fibre bundle geometry, geomet-
ric objects such as metric tensors [42], connections and derived quantities (torsion, curvature) may depend not
only on position but also on the internal state [43]. This extends the Riemannian geometry for which (relative)
position of material points controls all geometrical objects as underlined by [5]. Fibre geometry encompasses
various geometries among Euclidean, Riemannian, Weitzenböck and Weyl manifolds. Its application concerns
mainly the general relativity but other applications have already been investigated [44, 45]. As such approach
considers the macroscopical and microscopical universes as a whole, all the physical quantities may be consid-
ered as single-valued and smooth (outside macroscopical inhomogeneities). Accordingly, both theoretical and
numerical analysis may be handled without additional difficulties.

This paper is organised as follows. Section 2 is devoted to the concepts of the geometrical formulation of a
microstructured continuum M where a solder form, an Ehresmann connection and a (Sasaki) metric are defined
on a fibre bundle. These concepts are essential ingredients in this paper. In Section 3 these notions are applied
to material transformations. As the primary intention is to describe structural changes in real materials, special
attention is paid to kinematical interpretation. In this context, a scaled material modelling is introduced. This
model is devoted to material transformations represented by fibre morphisms. Accordingly, induced connection
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and metric are first described, then driven geometrical quantities such as curvature, torsion, and non-metricity
tensor are obtained. In Section 4, alternative approaches are reviewed and compared, significant features of
the proposed model are also exhibited. The applications of this theory are presented in Section 5. Dedicated
simulations are provided for each process and in various description’s spaces (tangent space, body, etc). Then
several examples of material transformation with distributed defects are proposed and discussed. Conclusions
follow in Section 6. At the end, an appendix contains a brief reminder of RC geometry and details of some
proofs.

2. Geometrical background

A microstructured material is modelled by a fibre bundle M
π
→ B with extra data described in this section.

The three-dimensional differentiable manifold B is compact with boundary and orientable. It is the geometrical
locus of the material, hereafter called the body. The fibre of the bundle M at p ∈ B is denoted by Mp. It is
considered as the microelement constituent of the material at the point p.

After the general definitions, each subsection will end with the application of the definition in a special case
where the tangent bundle M is TB. Indeed M = TB means that microelements are interpreted as a first-order
infinitesimal neighbourhood of geometrical points. Such interpretation coincides with standard analysis with
defective crystals or grained material. This equality means that the same mathematical object, namely TB, is
used to model different mechanical objects: the space of “speed” of geometrical point p : TpB on the one hand
and the microelement at p : Mp on the other hand.

This general formalism, supposing that eventually M 6= TB, has also the advantage of extending the
present theoretical background to other physical materials (porous media, phase transformation, soft matter,
etc.; see, for example, [46–48]).

2.1. Solder form

Let us denote by V (M ) the vertical tangent bundle of M
π
→ B, i.e. the subbundle ker dπ ⊂ TM . The fibre of

V (M ) at p ∈ B is the tangent bundle to the microelement Mp, namely T(Mp). One considers that the tangent
at the microelement at m ∈ Mp, namely Tm(Mp) ≡ VmM , should be TpB, meaning that microelements are
tangent to the body B. It is formalised in the following definition.

Definition 2.1. A solder form on M is an isomorphism TB ×
B

M
ϑ
→ V (M ).

The definition (2.1) implies that the dimension of a microelement is equal to the dimension of B. Hereafter,
we consider the case where dim B = dim Mp. An alternative definition of the solder form can be found in [49].

Let (xa) be coordinates on B and let them be complete in a coordinate system (xa, yi) on M . A solder form
can be written accordingly:

ϑ = ϑ i
a(m)

∂

∂yi
⊗ dxa.

If x̃a(xb) and ỹi(xb, yj) defines another coordinate system on the bundle M , then we have

ϑ = ϑ̃ i
a(m)

∂

∂̃yi
⊗ d̃xa =

(
ϑ̃ i

a(m)
∂yj

∂̃yi

∂̃xa

∂xb

)
∂

∂yj
⊗ dxb.

When M is a vector bundle on B, then one has V (M ) = M ×
B

M . A particular type of solder form can be

defined by a bundle map over M , TB ×
B

M
ϑ
→ M ×

B

M , induced by an isomorphism TB → M . This is a

strong interpretation of the tangency condition of V (M ) with B modelled by the solder form.
One should keep in mind that the bundle TB is used to model two different objects: the tangent spaces TB

on the one hand, and the microelements M on the other hand.
For the special case M = TB, the canonical solder form is reduced to the isomorphism associated to the

identity TB = M . This isomorphism TB×
B

M
ϑcan
→ V (M ) is given by the following construction. A coordinate
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Figure 1. Pictorial representation of the Ehresmann connection.

system (xa) on B induces coordinates (xa, yi) on TB such that for v ∈ TB, v = δa
i yi(v)

∂

∂xa
. Expressed with

these coordinates, the canonical solder form is

ϑcan = δ
j
b

∂

∂yj
⊗ dxb.

2.2. Connections

For infinitesimally closed points p and q in B, the identification of the microelements Mp and Mq is a matter
of choice that takes part to the overall model. This identification is performed by using a field of tangent vector
to M along Mp whose projection on B is the constant vector Epq. This should be done along any fiber Mp and
this assignment should be smooth and unique. This task is performed by Ehresmann connections (Figure 1).

Definition 2.2. An Ehresmann connection on M is a morphism N : TB×
B

M → TM such that dπ ◦N(v, m) =

v. In local coordinates (xa, yi),

N =

(
∂

∂xa
− N i

a(m)
∂

∂yi

)
⊗ dxa.

This formula could be interpreted as follows: the microelement Mp at p (with coordinates (xa)) is identified

with its neighbour Mq at q (with coordinates (xa+dxa)) using the infinitesimal transformation
(
−N i

a(m)dxa
) ∂

∂yi

where m ∈ TpM . If points p and q are connected by a finite path σ , then Mq is identified with Mp by solving
(dyi + N i

a(m)dxa)|σ = 0 with m = (x, y). This last ordinary differential equation (ODE) may not have a solution
defined on the whole path σ and then the finite identification may not exist. A large class of connections ensur-
ing the existence of finite identification is given by principal connections. Among them, the linear and affine
connections are described in the following.

Equivalently, the Ehresmann connection consists of a smooth assignment to each point m ∈ M of a sup-
plementary subspace, the horizontal subspace HmM ⊂ TmM to the vertical subspace of the tangent bundle of
Vm(M ) ⊂ TmM . We can lift the natural local basis ∂/∂xa of TpB to respective bases of the horizontal space at
any point m ∈ Mp and, hence,

HmM = span

(
δ

δxa
=

∂

∂xa
− N i

a(m)
∂

∂yi

)
and VmM = span

(
∂

∂yi

)
. (1)

The dual of the horizontal and vertical tangent spaces are given by

H∗
mM = span(dxa) and V ∗

mM = span(δyi = dyi + N i
a(m)dxa). (2)
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Definition 2.3. Given a connection N and a solder form ϑ , an associated connection N − ϑ is defined. Its
expression in local coordinates is

N − ϑ =

(
∂

∂xa
− (N i

a(m) + ϑ i
a(m))

∂

∂yi

)
⊗ dxa.

If M = TB, one may be especially interested in the particular case of linear connection meaning that
N i

a(x, y) = Γ i
aj(x)yj. In that case, the connection N − ϑcan will be called the associated linear connection. For a

change of the coordinate system on B: x̃a = x̃a(xb) leading to ỹi = (∂̃xi/∂xj)yj on TB, the connection coefficient
satisfies the specific transformation rule:

∂̃xb

∂xa
Ñ k

b =
∂̃xk

∂xb
Nb

a −
∂ 2̃xk

∂xa∂xb
yb. (3)

For linear connections this implies that Γ satisfies the transformation law (64) (properties of the covariant
derivative are given in Appendix A.1). This means that from any linear connection N on M = TB one obtains a
covariant derivative ∇ on X(B) with Christoffel symbols Γ and vice versa (see [50] for a discussion on covariant
derivatives). Remark that all along the paper the terminology Christoffel symbols will refer to the coefficient of
a covariant derivative or connection (see (63)) and they are not necessarily related to the Riemannian metric.

2.3. Parallel and rolling transports

Let σ : [0, 1] → B; t 7→ σ (t) = (xa(t)) be a curve on B. If B is an open subset of E
3 this curve may be defined

by the prescription of its origin p = σ (0) and its tangent (velocity) field σ̇ (t) = ẋa(t)∂/∂xa. For more general
(non-Euclidean) manifold B, special attention should be paid to such integration. Indeed, parallel and rolling
without slipping transports along σ are usually defined for Levi-Civita connection on a Riemannian manifold.
In our context, “parallel” refers to the connection N and “rolling” to the connection N − ϑ . The definitions are
as follows.

1. Parallel lift of σ̇ (t) is defined by ẋa(∂/∂xa − N i
a(σ (t), y)∂/∂yi). Hence, parallel lift of σ are obtained by

solving

ẏi = −N i
a(σ (t), y)ẋa.

2. Rolling lift of σ̇ (t) is defined by ẋa(∂/∂xa −
(
N i

a(σ (t), y) + ϑ i
a(σ (t), y)

)
∂/∂yi). Hence, rolling lifts of σ are

obtained by solving

ẏi = −(N i
a(σ (t), y) + ϑ i

a(σ (t), y))ẋa.

These lifts of the curve starting at any point (yi(0)) ∈ Mσ (0) exist locally and are unique, but may not be
well-posed on the whole path σ [51–53].

Let us consider the particular case where M = TB, the connection is linear (N i
a(x, y) = Γ i

aj(x)yj) and the

solder form is the canonical one. The coordinate system (xa) defines a basis ei = δa
i

∂
∂xa in each tangent space.

Writing Oi
j = Γ i

aj(x)dxa and Ji = δi
adxa, the above systems can be read as follows.

1. The parallel transport by the connection N of a vector yi(0)ei ∈ TpB along σ (t) is the vector field Y (t) =
yi(t)ei ∈ Tσ (t)B obtained by solving the equation

dY = −OY . (4)

2. The rolling transport by the connection N −ϑ of a point p+yi(0)ei ∈ Mp along σ is σ (t)+yi(t)ei ∈ Mσ (t)

where Y (t) = yi(t)ei ∈ Tσ (t)B solves the equation

dY = −OY − J. (5)
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2.4. Curvature and torsion

The total curvature R of the material (i.e. the bundle M ) measures the compatibility of N −ϑ with Lie brackets
of vector fields. For two vector fields V and W on the base manifold B, the curvature,

R(V , W ) = (N − ϑ) [V , W ] − [(N − ϑ)V , (N − ϑ)W ] ,

is a vertical vector field on M . This formula can be split into two terms

R(V , W ) =
(

N[V , W ] − [NV , NW ]
)

+
(

− [ϑV , ϑW ] + [NV , ϑW ] + [ϑV , NW ] − ϑ[V , W ]
)

.

At this step two contributions have to be highlighted.

Definition 2.4. The first term is the Ehresmann curvature, namely R(V , W ), also called the curvature of the

connection. The second term is the weak torsion, namely T(V , W ). We can write R = Ri
ab

∂

∂yi
⊗ dxa ⊗ dxb and

T = Ti
ab

∂

∂yi
⊗ dxa ⊗ dxb where their components are respectively given by

Ri
ab =

∂N i
b

∂xa
−

∂N i
a

∂xb
− N j

a

∂N i
b

∂yj
+ N j

b

∂N i
a

∂yj
, (6)

Ti
ab = − ϑ j

a

∂ϑ i
b

∂yj
+ ϑ

j
b

∂ϑ i
a

∂yj
+

∂ϑ i
b

∂xa
− N j

a

∂ϑ i
b

∂yj
+ ϑ

j
b

∂N i
a

∂yj
− ϑ j

a

∂N i
b

∂yj
−

∂ϑ i
a

∂xb
+ N j

b

∂ϑ i
a

∂yj
. (7)

The geometrical interpretation of the curvature is as follows.

Lemma 2.5. If the curvature of a connection vanishes, then the lift of any loop σ on base manifold B, when
defined, is closed [52, 53].

One obtains two connections from one, adding or not the solder form. In general, the vanishing of R and the
vanishing of R are independent. When the connections have a special structure, it can happen that R controls
R as is the case in the linear situation below where R = 0 implies R = 0 and T = 0.

Lemma 2.6. Let us consider the case where M = TB and N is linear, meaning that N i
a(x, y) = Γ i

aj(x)yj, and
ϑ = ϑcan. It follows by direct computation:

Ri
ab =

(∂Γ i
bj

∂xa
−

∂Γ i
aj

∂xb
+ Γ k

bjΓ
i

ak − Γ k
ajΓ

i
bk

)
yj = Ri

jabyj, (8)

Ti
ab = ϑ

j
bΓ

i
aj − ϑ j

aΓ
i

bj = Ti
ab. (9)

Here R and T are respectively the associated curvature and torsion tensor of the covariant derivative ∇ associ-
ated with Christoffel symbols Γ (see Appendix A.1). In this sense the derived tensors R and T of the connection
N on M are a geometrical reformulation of the ones of ∇ on X(B).

The curvature and torsion can be interpreted as an obstruction: recall that the rolling transport of Y = (yi) ∈
Mp along the path σ is obtained by solving the Equations (5): dY = −OY − J. Solutions may depend on the
chosen path. It is not always possible to solve this system. In practice, this is possible if and only if ddY = 0,
otherwise the multivaluedness of the problem is characterised by the non-vanishing of

ddY = −(dO + O ∧ O)Y − (dJ + O ∧ J). (10)

The first component dO +O ∧O is the usual curvature matrix valued two-form R. The second term dJ +O ∧ J
is the torsion vector valued two-form of T. Both are tensors over B. The total curvature vanishes if and only if
both the usual curvature and the usual torsion vanish.
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2.5. Sasaki metric

At this stage, no metric tensor g has to be prescribed on M . This latter is then, at this stage, a free parameter
that could complete the characterisation of the material manifold. In the following, particular metrics would
appear naturally. These are Sasaki metrics [54–56] defined by

g(m) = g
h
ab(m)dxa ⊗ dxb + g

v
ij(m)δyi ⊗ δyj. (11)

The first term is called the horizontal metric and the other is the vertical metric.
The benefit of this type of metric is that the split structure of the metric is preserved under any change of

coordinates. This effect is ensured by the proper bases of such metric tensor that preserve the split structure of
the tangent space TM involved by using the Ehresmann connection N . Indeed, it was stressed in (1) and (2) that
for a given Ehresmann connection, the non-holonomic bases (δa, ∂i) and (dxa, δyi) are convenient local bases on
TM and T∗M , respectively. In practice, this illustrates that the notion of angle and length are meaningful only
if such quantities are related to neighbouring points belonging to the same micro- or macro-universe. More
precisely, the horizontal metric is related to the macroscopic observations on the material, whereas the vertical
part is related to points belonging to a given microelement.

2.6. Toward transformation of microstructured media

On the one hand, a continuum with microstructure is assumed to be a tangent bundle over a three-dimensional
differentiable manifold B. On the other hand, E

3 is the three-dimensional Euclidean space. For instance, a fibre
morphism or so-called bundle map M → TE

3 presents the evolution of the microstructured material manifold
M in the Euclidean space [52, 53]. It may possibly depend on time. By a language shortcut, such a bundle map
is sometimes called transformation hereafter.

The configuration of the body is described by the geometrical structure induced by the pull-back from TE
3

onto M . This current-induced geometry must be able to reveal if material defects are present or created by a
material transformation. The main objective of this paper is to specify how such a defective configuration is
obtained via such a type of bundle mapping or generalisation of this latter.

In particular, the complete characterisation of the current configuration needs to specify how measures and
variations are performed around an infinitesimal neighbourhood of an element of M . Such information is
encoded on the covariant derivative ∇ and the metric tensor. These tensors are acting on elements on TM . In
other words, the full configuration is controlled by the bundle map TM → TTE

3. The following section is
dedicated to this crucial point.

3. Scaled material model

Here a special model is presented. It is restricted to the particular case where M is isomorphic to TB and where
the solder form is canonical (in the following ϑ = ϑcan).

Let us first recall some standard conventions. We use (X A, Y I ) (respectively, (xa, yi)) to denote a chart on
M (respectively, TE

3). The Euclidean space E
3 has a canonical affine connection, namely the Levi-Civita

connection γ of the Euclidean metric g (of course, if Cartesian chart is used on the Euclidean space, the
connection coefficients vanish). Its tangent bundle, as any tangent bundle, has a canonical solder form denoted
by δ as its components (δi

a) in any frame of E
3 coincide with those of the identity. Finally, the tangent bundle of

the Euclidean space may be equipped with a trivial Ehresmann connection (with coefficients ni
a(x, y) = γ i

aj(x)yj

in a local coordinate system) and with a metric tensor g having a Sasaki form:

g = gab(x)dxa ⊗ dxb + gij(x)δyi ⊗ δyj. (12)

Define (EK) = (dX A, dY I ) with K running from 1 to 6, the first three basis elements are dX A, the others are dY I

(A and I run from 1 to 3). Similarly, (ek) = (∂a, ∂i) with k running from 1 to 6. The first three basis elements
denote the ∂a basis, the others coincide with ∂i.

A geometrical transformation φ : B → E
3 is inducing an “idealised” material transformation M → TE

3

using the derivative and the canonical solder form : (X , Y ) 7→ (φ(X ), δF(X )ϑ(Y )) with F = φ∗. In local
coordinates the latter can be written: δi

aFa
AϑA

I Y I . From now on, the formula will be shortened as Fi
IY

I . In that
way, we define Fi

I = δi
aFa

AϑA
I and Fa

I denotes Fa
AϑA

I .
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Figure 2. Various length scales of a model: microscopic and macroscopic. The scale ratio ℓ/L is defined to account for scaling effects.

3.1. Overall approach

In most of standard works on the geometrical analysis of defective media, the tangent transformation TM →
TTE

3 is induced by the derivative of M → TE
3 but this choice is not a strict constraint and could be relaxed.

For this purpose, an Ehresmann connection has to be created. In the present paper, the solder form defined on
TB is always assumed to be the canonical form. The Ehresmann connection may be linear or not. However, in
the following, special attention is given to the linear case for which Ehresmann curvature and weak torsion will
coincide with those defined through covariant derivatives, see Section 2.4.

It is assumed that the continuum consists of a huge number of infinitesimal volume elements dV , located at
a mathematical point p in the base manifold B (p may be interpreted as the centre of mass of dV , see Figure
2). The motion of p is governed by the map φ. Deformation of dV is controlled by F = φ∗. In addition, the
volume elements dV are composed of a large number of sub-domains/microelements δV of finite (but tiny)
size. As δV contains a finite quantity of matter, its stretch may be considered. In this context, the continuum is
deformed by two independent maps: F defines the stretch at a macroscopic scale, whereas Θ defines the stretch
at a microscopical scale.

If the material transformation is described by the bundle mapping M → TE
3, (X , Y ) 7→ (φ(X ), Θ(X )Y ) the

scaling effect is not easily tractable as F and Θ are acting on a vector belonging to TpB and Mp, respectively,
that are equivalent manifolds (as M = TB, then Mp = TpB). This difficulty can be circumvented in the fol-
lowing way: let us consider that the local change of a vector Y associated with the microstructure and belonging
to M , is measured by an element Zv of V (M ). Hence, the material transformation is represented by a smooth
map

Υ v : V (M ) → VTE
3, (X , Y , Zv) 7→ (φ(X ), δF(X )ϑY , Θ(X )Zv), (13)

where Θ(X ) is smooth, invertible and orientation preserving. Accordingly, such sub-scale modelling is no longer
redundant because the maps related to each scale are separated.

To construct an induced Ehresmann connection the first idea is to extend Υ v to the whole space, i.e. find a
bundle map Υ : TM → TTE

3 of the form

(X , Y , Z) 7→ (φ(X ), δF(X )ϑY , Ω(X , Y )Z),

with X ∈ B, Y ∈ MX and Z ∈ T(X ,Y )M . At this stage, attention is now focused on Ω = Ωk
Kek ⊗ EK or, in

detail,
Ω = Ωa

A∂a ⊗ dX A + Ωa
I ∂a ⊗ dY I + Ω i

A∂i ⊗ dX A + Ω i
I∂i ⊗ dY I ,

for which one has a great freedom of choice. The image of (X , Y ) is already partially prescribed. Indeed, as the
restriction of Υ for any element of V (M ) is imposed by (13):

Ω i
I (X , Y ) = Θ i

I (X ).

In order to avoid too complex interpretations, a second idea is proposed by considering that if Θ = F the
scaling effect must not be observed. Then, if Θ = F, the material transformation has to coincide with the
simpler one H : M → TE

3, (X , Y ) 7→ (φ(X ), δF(X )ϑY ) for which Ω is nothing else than the total gradient
H∗. Accordingly, one obtains

Ωa
A(X , Y ) = Fa

A(X ) and Ωa
I = 0.

8



Figure 3. Pictorial representation of an induced Ehresmann connection.

3.2. Induced structure

At this stage Ω takes the following form:

Ω = Fa
A∂a ⊗ dX A + Ω i

A∂i ⊗ dX A + Θ i
I∂i ⊗ dY I , (14)

where the choice of Ω i
A(X , Y ) is still free. The inverse of Ω is given by Ω−1 = ΩK

k EK ⊗ ek with ΩK
k Ωℓ

K = δℓ
k

and ΩK
k Ωk

L = δK
L . This latter is of the form:

Ω−1 = FA
a ∂A ⊗ dxa + Ω I

a∂I ⊗ dxa + Θ I
i ∂I ⊗ dyi, (15)

where Θ I
i Θ

j
I = δ

j
i and FA

a Fb
A = δb

a .
Let V be an arbitrary tangent vector to B at a point X ∈ B, the induced Ehresmann connection is naturally

defined by considering its horizontal lift given by (a pictorial interpretation is given in Figure 3)

N(X , Y )V = Ω−1
(

n(φ(X ), δF(X )ϑY )(φ∗V )
)

with coefficients N I
A = Θ I

i Ω
i
A + Θ I

i ni
aFa

A.
(16)

Here, we recall that n is the ambient Ehresmann connection with the connection coefficients are ni
a(x, y) =

γ i
aj(x)yj, and γ is the Levi-Civita connection given on E

3 (see the beginning of Section 3). The proof of (16) is
detailed in Appendix A.2. Note that the definition of the induced connection is independent on the chosen chart.

Proposition 3.1. If the manifold M is endowed with the connection N given in (16), one obtains

Ω = Fa
A

δ

δxa
⊗ dX A + Θ i

I

∂

∂yi
⊗ δY I . (17)

Hence, Ω may be seen as the collection of two maps: Hm(M ) → H(x,y)TE
3 and Vm(M ) → V(x,y)TE

3.
Roughly speaking, this states the existence of two independent mechanisms, the first is the ordinary dragging
of vectors by means of the deformation gradient F = φ∗ of the macrostructure; the second is associated with
the transformation Θ of the microstructure.

Proof. Without loss of generality, the Cartesian coordinate system is used on TE
3 and accordingly δ/δxa = ∂a.

Considering that Ω i
IΩ

I
j = Θ i

IΩ
I
j = δi

j , one obtains

Ω = Fa
A

δ

δxa
⊗ dX A + Θ i

I

∂

∂yi
⊗ (Ω I

j Ω
j
A dX A + dY I ).

The proof ends because N I
A = Ω I

i Ω
i
A and δY I = N I

AdX A + dY I .

9



Usually, the induced metric is given by G = Ω∗g or explicitly G(V , U) = g(ΩV , ΩU) for all V , U ∈ TM .
According to the connection N given in (16), metric tensor G has a Sasaki structure:

G(X , Y ) = Gh
AB(X )dX A ⊗ dX B + Gv

IJ (X )δY I ⊗ δY J

with Gh
AB = Fa

AgabFb
B, Gv

IJ = Θ i
IgijΘ

j
J .

(18)

Their components are just functions of the base coordinate X : the metric is uniquely defined at a given point p of
B. In addition, it can be seen that the vertical metric component is always given by Gv

IJ = G(∂I , ∂J ) = Θ i
IgijΘ

j
J

what is explicitly independent on the definition of the Ehresmann connection N (even if this letter is a key
ingredient of the definition of proper bases of horizontal and vertical space, see (1) and (2)). More precisely,
the components of G in the proper horizontal and vertical bases are completely specified by Υ v and they are
independent of the choice of the (possibly non-linear) connection N(X , Y ).

From (17) and (18) it is observed that microscopic and macroscopic processes are naturally separated. More
specifically, for the microscopic process, the solder form is an important tool that relates the microscopic quan-
tities (belonging to V (M )) to macroscopic quantities (belonging to TB). By way of illustration, let us consider
a vector field V = V A∂/∂X A on B. Its canonical vertical lift is ϑV = δI

AV A∂/∂Y I at any point along the fibre
TX B. The vertical metric Gv induces a metric G on B defined by G(X )(V , W ) = Gv(X )(ϑV , ϑW ) for every
V , W ∈ TX B. In a coordinates system:

GAB = ϑ I
AΘ i

IgijΘ
j
Jϑ

J
B

(
in short GAB = Θa

AgabΘ
b
B

)
. (19)

This metric G may be chosen as a measure on B of the current configuration of the microstructure. The
construction of the connection N from this split structure allows us to interpret macroscopically a change of
microscopic quantities, this is evident through the mixed indices of the connection N I

A.

3.3. Linear induced connection

Recall that the Euclidean space E
3 has a canonical connection: the Levi-Civita connection γ of the Euclidean

metric g. More precisely, the trivial Ehresmann connection n has the form ni
a(x, y) = γ i

ajy
j.

Lemma 3.2. The connection is linear, i.e. N I
A(X , Y ) = Γ I

AJ (X )Y J if and only if Ω i
A(X , Y ) is linear that means

Ω i
A(X , Y ) = �i

AJ (X )Y J . In that case, one obtains

Γ I
AJ = Θ I

i Ω
i
AJ + Θ I

i γ
i
ajF

j
J Fa

A, (20)

and if Cartesian coordinates are applied on TE
3, Γ I

AJ = Θ I
i �

i
AJ ; where the following notation are recalled,

Fa
I = Fa

AϑA
I and Fj

I = δi
aFa

AϑA
I .

Proof. It is directly thanks to (16) as Θ is independent of Y . Keep in mind that ni
a = γ i

aj(x)yj with x = φ(X ) and
y = δFϑY , then straightforward computations give N I

A(X , Y ) = Θ I
i Ω

i
A − Θ I

i ni
aFa

A = Θ I
i Ω

i
AJ Y J − Θ I

i γ
i
ajy

jFa
A =

Θ I
i Ω

i
AJ Y J − Θ I

i γ
i
ajF

j
J Y J Fa

A which verifies (20).

One considers hereafter Ω i
A(X , Y ) = Ω i

AI (X )Y I where Ω i
AI is free up to now. In order to remove this

indeterminacy, Ω i
AI is constructed by a linear balance between the stretching variations at each scale (Figure

2):

Ω i
AI = (1 − ζ)∂AFi

I + ζ∂AΘ i
I , (21)

where 0 < ζ ≤ 1 is a free parameter controlling the scaling effect. For example, and without any loss of
generality, it can be defined as ζ = ℓ/L where L and ℓ are the macroscopic and microscopic characteristic
scales, respectively. The parameter ζ is called the scaling factor hereafter.

The map Ω coincides with the total gradient of a linear bundle map M → TE
3, (X , Y ) 7→ (φ(X ), δF(X )ϑY )

if Θ i
I = Fi

I . On the other hand, if ζ = 1, the transformation coincides formally with the total gradient of
M → TE

3, (X , Y ) 7→ (φ(X ), Ψ (X )Y ) with Ψ i
I = Θ i

I (note that Ψ and Θ are not exactly the same tensor as
they act on different spaces: Mp and Vm(M ), respectively).

10



Corollary 3.2.1. If Ω i
A satisfies (21), then one obtains

Γ I
AJ = Θ I

i

(
(1 − ζ)∂AFi

I + ζ∂AΘ i
I

)
+ Θ I

i γ
i
ajF

j
J Fa

A, (22)

and if a Cartesian chart applied on TE
3 is used, γ i

aj = 0 gives

Γ I
AJ = Θ I

i

(
(1 − ζ)∂AFi

J + ζ∂AΘ i
J

)
. (23)

3.4. Induced torsion, curvature and non-metricity tensor

As the induced Ehresmann connection N is linear and the solder form defined on the tangent bundle is the
canonical form, the affine connection Γ and the connection N contain the same information. Hence, the follow-
ing results are presented with Γ instead of N . From these connections and metric, it is easy to obtain the driven
geometrical quantities such as curvature, torsion and non-metricity tensors.

First, the torsion of the connection is given by

TI
AB = ϑJ

BΓ I
AJ − ϑJ

AΓ I
BJ ,

= (1 − ζ)Θ I
i

(
δJ

B∂AFi
J − δJ

A∂BFi
J

)
+ ζΘ I

i

(
δJ

B∂AΘ i
J − δJ

A∂BΘ i
J

)
,

= (1 − ζ)Θ I
i δ

i
c

(
∂AFc

B − ∂BFc
A

)
+ ζΘ I

i

(
δJ

B∂AΘ i
J − δJ

A∂BΘ i
J

)
,

= ζΘ I
i

(
δJ

B∂AΘ i
J − δJ

A∂BΘ i
J

)
.

(24)

Here, we have used the fact that, because F = φ∗, then ∂AFc
B = ∂BFc

A. The torsion is proportional to the scaling
factor ζ. Second, the induced curvature of the connection is directly obtained from (8):

RI
JAB = �i

BJ∂AΘ I
i − �i

AJ∂BΘ I
i + Θ I

i Θ
K
j

(
�i

BJ�
j
AK − �i

AJ�
j
BK

)
. (25)

According to (21) the curvature contains both linear and quadratic dependency on the scaling factor. Finally,
the connection may be not compatible with the vertical metric. This is measured by the non-metricity tensor
Q = ∇ G for which components are QIJA = ∇A GIJ . The general formulae for these coefficients are given in
Appendix A.2. For Cartesian coordinates on the Euclidean space, gij = δij and the Christoffel symbols are
γ k

ij = 0, in such a case the formulae are simpler:

QIJA = ∂A GIJ − Γ K
AI GKJ − Γ K

AJ GIK ,

= (1 − ζ)
(
Θ i

J∂A

(
Θ i

I − Fi
I

)
+ Θ i

I∂A

(
Θ i

J − Fi
J

))
.

(26)

The metric is compatible with the connection, i.e. Q = 0 if ζ = 1 (no scaling effect) or if Θ = F (Euclidean
manifold). The condition for metricity of the connection can be written as (in Cartesian coordinates on E

3)

Θ i
J∂A

(
Θ i

I − Fi
I

)
= −Θ i

I∂A

(
Θ i

J − Fi
J

)
, ∀ I , J , A, (27)

meaning that, for any A, the tensor Θ i
I∂A

(
Θ i

J − Fi
J

)
∂I ⊗ ∂J must be skew symmetric.

3.5. Synthesis

The manifold (M , Γ ,G) provides a complete description of the current configuration of the microstructured
material. If (21) is assumed, it is governed by three independent quantities φ, 2 and ζ. The split structure of
the transformation and metrics, underlined at the end of Section 3.2, allows us to describe the current state as
the superposition of a microscopic and macroscopic processes. These latter processes are coupled as they are
driven by the same kinematical quantities φ and 2. The scalar ζ governs such coupling, this has motivated the
scaling factor name. The structure of the problems enables us to describe the current configuration on B by
defining a micro-manifold (B, Γ , G) with G ≡ Gv (see (19)) and a macro-manifold (B, L, Gh) with

LC
AB =

1

2
GhCD(

∂A G
h

BD + ∂B G
h

AD − ∂D G
h

AB

)
, (28)
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being the Christoffel symbols of the horizontal metric. This connection has no torsion and no curvature and is
metric compatible. The properties of (B, Γ , G) are richer.

Proposition 3.3. If Ω i
A satisfies Lemma 3.2, with Ω i

AJ satisfying (21), the manifold (B, Γ , G) has the following
properties.

•If Θ = F, then macro and micro elements behave in the same way. It yields that T = 0; R = 0 and ∇ G = 0.
The manifold behaves as an Euclidean space.
•If ζ = 1, then the scaling effect is no longer considered. In that case, the manifold behaves as a Weitzenböck
manifold with T 6= 0, R = 0 and ∇ G = 0.
•If ζ → 0, then the size of the microstructure tends to be negligible. Even if T → 0, one may observe R 6= 0
and ∇ G 6= 0. In particular, if ∇ G = 0 the manifold tends to behave as a RC manifold.
•If Θ 6= F and 0 < ζ < 1, then T 6= 0, R 6= 0 and ∇ G 6= 0. The manifold behaves as a Weyl manifold.

4. Alternative approaches

4.1. Non-scale material modelling

In the previous section, the material transformation has been enriched by introducing a map Θ specifying how
the vector belonging to V (M ) is transformed independently on φ. An alternative method consists of prescribing
an enrichment on the tangent map acting on Mp = TpB. In such a case, the transformation is specified by the
bundle map:

H : M → TE
3, (X , Y ) 7→ (φ(X ), Ψ (X , Y )), (29)

where Ψ (X , Y ) is supposed to be smooth, with a smooth inverse and satisfies the condition that Ψ (X , Y ) = 0 if
and only if Y = 0. Accordingly, the total gradient H∗ = DH of the bundle mapping is given by

H∗ = H
k
K ek ⊗ EK = ∂KH

k ek ⊗ EK ,

= ∂Aφa ∂a ⊗ dX A + ∂AΨ i ∂i ⊗ dX A + ∂IΨ
i ∂i ⊗ dY I .

(30)

Its inverse is given by H∗ = HK
k EK ⊗ ek with HK

k H
ℓ
K = δℓ

k and HK
k H

k
L = δK

L . It gives explicitly:

H
∗ = FA

a ∂A ⊗ dxa + ∂aΨ
I∂I ⊗ dxa + ∂iΨ

I∂I ⊗ dyi. (31)

With the same spirit as (16), an induced Ehresmann connection is obtained by

N(Y )V = H
∗
(

n
(
φ(X ), Ψ (X , Y )

)
φ∗V

)

with coefficients N I
A = ∂jΨ

Inj
aFa

A + ∂iΨ
I∂AΨ i.

(32)

The proof is given in Appendix A.2. The induced connection is not necessarily linear as soon as it is not the
case for Ψ (X , Y ).

Lemma 4.1. The associated Ehresmann curvature R always vanishes.

Proof. From Definition 2.4, for arbitrary vector fields V and U on B, one has

R(V , U) = N [V , U] − [NV , NU]

= H
∗
(
n (φ∗ [V , U])

)
−

[
H

∗(n (φ∗V )),H∗(n (φ∗U))
]

= H
∗
(
n ([φ∗V , φ∗U])

)
− H

∗ [n (φ∗V ) , n (φ∗U)] .

As the curvature of the connection n vanishes, n([φ∗V , φ∗U]) = [n(φ∗V ), n(φ∗U)]. This implies R(U , V ) = 0
yielding that the Ehresmann curvature R vanishes.1

To go further the pull-back operator has not to be defined by the total gradient H∗. This is exactly what has
been done in the scaled material model sec-3.
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Proposition 4.2. If the manifold M is endowed with the connection N, the total gradient H∗ becomes

H∗ = Fa
A

δ

δxa
⊗ dX A + ∂IΨ

i ∂

∂yi
⊗ δY I . (33)

Next, an induced metric is defined by G = H∗g, i.e. G(V , U) = g(H∗V ,H∗U) with V , U ∈ TM . With
respect to the connection N , this tensor splits like a Sasaki metric:

G(X , Y ) = Gh
AB(X )dX A ⊗ dX B + Gv

IJ (X , Y )δY I ⊗ δY J ,

with Gh
AB = Fa

AgabFb
B, Gv

IJ = ∂IΨ
igij∂JΨ

j.
(34)

Similarly, it can be seen that the vertical metric components are always given by Gv
IJ = G(∂I , ∂J ) = ∂IΨ

igij∂JΨ
j,

then the vertical metric is independent on the induced connection N .
Keeping in mind that our objective was to construct a linear Ehresmann connection with torsion and cur-

vature, the present bundle maps fails for the following reasons: (1) the vertical metric Gv(X , Y ) is generally
dependent on fibre coordinate; (2) the connection is not linear; (3) the curvature of the connection is always
zero.

However, in the linear situation for which Ψ i(X , Y ) = Ψ i
I (X )Y I , the non-scale material modelling may be

seen as a subset of the scaled material model. Indeed, the micro-manifold on B (specified in Section 3.5) shares
the same properties as the manifold induced by (29) if Θ = Ψ and/or ζ = 1. More precisely, one obtains the
following result.

Theorem 4.3. If (29) is linear, one obtains:

• N I
A(X , Y ) = Γ I

AJ (X )Y J ; with Γ C
AB = Ψ C

c ∂AΨ c
B if Cartesian coordinates are used on TE

3;
• the metric Gv induces a metric on B by G = ϑ∗ Gv, locally GAB = Ψ a

A gabΨ
b
B .

This elements construct a Weitzenböck manifold (B, Γ , G) with metric-compatible connection and torsion with
vanishing curvature. Obviously, if Ψ = F no defect appears meaning that the torsion and curvature of the
connection vanish.

Remark 4.4. It must be noted that the presented approach may be interestingly compared with continuum mod-
elling using (pseudo-)Finsler geometry. In a Finsler space the connection and its driven geometric quantities
(curvature, etc.) are generated by a metric tensor that is defined by a fundamental scalar function L(X , Y ). This
is defined at every point (except for Y = 0) and is homogeneous of degree one in Y [54, 57]. Such geometrical
construction affords a great generality for describing several phenomena in physics. Application of (pseudo-
)Finsler geometry in continuum mechanics and physics have been suggested earlier by [58], later by [59–61],
and recently by [56, 62–65]. Non-conservative mechanical systems may be explored through a non-linear con-
nection in the Riemannian and Finslerian framework [66]. Such non-linear connections are mainly used to
express the non-linear relation between fields having different natures [67].

4.2. Comparison with the non-holonomic principle

The forms of the metric and the connection presented in Theorem 4.3 looks qualitatively similar to those in
numerous other defect-theories [10, 12, 14, 20, 68]. Among them, one of the most powerful tools is the non-
holonomic principle [13, 21, 23]. In this context, the continuum is modelled by a differential manifold B

supporting a non-standard material transformation: a map from B into E
3, X 7→ x, which is not smooth

in general and may be multivalued (to simplify problem we assume (xa) to be a Cartesian coordinates sys-
tem). However, it is possible to map the points surrounding X defined by the tangent vector dX to dx via an
infinitesimal transformation thanks to tetrads ea

A such that

dxa = ea
AdX A. (35)

Their reciprocal tetrads are introduced by ea
AeA

b = δa
b and ea

AeB
a = δB

A .

Remark 4.5. The notion of the tetrads e is sometimes introduced by another name (distortion field [26], vielbein
[13]) or as a micro-deformation field in the microcontinuum theories [30, 69] or a Cartan’s moving frame in a
geometrical model [20].
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It is therefore usual to define metric components, as extension of the usual definitions

ĜAB = g(ea
Aea, eb

Beb) = ea
Agabeb

B, (36)

where g is the metric tensor of the Euclidean space E
3.

On the other hand, one can differentiate the vector base, and implicitly define an affine connection
coefficients

∇̂BeC =
∂eC

∂X B
=

∂ec
C

∂X B
ec =

(
eA

c

∂ec
C

∂X B

)
eA := Γ̂ A

BCeA. (37)

The connection may have both torsion and curvature. Furthermore, the connection is metric-compatible.
By construction, several cases may occur, it permits us to highlight the role of torsion and curvature tensors

on the classification of continuum transformation.

Holonomic transformation. If the mapping X 7→ x is smooth and single-valued, the tetrads are usually the
deformation gradient of the map with ea

A = ∂xa/∂X A. Then it is straightforward to check that the torsion and
curvature are equal to zero during an holonomic transformation. The same result is obtained if F = Ψ in
Theorem 4.3, or if F = Θ in Proposition 3.3.

Non-holonomic transformation and torsion. If e are single-valued but do not correspond to a deformation gra-
dient, the induced manifold is a Weitzenböck manifold as in Theorem 4.3. In that sense, Ψ plays the same
roles as the tetrads e. However, the presented approach differs on a crucial point: in the present model, the
material manifold is a fibre bundle and the material transformation is a fibre morphism. Such a map is smooth
and single-valued and is sufficient to define the induced metric and connection thanks to the concept of an
Ehresmann connection. This point allows wide mathematical analysis and numerical simulation may be more
comfortably handled.

Non-holonomic transformation and curvature. To go further, let us consider the multivaluedness of the tetrads.
As a consequence, the connection has both torsion and curvature. This connection is metric compatible. How-
ever, the connection and metric are, generally, also multivalued. This could cause difficulties in performing
consistent length measuring and parallel transport. In contrast, to achieve this goal the scaled material model in
Section 3 is still driven by smooth fields (without additional degrees of freedom if (21) is used). Furthermore, a
large class of manifolds have been observed, see Proposition 3.3.

4.3. Spin connection

As has been underlined previously, connection having both torsion and curvature cannot be obtained with single-
valued tetrads. Another method consists of introducing an additional gauge field to give a connection [70] (see
the discussion in [22]):

Γ̃ A
BC = eA

c ∂Bec
C + eA

c Γ
c
Bbeb

C,

where the first term reduces to the Weitzenböck connection with non-zero torsion but zero curvature. The
second term Γ A

BC = eA
c Γ

c
Bbeb

C has the role of a spin connection, with possibly non-zero torsion and/or non-zero
curvature. Such a connection is metric compatible.

The similarity with (23) has to be underlined even if the overall approach is different. In Γ A
BC = ζΘA

a ∂AΘa
C +

(1−ζ)ΘA
a ∂BFa

C, the first term is the Weitzenböck connection, whereas the other ΘA
a ∂BFa

C plays the role of a spin
connection.

4.4. Comparison with Kröner–Lee decomposition

Lee and coworkers [68, 71], starting with the ideas from [14, 43] and the multiplicative decomposition of
the deformation gradient F = FeFp (which was initially proposed by [10] and [17]), obtained some relations
between torsion of the crystal connection and the elastic and plastic deformation gradients. The material con-
nection here is metric compatible, with torsion but vanishing curvature. The work of [20] was inspired by this
approach and introduced the slightly different method in which they identified the plastic deformation gradients
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Figure 4. Left: Representation of the body B. Cells are representations of TB. A closed material loop σ (t) is specified. This loop σ

is used throughout Section 5. Right: A defect-free current state in the ambient space E
2.

as Cartan’s moving frames to construct the appropriate material manifolds. Nevertheless, the requirement that
the material manifold with an evolving connection (compatible with the metric) such that the frame field is
everywhere parallel is not trivial.

The present model seems to be an alternative to the multiplicative decomposition F = FeFp generally used
for elastoplastic transformation of a material. It is clear that the total gradient is Θ which controls stretch of
microelements from the initial to final state. Elastic part is then the derivative of φ and, hence, Fp ∼ F−1Θ .
This last expression obscures a crucial point: in the present model the intermediate configuration is not present.
This concept is replaced by the consideration of vertical and horizontal tangent spaces that are the support for
map linearisation on a vector field related to distinct quantities: H(M ) is related to the macroscopic vector
field whereas V (M ) is related to the vector field associated with the microstructure (orientation of grains in a
lattice, for example). Such interpretation avoids the standard intermediate configuration. More crucially, it is an
alternative to the homogenisation process introduced recently [19]. In this latter work, as in the present paper,
a scaling effect is introduced in order to replace the intermediate configuration. The point of view presented in
Section 3 suffices to introduce several types of microstructural processes and defects in a unified geometrical
formalism and with a reduced number of kinematical variables (in practice, the class of defects is wider than in
Reina et al.’s approach).

5. Applications

In order to present the applications of the scaled material model, illustrations are restricted to in-plane motion
in the Euclidean ambient space endowed with g = δ and the trivial Levi-Civita connection n = 0. Hence, the
body B is labelled by two Cartesian coordinates (X 1, X 2) with respect to an affine frame (O, e1, e2) on the plane,
see Figure 4(left). A current state related to a defect-free transformation is represented in the ambient space E

2

(Figure 4, right). As no defect is present, the parallel transport of a frame (red arrows) along a path φ(σ (t)) does
not change its ambient properties. However, material components of a parallel transported vector change along
the path. On the other hand, the dragging of material vectors by the transformation is depicted by the change of
size and form of the cells. This shape reveals the material metrics.

In Figure 5 another point of view is proposed where the transformation is presented in B by a pull-back
operation. Here, the non-uniformity of the parallel transported frames is the manifestation of the material
transformation.

For a more general transformation, for which the body contains defects, Υ v is defined by (13) with condition
(21). The prescribed maps φ, F = φ∗ and Θ are smooth, invertible and orientation preserving. Hence, for a
given ζ, these ingredients are used to define G, Γ , T, R and Q (see (19), (23), (24), (25) and (26), respectively).
These Lagrangian tensors depend on the reference coordinates and are associated with fiber bundles on the
body B. In order to illustrate various types of defect, the parallel and rolling transports are complementary
tools revealing the geometrical properties of the manifold (Section 2.3). However, their manifestations differ
according to the chosen representation as was already observed by comparing Figures 4 and 5. Here we briefly
present how such transports may be computed and illustrated.
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Figure 5. Left: The same defect-free current state as in Figure 4 but represented in B. Right: Developing curve σ̃ of σ on TpB.

Let us first consider a point p ∈ B and a path σ (t) = (X A(t)) on B parameterised by t ∈ [0, 1] with σ (0) = p.
The parameterisation σ (t) generates a tangent vector field σ̇ (t) = Ẋ A(t)∂/∂X A, with dX A = Ẋ A(t) dt defined for
numerical purpose.

1. The parallel transport of a vector Y IeI ∈ TpB along σ is obtained by solving (4):

Y I (t + dt) = Y I (t) − Γ I
AJ (σ (t))Y J dX A with Y I (0) = Y I . (38)

A vector Y I (t) belongs to Tσ (t)B. For illustration on E
2, F(σ (t))Y (t) is presented at φ(σ (t)).

2. The rolling transport of the point p + Ỹ IeI ∈ Mp along σ is the point σ (t) + Y I (t)eI ∈ Mσ (t) obtained by
determining Y (t) = (Y I (t)) solving (5):

Y I (t + dt) = Y I (t) − Γ I
AJ (σ (t))Y J dX A − δI

AdX A with Y I (0) = Ỹ I . (39)

Such a vector gives the coordinates of a point in the frame (σ (t), e1, . . . , en) of Tσ (t)B. Remember that Mp

is TpB viewed as an abstract affine space tangent to B at p. In particular, Mp ∩ B = {p}.

This last transport is used to define two reciprocal transports of curves.

1. For a path σ on B, the developing curve is the curve σ̃ on TpB such that the rolling transport of σ̃ (t) =
p + Ỹ I (t)eI in Tσ (t)B is the origin of this tangent space, namely σ (t) (a pictorial representation is given
by Figure (6)). This curve is the curve drawn by the contact point of tangency of an affine space that rolls
without slipping along σ , staying tangent to B. It can be computed by searching the successive initial
conditions Ỹ (t) such that the coordinates of the rolling transport on Tσ (t)B are null. The procedure is as
follows.
Let A(t) be the matrix solving dA = −OA along σ with initial condition A(0) = Id and B(t) be the
solution of dB = −OB − J along σ with initial condition B(0) = 0. Then the solution of (5) along σ with
initial condition Y (0) is Y (t) = A(t)Y (0) + B(t). Now the developing curve is σ (0) + Ỹ I (t)eI with Ỹ (t)
satisfying 0 = A(t)Ỹ (t) + B(t), i.e. Ỹ (t) = −A−1(t)B(t). Technically, one solves the equations on A and B
by a numerical Euler scheme:

AI
K(t + dt) = AI

K(t) − Γ I
AJ (σ (t))AJ

K(t)dX A(t) with A(0) = Id, (40)

BI (t + dt) = BI (t) − Γ I
AJ (σ (t))BJ (t)dX A(t) − δI

AdX A(t) with B(0) = 0. (41)

Then Ỹ (t) = −A−1(t)B(t) is plotted on TpB. The developing curve σ̃ of σ is presented on TpB in Figure
5(right). On TpB, all the frames parallel-transported along σ are equal (this holds true even for defective
transformations).

2. The driven curve is the curve σ on B whose developing curve is a given curve σ̃ in TpB. The driven
curve is unique if the initial point of σ̃ is p. Indeed, comparison of two deformations could be done by
fixing a curve σ̃ in TpB and comparing the two driven curves on B.
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Figure 6. A pictorial representation of the developing curve.

This curve is obtained by solving a non-linear system of ODE. Let Γ I
AJ be the coefficients of the connection

and σ̃ (t) = p + Ỹ I (t)eI be a path in TpB satisfying Ỹ I (0) = 0. The driven curve σ (t) = (X A(t)) and the
matrix of the parallel transport A(t) along σ have to be computed simultaneously:

X A(t + dt) − X A(t) = δA
I AI

J (t)
(
Ỹ J (t + dt) − Ỹ J (t)

)
(42)

AI
J (t + dt) − AI

J (t) = −Γ I
AK(σ (t))AK

J (t)(X A(t + dt) − X A(t)) (43)

where Γ K
AJ (σ (t)) is nothing else than Γ K

AJ (X A(t)). Initial guesses are X A(0) = 0 and A(0) = Id. The driven
curve can be plotted either on B or on φ(B).

Let us use D : (p, σ (t)) → (p, σ̃ (t)) to denote the application defining a developing curve. If σ̃ is the
developing curve of σ on B, then σ is the driven curve of σ̃ . In other words, the application (p, σ̃ (t)) → (p, σ (t))
defining a driven curve is D−1. Hence, the presence of a defect may be characterised on TpB (by fixing a loop
σ and analysing the properties of σ̃ ) or in B (by fixing a σ̃ and checking the properties of the corresponding
driven curve). These two methods are equivalent.

For a defect-free transformation, the image of the transformation given by the driven curve (Figure 5(right))
and by the embedding in the Euclidean space (Figure 4(right)) are the same up to a rigid motion. It is no longer
true for a defective transformation as we show in the following examples.

5.1. Pure non-metric transformation

Let us consider the map φ and its derivative F as follows:

φ X 1 → x1 = X 1 + h(X 2)
X 2 → x2 = X 2 F =

(
1 f (X 2)
0 1

)
, (44)

where h is a C 2-function B → R and, of course, f (X 2) = ∂2h. Suppose that Θ is identity, and then G = δ. The
only non-zero connection coefficient is Γ 1

22 = (1 − ζ) ∂2f and, consequently, T = 0. Direct computation shows
that R = 0. However, the connection is not metric-compatible as:

∇2 G12 = ∇2 G21 = −(1 − ζ)
∂ f

∂X 2
(45)
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Figure 7. Numerical simulations of the transformation (44). The current state has no torsion and no curvature but the metric is not

compatible with the induced connection. Top representation in E
3 (right) and in B (left). The frame at p is parallel-transported along

σ . The bottom developing curve of σ on TpB obtained for various ζ.

(the other components of Q are zero).
This situation is illustrated for various ζ in Figure 7 with

f (X A) =
π

4
sin

(
X A

8L
π

)
, (46)

of course X A = X 2. Each cell is related to a microelement. As the relative placement of a microcell is controlled
by F the superposition of macro- and micro-stretch is graphically interpretable. The identity G = δ supported
by the local metric is clearly highlighted as the shape and size of cells are unchanged. This lattice representation
is not sensitive to ζ. A rigid translation of each microscopic layer is observed in the current configuration. The
incompatibility of the gliding of macrocells with the metric of microelements is clearly quantified by ∇2 G12 6= 0.
No voids or overlaps appear: this phenomenon is not intrinsically measured by Q.

The parallel transport along σ of a vector frame initially placed at p is obtained by solving (38). It is observed
that the vectors change along the loop even if no torsion and no curvature are present in the induced mani-
fold. This phenomena is a direct repercussion of the non-standard connection which takes into consideration
the transformation at both scales. After transportation along the closed loop the final vector coincides with the
initial vector as no curvature is present. The parallel transport is highly sensitive to ζ. If ζ = 0, the effect of the
micro-stretch is absent on the parallel transport. If ζ = 1, the connection is compatible with the micro-metric,
the parallel transport does not change locally the frame as Θ = Id, however vectors are convected by F if the
transformation is presented in the ambient space.

The metric-incompatibility of the connection is also illustrated by the developing curve. If ζ = 0, the
developing curve coincides with φ(σ ) up to a rigid motion. For ζ = 1, the connection is compatible with the
metric and the developing curves coincides with σ as G = δ. In all the cases the developing curve are closed.

From an energetic point of view, it is clear that the reference and current state share the same internal energy.
This is quantified by the preservation of metric, torsion and curvature between the two states. One may consider
that in such infinite domain, the current state is obtained by a re-labeling of reference state. However, from
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Figure 8. Representation in the ambient space of the current configuration for the transformations (47) (left) and (52) (right). There

is no curvature but the non-zero components of the torsion are T1
12 = −T1

21, the last metric is not compatible with the induced

connection.

a mechanical point of view such re-organisation of material points involves some energy to cut inter-atomic
interaction, even if the total energy involved for both cutting and re-connecting all atoms is null. Hence, from a
physical point of view, this process is associated to a shift of energetic interaction but is also time-consuming.
The non-metricity tensor Q is a geometrical candidate for measuring such non-elastoplastic processes.

5.2. Torsion with no curvature

Let now consider a transformation given by

F =

(
1 0
0 1

)
Θ =

(
1 θ(X 1)
0 1

)
. (47)

In such case, the metric tensor is

G =

(
1 θ

θ 1 + θ2

)
. (48)

The non-zero connection coefficient is now Γ 1
12 = ζ ∂1θ and the torsion is no longer null. More precisely, the

non-zero components of the torsion are

T1
12 = −T1

21 = ζ
∂θ

∂X 1
. (49)

The curvature is zero, but the non-metricity tensor indicates

∇1 G22 = 2(1 − ζ)θ
∂ θ

∂X 1
∇1 G12 = ∇1 G21 = (1 − ζ)

∂ θ

∂X 1
. (50)

An illustration is given in Figure 8(left) with θ taken as follows:

θ(X A) =
π

4
cos

(
X A

4L
π

)
. (51)

The presence of edge dislocation with defects along X 1 is clearly observed.
Other types of dislocations may be obtained, with still F = I but

Θ =

(
1 + θ(X 2) 0

0 1

)
. (52)
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Figure 9. Developing curve σ̃ obtained for various ζ and for the transformations (47) (left) and (52) (right).

Here

G =

(
(1 + θ)2 0

0 1

)
(53)

and the only non-null connection coefficient is Γ 1
21 = ζ (∂2θ)/(1 + θ) leading to a non-null torsion,

T1
21 = −T1

12 = ζ
1

1 + θ

∂θ

∂X 2

what looks qualitatively similar to (49). The non-metricity has a unique non-null component:

∇2 G11 = 2(1 − ζ)(1 + θ)
∂ θ

∂X 2
.

Last the curvature is still zero. Illustration is given in Figure 8(right) with θ still specified by (51) (with X A =
X 2). The pattern is clearly different to Figure 8(left). These two simulations show that several processes may
be involved in order to create material with no curvature but a Burger vector along X 1. Even if the value of the
torsion T1

12 is the same at a fixed point, for the two processes, the non-metricity tensor Q differs and provides
information on the process involved.

Because φ is smooth and σ is close, φ(σ ) is close whatever the transformation (47) or (52). If a vector is
parallel-transported along this closed loop (arrows in Figure 8) the final vector recovers its initial properties as
it returns to the initial point (as the curvature is absent). Such procedure is not suitable for highlighting torsion
of the manifold and, hence, revealing a distribution of dislocation in the defected material.

In Figure 9, the developing curve σ̃ of σ on TpB is given. In that case, the curve σ̃ is no longer closed
if T 6= 0 (ζ 6= 0) and presents a gap along the X 1 direction. If computation is performed around p along an
infinitesimal material loop of size δx1 × δx2 this gap coincides with T1

12δx1δx2. For such infinitesimal loop, it
is a quantifier of dislocation density. Here the computation is performed on a finite domain and this gap on
σ̃ does not coincide with T1

121x11x2 (where 1xi are the size of the loop σ ) as the torsion is not uniform in
these simulations. It must be highlighted that even for such a finite loop, the directions σ̇ at p are unchanged.
The developing curve preserves this signature if curvature is null as is commonly observed for infinitesimal
domains. It can be seen as a characterisation of the absence of curvature in a finite domain.

It must be emphasised that the developing curve σ̃ of a material curve σ does not correspond to the heuristic
process that follows, along the microstructure, the directions prescribed by a macroscopic loop. This principle
is commonly presented as a methodology to define the Burger’s vector over an infinitesimal material loop. It can
be obtained by searching the path σ (t) (hereafter called the Burger’s circuit) in B associated with coordinates
X A(t). The unknown X A(t) is obtained by solving iteratively the process

(p, σ (t))
D
−→ (p, ˜̃σ (t))

D−1

−−→ (p, σ (t)), (54)
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Figure 10. Burger’s circuit σ obtained for various ζ and for the transformations (47) (left) and (52) (right) represented in the ambient

space.

where D is the application defining the developing curve with connection of the base manifold (B, Gh, L). As
D 6= D, the Burger’s circuit σ (t) is not σ (t). In practice, the following Euler scheme is used to solve (54):

AI
J (t + dt) = AI

J (t) − Γ I
AK(σ (t))AK

J (t)dX A(t) with A(0) = Id, (55)

d ˜̃Y (t) = A(t)−1dX (t) with dỸ (0) = dX (0), (56)

AI
J (t + dt) = AI

J (t) − LI
AK(σ (t))AK

J (t)dX A(t) with A(0) = Id, (57)

dX (t) = A(t)d ˜̃Y (t) with dX (0) = dX (0), (58)

X (t + dt) = X (t) + dX (t) with X (0) = X (0), (59)

Illustration is given in Figure 10 for the two transformations. If ζ = 1, the result is equivalent to the standard
illustration of a Burger’s circuit on a RC manifold (with ζ = 0 and for zero curvature σ (t) = σ (t)). The present
scaled material model enables this effect to be weighted if ζ 6= 1.

In Figure 10, the orientation σ̇ is not preserved after the finite loop: 1σ̇ = σ̇ (1) − σ̇ (0) 6= 0 in contrast
to what was observed on the developing curve. In other words, on a finite Burger’s circuit 1σ̇ = 0 is not a
signature of the absence of curvature. It must also be observed that the gap between the initial and final point
of the path 1σ = σ (1) − σ (0) is different to 1σ̃ = σ̃ (1) − σ̃ (0). The last numerical simulations show that
1σ changes if traveling along σ is performed clockwise or counterclockwise. This confirms that the Burger’s
circuit is not a topologically invariant measure of defect density. In contrast, 1σ̃ is unchanged and looks more
robust for a quantification of the defect density.

5.3. Curvature with no torsion

Let us consider a kinematic transformation specified by the following tensors:

F =

(
1 f (X 2)
0 1

)
Θ =

(
1 + θ(X 1) 0

0 1

)
. (60)

Note that both of them may be defined as a total derivative of a B → E
3 map. The metric is of the form (53).

The non-null connection coefficients are Γ 1
11 = ζ(∂1θ)/(1 + θ) and Γ 1

22 = (1 −ζ)(∂2f )/(1 + θ) then the torsion
is null. The non-zero components of the curvature are

R1
212 = −R1

221 = −

(
1 − ζ

1 + θ

)2
∂f

∂X 2

∂θ

∂X 1
.

The non-metricity tensor has the following non-null components:

∇1 G11 = 2(1 − ζ)(1 + θ)
∂ θ

∂X 1
, ∇2 G12 = ∇2 G21 = −(1 − ζ)(1 + θ)

∂ f

∂X 2
.
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Figure 11. Representation in the ambient space of the transformation (60) (left) and (61) (right). There is no torsion but the non-zero

components of the curvature are R1
212 = −R1

221 and the metric is not compatible with the induced connection.

Figure 12. Developing curve σ̃ obtained for various ζ and for the transformations (60) (left) and (61) (right).

Numerical simulation is given in Figure 11(left) with f (X 2) and θ(X 1) specified by (46) and (51), respectively.
As for the example related to torsion, some other process may be involved in order to obtain the same type

of curvature. Indeed, consider the transformation

F =

(
1 + f (X 1) 0

0 1

)
Θ =

(
1 θ(X 2)
0 1

)
. (61)

for which the metric is of the same form as (48). The non-null connection coefficients are Γ 1
11 = (1 − ζ)∂1f

and Γ 1
22 = ζ∂2θ then the torsion is null. The non-zero components of the curvature are

R1
212 = −R1

221 = (1 − ζ)ζ
∂f

∂X 1

∂θ

∂X 2
.

The non-metricity has the following non-null components:

∇1 G11 = −2(1 − ζ)
∂ f

∂X 1
, ∇1 G12 = ∇1 G21 = −(1 − ζ) θ

∂ f

∂X 1

∇2 G22 = 2(1 − ζ)θ
∂ θ

∂X 2
, ∇2 G12 = ∇2 G21 = (1 − ζ)

∂ θ

∂X 2
.

The corresponding illustration (Figure 11, right) exhibits a highly different pattern to Figure 11(left) even if the
same components of the curvature are involved. For both simulations, a frame initially placed at p is parallel-
transported along σ by solving (38). For both transformations, the initial (vertical) vector Y (0) and last vector
Y (1) differ if the curvature is not zero. Indeed, for an infinitesimal loop of side δx1 × δx2 the horizontal gap of
1Y = Y (0) − Y (1) is measured by R1

212Y 2δx1δx2. For an infinitesimal domain, it is a signature of the curvature
and then of the disclination densities. At a macroscopic point of view, it is still measurable by such a gap.

The developing curve σ̃ is presented for the two transformations in Figure 12. Here the computation is per-
formed for finite loop and σ̃ is no longer close as if the manifold presents non-null torsion. For an infinitesimal
loop, the computation of a such gap 1σ̃ = σ̃ (1) − σ̃ (0) shows that 1σ̃ = O(δx3) in the presence of curvature.

22



Figure 13. Burger’s circuit σ obtained for various ζ and for the transformations (60) (left) and (61) (right) represented in the ambient

space.

In other words, for an infinitesimal loop 1Y is preponderant to 1σ̃ . However, for a finite loop this hierarchy
is broken as both 1Y and 1σ̃ are non-negligible. As 1σ̃ is of the same order of magnitude in the presence of
curvature or torsion (Figure 9), it is impossible to confirm that no torsion is present in such a finite domain. In
other words, 1σ̃ observation on a finite domain is not able to discriminate the density of dislocations if some
disclinations are present.

The Burger’s circuits σ obtained by (54) are presented in Figure 13. As in the previous example (i) the
gap of Burger’s circuit differs quantitatively from the gap observed for the developing curve (ii) the vectors
σ̇ (1) and σ̇ (0) are distinct. Hence, this Burger’s circuit associated with a finite loop is not able to discriminate
whether defects are associated to torsion only, curvature only or both of them together. From this point of view,
the analysis of the developing curve has the advantage of discriminating between the presence and absence of
curvature by considering 1 ˙̃σ .

6. Conclusion

In order to model a material transformation that takes into consideration the change and eventually creations of
defects, a geometrical approach has been posited. In this context, such transformation is considered as a fibre
morphism, or so-called bundle map, from the appropriate fibre bundle of the material manifold to the Euclidean
space. The method is based on the concepts of Ehresmann connection and solder form. The induced connection
N and metric G are first described, then curvature, torsion and non-metricity of the connection may be obtained.
The more straightforward method consists of studying M → TE

3. It has been proven that this approach is not
able to introduce curvature, even in the case of non-linear maps.

The main idea to introduce rich enough transformations consists of considering that the bundle supporting
the transformation is VM , which is the vertical tangent bundle of M . In this article, the transformations Υ v :
VM → VTE

3 are restricted to the case of linear micro-structure, meaning that M is isomorphic to TB.
This assertion does not constrain entirely TM and is a geometrical modelling of the misfit between the

microscopic and macroscopic states of the material, it is a scaled material model. Technically, this misfit is taken
into account by the connections that illustrate, through its torsion, curvature and non-metricity, the presence of
various material defects. Here the material is described by a body B having a microstructure M . In such a way,
each geometrical quantity may be measured or computed on the same material locus: the body B. In all cases,
the current state is obtained by a pull-back operation that prescribed an induced geometry on B.

As the scaled material model embraces various underlying points of view (microscopic, macroscopic and
macroscopic interpretation of a microscopic phenomena) the standard parallel transport is not sufficient. For
this purpose, various interpretations, including the rolling without slipping transport and the developing curve,
have been exhibited and illustrated in order to link the mathematical tools to the mechanical processes.

Such a scaled material model is parameterised by single-valued and smooth fields. It is the case for the
induced (linear) connection Γ and metric G (then for torsion or curvature) but also for the point and vector maps
φ and Θ . This feature distinguishes the present model from other known theories referring to the non-holonomic
principle. It allows mathematical analysis and numerical simulation taking into account both scales.

The non-metricity of the connection can be considered as the price to be paid by the scaled material model to
overcome multivalued fields. However, through this modelling, the non-metricity reveals the process involved
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to obtain a defective medium. Analysing more deeply this mechanical interpretation is among the possible
objectives of future work.

The restriction of the bundle map Υ to any element of VM is imposed by the transformation Υ v. Accord-
ingly, specifying the completed bundle map Υ is somehow free. In the present work, a family of bundle maps Υ
is considered by introducing just a unique scalar ζ. This choice is sufficient to illustrate the presence of various
defect types and avoids adding new unknown fields in the theory. In the present example, ζ gives a weight of
macro- and micro-effects in a linear way, but other formulations (leading, for instance, to non-linear connec-
tion) are possible. It must be noted that the choice of such completion may reveal some interesting physical
interpretations that are beyond the scope of this paper (in particular, for multi-physical problems).

Numerical simulations are presented and show how bridges are built between microscopic defects and
macroscopic observations. It is the occasion to underline that for a given density of disclinations, the char-
acterisation of the possible presence of dislocations is not attainable by macroscopic observations (at least with
the ζ-family of bundle mapsΥ chosen in the present case).

The present model is currently purely kinematic. However, this first step was indispensable to consider full
mechanical problems afterwards. (1) Staying on this kinematic approach, other possible extensions Υ (than
the ζ-family) may be explored in order to take into account specific microstructured materials such as nano-
materials. (2) The study of the solder form turns out to be another interesting subject. (3) Another possible step
consists of considering an energetic counterpart in order to define the equilibrium laws of such a model. (4)
Note that the present scaled material model is kinematically non-linear, and a linearisation may be the occasion
to furnish some meaningful explicit solutions. (5) Another possible issue consists of introducing time into the
Galilean or Lorentzian framework.
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Notes

1. In this proof, we have used the fact that M and N are arbitrary differential manifolds, for any vector u, v on M and differential
map h: M → N, then h∗[u, v] = [h∗u, h∗v]; see Chapter 5.3.2 in [51].
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Appendix

A.1. RC manifold

This appendix is a review of basic contents concerning RC geometry. All details can be found in the standard
textbooks [22, 51, 52, 72].

On a manifold B, one considers a metric tensor g, its tangent space TB and its space X(B) of C ∞ vector
fields.

Definition A.1 (Covariant derivative). Covariant derivative on B is an operation

∇ : X(B) × X(B) → X(B)
(u, v) → ∇uv
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which satisfies the following conditions,

∇u(v + w) = ∇uv + ∇uw,

∇u+vw = ∇uz + ∇vw,

∇(fu)v = f ∇uv,

∇u(fv) = u[ f ]v + f ∇uv,
(62)

where f ∈ C ∞(B) and v[ f ] is the directional derivative of f along the vector field v. Employing (xa) as a
coordinate system on B, one has v[ f ] = va∂af and

∇∂a∂b = Γ c
ab∂c, (63)

where Γ c
ab are the Christoffel symbols and (∂a) = (∂/∂xa) is the natural base of the tangent space corresponding

to the coordinate chart (xa). The Christoffel symbols specify how the basis vectors change from point to point.

As the covariant derivative must not depend on the chosen coordinate, under a coordinate transformation
xa 7→ x̃i = x̃i(xa) its Christoffel symbols must transform as

Γ̃ k
ij =

∂xb

∂ x̃i

∂xc

∂ x̃j

∂ x̃k

∂xa
Γ a

bc +
∂2xa

∂ x̃i∂ x̃j

∂ x̃k

∂xa
. (64)

Verifying that an object is a covariant derivative can be done by confirming that its Christoffel symbols are
smooth functions satisfying the transformation rule (64). This implies that from a given covariant derivative ∇,
one obtains a linear connection N on TB as defined in (2.2) where N i

a(x, y) = Γ i
aj(x)yj. The usual formulations

for torsion and curvature are as follows.

Definition A.2 (Torsion). The torsion tensor of the covariant derivative is a map T : TB × TB → TB by
T(u, v) = ∇uv − ∇vu − [u, v]. Writing, T = Ta

bcdxb ⊗ dxc ⊗ ∂a,

Ta
bc = Γ a

bc − Γ a
cb, (65)

where [u, v] is the Lie bracket of vector fields given by (ua∂avb − va∂aub)eb.

Definition A.3 (Curvature). The Riemannian curvature tensor is a map R : TB × TB × TB → TB defined
by R(u, v)w = ∇u∇vw − ∇v∇uw − ∇[u,v]w. Writing R = Ra

bcd∂a = R(∂c, ∂d)∂b,

Ra
bcd = ∂cΓ

a
db − ∂dΓ

a
cb + Γ a

ceΓ
e
db − Γ a

deΓ
e
cb, then Ra

bcd = −Ra
bdc. (66)

Remark A.4. Curvature and torsion tensors are characteristics of the manifold, the existence of torsion and
curvature tensors does not require the existence of a metric on the manifold B.

Consider now a metrisable manifold B endowed with covariant derivative ∇ and a metric g, the covariant
derivative ∇ is said to be metric compatible if and only if ∇g = 0 where

(
∇vg

)
(u, w) = v

[
g(u, w)

]
− g(∇vu, w) − g(u, ∇vw). (67)

In a coordinate system, this constraint imposes

(
∇cg

)
ab

= ∂cgab − Γ d
cagdb − Γ d

cbgda = 0. (68)

In this case, (B, g, ∇) is a RC manifold.
Let v be a tangent vector to an arbitrary curve. Let us consider two vectors u and w obtained by parallel

transport along the curve, then ∇vu = 0 and ∇vw = 0. In a RC manifold the inner product between them
remains constant along the curve: ∇vg(u, w) = 0. More generally, for any vector set (u, v, w):

∇v

(
g(u, w)

)
= g(∇vu, w) + g(u, ∇vw).
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A.2. Technical proofs

Proof of formula (16). First, v := φ∗V = (Fa
AV A)∂a a tangent vector to B at the point x = φ(X ). Second,

applying the ambient Ehresmann connection n, there is a unique horizontal lift v↑ = n(y)v = va∂a − ni
ava∂i as a

tangent vector to TB at (x = φ(X ), y = δF(X )ϑY ). Finally, the natural lift of V is obtained by solving Equation
(16), straightforward computations, using �J

a = 0, give

V↑ = ΩB
a v↑a

∂B + ΩB
i v↑i

∂B + ΩJ
a v↑a

∂J + ΩJ
i v↑i

∂J

= ΩB
a Fa

AV A∂B + ΩJ
a Fa

AV A∂J − ΩJ
i ni

aFa
AV A∂J

= FB
a Fa

AV A∂B + ΩJ
a Fa

AV A∂J − ΩJ
i ni

aFa
AV A∂J

= V A∂A −
(
ΩJ

i ni
aFa

A − ΩJ
a Fa

A

)
V A∂J .

From this we can claim that the connection coefficients are

N J
A = ΩJ

i ni
aFa

A − ΩJ
a Fa

A.

Finally, because Ω i
ZΩZ

a = Ω i
BΩB

a + Ω i
JΩ

J
a = 0, one has Ω i

J N J
A = −Ω i

JΩ
J
a Fa

A + Ω i
JΩ

J
j nj

aFa
A = Ω i

BΩB
a Fa

A +

ni
aFa

A = Ω i
A + ni

aFa
A. Once again, writing Ωz

JΩ
I
z = Ωa

J Ω I
a + Ω i

JΩ
I
i = Ω i

JΩ
I
i = δI

J , the connection can be
rewritten in the form

N I
A = Ω I

i Ω
i
J N J

A = Ω I
i Ω

i
A + Ω I

i ni
aFa

A.

Using the notation �I
i (X , Y ) = 2I

i (X ) introduced in Section 3, formula (16) is verified.

Proof of formula (26). Let us compute the general form of the non-metricity tensor by computing separately
each contribution of ∂A GIJ − Γ K

AI GKJ − Γ K
AJ GIK :

∂A GIJ = ∂A

(
Θ i

IgijΘ
j
J

)

=
(
∂AΘ i

I

)
gijΘ

j
J + Θ i

Igij

(
∂AΘ

j
J

)
+ Θ i

I∂AgijΘ
j
J .

Keep in mind that, on the Euclidean space, the connection is metric compatible:

∂Agij = δa
i δ

b
j ∂Agab = δa

i δ
b
j ∂cgabFc

A = δa
i δ

b
j

(
γ d

cagdb + γ d
cbgda

)
Fc

A

=
(
γ k

aigkj + γ k
ajgki

)
Fa

A.

Hence, one obtains

∂A GIJ = ∂A

(
Θ i

IgijΘ
j
J

)

=
(
∂AΘ i

I

)
gijΘ

j
J + Θ i

Igij

(
∂AΘ

j
J

)
+ Θ i

I

(
γ k

aigkj + γ k
ajgki

)
Fa

AΘ
j
J ,

Γ K
AI GKJ = ΘK

i ((1 − ζ)∂AFi
I + ζ∂AΘ i

I )Θ
k
KgkjΘ

j
J

+ ΘK
k γ k

aiF
i
IF

a
A(Θ l

KgljΘ
j
J ) ΘK

i Θk
K = δk

i

= δk
i ((1 − ζ)∂AFi

I + ζ∂AΘ i
I )gkjΘ

j
J + γ k

aiF
i
IF

a
AgkjΘ

j
J

= ((1 − ζ)∂AFi
I + ζ∂AΘ i

I )gijΘ
j
J + γ k

aiF
i
IF

a
AgkjΘ

j
J ,

Γ K
AJ GIK = Γ K

AJ GKI GIK = GKI

= ((1 − ζ)∂AFi
J + ζ∂AΘ i

J )gijΘ
j
I + γ k

aiF
i
J Fa

AgkjΘ
j
I i ↔ j

= Θ i
Igij((1 − ζ)∂AFj

J + ζ∂AΘ
j
J ) + γ k

ajF
j
J Fa

AgkiΘ
i
I ,
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QIJA =
(
∂AΘ i

I

)
gijΘ

j
J + Θ i

Igij

(
∂AΘ

j
J

)
− ((1 − ζ)∂AFi

I + ζ∂AΘ i
I )gijΘ

j
J−

Θ i
Igij((1 − ζ)∂AFj

J + ζ∂AΘ
j
J )

+
(
Θ i

I

(
γ k

aigkj + γ k
ajgki

)
Fa

AΘ
j
J − γ k

aiF
i
IF

a
AgkjΘ

j
J − γ k

ajF
j
J Fa

AgkiΘ
i
I

)

= (1 − ζ)
((

∂AΘ i
I

)
gijΘ

j
J + Θ i

Igij

(
∂AΘ

j
J

))

− (1 − ζ)
(
∂AFi

IgijΘ
j
J + Θ i

Igij∂AFj
J

)

+
(
γ k

aigkjF
a
AΘ

j
J (Θ i

I − Fi
I ) + γ k

ajgkiF
a
AΘ i

I (Θ
j
J − Fj

J )
)

= (1 − ζ)gij

(
Θ

j
J∂A

(
Θ i

I − Fi
I

)
+ Θ i

I∂A

(
Θ

j
J − Fj

J

))

+ γ k
aigkjF

a
A

(
Θ

j
J (Θ i

I − Fi
I ) + Θ

j
I (Θ

i
J − Fi

J )
)

.

Now the formula (26) is obtained by specialising gij = δij and γ k
ai = 0.

Proof of formula (32). Recall the definition (32): V↑ = N(Y )V = H∗n(y)v where v↑ = n(y)v = va∂a − ni
ava∂i

with v = φ∗V = Fa
AV A∂A. Using (31), straightforward computations give

V↑ = H
B
a v↑a

∂B + H
B
i v↑i

∂B + H
J
av↑a

∂J + H
J
i v↑i

∂J

= FB
a va∂B + H

J
ava∂J + H

J
i v↑i

∂J

= FB
a Fa

AV A∂B + H
J
aFa

AV A∂J − H
J
i ni

aFa
AV A∂J

= δB
AV A∂B − (HJ

i ni
aFa

A − H
J
aFa

A)V A∂J

= V A∂A − (HJ
i ni

aFa
A − H

J
aFa

A)V A∂J .

Hence, the connection coefficients are
N J

A = H
J
i ni

aFa
A − H

J
aFa

A.

Next, as Hi
ZH

Z
a = ∂BΨ iFB

a + ∂IΨ
i∂aΨ

I = 0, one obtains

∂IΨ
iN I

A =∂IΨ
i
(
∂jΨ

Inj
aFa

A − ∂aΨ
IFa

A

)

=∂IΨ
i∂jΨ

Inj
aFa

A + ∂BΨ iFB
a Fa

A

=∂IΨ
i∂jΨ

Inj
aFa

A + ∂AΨ i.

Once again, because Hz
IH

J
z = Ha

I H
J
a + Hi

IH
J
i = Hi

IH
J
i = ∂IΨ

iHJ
i = δJ

I , one obtains

N J
A = H

J
i ∂IΨ

iN I
A = H

J
i ∂IΨ

i∂jΨ
Inj

aFa
A + H

J
i ∂AΨ i

= ∂jΨ
J nj

aFa
A + ∂iΨ

J∂AΨ i.

This completes the proof.
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