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Abstract: This paper reports a Density Functional Theory (DFT) investigation of the electron density
and optoelectronic properties of two-dimensional (2D) MX2 (M = Mo, W and X = S, Se, Te) subjected
to biaxial strains. Upon strains ranging from −4% (compressive strain) to +4% (tensile strain), MX2

bilayers keep the same bandgap type but undergo a non-symmetrical evolution of bandgap energies
and corresponding effective masses of charge carriers (m*). Despite a consistency regarding the
electronic properties of Mo- and WX2 for a given X, the strain-induced bandgap shrinkage and m*
lowering are strong enough to alter the strain-free sequence MTe2, MSe2, MS2, thus tailoring the
photovoltaic properties, which are found to be direction dependent. Based on the quantum theory of
atoms in molecules, the bond degree (BD) at the bond critical points was determined. Under strain,
the X-X BD decreases linearly as X atomic number increases. However, the kinetic energy per electron
G/ρ at the bond critical point is independent of strains with the lowest values for X = Te, which can
be related to the highest polarizability evidenced from the dielectric properties. A cubic relationship
between the absolute BD summation of M-X and X-X bonds and the static relative permittivity was
observed. The dominant position of X-X bond participating in this cubic relationship in the absence
of strain was substantially reinforced in the presence of strain, yielding the leading role of the X-X
bond instead of the M-X one in the photovoltaic response of 2D MX2 material.

Keywords: two-dimensional materials; chalcogenides; photovoltaics; DFT calculations; QTAIM;
structure–property relationship

1. Introduction

Since the discovery and isolation of graphene [1], two-dimensional (2D) materials
have tremendously attracted attention due to their unique physical properties. Among
these materials, the transition metals dichalcogenides materials (MX2, with M = Mo, W
and X = S, Se, Te) have shown to be interesting candidates for optoelectronic applica-
tions because they are stable, their layers bear no dangling bonds, and their bandgaps
are ideally suited (see [2] and references therein). As an example, among the various
exotic properties of MoS2 is the change from indirect to direct bandgap from the bulk or
multilayered structures to the monolayered one [3–5]. More widely, the tunability of their
structure and properties makes them suitable in, e.g., catalysis [6–11], energy storage and
conversion [12–17], biomedicine [18–23], and sensors [24–27].

In a previous work [28], we investigated the layered-dependent structural, electronic,
and optical properties of MX2 homo- and heterostructures by DFT calculations. The
quantum theory of atoms in molecules [29] was used to process the electron density in
order to correlate electronic interactions and macroscopic optical properties. We found that
the static relative permittivity and the weighted bond degree summation are linked by a
cubic relation and that the layered-dependent electronic and optical properties are mainly
attributed to the interlayer X-X bonds. Furthermore, it has been reported in literature that
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the application of strains allows one to finely tune the transition metals dichalcogenides
(TMD) electronic properties [30–36]. For instance, while uniaxially strained, the MoS2
monolayer changes from direct to indirect bandgap, which opens up the possibility of
designing TMD through strain engineering. In addition, whereas conventional materials
hardly bear strains exceeding a few percent, MoS2 has been shown to be able to withstand
strains above 11% [37].

A great number of first principle calculations have already been reported on the effect
of strain on the electronic properties of 2D semiconducting TMD [36,38–42]. However,
these works almost all focus on monolayers. As for the effect of strain on the optical
properties, it has only been investigated for monolayers. In a comparative investigation
on MoS2 monolayers, Carrascoso et al. [43] showed that uniaxial strains have a weaker
effect on the materials properties than biaxial ones. This type of comparative study has
never been carried out on bilayer TMD, but we expect a similar trend. Hence, building
upon our previous work, we investigated for the first time the effect of biaxial strains on
both electronic and optical properties and the contribution of the interlayer van der Waals
interactions in the optical properties in the bilayered MX2 compounds.

2. Materials and Methods

DFT [44,45] calculations were carried out by a full-potential linear augmented plane
wave method (FP-LAPW) as implemented in the program WIEN2k [46]. The general-
ized gradient approximation level of theory was applied with the Wu-Cohen (WC) func-
tional [47]. During the optimization of the atomic position, the convergence criteria were
set to 10−5 Ry and 1 mRy/Bohr for the energy and forces, respectively. The RmtKmax
parameter was set to 7. Besides, the first Brillouin zone was sampled with 1500 k-points
that were mesh selected according to the Monkhorst–Pack algorithm [48]. Although hybrid
range-separated functionals are now recognized as a standard for obtaining an accurate
description of chemical systems, the choice of the WC functional was made after system-
atic tests and comparisons with available data. It appears that this functional gives very
reliable structural parameters compared to experimental ones. Regarding band structures,
this functional also yields decent results, which may be attributed to the fact that we
are investigating chalcogenides, for which the energy gap is rarely wrongly zeroed. In
addition, considering the huge amount of calculations achieved in this work, we concluded
that using a more elaborated functional, such as a hybrid one, would have led to such a
computational cost that it could have jeopardized the achievement of our objectives.

The investigated MX2 (M = Mo, W; X = S, Se, Te) bilayers consisting of 4 × 4 ×
1 supercells and the density of states near the Fermi level (where MoS2 is taken as an
example) are depicted in Figure 1. A 20 Å vacuum thickness was added atop to separate
free surfaces, hence avoiding interaction between periodic images. The structures were
then relaxed. Subsequently, both compressive and tensile in-plane biaxial strains were
applied with values ranging from –4% to +4% by steps of 2%. Negative deformations stand
for compressive strains, whereas positive ones stand for tensile strains. After structure
relaxation, electronic band structures and optical properties (relative permittivity, absorp-
tion coefficient, extinction coefficient, and refractive index) were calculated for each of
the six MX2 bilayers. The application of a biaxial strain on chalcogenide bilayers aims at
reproducing the epitaxial strain on the absorber layer in real devices. Nonetheless, our
model is limited by the absence of a substrate, which does not allow us to investigate the
band alignments in the device. Hence, the energy discontinuities at the band edges that
serve as the basis for controlling transport properties were not characterized.
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Figure 1. (a) Scheme of MX2 (M = Mo, W; X = S, Se, Te) bilayers used in this work. The applied strains 
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Figure 1. (a) Scheme of MX2 (M = Mo, W; X = S, Se, Te) bilayers used in this work. The applied strains are biaxial ones with
∆a (=∆b) ranging from −4% to +4%. (b) Calculated density of states of MoS2.

Further, the electron densities obtained from WIEN2k calculations were processed with
the Critic2 package [49], which implements the quantum theory of atoms in molecules [29,50],
from which the total, kinetic, and potential energy densities at the bond critical points
(BCPs) were obtained. The bond degree at each BCP was then calculated from the total
energy density and the electron density [51].

3. Results
3.1. Electronic and Optical Properties

The band structures of the six investigated MX2 bilayers under biaxial strains (from
compressive to tensile ones) are depicted in Figure 2. For the unstrained bilayers (null
strain), except for WTe2, all the bilayers bear an indirect bandgap that decreases from S
to Se and then to Te. The fact of applying strains, either compressive or tensile, does not
change the type of bandgap (again, except in the case of WTe2, which becomes indirect),
but the shape of the bands can be substantially modified, potentially implying a change in
the valence band minimum (VBM) and conduction band maximum (CBM); the k-points
implied in the valence-to-conduction transitions are hence also changed accordingly. The
bandgap evolution with respect to the applied strains is depicted in Figure 3a. It shows
that, except for Te, the bandgaps in the WX2 bilayers are larger than in the MoX2 ones
for a given chalcogen atom. Moreover, increasing the tensile strain leads to a bandgap
shrinkage, which increases along the MTe2, MSe2, and MS2 sequence, irrespective of the
metal atom. These tensile strain effects are similar to those observed when the materials go
from a bulk state to a monolayer one: a blue shift of the energy bandgap is observed, which
is attributed to quantum confinement [52]. Except for Te, for a given chalcogen atom, the
shrinkage decrease is higher when the W metal is concerned. By contrast, the bandgap does
not change in a systematic way as the compressive strain increases but clearly depends
on the nature of both the metal atom and the chalcogen one. For WSe2 and MoTe2, the
bandgap decreases when the compressive strain increases, whereas it increases for MoS2
and WS2. For the remaining compounds (MoSe2 and WTe2), the bandgap first increases
and then decreases when the compressive strain increases. These results agree with those
reported in the literature on bilayer MX2 under both uniaxial and biaxial strains [35,53]. As
reported by Carrascoso et al. for monolayers, the uniaxial strains have a weaker effect on
the bilayer material properties than the biaxial ones [43].
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Figure 2. Band structures of (a) MoS2, (b) MoSe2, (c) MoTe2, (d) WS2, (e) WSe2, and (f) WTe2. For each panel, from left to
right: −4%, −2%, 0%, +2%, and +4% applied biaxial strain.
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Figure 3. (a) Bandgap energies and (b) electron and hole effective masses (me* and mh*, respectively) at the respective
CBMs and VBMs with respect to applied strains from −4% to +4% for the MX2 bilayer structures (M = Mo, W; X = S, Se, Te).

All the aforementioned effects undoubtedly have an impact on the valence-to-conduction
electron transitions upon irradiation and on the excited electrons’ mobility due to band
curvature changes. Indeed, the best voltage and photocurrent amplitudes are dictated by
the proper balancing between the bandgap and absorbed photon energy [54]. Figure 3b
plots the corresponding electron and hole effective masses (me* and mh*, respectively) at
the respective conduction and valence band edges. For each fixed X atom, MoX2 has a
comparatively higher m* than WX2. Specifically, the me* and mh* along the Γ-K direction
become smaller as the tensile strain scales up, except for MoTe2 and WTe2 in the range
of [0%; +2%] for which they become larger. However, in the range of [0%; −2%], the me*
and mh* along either Γ-Λ or K-Λ decrease and increase, respectively. As the compressive
strain intensifies, the me* and mh* along the K-Λ direction decrease again. It is worth
mentioning that the me* and mh* of MoTe2 do not follow this pattern due to the change of
the electron transition path from the K-Λ to the M-Λ direction. All the above information
confirms an influence of the strain on the band edges and curvatures, which can be deep
enough to shift the sequence of bandgap energies and m* in MX2 for different X, thus
providing possibilities of customizing the photovoltaic properties. Hence, considering the
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ideal bandgap and favorable m*, an advantageous electron excitation and transportation
can be anticipated when a certain range of compressive strain is applied.

In the following, the optical properties were analyzed in the in-plane (xx) and out-of-
plane (zz) directions. The calculated absorption coefficients and refractive indexes of the
investigated MX2 compounds are shown in Figures 4 and 5, respectively. Irrespective of the
compound and strain, the absorption threshold and refraction peak occur at a lower energy
in the xx direction than in the zz one, with a slight, gradual shift towards higher energies
from +4% to −4% strain in the case of the xx-direction; in the zz-direction, the curves are
indistinguishable. Thus, for a given compound, a tensile strain allows for lowering the ab-
sorption threshold. This result agrees with the decreasing bandgap observed under tensile
strain and is similar to that observed by a photoluminescence spectroscopy experiment, as
the materials’ size decreases from the bulk to monolayer [3,4,55]. Irrespective of the metal
atom and strain, the refraction peak intensity increases, and the absorption edge value
decreases as the chalcogen atomic number increases.
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Figure 5. Refractive indexes of (a) MoS2, (b) MoSe2, (c) MoTe2, (d) WS2, (e) WSe2, and (f) WTe2 in the xx- (top panel) and
zz-direction (bottom panel) as the biaxial strain goes from −4% to +4%.

The relative permittivity function ε (ω) is strongly related to the band structure and
characterizes collective excitations close to the Fermi level [56]. The calculated dielectric
functions for the six MX2 bilayers, subjected or not to strains, are depicted in Figure 6, with
the real part ε1 (ω) being shown on the left panel and imaginary one ε2 (ω) on the right
panel. For all the compounds, ε1 (ω) becomes negative above around 5–6 eV, which means
that the compounds exhibit a metallic behavior above the photon energy thresholds [57].
At the frequency limit ω = 0, ε1 (0) corresponds to the static relative permittivity. For all
the compounds, higher corresponding values were obtained in the xx-direction than in the
zz-direction, and they increase from compressive to tensile strain, whereas they decrease in
the zz-direction. Irrespective of the metal atom, ε1 (0) increases with the chalcogen atomic

number. Hence, based on the Penn model [58], which defines ε1 (0) as ε1(0) ≈ 1 +
(
}ω
Eg

)2
,

the bandgap should decrease from S to Te, which is indeed observed in Figure 3a. The
highest static relative permittivity value was obtained for MoTe2, indicating a higher
polarizability for this bilayer. These values are further improved in the xx- and zz-direction
when the compound undergoes tensile and compressive strains, respectively. For all the
compounds, when compared with ε2 (ω) in the xx-direction, we observe that ε2 (ω) in the
zz-direction tends to decrease and that its peak maximum shifts towards higher incident
photon energies. These results indicate a decrease in the ability of the compounds to absorb
light in this direction.
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3.2. Electron Density Analysis

In the realm of the quantum theory of atoms in molecules (QTAIM) [29,50] the key
fields are the electron density, and especially its Laplacian, from which numerous param-
eters were derived, which enables the characterization of the bonding between atoms in
molecules and crystals [59]. Among these parameters, the bond degree (BD) at the bond
critical point BD = Hb/ρb, where H is the total energy density, i.e., the sum of the potential
V and kinetic G energy densities, and ρ is the electron density at the bond critical point (b),
measures the degree of covalence (BD < 0) or softening (BD > 0) of the interatomic bond-
ing [51]. In other words, covalent bonds are characterized by large, negative values of BD,
whereas closed-shell interactions (ionic and van der Waals interactions) are characterized
by positive BD values.

Figures 7 and 8 depict the bond degree of both the M-X and X-X bonds for the bilayers
subjected to strains. In addition, the evolution of the M-X and X-X bond lengths under
strains are also depicted in Figure 7. Unsurprisingly, for both the M-X and X-X bonds,
the BL increases with the chalcogen atomic number, irrespective of the metal atom. For
a given chalcogen atom, the Mo-X and W-X bond lengths are the same for each applied
strain, which can be explained by the similar value of the Mo and W covalent radii (145 pm
and 146 pm, respectively). The M-X bond lengths linearly increase when the strain varies
from −4% to +4%. In the case of the X-X bond lengths, a slight difference is noticeable
depending on whether Mo or W is bonded to the chalcogen atom. This slight difference
is also observed in the corresponding bond degrees, which, contrary to the bond lengths,
decrease when the chalcogen atomic number increases. This decrease reflects the lowering
of the van der Waals character of the interatomic interaction. Regarding the evolution with
the strain, both the X-X bond lengths and bond degrees are nearly constant. For the M-X
bonds, the BDs increase from compressive to tensile strains, the absolute values of which
are increasingly large for S, Te, and Se.
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(M = Mo, W; X = S, Se, Te) vs. biaxial strain. Mo: solid circle; W: hollow circle; S: black line; Se: red
line; Te: blue line.
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Figure 8. Bond degrees (BD) vs. |V|/G of M-X bonds in (a) MS2, (b) MSe2, (c) MTe2, and X-X bonds in (d) MS2, (e) MSe2,
and (f) MTe2. Full symbol: Mo-containing bilayers; hollow symbols: W-containing bilayers. (g) Linear fitting result of BD vs.
|V|/G of X-X bonds.

According to Figure 8, there is no clear relation between BD and |V|/G values of
M-X bonds. By contrast, a linear relationship can be evidenced for the X-X ones, the slope
being the same for all the compounds (see Figure 8g) with or without strain. However,
irrespective of the bond and the compound, the evolution of both BD and |V|/G values
with respect to strain seems to be weak. In order to better evaluate this evolution, the G/ρ
value, which corresponds to the slope of the line passing through the point of interest and
that of the coordinates |V|/G = 1 and BD = 0 (see [60]), was determined for each bond
type in each bilayer with and without strains. The results are gathered in Table 1. One can
see the following: (i) the G/ρ values for each bond are almost independent of strain; (ii)
the G/ρ values of both X-X and M-X bonds mainly depend on the X atom, the influence of
the M one being very weak; (iii) the G/ρ values decrease when the atomic number of the
X atom implied in the bond increases; (iv) for X= Se and Te, the G/ρ values of M-X and
X-X bonds are very close to each other, and for X = S, the G/ρ values of M-X bonds are
higher than those of the X-X ones. These results agree with the inverse relation between
the kinetic energies per electron G/ρ at the bond critical point and the bond polarizability,
as proposed by Yang et al. [60]. Indeed, the larger chemical softness of Te compared to that
of Se and S, and the larger one of Mo compared to that of W, should correspond to larger
polarizability. This can be related to the highest polarizability evidenced in the previous
section for MoTe2 from static relative permittivity values.

Table 1. G/ρ values of M-X and X-X bonds in strained and unstrained MX2 (M = Mo, W; X = S, Se, Te) bilayers.

Strain
(%)

MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2

Mo-S S-S Mo-Se Se-Se Mo-Te Te-Te W-S S-S W-Se Se-Se W-Te Te-Te

−4 0.78 0.54 0.50 0.50 0.42 0.44 0.77 0.55 0.53 0.5 0.46 0.44
−2 0.77 0.54 0.55 0.50 0.41 0.44 0.76 0.54 0.52 0.5 0.45 0.43
0 0.76 0.54 0.53 0.50 0.44 0.44 0.75 0.54 0.50 0.5 0.45 0.43

+2 0.75 0.54 0.50 0.50 0.39 0.43 0.74 0.54 0.51 0.5 0.44 0.43
+4 0.73 0.54 0.47 0.50 0.44 0.43 0.72 0.54 0.50 0.5 0.43 0.43

According to Gatti [59], an atomic expectation value results from the sum of bond
contributions. As we did in previous works [28,61], a relationship was searched for
between the bond degrees summation and the relative permittivity under zero frequency
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ε1 (0) along the zz-direction. As two types of bonds coexist in the structures, namely
M-X and X-X, the summation can be written as h|BD|M-X+k|BD|X-X, with h and k the
parameters to be fitted. Fitting this expression via the equation, the maximum coefficient
of determination R2 is obtained by adjusting h and k at each equation order. Irrespective
of the strain, the most accurate description of the relationship between bond degree and
static relative permittivity is given by a cubic equation (see Figure 9a), namely, n = 3. The
absolute BD summation and the ε1 (0) are inversely related. The best fit at n = 3, for which
R2 = 0.945, was obtained for h/k = 0.05, in comparison to the best fit at n = 1 and n = 2,
for which R2 = 0.849 and R2 = 0.881, respectively, both obtained for h/k = 0.00. These
results indicate that in strain-modified MX2 bilayers, the X-X bonds are overwhelmingly
contributing to the dielectric properties. By contrast, the fitting result under no strain, as
seen in Figure 9b, shows a perfect cubic relationship between the bond degree summation
and static relative permittivity with the R2 = 0.997 for h/k = 0.3. This is coherent with
our previous observation in the absence of strains [28], where both types of bonds were
found to participate in achieving this cubic relationship, although the X-X bonds were
found to contribute more than the M-X ones. The profound decrease of h/k ratio of MX2
from no applied strain to added strain highlights the pronouncing role of the X-X bonds in
responding to the external photoelectric field, as proven by the manifest dependence of the
absorption and refractive properties on the strain as X varies.
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and third-order fittings of R2 vs. h/k. Inset in (b) depicts the third-order fitting of R2 vs. h/k ratio. Arrows in between
symbols “−” and “+” in (a) are used to represent the evolution from the biaxial compressive (−4%, −2%) strains to the
tensile (+2%, +4%) ones.

4. Conclusions

The influence of biaxial strain on optoelectronic properties and electron density of tran-
sition metal dichalcogenides MX2 (M = Mo, W and X = S, Se, Te) bilayers were thoroughly
investigated for the first time using DFT calculations. When subjected to a strain going from
a compressive (−4%, −2%) to tensile (+2%, +4%) one, the 2D materials’ band structures and
their corresponding effective masses of charge carriers undergo non-symmetrical changes
as compression and tension are concerned. The bandgap shrinks remarkably as tensile
strain increases, concomitantly with both electron and hole effective masses lowering, ex-
cept for those of MoTe2. By contrast, when a compressive strain is applied, the bandgap and
electron effective masses evolve at a much slower rate. In the meantime, the hole effective
masses first increase and then decrease as strain goes from 0% to −4%. Nevertheless, the
strain-induced bandgap shrinkage shall be strong enough to alter the strain-free bandgap
energy sequence following MTe2, MSe2, MS2. Irrespective of the compound and strain,
the absorption threshold and refraction peak occur at a lower energy in the in-plane (xx)
direction than in the out-of-plane (zz) one. A strain effect is only visible in the xx-direction.
For a given compound, the absorption threshold is lowered when subjected to a tensile
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strain. Irrespective of the metal atom and strain, the refraction peak intensity increases,
and the absorption edge value decreases as the chalcogen atomic number increases. The
strain effect on absorption and refraction is direction dependent. More precisely, these
values are further improved in the xx- and zz-direction when the compound undergoes
tensile and compressive strains, respectively. From the determination of the bond degree
(BD) at the bond critical points using QTAIM, it was found that the X-X BD decreases
when the chalcogen atomic number increases and is nearly constant with applied strains.
The kinetic energy per electron G/ρ at the bond critical point was also estimated. It is
almost independent of strains with the lowest values for X = Te, which can be related to the
highest polarizability evidenced in MoTe2 from static relative permittivity values. A cubic
relationship between the absolute BD summation of M-X and X-X bonds and the static
relative permittivity was observed both in strained and unstrained MX2 bilayers. After
applying strain, the preponderant contribution of the X-X bonds in this relation under no
strain was substantially reinforced, yielding the leading role to the X-X bonds instead of
the M-X ones in the photovoltaic response. As the application of a biaxial strain on the
chalcogenides bilayers allows for reproducing the effect of epitaxial strain on the absorber
layer in a real device, these results can be valuable for the building of photovoltaic devices.
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