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ABSTRACT IoT networks are more and more present nowadays. Some IoT protocols share the same
bandwidth leading to interference on neighboring networks and decrease of overall coverage. To contribute
to this problem, an analytical study of the coverage of a LoRa network with underlying uncoordinated
IoT networks for uplink transmissions is presented in this paper. Using stochastic geometry, closed form
analytical expressions are proposed allowing to analyze the success and coverage probabilities for a LoRa
network. An appropriate model of the path loss including real-life values is used to characterize the
log-distance propagation parameters. The interference comes from both the LoRa network itself and the
underlying IoT networks, modeled with an α-stable distribution based on recent measurements. It is shown
that for an environment with a huge amount of surrounding uncoordinated IoT networks, the gateways
deployment should be doubled to reach a decent coverage probability, compared to an environment where
the underlying interfering networks are not considered.

INDEX TERMS LoRa, LPWAN, stochastic geometry, IoT, interference, alpha-stable distributions, coverage.

I. INTRODUCTION
The importance of Internet of Things (IoT) in today’s wireless
communications systems is increasing day after day. Indeed,
many applications related to these new types of Machine-
to-Machine (M2M) communications are implemented and
integrated in our everyday life: temperature monitoring at
given locations in a city [1], waste management [2], smart
city usages [3] such as public surveillance, intelligent traf-
fic management [4], [5], smart building monitoring [6], [7],
or intelligent healthcare control [8]. With the environmental
and health issues that have emerged over the past few years,
IoT is quickly becoming a cornerstone of our well-being.

It is estimated by CISCO that more than 500 billion devices
will be part of IoT networks by 2030 [9]. Several protocols
that are classified according to their ranges have emerged in
recent years. First of all, for short radii, so called WPAN
for Wireless Personnal Area Networks, protocols like Zig-
Bee [10] or z-Wave [11] have a range of a few dozens of
meters. Other protocols classified in the WLAN (for Wire-
less Local Area Networks) category have longer areas from
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one to a few kilometers, such as 802.11ah [12]. Finally,
protocols like LoRa [13] or SigFox [14] have a range that
reaches ten kilometers, and are classified in the Low Power
Wide Area Networks category (LPWAN). All these proto-
cols use unlicensed bands (or ISM bands), with a carrier
frequency of 868 MHz in Europe and 915 MHz in North
America.

Cohabitation between these different networks that share
the same frequency bands creates interference on the signals
received by the gateways, despite the fact that the modula-
tions for each protocol are different. Therefore, in this paper,
we propose to analyze the impact of underlying uncoordi-
nated IoT networks on a LoRa network.

A. RELATED WORKS
Many works about Internet of Things [15], and more espe-
cially LoRa communications, emerged a few years ago. In the
following of this section, we sort the related works dealing
with the three main topics involved in our works:

• LoRa networks modeling,
• path-loss modeling and
• interferential networks identification and modeling.
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1) LoRa NETWORKS MODELING
Different means to model a network are possible. In this
work, we propose to use stochastic geometry [16]. In [17],
the authors use a Poisson rain (that is a space-time Poisson
process of packets) to model a LoRa network, and analyze the
successful reception probability versus the node density for
all the spreading factors. The authors in [18] model a unique
LoRa cell with end devices (EDs) that are uniformly dis-
tributed within a circular area. In [19], the authors model the
LoRa network with Poisson Cluster Process (PCP). They cal-
culate theoretically the intra- and inter-cluster interference,
and analyze both the coverage probability and the energy
efficiency for various values of LoRa nodes and cluster radii.
The coverage probability is also calculated using stochastic
geometry in [20]. A similar model where both the EDs and the
gateways (GWs) are deployed uniformly with homogeneous
Poisson-Point Processes (PPPs) is applied by the authors
in [21] to optimize the coverage probability of a LoRa net-
work with dual hops. The authors in [22] consider one LoRa
cell and use the LoRaWAN capacity model given in [23] to
calculate the Packet Delivery Ratio (PDR) for an inhomoge-
neous distribution of EDs around one gateway. In [24], the
authors provide closed-form expressions of coverage proba-
bility and area spectral efficiency for a LoRa network with
one gateway. Finally, in [25], the success probability and
the coverage probability of a LoRa network are calculated
litterally and analyzed with the help of stochastic geometry.
The results are given versus the densities of GWs and EDs.
This work is a good starting point of the present work, even
if it takes into consideration a few approximations that are
specified in the following sections.

2) PATH LOSS MODELS
Modeling the path-loss for LoRa communications is of cru-
cial interest. Indeed, the path-loss conditions the RSSI of a
signal, and therefore the spreading factor that is used. In this
context, the authors in [26] evaluate the accuracy of RSSI
for different LoRa devices under laboratory conditions, and
during a measurement campaign in a semi-urban area. Their
results lead to a first path-loss model. The works presented
in [27] show the inaccuracy of the parameters of the path-loss
models for a relatively dense environment (in Dortmund)
for 433 and 868 MHz bands. Various measurements allow
the characterization of a new path-loss model that is very
close to the observed reality. The modeling is mainly based
on the determination of the path-loss exponent (denoted η)
and the intercept path-loss. In [28], the authors draw on the
work cited above in order to propose path-loss models in the
case of rural and urban settings in Lebanon. These models
are very accurate for distances of up to 8 km in an urban
environment, and 45 km in a rural environment. In [29], the
authors propose path-loss models in urban, forest and coastal
environments. Finally, the authors in [30] propose to perform
similar methods in order to characterize the path-loss for
indoor environments.

3) INTERFERENCE IDENTIFICATION AND MODELS
For this paper, the interference coming from neighboring
uncoordinated non-LoRa networks must be characterized.
In a few works, the authors analyze theoretically and exper-
imentally the interference on a LoRa network, in the case
of one gateway. In [31], the authors show the impact of a
IEEE 802.15.4g interfering device on a LoRa link, and vice-
versa. It is shown that both links have some resilience to inter-
ference. In [32], the authors propose two optimization algo-
rithms to determine the best LoRaWAN configurations given
an underlying interfering network (here IEEE 802.15.4G).
The model that is used in this paper takes into account only
one gateway.

In our work, we aim to characterize the underlying IoT
networks on a global network, in a multiple gateway scenario,
whatever the underlying networks. Recently, this characteri-
zation has been the subject of several studies. The packets
sent by IoT devices are very short compared to common
cellular communications. Then, the noise induced by the
underlying IoT networks (e.g. SigFox, 802.11ah, LoRa) can
be seen as impulsive [33]. The power and the amplitude
of such interference are considered as heavy-tailed random
variables, and can be modeled by α-stable distributions [33].
The authors in [33] show that the modeling of interference
in IoT networks by α-stable distributions is still valid by
adapting the characteristic exponent of the distribution, even
whenwe introduce a guard zone around the receiver andwhen
we limit the power to a finite value. This validation is carried
out by comparing the quantiles between the theoretical model
and the empirical model. Finally, the works exposed in [34]
show a very strongmatch between the theoretical interference
model that is based on an α-stable heavy-tailed distribution
and the measurements carried out in different zones (park,
hospital, residential and industrial zones) in the city of Aal-
borg. In view of these related works, α-stable distribution is
a good choice to model the interference from the underlying
networks.

B. CONTRIBUTIONS AND ORGANIZATION
As seen in the previous sections, the related works that deal
with LoRa networks modeling mainly focus on co-SF inter-
ference to calculate the coverage probability. These works
do not take into account the uncoordinated neighboring net-
works, and do not model the path-loss with real parame-
ters. Note that the premises of the studies presented in this
article were introduced in [35]. The present paper proposes
an improved and more complete system model than the one
included in [35], and more thorough results and analysis.

In this paper, a LoRa network in an uplink configuration
that considers various end devices densities and gateways
densities is introduced. This system permits to model both
dense and sparse networks. Then, the main contributions of
this work are as follows:

• The presence of all possible underlying IoT networks
(e.g. SigFox, 802.11ah, LoRa) concurrently to the
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considered LoRa network is taken into account for a cov-
erage probability calculation in a multiple gateway sce-
nario. The interference induced by these uncoordinated
networks are modeled by a heavy-tailed distribution.
The parameters of the α-stable distribution are obtained
by in-situmeasurements and have been validated in [33],
[34]. This model has been shown to fit the data.

• The path-loss used for all the communications is mod-
eled by a regression curve that aggregates real-life path-
loss exponent and intercept. Indeed, most stochastic
geometry-based papers dealing with LoRa networks
usually consider common path-loss model. The contri-
bution of our approach lies in the use of such a more
realistic path-loss model with experimental data proven
and validated in [27] in order to get as close as possible
to the experimental values of path loss for LoRa links at
868 MHz.

• The coverage probability for this LoRa network with the
improved path-loss model and the α-stable distributed
uncoordinated networks interference is given for various
values of ED and GW densities. Note that the analytical
results for one gateway have been validated by numeri-
cal simulations in [25], and the systemmodel withmulti-
ple gateways based on stochastic geometry calculations
was compared and validated with simulations in our
previous works [16], [36].

• The values of the SF-based ED densities are not obtained
with analytical approximations (as made in related
works) but with Monte-Carlo simulations that converge
to results that are much closer to the true values.

In Section II, we introduce the system model. All the ana-
lyzed metrics and the theoretical approach on the interference
models are presented in Section III. In Section IV, we depict
and discuss the analytical and numerical calculations for
SNR, SIR and coverage probability. Finally, conclusions are
given in Section V.

II. SYSTEM MODEL
In this section, we introduce the system model through sev-
eral assumptions. The system includes a LoRa network with
another underlying IoT network. Note that for this paper,
we focus on the uplink. This system is schematized on
Fig. 1. All the notations introduced in this model are given in
Table 1.

A. ASSUMPTION 1 (SPATIAL MODEL FOR END DEVICES
AND GATEWAYS)
The system models an infinite LoRa network, made up
of gateways (GWs) and end devices (EDs) in an infi-
nite R2 space [37]. The GWs are uniformly and ran-
domly located in the R2 space, and are modeled by
a homogeneous Poisson-Point Process (PPP) 8G with
intensity λG. The EDs are modeled by an independently

marked PPP [36] denoted as

8̃E =
{(
ei,P, dij,SFi

)}
, (1)

where {ei},P ,
{
dij
}
, and {SFi} denote the sets of ED locations,

the ED transmit power, the length of the LoRa radio links
(i.e. the distance between the i-th ED and its receiving j-th
GW), and the assigned Spreading Factor (SF). The locations
ei are determined according to an unmarked PPP 8E ∈ R2

with intensity λE (with λG � λE ). We consider that all EDs
transmit with a constant power P = 19 dBm [38].

B. ASSUMPTION 2 (EUCLIDEAN DISTANCES BETWEEN
END DEVICES AND GATEWAYS)
Each GW is characterized by its index j (Gj) and its position
gj on the plane. We consider that G0 is located at the origin
of the coordinate system, i.e. g0 = (0, 0). Likewise, each
ED is characterized by its index i (Ei) and by its position ei.
Each ED is connected to the closest gateway (as explained
by the authors in [37], the distance r to the closest gateway
is distributed according to f1(r) = 2πλGreλGπr

2
). Assuming

that Ei is connected to Gj, the Euclidean distance (in km)
between Ei and Gj is dij =

∣∣ei − gj
∣∣.

C. ASSUMPTION 3 (BASEBAND RECEIVED SIGNAL BY A
GATEWAY)
As we focus on the uplink, the GW receives the useful signal,
the interference coming from the other LoRa EDs, the aggre-
gate interference coming from the underlying uncoordinated
IoT networks, and the Additive White Gaussian Noise [25],
[32]. Then, the baseband received signal by Gj can be given
by (2), as shown at the bottom of the next page, where Uj[n]
denotes the useful signal, Ij[n] the interference created by
the other LoRa transmitters from the studied LoRa network,
p(dij) the path loss attenuation, gt,i the i-th transmitter ED
antenna gain, gr,j the j-th receiver antenna gain, hij the fast
fading coefficient between the i-th transmitter and the j-th
receiver, Si[n] the unit-variance signal sent by the i-th ED,
8̈Ek the set of all the interfering EDs that transmit data
at the same time as the i-th ED, A[n] the Additive White
Gaussian Noise (AWGN), Zj[n] the aggregate interference
coming from the neighboring non-LoRa networks and Nj[n]
the total noise.

D. ASSUMPTION 4 (PATH LOSS ATTENUATION)
In this paper, we assume that the signals sent by the EDs
experience a path loss attenuation that is a function of the
distance between each ED and the receiving GW. The path
loss in dB varies with distance according to the following
equation [28], [29]:

PL(dij)[dB] = 10η log10

(
dij
d0

)
+ PL0, (3)

where η, dij and PL0 denote the path loss exponent, the
distance between Ei and Gj in km and the path loss at a
reference distance d0 = 1 km, respectively. Then, for a given
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FIGURE 1. Graphical model of the system. The studied LoRa network is depicted in the lower layer of this figure. The ED-GWs
communications are represented by solid arrows. The colors of the LoRa links between the EDs and their relative GW correspond to the SFs
used for the communications. Note that we take into account the link between E0 and G0. The interference induced by the LoRa
communications are depicted in dotted lines. On the upper layer of this figure is depicted an underlying IoT network (e.g. Sigfox network).
The interference on the studied GW (G0) coming from this underlying network are depicted as dotted orange lines.

ED i, the path loss attenuation between this ED and the j-th
GW is expressed as follows:

p(dij) = 10−
PL0
10

(
dij
d0

)−η
. (4)

The path loss parameters directly depend on the environ-
ment. These parameters are derived from fitting curves over
measured data. In our work, we propose to take into account
the path loss parameters measured and modeled in the city
of Dortmund for LoRa links at 868 MHz, given in [27], i.e.
η = 2.65 and PL0 = 132.25 dB. Moreover, we assume that
both the receiving and the transmitting antennas are isotropic.
Consequently, both the receiving and transmitting antennas
have a unit gain, i.e. gt,i = gr,j = 1,∀(i, j) [25].

E. ASSUMPTION 5 (SMALL-SCALE FADING AND AWGN
NOISE)
Small-scale fading describes the rapid fluctuations in the
amplitude and phase of a signal over a short period of time or a
short distance [39]. In this model, the envelope of the received
signal is statistically described by a Rayleigh distribution.
The small scale fading induced between Ei andGj denoted as
hij follows a Rayleigh distribution. Then, in terms of power,∥∥hij∥∥2 ∼ Exp (1).

We assume Additive White Gaussian Noise (AWGN),
denoted as A[n] in (2), with zero-mean and power PA =
−174 + NF + 10 logBW dBm, where NF = 6 dB is the

receiver noise figure and BW = 125 kHz is the bandwidth of
the signal [25].

F. ASSUMPTION 6 (SPREADING FACTOR ALLOCATION)
In the case of LoRa communications, an SF is allocated to
each ED according to its distance from the GW to which
it is connected [25]. This allocation is typically done by
the NetServer which sends feedback in response to short
test frames transmitted by the ED after connecting to the
network. The SF are between 7 and 12. Tab. 2 and Fig. 2 list
the allocations of SF (SFi) as a function of the distance dij
between an ED (Ei) and its associated GW Gj. For example,
if the distance dij between Ei and its associated gateway Gj is
comprised between l3 and l4 (i.e. between 3 and 4 km), the
SF associated with this ED will be SFi = 10. This allocation
of SF according to the distances EDs-GWs therefore leads to
a spatial formation of rings centered on the positions of the
GWs, as shown in Fig. 3.

G. ASSUMPTION 7 (NON-LoRa INTERFERING NETWORKS)
We consider that the studied LoRa network is located in a
space where other underlying IoT networks using the same
European ISM frequency bands (868 MHz) such as Sigfox,
z-Wave, 802.11ah or Zigbee coexist. Even though they do
not use the same technology, these non-LoRa networks inter-
fere with LoRa communications. As studied in [34], this

Yj[n] =
√
Pp(dij)gt,igr,jh2ijSi[n]︸ ︷︷ ︸

Uj[n]

+

∑
Ek∈8̈Ek \Ei

√
Pp(dkj)gt,kgr,jh2kjSk [n]

︸ ︷︷ ︸
Ij[n]

+A[n]+ Zj[n],︸ ︷︷ ︸
Nj[n]

(2)

VOLUME 10, 2022 8793



R. Chevillon et al.: Stochastic Geometry-Based Analysis of Impact of Underlying Uncorrelated IoT Networks

FIGURE 2. Spreading Factor Allocation. The ranges corresponding to SF 7,
8, 9, 10, 11 and 12 (cf. Table 2) are depicted in blue, green, red, yellow,
cyan and magenta, respectively.

interference can be regarded as noise. However, the modeling
of this interference by an AWGN is not a good choice. There-
fore, we propose to model the interference Zj by an α-stable
noise, the measurement data of [34] indeed suggesting that
the distribution of the power of the interference is heavy
tailed [40].

It has been shown in [41] and in [34] that network interfer-
ence are well-modeled by impulsive noise, and more partic-
ularly by α-stable noise. The measurement in [34] details a
LoRa-like configuration with frequency bands of 125 kHz.
The power is shown to be heavy tailed. Considering the
α-stable model from [41], conditioned on the set of active
interfering devices 8α , the interference is Gaussian and its
mean power depends on this set 8α . Finally, the power,
unconditioning on 8α , is a totally skewed α-stable random
variable, as it has been proven and validated analytically and
experimentally in [33], [34]. Note that even if the powers
of the LoRa emitters is fixed, the powers of the non-LoRa
emitters are random. Then, the use of α-stable distribution to
model the interference coming from the underlying uncorre-
lated IoT networks is valid according to [41].

Thus, in (2), the term Zj is considered as an interferential
noise for the j-th GW, and the power PZ of this interferential
noise follows an α-stable distribution:

PZ ∼ Sα (γ, β, δ) , (5)

where α, γ , β and δ are the characteristic exponent (with
0 < α < 2), the scale parameter (with γ ∈ R+), the skew
parameter (with β ∈ [−1, 1]) and the shift parameter (with
δ ∈ R), respectively.

This model is not exactly supported by the data from [34]
because the α should be given by the inverse of the chan-
nel attenuation (so less than one) but this is generally not
the case in the measurement with estimated values ranging
from 0.94 in the Hospital complex to 1.77 in the indus-
trial area. However this is consistent with [40] that shows

FIGURE 3. Spatial representation of the system model with
λG = 0.025 GWs per km2 and λE = 5 EDs per km2. The GWs are the black
triangles, while the EDs are the points. Each ED are colored according to
its SF assignment. EDs in SF 7, 8, 9, 10, 11 and 12 are colored in blue,
green, red, yellow, cyan and magenta, respectively. Units on the axis are
in km.

that a more realistic device location gives an interference
adequately modeled by an α-stable distribution but with a
modified α. In the following we will choose a value of alpha
of 1.69 which is obtained for the residential area. Measured
dispersion (γ ) values are found between 10−11 and 10−10.
They are expected to increase with the increase in device
density as it is shown in the theoretical results from [34].
Consequently we chose a value of 10−10 and 2.10−10 for a
moderately interfering scenario and a denser scenario.

III. STOCHASTIC GEOMETRY METRICS AND
INTERFERENCE CHARACTERIZATION
A. PRELIMINARY DEFINITIONS
1) SUCCESS PROBABILITY
In many works dealing with stochastic geometry applied
to cellular networks such as [36], the performances are
measured from the Signal-to-Interference-plus-Noise-Ratio
(SINR). Nevertheless, it is not possible to calculate the cov-
erage probability of a LoRa network with this SINR-based
methodology [23].

Thus, in a LoRa network, two conditions must be met to
specify the success of a transmission from an ED to a GW:

i) the Signal-to-Noise Ratio (SNR) should be greater
than a certain threshold qSFi depending on the used
SF and

ii) the Signal-to-Interference Ratio (SIR) should be
greater than a certain threshold w.

Then, the success of the transmission between the i-th ED
and the j-th GW can be written as follows [25]:

(SNRij ≥ qSFi )
⋂

(SIRij ≥ w), (6)

where SNRij, SIRij, qSFi andw denote the SNR and the SIR of
the LoRa link between the i-th ED and the j-th GW, the SNR
threshold for the SF used for the communication between Ei
and Gj, and the SIR collision threshold between different SF,
respectively.
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TABLE 1. Notation and simulation parameters.

Obviously, the success of a transmission depends on the
distance between the transmitter ED and the receiver GW.
We introduce the success probability metric that is depicted
as follows [25]:

H(ei) = P

⋃
j

{(SNRij ≥ qSFi )
⋂

(SIRij ≥ w)}

 , (7)

which means that both conditions on the SNR and the SIR for
the i-th ED are met with at least one GW. Thus, the success
probability corresponds to the probability that an ED can be
connected to at least one GW.

2) COVERAGE PROBABILITY
As seen in the previous section, the success probability of
a transmission is linked to the distance between the trans-
mitting ED and the receiving GW. Recall that the coverage
probability is the probability that a random element of the
transmitters is not in outage, at any chosen time. Thus, the
coverage probability can be expressed as follows [25]:

C =
∫
R+

H(ei)fd (dij)ddij, (8)

where fd (x) = 2πλGxe−λGπx
2
is the distance distribution of

a random ED to its nearest GW.

B. SIGNAL-TO-NOISE RATIO (SNR)
As we have seen in the previous section, the calculation of the
coverage probability is possible only if we retrieve the SNR

and SIR. Thus, it is necessary to characterize both the inter-
ference and the noise implied in each LoRa communication,
i.e. the powers of the elements Ij[n] andNj[n] in (2). As shown
previously and on Fig. 1, the interference come from both the
LoRa EDs and the non-LoRa EDs.

1) TOTAL NOISE
In our work, we propose to incorporate this interferential
noise Zj with an α-stable distributed power PZ in the total
noise Nj with a power PN . As seen in the previous sections,
the total noise also includes the AWGN A, with a power PA.
We consider that AWGN and interferential noise are strictly
independent. The total noise power can be expressed as:

PN = PA + PZ . (9)

2) SNR SUCCESS PROBABILITY
As explained previously, the SNR can be expressed as
follows:

SNRij =
Pp(dij)gt,igr,j|hij|2

PN
=

Pp(dij)|hij|2

PA + PZ
. (10)

The success probability relative to the SNR directly
depends on a SF-based threshold qSF which are given in
Tab. 2.

The success probability relative to the SNR corresponds to
the probability that the SNR is greater than or equal to the
threshold (for a given SF). Then,

P
[
SNRij ≥ qSFi

]
= P

[
|hij|2 ≥

(PA + PZ ) qSFi
Pp(dij)

]
VOLUME 10, 2022 8795
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TABLE 2. SNR thresholds.

= E

[
e
−
(PA+PZ )qSFi

Pp(dij)

]

= e
−

PAqSFi
Pp(dij) E

[
e
−

PZ qSFi
Pp(dij)

]

= e
−

PAqSFi
Pp(dij) exp

[
−

γ α

cos πα2

(
qSFi

Pp(dij)

)α]
.

(11)

The first equality comes from the characterization of the SNR
in Section III-B2, the second equality comes from the fact
that h2ij ∼ Exp (1), the third equality comes from the inde-
pendance between the AWGN noise PA and the interferential
noise PZ . In [34], it is proven that the β parameter of the
α-stable distribution equals 1. This assumption leads us to the
fourth equality that comes from the definition of the Laplace
transform of a random variable that follows an α-stable dis-
tribution with β = 1 [42].

C. SIGNAL-TO-INTERFERENCE RATIO (SIR)
1) LoRa INTERFERENCE CHARACTERIZATION
As depicted on Fig. 1 and in (2), the interference taken into
account for the calculation of the SIR come from the LoRa
EDs that transmit their data in the same time interval as the
considered link. In this section, we propose to characterize
these interference Ij[n], and their relative power Ij.

LoRa technologies enable the reception of signals from
numerous EDs thanks to the orthogonality of the transmission
subbands and the quasi-orthogonality of SFs. Despite the
fact that some works such as [43] and [44] show that the
imperfect orthogonality between each concurrent SFs results
to a further coverage loss, we propose to take into account
the co-SF interference (i.e. the interference coming from the
EDs that use the same SF). Indeed, the practical rejection gain
between quasi-orthogonal SFs ranges from 16 to 36 dB [25],
which is quite high for our purpose.

We consider8E the set of the EDs in R. This set is formed
thanks to a PPP with density λE . In order to characterize the
interference on a typical link, it is necessary to identify the
set of the interferers:

• the set of the EDs that use the same typical link SF (8Ek
with density λEk ),

• the set of the EDs that both use the same SF and transmit
at the same time slot (8̈Ek with density λ̈Ek ).

FIGURE 4. Spatial representation of the system model for a sparse
(λG = 0.005 GWs per km2) and a dense (λG = 0.05 GWs per km2)
gateway deployment. The EDs are colored the same way as in Fig. 3. Units
on the axis are in km.

The duty cycle policy enforced by ETSI for LoRaWAN
communications is set to ξ = 1% [13]. Then, the density
of the EDs that transmit at the same time slot is λ̈Ek = ξλEk .

As the density of the effective interferers directly depends
on the intensity of the EDs that use the same SF, we propose
to characterize the density λEk .

a: CHARACTERIZATION OF λEk
The PPP of the EDs 8E can be divided into six PPPs 8Ek ,
with k ∈ [7, 12] that correspond to the PPP of all the EDs that
use the same SF. For instance, if Ei belongs to8E11 , it means
that Ei transmits its data with SF 11. According to Tab. 2,
it also means that it is located between l4 and l5 km away
from its related GW.

Nevertheless, the calculation of the densities λEk is not so
simple. Indeed, as shown in Fig. 4, these densities depend on
the density of the GW deployment. For sparse GW deploy-
ment (λG = 0.005 GWs per km2), the number of EDs that
use SF 12 is prominent (i.e. λE12), as shown on the left plot of
Fig. 4. This is due to the fact that the distances between the
GWs are large, and thus, most of the EDs are also very far
from their related GW. In the contrary case, for a dense GW
deployment (λG = 0.05 GWs per km2), the GWs are very
close. As the EDs are linked to their nearest GW, this leads
to the fact that most of the EDs use low SFs as shown on the
right plot of Fig. 4.

In [25], the authors propose a theoretical approximation of
the densities λEk in both sparse and dense GW deployment.
For sparse GW deployment (i.e. when λG � 1), the densities
of the EDs for each SF are given by:

λEk ≈

{
λGλEπ

(
l2k−6 − l

2
k−7

)
, ∀k ∈ [7, 11]

λE −
∑11

i=7
λEi , k = 12,

(12)

and for dense GW deployment, these densities are approxi-
mated as follows:

λEk ≈

{
λGλEπ

(
l2k−6 − l

2
k−7

)
eπvkλG , ∀k ∈ [7, 11]

λE −
∑11

i=7
λEi , k = 12,

(13)
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FIGURE 5. Relative error between simulated and approximated EDs
densities for SFs 7 to 12, with λE = 5 EDs per km2. λG is given in GWs
per km2.

where vk are the fitting parameters for SFk defined in [25].
In order to characterize more deeply the interfering devices
sets, we propose to

i) identify practically the densities of the different
SF-based interfering sets,

ii) evaluate the relative error between the simulated den-
sities and the approximated ones taken from [25], and

iii) choose between both methods (simulated or approxi-
mated) for the theoretical calculations.

b: SF-BASED EDs DENSITIES IDENTIFICATION
We identify the densities for the different SF-based EDs sets
using Monte-Carlo simulations. For this purpose, λE is set to
5 EDs per km2. The values of the GW densities vary between
λG = 0.001 GWs per km2 (i.e. sparse GW deployment) and
λG = 0.1 GWs per km2 (i.e. dense GW deployment) and the
densities λEk are calculated in a 40.000 km2 space. The con-
vergence of the densities values is reached after 3.500Monte-
Carlo rounds. The results of the various SF-based densities
λEk are given in Tab. 3.
Fig. 5 shows the relative error between the simulated ED

densities for all the SFs depicted in Tab. 3 and the approx-
imated values taken from (12) and (13). This figure clearly
shows the limits of the approximations. Indeed, for SFs 8,
9 and 10, the error reaches a maximum error rate of 12%
for all the GW deployment densities. Nevertheless, the error
rate for SF7 is higher (21%) in the case of a very sparse GW
deployment (λG = 0.001), which is mainly due to the huge
density of the SF12 EDs (as seen in the left plot of Fig. 4).
On the other hand, for dense GW deployment, the error rate is
quite high for SF11 and SF12, which is linked to the fact that
the density of low SFs is very high in these cases, as shown
in the right plot of Fig. 4.

In the following of this paper, we propose to use the values
of λEk given in Tab. 3 that are better than the ones given in [25]
to calculate the related densities λ̈Ek .

2) SIR SUCCESS PROBABILITY
Thanks to the previous results on the interference characteri-
zation, the SIR can be expressed as follows:

SIRij =
Pp(dij)gt,igr,j|hij|2

Ij
(14)

=
Pp(dij)|hij|2∑

Ek∈8̈Ek \Ei
Pp(dkj)h2kj

. (15)

The success probability relative to the SIR directly depends
on a SF-based collisions threshold. In our works, as we only
take into account the co-SF interference, we assume that the
required aggregate SIR for a successful transmission is set to
w = 1 dB, so w = 1.259 [43].
Proposition 1: The success probability relative to the SIR

is:

P[SIRij ≥ w] = LIj

(
w

Pp(dij)

)
, (16)

where LIj

(
w

Pp(dij)

)
is the Laplace transform of the random

variable Ij at w
Pp(dij) conditioned on the locations of the ED

at ei and the GW at gj, and

LIj

(
w

Pp(dij)

)
= exp

(
−

2πλ̈Ekwd
η
ij

lη−2k−7 (η − 2)
GHF

(
wdij
lηk−7

))
, (17)

whereGHF (x) is theGauss Hypergeometric function defined
as GHF (x) = 2F1

(
1, 1− 2

η
, 2− 2

η
,−x

)
.

Proof: See Appendix A.

D. SUCCESS AND COVERAGE PROBABILITIES
Proposition 2: For a given Ei that is effectively connected

to G0, the success probability of the transmission is given
in (18), as shown at the bottom of the next page.

Proof: See Appendix B.
Finally, the coverage probability is calculated with (8).

Note that the coverage probability has no closed form, and
is calculated numerically.

IV. NUMERICAL ANALYSIS
In this section, the stochastic geometry metrics are presented
through analytical results obtained from the equations given
in Section III. For more clarity, we assume that Ei is con-
nected to G0 that is located at the origin of the plane.

A. SNR SUCCESS PROBABILITY ANALYSIS
We can see in (11) that the SNR success probability (denoted
as P

[
SNRij ≥ qSFi

]
) depends on the distance between the

EDs and their GW (i.e. the SF that they use for the trans-
mission), and the interferential noise power. Fig. 6 shows the
Signal-to-Noise Ratio success probability for AWGN-only
noise (blue curve) and for AWGN plus interferential α-stable
noise (red and green curves) vs. distance di0 between the i-th
ED and its relative 0-th GW. The α-stable noise is modeled
with the values given in Tab. 1. The red curve describes
the behavior of the SNR success probability in a sub-urban
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TABLE 3. Practical λEk
densities with λE = 5 EDs per km2.

FIGURE 6. Signal-to-Noise Ratio success probability for AWGN-only noise
(blue curve) and for AWGN plus interferential α-stable noise vs. distance
di0 in km.

environment (i.e. for γ = γ1 = 1 · 10−10) while the green
curve stands for an urban environment (i.e. for γ = γ2 =

2 · 10−10).
First, in all cases, we can see that the curves decrease

with the distance di0. The curves are discontinuous at all lk
step values. These two observations are relatively obvious
in view of (11) which takes into account the allocations of
SF as a function of the distance from Ei to G0. It is obvious
that the addition of interference decreases the SNR success
probability. Indeed, this probability reaches a level of 0.8 for
di0 = 1.7 km (with SF 8) and di0 = 2.2 km (with SF 9) for an
environment without α-stable noise, for di0 = 1.6 kmwith α-
stable noise with γ = γ1 and di0 = 1.4 km for γ = γ2. Even
more explicitly, the probability is never lower than 0.2 for
an environment without α-stable noise, but reaches 0.2 from
di0 = 7.85 km with an α-stable noise with γ = γ1 and from
di0 = 6.4 km for γ = γ2 (i.e. with SF 12). Despite the
fact that the α-stable signal strength with γ2 is only twice
as strong as that with γ1, the SNR success probability is
drastically reduced. It can therefore be concluded that the

FIGURE 7. Signal-to-Interference Ratio success probability vs. distance
di0 in km. λG is given in GWs per km2.

presence of many underlying IoT networks can lead to a very
strong decrease in SNR, and therefore a decrease in the SNR
success probability, even for very short ED-GW distances.
In an very dense urban environment (in terms of IoT net-
works), this drastic decrease in the SNR success probability
will inevitably decrease the overall coverage probability for
the studied LoRa network.

B. SIR ANALYSIS
Fig. 7 shows the Signal-to-Interference Ratio success prob-
ability vs. distance d = di0 between the i-th ED and its
relative 0-th GW. The curves are obtained thanks to (16), for
λE = 5 EDs per km2 and λG = 0.005, 0.01, 0.05 (orange
curve, green curve and purple curves, respectively) GWs per
km2.
Like the SNR, the SIR is decreasing as a function of di0

for all the values of λG, in a discontinuous way. This discon-
tinuity is due to the different SIR thresholds for all the SFs.
We clearly see that for a sparse network (i.e. λG = 0.005), the
SIR coverage probability is almost continuously decreasing

H(di0) = 1−

(
1− e

−
AqSFi
Pp(di0) exp

[
−

γ 2

cos πα2

(
qSFi

Pp(di0)

)α]
LI0

(
w

Pp(di0)

))

× exp
(
−2πλG

∫
∞

di0
e−

AqSFi
Pp(x) exp

[
−

γ 2

cos πα2

(
qSFi

Pp(dij)

)α]
LIj

(
w

Pp(x)

)
xdx

)
. (18)
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until a value of 0.4 for di0 = 5 km, and then reaches a value
close to 0. Both this continuity and the value of 0 are mainly
due to the densities of EDs for each SF. Indeed, in a sparse
network, the densities λEk are very small for k ∈ [7; 11]
(which leads to a small amount of co-SF interference for SF
7 to SF 11) and very big (i.e. close to λE ) for SF 12 (which
leads to a huge amount of interference). On the contrary, for
a dense network, the density of EDs that are using SF 12
(i.e. λE12 ) is much lower than in a sparse network. Thus, the
number of co-SF interferers with SF 12 (i.e. for a distance
between the ED and the GWgreater than 5 km) is smaller, and
then the SIR coverage probability is better than for a sparse
network. Nevertheless, as the GWs are closer one to each
other compared with a sparse network, the number of EDs
that share the same SF (from SF 7 to SF 11) is higher, which
leads to a worse SIR coverage probability for di0 ∈ [0, 5] km.

C. SUCCESS PROBABILITY
Figs. 8a and 8b show the success probability H (ei) vs. the
distance between the ED transmitter and its GW receiver
with AWGN+α-stable noise with γ = γ1 and γ = γ2,
respectively. The curves are taken from (18) for λE = 5 EDs
per km2 and λG = 0.005, 0.01, 0.05 GWs per km2 (in blue,
orange, green, yellow,purple and red, respectively). The solid
and the dotted lines represent the success probability with
AWGN noise only, and the success probability for AWGN
noise + interferential α-stable noise, respectively.

As shown in Figs. 8a and 8b, the success probability is null
for di0 > 5 km in sparse and moderately dense networks.
We have seen in the previous sections that for these GW
deployments, the number of EDs using SF 12 is smaller than
for other SFs. As the number of SF 12 EDs is very small, the
integral taken into account in (18) is almost null.

For all the noises, the success probability follows curves
with steps that correspond to the different SFs distances.
This is due to both the SNR and SIR success probabilities
explained in (11) and (16). Nevertheless, for an AWGN noise,
the probability in a dense network is almost constant for low
values of SFs, which is due to the fact that the number of EDs
with low SFs is quite small compared to the ones in high SFs
(and thus the SIR is high, as shown in Fig. 7).

With AWGN noise, the difference in success probability is
becoming very high between dense and (moderately) sparse
networks from SF 8. Indeed, the value of 0.8 is reached at
di0 = 1.6 km (SF 8) in (moderately) sparse networks, and at
di0 = 6.2 km for dense networks (SF 12). Such a difference
denotes inevitably the need to increase the GW deployment
density to reach a better success probability. Moreover, the
maximum difference between dense and (moderately) sparse
networks is reached at di0 = 5.1 km, for a value of 0.93.

In Fig. 8a, we can see the effect of underlying IoT net-
works. Indeed, the addition of α-stable noise decreases the
success probability in all the cases. This decrease is directly
linked with the SNR success probability depicted in Fig. 6.
For sparse and moderatly dense networks, the difference
between LoRa-only network (i.e. with only AWGN) and

LoRa+underlying IoT network is very thin for SFs 7, 8 and
12. However, for SFs 9 to 11, this difference is getting bigger,
with a maximum difference of 0.06 for di0 = 3.95 km in a
sparse network, and 0.04 for di0 = 3.98 km in a moderately
dense network. Thus, we can say that the impact of underlying
IoT networks on a sparse or moderately dense LoRa network
is relatively weak in the case of a sub-urban environment
(i.e. with γ = γ1). On the contrary, in the case of an urban
environment, i.e. with γ = γ2, the impact of underlying
networks is way bigger, as seen in Fig. 8b. Indeed, the success
probability is reaching a value of 0.19 for di0 = 1.97 km
(SF 8) (whereas it reaches only 0.06 for the same di0). The
maximum difference between AWGN and AWGN+α-stable
noise is 0.24 for di0 = 2.9 km (SF 9) in a sparse network,
and 0.2 for the same value of di0 in a moderately dense
network. We can conclude that the addition of underlying IoT
networks in an urban environment has a big impact on the
success probability of a LoRa communication for a sparse or
moderately dense GW deployment.

For a dense GW deployment, the main differences between
AWGN and AWGN+α-stable noise are quite similar. In a
sub-urban environment, the difference for SFs from 7 to
11 are quite thin. This difference reaches a value of 0.09 for
di0 = 4.96 km, which is acceptable. For SF 12 (recall
that in a dense network, the number of EDs using SF 12 is
very small), this difference reaches a value of 0.2 for di0 =
7.8 km. Then, the addition of underlying IoT networks has
a relatively big impact on the LoRa network for high SFs in
this configuration. Nevertheless, as the number of EDs using
high SFs is very negligible, we can say that alpha-stable noise
impact is moderate. On the contrary, as shown in Fig. 8b, the
impact of underlying IoT networks in an urban environment
is big. Indeed, even for low SFs, the success probability
decreases drastically (for SF8, at di0 = 1.9 km, H(ei) =
0.98 with AWGN noise, and H(ei) = 0.86 with AWGN+α-
stable noise). The difference beween the two values is even
bigger for higher SFs, reaching a difference of 0.32 for di0 =
4.95 km, i.e. for SF 11. For SF 12, the maximum difference
is reached for di0 = 7 km with a value of 0.5. However,
as explained previously, the number of EDs using SF 12 is
very small, and thus, even if this difference is high, the impact
on the overall LoRa link success probability is quite moder-
ate. We can conclude that in an urban environment, i.e. with
γ = γ2, the impact of underlying IoT networks on a LoRa
link is severe in the case of a dense GW deployment. This
impact is high for both high SFs (that are however seldom in
use), and for low SFs.

Thus, we can conclude that underlying uncoordinated IoT
networks have a big impact on the success probability of a
LoRa communication for a sparse or a dense GW deployment
and will undoubtedly have an effect on the overall LoRa
coverage probability.

D. COVERAGE PROBABILITY
Fig. 9 shows the coverage probability C vs. density of GWs
over density of EDs. The curves are taken from (8) for λE = 5
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FIGURE 8. Success probability H(ei ) vs. distance di0 in km with γ1 (a) and γ2 (b). λG is given in GWs per km2.

FIGURE 9. Coverage probability C vs. density of GWs (in GWs per km2) for
λE = 5 EDs per km2. The first curve (AWGN) considers both LoRaWAN
internal interference and AWGN noise. The other two curves (AWGN +

α-stable noise γ1 and γ2) consider internal LoRaWAN network
interference, AWGN noise and external interference (modeled by α-stable
distributions) in the case of a moderate interference scenario (γ1), and a
dense interference scenario (γ2). Note that external interference modeled
by alpha-stable distributions does not affect SF allocation.

EDs per km2. The blue, red and orange curves represent
the coverage probabilities for AWGN noise only, AWGN +
interferential α-stable noise with γ = γ1 and AWGN +
interferential α-stable noise with γ = γ2, respectively.
We can see that for all the cases (AWGN and

AWGN+α-stable noise), the coverage probability increases
along the density of the gateways λG. The difference
between the AWGN and AWGN+α-stable with γ1 is quite
thin for all the gateways deployment densities, with a maxi-
mumdifference of 0.04. Note that theα-stable noisewith γ1 is
quite small. Thus, we consider a small number of underlying
IoT networks. Nevertheless, with a bigger α-stable noise (i.e.
with γ2), the difference is more significant. Indeed, a differ-
ence of 0.2 in the coverage probability is reached between the
AWGN and the AWGN+α-stable noise. Moreover, the cov-

erage probability reaches the value of 1 when λG = 0.1. Note
that for this density, the number of EDs that use high SFs is
very small. Thus, the integral in (8) takes into account almost
only the very small values of di0. Indeed, when λG = 0.1, the
density of GW is very high, as seen in Fig. 4. The calculation
of the probability of coverage for a GWgiven by this equation
is an integral which theoretically spreads over R+. However,
the function fd (x) takes λG into consideration. This function
involves a real integral that occupies only the GW’s coverage
radius. Thus, the di0 integration variable is very small. These
results show clearly that in an urban environment, i.e. in an
area where the number of underlying IoT networks is high,
the coverage probability is largely decreased.

Fig. 9 also shows that, for the considered conditions, the
coverage probability reaches the value C = 0.95 when
λG = 0.048 for an environment without any underlying IoT
network (i.e. with AWGN only). In an environment with a
little amount of underlying IoT network (γ1), this value of
the coverage probability is reached for λG = 0.071. Finally,
for a dense deployment of uncoordinated IoT networks (i.e.
with AWGN and α-stable noise with γ2), C = 0.95 when
λG = 0.093, which is almost twice as big as for the first
studied case. In this specific scenario, we can conclude that
in order to reach a decent coverage probability (i.e. C ≥ 0.95)
in an urban environment with a big amount of underlying IoT
networks, the density of the gateways must be almost doubled
compared to an environment where there is no uncoordinated
network.

V. CONCLUSION AND FUTURE WORKS
In this paper, we have introduced interfering underlying IoT
networks in a LoRa network. The interfering networks have
been modeled by α-stable distributions, and the coverage
probability for various gateways densities has been calcu-
lated thanks to stochastic geometry-based analytic calcula-
tions. The theoretical calculations of the SNR, SIR, success
probability and coverage probability for a LoRa link with
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underlying unccordinated IoT networks is the main contribu-
tion of this work. Thanks to numerical analysis based on the
theoretical results and on the implementation of a real path
loss model that has been taken from in-situ measurements,
we have proven that the presence of underlying networks sur-
rounding a LoRa network could induce drastic decreases in
the coverage probability of the overall studied network. The
coverage probability decrease is particularly high for sparse
and moderately dense LoRa networks (in terms of gateway
deployment), with a maximum difference of 0.2 compared to
a network with no neighboring network. All the observations
in this work have led us to the conclusion that for an urban
environment, i.e. in a space with a huge amount of surround-
ing uncoordinated IoT networks, the GW deployment should
be doubled to reach a decent coverage probability. The chal-
lenge of communications of EDs with multiple GWs could
increase the coverage probability. In future works, it could be
interesting to study other spreading factor allocation strate-
gies that consider the channel interference [45], that choose

the least solicited spreading factors [46], or that use tools from
matching theory to maximize the minimal short-term average
user rates [47]. These strategies could possibly increase the
coverage probability of the overall LoRa network. Another
perspective could be linked with the density of end devices.
Indeed, in this work, we have dealt with the coverage proba-
bility for a moderately dense end devices density. It could be
interesting to analyze the coverage probability for sparse and
very dense networks.

APPENDIX A
PROOF OF PROPOSITION 1
The success probability relative to the SIR corresponds to the
probability that the ratio between the useful signal and the
aggregated interference is greater than the value w. We con-
sider that the studied i-th ED and j-th GW communicate
via the SF k . Then, in (19), as shown at the bottom of the
page, (a) comes from the definition of the SIR relative to the
aggregated interference Ij at Gj. (b) comes from the fact that

P[SIRij ≥ w]
(a)
= EIj

[
P
[
|hij|2 ≥

wIj
Pp(dij)

| Ij
]]

(b)
= EIj

[
e
−

wIj
Pp(dij)

]
(c)
= E|hmj|2,dmj

[
e
−

w
p(dij)

∑
m>0 4mk |hmj|

2p(dmj)
]

(d)
= Edmj

∏
m≥1

E|hmj|2

e−w4mk |hmj|2 dηij
dηmj


(e)
= Edmj

∏
m≥1

1

1+ w4mk
dηij
dηmj


(f )
= exp

− ∫R2

1−
1

1+ w
dηij
dηmj

 2πξλEkdmjddmj


(g)
= exp

−2πwξλEk ∫ +∞
lk−7


dηij
dηmj

1+ w
dηij
dηmj

 dmjddmj


(h)
= exp

(
−

2πwλ̈Ek
lη−2k−7 (η − 2)

2F1

(
1, 1−

2
η
, 2−

2
η
,−

wdij
lηk−7

))
. (19)

H(di0)
(a)
≥ 1−

∏
j

(1− P[SNRij ≥ qSFi ]P[SIRij ≥ w])

(b)
≥ 1− (1− P[SNRi0 ≥ qSFi ]P[SIRi0 ≥ w])× Edij

∏
j≥1

(1− P[SNRij ≥ qSFi |dij]P[SIRij ≥ w|dij])

 . (20)
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hij ∼ Rayleigh
(
1
2

)
and then h2ij ∼ Exp (1). (c) is derived

from the characterization of the interference. Note that 4mk
is a unit indicator, i.e. if the m-th ED uses the SF k , it equals
1, otherwise it is null. In other words, 4mk indicates if the m-
th ED is an interferer (4mk = 1) to the useful signal, or not
(4mk = 0). It can also be noted that we take into account
all the EDs in the whole infinite R2 space (

∑
m>0, as we

consider that the useful link goes from the 0-th ED to the j-
th GW). (d) comes from the fact that the channel fadings are
assumed independent. We also take into account the fact that
p(dkj)
p(dij)

=
dηij
dηkj
. (e) comes from the fact that E|h|2

[
e−x|h|

2
]
=

1
1+x . (f) comes from the probability generating functional of
an inhomogeneous PPP. (g) comes from the change of the
bounds of the integral. (h) is derived from the definition of
the Gauss hypergeometric function. This last equality leads
to (16) in Proposition 1.

APPENDIX B
PROOF OF PROPOSITION 2
The general success probability has been given in (7), and cor-
responds to the probability that a given Ei can be connected
to any GW Gj:

H(dij) = P

⋃
j

{(SNRij ≥ qSFi )
⋂

(SIRij ≥ w)}

 .
Then, the success probability of the transmission for a given
Ei that is connected to Gj is equal to the complement proba-
bility of this transmission not decoded by the other GWs:

H(dij) = 1− P

⋂
j

(SNRij ≥ qSFi )
⋂

(SIRij ≥ w)

 .
We assume that we take into account only the connections to
the target GWG0, then the success probability can be derived
as given in (20), where (a) comes from the fact that we assume
an independence between the SNR and the SIR for all the
GWs and EDs, which leads to the lower bound inequality.
In (b), we have decomposed the product in (a) with j = 0 and
j ≥ 1. The success probability given in (18) can be finally
found after inserting the analytical values of the probabilities
linked to the SNRs and the SIRs given in (11) and (16).
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