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Abstract. Adopting a general framework to faithfully represent uncertainty, such
as belief function theory, usually comes at a cost. In many real-life applications,
we are constrained to handle mass functions that have too many focal elements.
Fortunately, one can resort to approximation techniques to bypass this issue. In
this paper, we extend the classical approximation techniques, which are mainly
specificity-based, to other belief function relations such as lattice dominance.
This allows to overcome the limits of classical techniques in some applications.
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1 Introduction

Belief function theory [15] is a rich and powerful uncertainty reasoning framework as
it extends both the set and probability representations of uncertainty. Despite its suc-
cessful application in many real-life problems, it has been criticized for its high com-
putational complexity. Several techniques have been proposed to simplify the computa-
tions pertaining to this theory, either using exact [12] or approximate methods. We are
particularly interested in the latter. Approximations can be computed by Monte-Carlo
simulations [20], or by replacing the original mass function by a probability measure
or a possibilistic one [19, 7]. Other approaches can be used where mass functions are
combined on a coarsened frame of discernment [3] or where the number of focal sets is
reduced [18, 1, 13, 8, 14, 2]. We draw a particular attention to this last family of meth-
ods. Besides simplicity, a good approximation has to be consistent and close enough to
the original mass function [8]. Closeness is typically quantified by a distance measure,
whereas consistency is unanimously based on comparing the specificity of the informa-
tive content of the original mass function and its approximation. Recently, Destercke
and al. [4] introduced an approach that extends any set relation to belief functions. This
approach generalizes the notion of comparison and allows, along with comparing the
informative content of beliefs in terms of specificity, to establish other relations be-
tween them such as dominance. In this paper, we propose to extend this approach to
approximation methods that reduce the number of focal sets of mass functions. We are
motivated by the deficiency of classical approximation techniques in some applications.
This deficiency arises from the use of approximate beliefs that are more or less specific
than the original ones whilst the application requires rather to choose beliefs that are,
for instance, dominant. We will develop this idea later in the paper.
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The remainder of this paper is organized as follows. Section 2 gives a quick re-
minder on belief functions and set relations. Section 3 describes the notion of compari-
son in belief function theory. The proposed generalized approximation and a particular
case study are presented in section 4. We conclude the paper in Section 5.

2 Basic definitions

In this section, we provide some basic definitions on belief functions and set relations
that are required in our developments.

2.1 Theory of belief functions

Let x be an uncertain variable defined on finite set of values X = {x1, x2, . . . , xn}
called the frame of discernment. The available knowledge about x is represented by a
mass function mX : 2X 7→ [0, 1] s.t.

∑
A⊆X m

X (A) = 1 and mX (∅) = 0. mX (A)
quantifies the part of our belief that x ∈ A without providing any further information
about x ∈ A′ ⊂ A. Each subset A ⊆ X such that mX (A) > 0 is called focal set or
focal element of mX . Other knowledge representations can be obtained from mX , such
as the belief BelX and the plausibility PlX function, defined for all A ⊆ X :

BelX (A) =
∑
∅6=B⊆A

mX (B), P lX (A) =
∑

B∩A6=∅

mX (B). (1)

BelX is the amount of evidence that supports x ∈ A and PlX is interpreted as the
amount of evidence that is consistent with x ∈ A.

2.2 Set relations

A relation R between subsets of X is a subset R ⊆ 2X × 2X that specifies which pair
of subsets are related to each other [4]. Let A and B be two subsets of X . We denote by
ARB whenever (A,B) ∈ R. A relation may have several properties such as: reflexivity
(ARA, ∀A ⊆ X ), transitivity (ARB and BRC ⇒ ARC, with C ⊆ X ), antisymmetry
(ARB ∧ BRA ⇒ A = B, ∀A,B ⊆ X ), etc. Note that it is also possible to define
more complex relations by combining those properties. For instance, the set-inclusion
relation (ARB ⇔ A ⊆ B) is reflexive, transitive and antisymmetric [4].

3 Comparing belief structures

According to the Least Commitment Principle [16], if we have to choose among multi-
ple mass functions compatible with a set of constraints, the most appropriate one is the
least informative. To use this principle, one has to define tools to compare the content
of the available mass functions. This is commonly done via the notion of specializa-
tion [6]. Given two mass functions mX1 and mX2 defined on X , mX1 is said to be at
least as informative (specific) as mX2 , which we denote by mX1 v mX2 , if and only if
mX1 can be obtained from mX2 by sharing each mass mX2 (B) among subsets A ⊆ B.
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Formally, there exists a non-negative square matrix, known as the specialization matrix
S = [S(A,B)], A,B ∈ 2X , verifying the conditions below:∑

A⊆X

S(A,B) = 1, ∀B ⊆ X , (2)

S(A,B) > 0⇒ A ⊆ B, ∀A,B ⊆ X , (3)

mX1 (A) =
∑
B⊆X

S(A,B)mX2 (B), ∀A ⊆ X . (4)

S(A,B) ∈ [0, 1] is the proportion of mX2 (B) that flows into A ⊆ B. Note that if
mX1 v mX2 then [6]:

[BelX1 , P l
X
1 ] ⊆ [BelX2 , P l

X
2 ]. (5)

The recent work of Destercke and al. [4] highlighted the relevance of investigating
other links, besides specificity, between mass functions, particularly those extending
set relations such as equivalence or partial/total order. The authors introduced a more
general definition of the comparison of belief function as follows:

Definition 1. Let mX1 and mX2 be two mass functions and let R be a relation between
subsets of X . We say that mX1 R̃mX2 if there is a left stochastic matrix S, such that
∀A,B ⊆ X .

mX1 (A) =
∑
B⊆X

S(A,B)mX2 (B), (6)

(
S(A,B) > 0

)
∧
(
mX2 (B) > 0

)
⇒ ARB. (7)

S(A,B) is the proportion of mX2 (B) transferred to A, such that ARB [4].
Note that when R̃ is replaced by v and R by ⊆ in (7), we obtain the specialization
relation defined earlier. Furthermore, when X is ordered, it is also possible to recover
another relation that was studied in [9], by comparing two subsets A,B ⊆ X defined
as A = {a, . . . , a} (a ≤ a) and B = {b, . . . , b} (b ≤ b) in terms of lattice dominance
[4]. We say then that mX1 is at least as small as mX2 , which we denote by mX1 � mX2 ,
with R̃ being replaced by � and R replaced by ≤d where A ≤d B if a ≤ b and a ≤ b.
The following property holds [9]:

mX1 � mX2 ⇒ [BelX2 , P l
X
2 ] ≤d [BelX1 , P l

X
1 ]. (8)

4 Generalization of belief functions approximation

Usually, a mass functionm is approximated by another mass functionm′ that is at most
as specific as m, i.e., m v m′. Assume that we want to approximate m by reducing the
number of its focal sets.m′ can be built fromm by preserving the most significant focal
sets, i.e., those with high mass values, and by aggregating or removing the redundant or
the least significant ones as in [13]. It is also possible to reduce the number of focal sets
iteratively as in [8, 14, 2]. These latter methods help to trade-off between the quality and
the computational time required to determine m′.
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In this section, we extend the previously stated techniques to other possible rela-
tions R̃ between m and m′. Our motivation arises from the fact that specificity-based
approximations may be inappropriate in some applications, such as in the combinato-
rial optimization problem that we studied in [17]. Specifically, we proposed in [17] a
belief-constrained programming approach inspired from [9] to model the vehicle rout-
ing problem with time windows [11] and evidential service and travel times. In this
kind of problems, each vehicle is compelled to start the service at any customer within
his time availability interval (window). Arrivals after the closure of time windows are
therefore forbidden. To fulfill such particular constraints, given the evidential time pa-
rameters, confidence levels are imposed on the belief and the plausibility functions of
the arrival times which are combination of service and travel times. For instance, if x
is the variable representing the arrival time at a given customer, C is the closure of his
time window and α, β ∈ [0, 1] (α ≤ β) are two confidence levels, the time constraints
for this customer can be expressed as:

Bel(x ≤ C) ≥ α, P l(x ≤ C) ≥ β. (9)

The use of belief functions adds more complexity to the problem that is already NP-
hard. The problem involves indeed costly mass function combinations due to large
numbers of focal sets. Consequently, we turned to classical approximation methods
to overcome this issue. Nevertheless, we noticed that replacing the original service and
travel time mass functions by less specific ones impacts inappropriately the set of fea-
sible solutions, i.e., solutions that satisfy all the problem constraints. Indeed, a solution
may be feasible when using approximations while it is rejected when using the original
mass functions. Take for instance the variable x defined earlier, and suppose that uncer-
tainty about the value of x is represented by the mass function: m({15, 16}) = 0.9,
m({16, 17}) = 0.05, m({16.30, 17.30}) = 0.05. Suppose that C = 16 and that
α = 0.9, β = 1. Using (1), we have Bel(x ≤ 16) = 0.9 = α and Pl(x ≤ 16) =
0.95 < β. The confidence level β is not met, thus the customer can not be served. Sup-
pose now that uncertainty about x is represented using an approximation m′ such that
m v m′. m′ is given by m′({15, 16}) = 0.9, m′({16, 16.30, 17, 17.30}) = 0.1. We
have Bel′(x ≤ 16) = 0.9 = α and Pl′(x ≤ 16) = 1 = β. Note that Bel′ = Bel and
Pl′ > Pl, this is due to the relation in (5). In this case, both of the confidence levels are
verified and the customer in question can be served. Such a result is quite contradictory
with the information we had originally. Hence, it is worthwhile to introduce a more
general approach so that one can properly approximate a mass function by another one
that is more/less specific or smaller/greater or equivalent, etc, to span a broad range of
real-life applications.

4.1 Formalization

Building on the formal definition of approximations given in [2], we can introduce a
generalized definition of an approximation as follows:

Definition 2. Let P = {P1, P2, . . . , PK} be a partition of the set Nn = {1, . . . , n},
i.e., Pk ∩ Pl = ∅ and

⋃K
k=1Pk = Nn and let m be a mass function with focal elements



An extension of specificity-based approximations to other belief function relations 5

F(m) = {A1, A2, . . . , An} such that m(Ai) ≥ m(Ai+1),∀i = 1, . . . , n − 1. Let m′

be another mass function with F(m′) = {B1, . . . , BK} its focal sets verifying for each
k = 1, . . . ,K :

AiRBk,∀i ∈ Pk, (10)

m′(Bk) =
∑
i∈Pk

m(Ai). (11)

m′ is called R̃-approximation of m.

Definition 2 states that for a given relation R̃, any mass function m′ with fewer focal
sets and that is related to m by R̃, i.e., mR̃m′, is an approximation of m. Note that
m and m′ verify the conditions of Definition 1 as it is possible, for any Pk ∈ P (k =
1, . . . ,K), to retrieve m(Ai) from m′(Bk) by transferring a proportion S(Ai, Bk) > 0
of the mass m′(Bk) > 0 from the subset Bk to the subset Ai such that AiRBk, with :

S(Ai, Bk) =
m(Ai)

m′(Bk)
=

m(Ai)∑
j∈Pk

m(Aj)
(12)

Particular cases: Definition 2 covers some well known cases that were already studied
in the literature. For instance, if R is an outer-inclusion relation, i.e., Ai ⊆ Bk, with
Bk =

⋃
i∈Pk

Ai, then R̃ = v, that is m v m′, which corresponds to the outer approx-
imations of the literature [2, 14, 8, 13].
We can also identify another sub-case when R is an inner-inclusion relation, i.e., Ai ⊇
Bk, where Bk =

⋂
i∈Pk

Ai. In this case R̃ = w that is m w m′, which is the inner
approximation of Denœux [2].
Furthermore, if an order is established on X and R̃ = �, it is also possible to approx-
imate m by a mass function m′ such that m � m′, where � is the generalized lattice
dominance relation. This new approximation is detailed in Section 4.2.

To use the generalized approximation, one can for instance keep the first K − 1
most significant focal sets of m and replace the remaining focal sets by a set B such
that AiRB, ∀i = K, . . . , n. This is the generalization of the summarization [13]. How-
ever, to provide a good quality approximation, we propose to combine the summariza-
tion with the hierarchical clustering procedure introduced in [2]. The main idea of our
procedure is to preserve the first (most significant) p focal sets (p < K < n), then
reduce iteratively, starting from p+1, the number of the remaining focal sets, i.e., those
with relatively small masses. At each iteration, a similarity measure or a distance is
computed between each pair of focal sets Ai and Aj , then the most similar/nearest pair
(Ai∗ , Aj∗ ) is replaced by a set Biter, such that Ai∗RBiter and Aj∗RBiter with Biter

being similar toAi∗ andAj∗ , and wherem(Biter) = m(Ai∗)+m(Aj∗). The process is
repeated until we reach size K. The pseudo-code of the approach is explained in Algo-
rithm 1 which runs in a time complexity ofO(n3). The worst case number of iterations
in the repeat loop is (n − 1) and the most expensive instruction inside this loop is the
update of the similarity matrix O(n2), this yields a total complexity of O(n3).
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Algorithm 1 The generalized approximation procedure O(n3 )

Require: a mass function m = {Ai,m(Ai), i = 1, n}, two integers p,K : p < K < n, a relation R, and a
similarity measure S.

Ensure: a mass function m′ with K focal sets.
1: Initialization: m′ ← ∅;
2: Add the most significant p focal sets to m′ and remove them from m;
3: Compute the similarity matrix M s.t M(i, j)← S(Ai, Aj) ∀i, j = 1, n− p;
4: iter ← n− p;
5: repeat
6: Select the most similar pair (Ai∗ , Aj∗ );
7: Add Biter to m s.t Ai∗RBiter and Aj∗RBiter ;
8: m(Biter)← m(Ai∗ ) + m(Aj∗ );
9: Remove (Ai∗ , Aj∗ ) from m;
10: Update the similarity matrix M ;
11: iter ← iter − 1;
12: until (iter = K − p);
13: Add all the focal sets of m to m′;

4.2 A lattice dominance-based approximation

This section studies a particular case of the general approximation where R̃ =�. In
other words, we want to approximate m with a mass function m′ that is greater than
m according to lattice dominance. Note that property (8) holds with this partial order
relation.

Consider an ordered set X = {x1, . . . , xn} (x1 ≤ . . . ≤ xn) and a mass func-
tion m defined on X having the following focal sets F(m) = {A1, . . . , An} s.t Ai =
{ai, . . . , ai}(ai ≤ ai), which we denote by Jai, aiK, and wherem(Ai) ≥ m(Ai+1),∀i =
1, . . . , n − 1. Using Definition 2, we can build a lattice dominance-based approxima-
tion (�-approximation) m′ of m such that m � m′ and where focal sets of m′ are the
subsets Bk = Jbk, bkK = {bk, . . . , bk}, with bk ≤ bk, and verifying for each i ∈ Pk and
k = 1, . . . ,K , Ai ≤d Bk, i.e., ai ≤ bk and ai ≤ bk.
To illustrate this approximation, we use Algorithm 1 with the lattice dominance relation

≤d and Jaccard’s similarity measure given by: SJaccard(Ai, Aj) =
|Ai ∩Aj |
|Ai ∪Aj |

[10]. The

pair of the most similar focal sets (Ai∗ , Aj∗) is replaced by the subset Biter that is the
nearest to Ai∗ and Aj∗ and which is defined as follows:

Biter = Jmax(ai∗ , aj∗),max(ai∗ , aj∗)K (13)

The process is repeated until m′ reaches size K. Note that the choice of an adequate
measure depends on the relation that is used as well as the application in hand. Jaccard’s
measure can be replaced by any other similarity measure such as Dice’s measure [5] or
others. Moreover, if m has disjoint focal sets, one can use a geometric distance [21]
instead to capture the nearest focal sets.

Example 1. Let us use Algorithm 1 to build a�-approximation for the mass functionm
defined such that:F(m) =

{
A1 = J1, 3K, A2 = J2, 7K, A3 = J3, 9K, A4 = J1, 6K, A5 =

J6, 8K, A6 = J2, 4K
}

with m(A1) = 0.4,m(A2) = 0.3,m(A3) = 0.1,m(A4) =
0.1,m(A5) = 0.05,m(A6) = 0.05. Also let K = 4 and p = 2.
∗ Step 1: Add A1 and A2 to m′, then remove them from m. In this case, m becomes:
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F(m) =
{
A3 = J3, 9K, A4 = J1, 6K, A5 = J6, 8K, A6 = J2, 4K

}
with m(A3) =

0.1,m(A4) = 0.1,m(A5) = 0.05,m(A6) = 0.05.
∗ Step 2: Compute the similarity matrix M for m, iter = n− p = 4.

F. sets A3 A4 A5 A6?

A3 - 0.44 0.43 0.25
A4? - - 0.13 0.50
A5 - - - 0
A6 - - - -

The most similar pair of focal sets (A4, A6) is replaced, in m, by the subset Biter =B4

= J2, 6K that is computed using equation (13), and m(B4) = m(A4) +m(A6) = 0.15.
Hence m becomes: F(m) =

{
A3 = J3, 9K, B4 = J2, 6K, A5 = J6, 8K

}
with m(A3) =

0.1, m(B4) = 0.15 and m(A5) = 0.05.
∗ Step 3: Update the similarity matrix M , iter = iter − 1 = 3.

F. sets A3 B4? A5

A3? - 0.50 0.43
B4 - - 0.14
A5 - - -

The pair (A3, B4) is replaced, in m, by the subset Biter = B3 = J3, 9K, given (13), and
m(B3) = m(A3) +m(B4) = 0.25. Hence m becomes: F(m) =

{
B3 = J3, 9K, A5 =

J6, 8K
}

, with m(B3) = 0.25 and m(A5) = 0.05.
∗ Step 4: iter = iter − 1 = 2 =K − p: Stop and add B3 and A5 to m′.
m′ is the �-approximation of m where F(m′) =

{
A1 = J1, 3K, A2 = J2, 7K, B3 =

J3, 9K, A5 = J6, 8K
}

, with m′(A1) = 0.4, m′(A2) = 0.3, m′(B3) = 0.25 and
m′(A5) = 0.05.

4.3 Preliminary tests:

The lattice dominance-based approximation method was incorporated within a meta-
heuristic framework to accelerate the solution scheme of the combinatorial optimization
problem studied in [17], while preventing the increase of the set of feasible solutions.
Tests were conducted on an adaptation of medium to large-sized literature instances.
The details about the solution scheme as well as the instances adaptation are explained
in [17]. Table 1 presents average cost results for instances Inst of 50 customers, after
performing 15 executions per instance. Note that the meta-heuristic algorithm stops
after 50 iterations without improvement. Columns 2 (resp. 4) and 3 (resp. 5) show costs
C (resp. C�) without (resp. with) �-approximation and the corresponding execution
time CPU(s) (resp. CPU�(s)) recorded in seconds. The percentage of increase in
solution cost induced by �-approximation is displayed in column 6. Average costs C∗�
of solutions using �-approximation for the same amount of time as in column 3 are
presented in column 7. The experiments show a significant decrease in CPU�(s) when
using the approximation, this is expected since the number of focal sets is reduced.
Moreover, the increase in cost values when using approximation is around 7.18% which
is quite acceptable given the gain in time. In addition, the highlighted costs in column
7, confirm that incorporating the �-approximation in the meta-heuristic scheme helps
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to enhance the solution quality. Specifically, providing fast solutions helps the meta-
heuristic engine to explore, rapidly, further regions of the set of feasible solutions that
might contain better quality solutions. Note that we chose to present results on medium-
sized instances to highlight the advantage of using the proposed approximation as we
were not even able to get results without approximation for large scale instances.

Table 1: Comparing results with and without ≺-approximation.

Inst C CPU(s) C� CPU�(s) Inc(%) C∗�

C102 7549.88 260.70 7770.40 26.20 2.92 7238.41
C104 6052.45 668.50 6391.06 48.77 5.59 6421.58
C204 3580.75 356.71 3671.60 61.00 2.55 3474.26
R104 10479.60 970.83 11947.63 27.50 9.55 11573.78
R204 4026.19 742.13 4509.74 66.50 12.01 3842.19
R207 5246.60 299.40 5484.06 44.80 4.52 4294.79
R208 3399.43 1512.27 3734.58 70.50 9.85 3411.02

RC204 4368.41 494.40 4827.95 60.10 10.51 3874.12

5 Conclusions and perspectives

We proposed a general approach to approximate belief functions. This approach ben-
efits from the generalization of set relations to belief functions and offers to simplify
a mass function given any possible relation with its approximation. The presented ap-
proach includes some well known sub-cases, such that the inner and outer approxima-
tions of the literature. A lattice dominance-based case study was detailed and applied to
a combinatorial optimization problem to accelerate the solution search. In future work,
we will investigate other possible relations as well as the definition of other similarity
measures that are problem-related to get more efficient results. An extension to approx-
imations that are concerned with reducing the size of the frame of discernment is also
an interesting perspective.
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