
HAL Id: hal-03520318
https://hal.science/hal-03520318v1

Submitted on 10 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A note about entropy and inconsistency in evidence
theory

Anne-Laure Jousselme, Frédéric Pichon, Nadia Ben Abdallah, Sébastien
Destercke

To cite this version:
Anne-Laure Jousselme, Frédéric Pichon, Nadia Ben Abdallah, Sébastien Destercke. A note about en-
tropy and inconsistency in evidence theory. 6th International Conference on Belief Functions (BELIEF
2021), Oct 2021, Shanghai, China. pp.215-223, �10.1007/978-3-030-88601-1_22�. �hal-03520318�

https://hal.science/hal-03520318v1
https://hal.archives-ouvertes.fr


A note about entropy and inconsistency in
evidence theory

Anne-Laure Jousselme1, Frédéric Pichon2, Nadia Ben Abdallah3, and
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Abstract. Information content is classically measured by entropy mea-
sures in probability theory, that can be interpreted as a measure of in-
ternal inconsistency of a probability distribution. While extensions of
Shannon entropy have been proposed for quantifying information con-
tent of a belief function, other trends have been followed which rather
focus on the notion of consistency between sets. Relying on previous gen-
eral entropy measures of probability, we propose in this paper to establish
some links between the different measures of internal inconsistency of a
belief functions. We propose a general formulation which encompasses
inconsistency measures derived from Shannon entropy as well as those
derived from the N -consistency family of measures.
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1 Introduction

In a multi-intelligence context, information generally arises from different sys-
tems (or services), each having their own local representation and underlying
mathematical formalism. The choice of this formalism is usually driven by the
nature of data or information to be handled. For instance, numerical data (when
available in large volume) usually summarize in probabilistic models, while hu-
man judgments are best handled by logical approaches managing knowledge
bases. The underlying mathematical setting constrains not only the internal
reasoning of those services, but also their output which includes some meta-
information such as the information content or information value. In decision
support, conflict or inconsistency measures play an essential role in detecting
sources’ defect or intentional deception, but also in quantifying information cred-
ibility when no ground truth is available. In probability theory, measuring con-
flict goes back to Shannon entropy [16] which quantifies an inverse notion of
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the information contained in a probability distribution, i.e. a notion of internal
inconsistency (e.g., [10]). Indeed, the state of maximum inconsistency is reached
by the uniform distribution while the state of minimal inconsistency is reached
whenever an element is assigned a probability of 1. In propositional logic, a belief
base (a set of formulas) is inconsistent if it entails the contradiction5 [6]. In ev-
idence theory, which captures both probabilistic and logical notions, measuring
inconsistency of belief functions has thus naturally followed two main trends: on
the one hand, some measures extend Shannon entropy (e.g., [21, 5, 9, 8, 7]) and
on the other hand inconsistency is measured through the inconsistency between
sets (e.g., [4, 3, 13]).

We propose in this paper to establish some links between the different ap-
proaches to inconsistency measurement. In Section 2, we introduce basic concepts
and notations of belief functions together with two families of measures of en-
tropy for probabilities. In Section 3 we survey the different trends followed and
propose a general formulation, and highlight the main elementary constructs
leading to inconsistency measures. In Section 4, after revealing the “hidden”
mass of the empty set within Shannon entropy we propose a general formula-
tion which encompasses most of classical existing measures across the different
approaches. We conclude in Section 5 on perspectives and future work.

2 Background and notations

2.1 Belief functions

We consider in this paper the singular interpretation of belief functions as devel-
oped by Shafer [15] and Smets and Kennes [17]. Belief functions are thus used
to represent and handle subjective uncertainty (or beliefs) of an agent about the
actual state of the world. Let us denote by X an uncertain variable defined on
frame of discernment X = {x1, . . . , xK} representing the possible values (states)
for that variable. A mass function is a mapping m : 2X → [0, 1] satisfying∑
A⊆X m (A) = 1. The mass m(A) represents the amount of belief allocated to

the fact of knowing only that x ∈ A. We will denote by M the set of all mass
functions on X . Subsets A of X such that m(A) > 0 are called focal sets of m,
and the set of focal sets of m will be denoted by F . A mass function m is called
categorical if m(A) = 1 for some A ⊆ X , in which case it defines a classical set
and will be denoted by mA in the following. It is called vacuous if m(X ) = 1
and denoted by mX . It represents total ignorance. The mass function is called
empty if m(∅) = 1 and denoted by m∅. It represents total inconsistency in the
agent’s beliefs about the set of values that are conceivable for x [18]. It is called
Bayesian if m(A) 6= 0 only for |A| = 1 and defines a probability distribution.
And finally it is called normalised if m(∅) = 0.

We define a consistency index between two sets to satisfy minimally:

φ(A,B) =

{
0 if A ∩B = ∅
1 if A = B

(1)

5 Or equivalently, is unsatisfiable or has no model.
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Equivalent representations of a mass function m are the belief function Bel
and the plausibility function Pl which follow the general formulation:

f(A) =
∑
B⊆X

m(B)φ(A,B) (2)

Pl(A) is obtained with φ(A,B) = 1 if A ∩ B 6= ∅ and 0 otherwise, and is the
amount of belief consistent with x ∈ A; Bel(A) is obtained with φ(A,B) = 1
if B ⊆ A and 0 otherwise, and is the amount of belief implying x ∈ A. The
contour function π : X → [0, 1] is such that π(x) = Pl({x}), for all x ∈ X . It is
the plausibility function restricted to the singletons of X .

Let m1 and m2 be two mass functions representing pieces of evidence about
x. Their combination by the conjunctive rule [2] is defined by, for all A ⊆ X ,

m1 ∩○2(A) =
∑

B∩C=A

m1(B)m2(C). (3)

The conflict between m1 and m2 can be quantified as m1 ∩○2(∅) [15].

2.2 Generalized entropy measures of probabilities

Rényi entropy Given a probability distribution p over X , the Rényi entropy
of order α, is defined for a parameter α ∈ IR+\{1} as [14]:

δ
(α)
R (p) =

1

1− α
log

(∑
x∈X

p(x)α

)
(4)

For α = 0, (4) is Hartley measure log (|X |), while Shannon entropy is re-

trieved whenever α → 1, δ
(1)
R (p) = −

∑
x∈X p(x) log p(x). For α = 2, the col-

lision entropy is defined, δ
(2)
R (p) = −

∑
x∈X p(x)2. Interestingly, δ

(α)
R (p) is a

decreasing function of α, and for α → +∞, we obtain the minimum entropy,

δ
(∞)
R (p) = − log maxx∈X p(x).

Power entropy Another family of entropy measures which still extends Shan-
non entropy has been defined by Vajda and Zvárová [20], relying on the decreas-
ing power function ψa :]0; 1]→ IR, for a ∈ IR:

ψa(µ) =

{
1

a−1
(
1− µa−1

)
, if a 6= 1

− log(µ) if a = 1
(5)

with ψa(0) = limµ→0 ψa(µ) if a 6= 1, ψ1(0) = +∞ and 0 · ψa(0) = 0. Power
entropy measures are thus defined as [20]:

δ
(a)
V (p) =

∑
x∈X

p(x)ψa (p(x)) (6)
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Similarly to Rényi entropy, Shannon entropy is obtained for a = 1 while δ
(0)
V (p) =

log (|X |)− 1 is one-to-one related to Hartley entropy. We note that for a 6= 1 in
Eq. (5), Eq. (6) defines Tsallis entropy [19].

Power functions ψa are interesting as they allow to reverse a consistency
notion into an inconsistency notion. Indeed, they are decreasing and satisfy
ψa(1) = 0, meaning that if p(x) is a degree of consistency, ψa(p(x)) is a de-
gree of inconsistency. In the following, we will denote by φ indexes or measures
of consistency between sets or of a mass function, while the corresponding incon-
sistency indexes or measures will be denoted by δ. For instance, an inconsistency
index corresponding to (1) would satisfy minimally δ(A,B) = 1 if A ∩ B = ∅
and 0 if A = B.

3 Inconsistency of belief functions

3.1 An entropy approach

The first trend followed to quantify the internal inconsistency of a belief function,
aims at extending Shannon entropy, focusing on the probabilistic dimension of
belief functions. Developed mostly between 1982 and 1992, the measures follow
the general formulation:

δ(m) =
∑
A⊆X

m(A)

− log
∑
B⊆X

m(B)φ(A,B)

 (7)

where φ(A,B) is a consistency index between the sets A and B satisfying (1). In
particular, Yager’s dissonance measure is obtained for φ(A,B) = 1 if A∩B 6= ∅.
Other definitions for φ still satisfying (1) lead to the measures of confusion from
Höhle [5], from Nguyen [12], of discord from Klir & Ramer [9] and of strife from
Klir & Parviz [8]. All these measures degenerate to Shannon entropy when m is
a Bayesian mass function and to Hartley measure when m is categorical.

3.2 A consistency approach

Another trend followed has given up on the extension of Shannon and Hartley
measures, and their additivity property. Yager first defined a measure of consis-
tency [22] while George and Pal defined the measure of total conflict [4] based
on Jaccard index. These two measures correspond to the general formulation:

δ(m) =
∑
A⊆X

m(A)

1−
∑
B⊆X

m(B)φ(A,B)

 (8)

3.3 A N-consistency approach

Recent work [13] proposes the measure of consistency of m:

φN (m) = 1−m(N)(∅), (9)
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where m(N) denotes the mass function resulting from the combination of m by
itself N times, i.e. m(N) = m(N−1) ∩○ m with m(0) := mX . Hence, we have
m(1) = m, m(2) = m ∩○m and more generally m(N) = ∩○N

1 m. φN (m) measures
different “shades” of internal consistency of m as N varies and in particular
φN (m) encompasses two forms of consistency already defined in the literature
[13]:

φ1(m) = 1−m(∅) = max
A⊆X

Pl(A) (10)

φ2(m) = 1−m(2)(∅) =
∑
A⊆X

m(A)Pl(A) (11)

where φ1 is the measure of so-called probabilistic consistency defined in [3] and
φ2 is the measure of consistency defined in [22]. It has been proved as well that
φ|F| is an alternative measure of logical consistency to the one proposed in [3]
as φπ = maxx∈X π(x). More details can be found in [13].

All measures introduced in this section are built upon a measure of consis-
tency between sets, φ and other elementary constructs such as a reverse function
transforming the notion of consistency into inconsistency. Entropy-like measures
(Section 3.1) as well as consistency-like measures (Section 3.2) are all based on
pair-wise measures of consistency between sets. Instead, the N -consistency de-
rived measures (Section 3.3) are based on N -wise measures. In the following
section 4, we will thus exploit that extension in order to establish a more general
formulation covering the three types of approaches.

4 Extending inconsistency

Let us introduce the consistency index between N sets as [13]:

φN (A1, . . . , AN ) =

{
1 if

⋂
i=1,...,N Ai 6= ∅

0 else
(12)

and we explore below the extension from pair-wise index to N -wise index in
measuring the inconsistency of m.

4.1 Observation with probabilities

Let us start by clarifying why Shannon entropy actually quantifies a notion of
internal conflict (or inconsistency). Introduced by Shannon as a measure of infor-
mation [16], the entropy of a probability distribution is the expected information
where IX(x) = − log(p(x)) is the self-information associated with the outcome
x ∈ X . If p(x) = 0, then IX(x) = −∞ and if p(x) = 1 then IX(x) = 0. With
0 · log 0 = 0, δSh(p) = 0 if and only if the distribution is focused on a single
element of X (i.e., it exists one x such that p(x) = 1), and δSh(p) = log(|X |) if
and only if p is uniformly distributed over X (i.e., p(x) = 1

|X | ∀x ∈ X ). Hence,

p is the most informative when its entropy is null and it is the least informative
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when its entropy is maximum. As such, as noticed for instance in [11, 1], Shan-
non entropy is rather a measure of uncertainty, and even a measure of internal
conflict (or inconsistency) for p. Indeed, when p is uniformally distributed over X
the internal inconsistency of p is maximum since the same confidence is assigned
to inconsistent hypotheses xi of X , i.e. such that δ(xi, xj) = 0 for all i 6= j and
δ(xi, xi) = 1 for all i, where δ is an inconsistency index satisfying the properties
mentioned in Section 2. We can thus re-write Shannon entropy making apparent
the consistency index:

δ
(1)
R (p) =

∑
x∈X

p(x)

− log
∑
y∈X

p(y)φ(x, y)

 (13)

Computing the conjunctive self-combination (using (3) for Bayesian mass func-
tions) of p makes it more obvious:

(p ∩○p)(∅) = p(2)(∅) = 1−
∑
x∈X

p(x)
∑
y∈X

p(y)φ(x, y) = 1−
∑
x∈X

p(x)2 (14)

which is clearly a measure of the internal inconsistency of p, as p(2)(∅) = 0
iff ∃x ∈ X such that p(x) = 1 and it is maximum for the uniform distribution.
Actually, (14) is Gini impurity that can also be written as

∑
x∈X p(x). (1− p(x)).

If we denote by p(N) the conjunctive combination of p with itself N times we
obtain before any normalisation:

p(N)(∅) = 1−
∑
x∈X

p(x)N (15)

which is also an inconsistency measure such that p(N)(∅) ≥ p(M)(∅) if N > M .
For integer values of α (that we denote by N), Rényi entropy in Eq. (4) can thus
be written as:

δ
(N)
R (p) = − log

(
1− p(N)(∅)

) 1
N−1

(16)

where
(
1− p(N)(∅)

) 1
N−1 is a measure of consistency for p, and N ∈ IN∗.

While for Bayesian mass functions, the N -wise comparison of focal sets re-
duces to the pair-wise comparison, it is not true in the general case that we will
detail in the next section.

4.2 Extension to belief functions

Let us now introduce the function φ
(N)
m (A) which measures the consistency of

m relatively to a specific set A of X , so that for N > 1:

φ(N)
m (A) =

∑
B1⊆X

m(B1) . . .
∑

BN−1⊆X

m(BN−1)φN (A,B1, . . . , BN−1) (17)
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and φ
(1)
m (A) = φ1(A) as defined in Eq. (12). Note that for N = 2 we get φ

(2)
m (A) =

Pl(A). Then, we define the total consistency of m as:

φ(N)(m) =
∑
A⊆X

m(A)φ(N)
m (A) (18)

which is the expectation of the local inconsistency of m. or N = 1, we get the
probabilistic consistency [3] (Eq. (10)), while for N = 2 we get Yager’s consis-
tency measure [22] (Eq. (11)). We thus propose the following general formulation:

δ(N)
a (m) =

∑
A⊆X

m(A)ψa

(
φ(N)
m (A)

)
(19)

where ψa is the power function introduced in (5).

For a = 1 (i.e., − log(.) as inverse function) and N = 2 (i.e., pair-wise
comparison of focal sets), we retrieve most of the entropy measures introduced
earlier, with different consistency indexes φ between sets. For a = 2 (i.e., 1− (.)
as inverse function) and still N = 2, we retrieve the consistency-like measures of
George and Pal [4], and Yager [22].

Interestingly, this expression allows also capturing the N -consistency ap-
proaches focused on the mass of the empty set with N -wise comparison of focal
sets. Indeed, if we consider now the case a = 2, with a general value of N , (19)
becomes simply:

δ
(N)
2 (m) = 1− φN (m) = m(N)(∅) (20)

As recalled in Section 3.3, the function φ|F|(m) obtained for N = |F|, the
number of focal sets of m, has been proven to satisfy required properties of a
logical consistency of m according to the axioms of [3], qualifying itself thus as
a valid alternative measure of logical consistency to φπ(m) = maxx∈X π(x).

Table 1. Entropy and inconsistency measures encompassed by the general expression
of Eq. (19), with different values of a, N and φ.

a = 1 a = 2
N = 2 N = 1 N

φ(A,B) =

{
1 if A ∩ B 6= ∅
0 else

Yager [21] Yager [22] Destercke &
Burger [3]

Pichon et al.
[13]

φ(A,B) =

{
1 if B ⊆ A
0 else

Höhle [5]

φ(A,B) =

{
1 if A = B

0 else
Nguyen [12]

φ(A,B) =
|A ∩ B|
|B|

Klir & Ramer
[9]

φ(A,B) =
|A ∩ B|
|A|

Klir & Parviz [8]

φ(A,B) =
|A ∩ B|
|A ∪ B|

George & Pal [4]
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Table 1 summarises the list of measures corresponding to the general expres-
sion from Eq. 19 for different values of parameters a and N , and for several
consistency indices φ satisfying (1) discussed in this paper. For clarity, the con-
sistency indices are provided for N = 2 (pair-wise comparison of sets) which
corresponds to the most populated case, as displayed in the left part of the ta-
ble. Other cases for N = 1 and general N are displayed in the right part of the
table, while the corresponding indices are not defined.

We have thus shown that the expression (19) encompasses not only classical
entropy measures in evidence theory, but also some non-additive measures of
internal conflict and consistency, and last but not the least, measures of incon-
sistency derived from the N -consistency family of measures.

5 Conclusions

In this paper, we have firstly shown that most of inconsistency measures de-
fined so far in evidence theory satisfy a general formulation involving a pair-
wise consistency index between sets, an inverse function transforming the notion
of consistency into inconsistency and some expectation operator. Furthermore,
by rendering apparent the underlying inconsistency in Rényi entropy family of
measures, we have shown how the inconsistency measure derived from the N -
consistency falls also under this general formulation. This preliminary result of-
fers new perspectives on the coherent measurement of inconsistency within and
across artificial intelligence systems. In future work, we will study other types
of inconsistency indexes as well as possible links with other logical consistency
and entropy measures. We will also explore the possible orders induced by such
information measures.
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5. Höhle, U.: Entropy with respect to plausibility measures. In: Proc. of the 12th

IEEE Int. Symposium on Multiple Valued Logic. pp. 167–169. Paris (1982)
6. Hunter, A., Konieczny, S.: Measuring inconsistency through minimal inconsistent

sets. In: Proc. of the Eleventh Int. Conf. KR. vol. 8, pp. 358–366. Sydney, Australia
(Sept 16-19 2008)
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20. Vajda, I., Zvárová, J.: On generalized entropies, Bayesian decisions and statistical
diversity. Kybernetika 43(5), 675–696 (2007)

21. Yager, R.R.: Entropy and specificity in a mathematical theory of evidence. Inter-
national Journal of General Systems 9, 249–260 (1983)

22. Yager, R.R.: On considerations of credibility of evidence. Int. J. Approx. Reason.
7(1/2), 45–72 (Aug/Sep 1992)


