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Reflected BSDE associated to jump Markov processes
and application to PDE

Khaled Bahlali ∗ Abdelkarim Oualaid †‡ Youssef Ouknine §¶

Abstract

In this paper we study a class of reflected backward stochastic differential
equations (RBSDE) driven by the compensated random measure associated to a
given pure jump Markov process X on a general state space U . The "reflection"
keeps the solution above a given càdlàg process. We prove the uniqueness
and existence both by a combination of the Snell envelope theory and fixed
point argument. We apply these results to represent probabilitically the value
function of some quasi-variational inequalities associated to the Markov process
X.

Keywords Backward stochastic differential equations, Jump Markov processes, Marked
point processes, Quasi-variational inequalities.

1 Introduction
In this paper we introduce and solve a class of reflected BSDEs driven by a random

measure associated to a given jump Markov process. Our results are applied to solve quasi
variational inequalities of no local-term.

Let us describe our framework. Our starting point is a pure jump Markov process X
on a space (U,U), such that {x} ∈ U for every x ∈ U . As usual starting from a positive
measure A 7→ ν(t, x, A), A ∈ U , depending on t ≥ 0 and x ∈ U and called rate measure, that
specifies λ(t, x) = ν(t, x,K) the so called rate function and the jump measure π(t, x, A) =
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ν(t, x, A)/λ(t, x). If the process starts at time t from x ∈ U , it is well known that the
distribution of its first jump time T1 is given by the formula

P (T1 > s) = exp

(
−
∫ s

t

λ(r, x)dr

)
,

and we have also
P (XT1 ∈ A|T1 = s) = π(s, x,A).

Denoting by Tn the jump times of X, we consider the marked point process (Tn, XTn
)

and the associated random measure p(dtdy) =
∑

n δ(Tn,XTn ) on (0,∞) × U, equivalently
p(t, A) = p(]0, t] × A) =

∑
n|Tn≤t 1{XTn∈A}; see, [6, 25, 28] as general references on the

subject.
In this paper X is pure-jump Markov, Feller and càdlàg process, and we suppose that

the measure ν is uniformly bounded; see [7]. The boundedness of ν implies that X is not
explosive.

Since our process X is Markov, the predictable dual projection (or the compensator) of
p, denoted by p̃ is given by

p̃(dtdy) = ν (t,Xt−, dy) dt.

Since p̃ is absolutely continuous with respect to time and our filtration (Fv)v≥t is complete
and right continuous, then the stopping times (Tn) are inaccessible: P[Tn = τ < ∞] = 0,
for all predictable stopping time τ , and we have representation of F-martingales by means
of stochastic integral with respect to q(dtdy) := p(dtdy)− p̃(dtdy).

We introduce a class of reflected BSDE with one obstacle:

Ys = g(XT ) +
∫ T

s
f
(
r,Xr, Yr, Zr(·)

)
dr

−
∫ T

s

∫
U
Zr(y)q(drdy) +KT −Ks, ∀s ∈ [t, T ]

Ys ≥ h(Xs), ∀s ∈ [t, T ]∫ T

t
(Ys− − h(Xs−)) dKs = 0.

The data are f, g and h, and Y , Z and K are the unknown processes. The process K is
increasing predictable keeps Y above the obstacle h. To our knowledge, the only paper
dealing with reflected BSDEs with respect to point processes is [16] but not in a Markovian
framework.

These equations are then used to solve some quasi-variational partial differential equa-
tions with no local term on the stat space U of the form

inf {∂tv(t, x) + Ltv(t, x) + f(t, x, v(t, x), v(t, ·)− v(t, x)), v(t, x)− h(t, x)} = 0,

t ∈ [0, T ], x ∈ U,

v(T, x) = g(x),

where Lt denotes the generator of X and f, h and g are given functions. We construct the
solution v by means of a family of reflected BSDE parametrized by (t, x) ∈ [0, T ]× U :

Y t,x
s = g(Xt,x

T ) +
∫ T

s
f
(
r,Xt,x

r , Y t,x
r , Zt,x

r (·)
)
dr

−
∫ T

s

∫
U
Zt,x
r (y)qt(drdy) +Kt,x

T −Kt,x
s , ∀s ∈ [t, T ]

Y t,x
s ≥ h(Xt,x

s ), ∀s ∈ [t, T ]∫ T

t

(
Y t,x
s− − h(Xt,x

s− )
)
dKt,x

s = 0.
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We prove the existence and uniqueness of a triplet (Y t,x
s , Zt,x

s ,Kt,x
s )s∈[t,T ]. As a by-product

we also obtain the representation formula

v(t, x) = Y t,x
t , Y t,x

s = v
(
s,Xt,x

s

)
, Zt,x

s (y) = v(s, y)− v(s,Xt,x
s− ),

and

Kt,x
s = v(t, x)− v(s,Xt,x

s )−
∫ s

t

f(r,Xt,x
r , v(r,Xt,x

r ), v(r, ·)− v(r,Xt,x
r ))dr

+

∫ s

t

∫
U

(
v(r, y)− v(r,Xt,x

r−)
)
qt(dr, dy).

Literaturely speaking, the subject of nonlinear BSDEs driven by a Brownian motion were
first introduced in [31]. Later, many generalizations have been considered when the Brownian
motion was replaced by more general processes. BSDEs with jumps and BSDEs driven by
randoms measures have been studied in [23, 22, 33, 27, 35]. In particular, occurrence of
marked point process in the equations has been considered in [34, 3]. Since, these equations
have gradually become an important mathematical tool which is encountered in many fields
such as financial mathematics, nonlinear PDEs and stochastic control; see, [14, 15, 4, 8, 30,
9, 19, 20, 21]. The subject of continuous reflected BSDEs has introduced in [13]. Actually,
it is a backward equation, but the component Y of solution is forced to stay above a given
barrier, which is an adapted continuous process. Since then there were many works on
reflected BSDEs in [29, 18, 1, 2, 12, 21].

This paper is organized as fallows, In section 2, we first recall some results on pure
jump Markov process and its associated marked point process and describe the setting and
the problem we want to solve. In section 3, we prove the existence and uniqueness of a
reflected BSDE driven by a random measure associated to a given jump Markov process,
when the generator is adapted only to the filtration generated by the Markov process, In the
section 4, we solve the RBSDE in the general case with the help of a fixed point argument.
finally, in section 5, we show that, provided the problem is formulated within a Markovian
framework, the solution of the reflected BSDE provides a probabilistic representation of the
unique viscosity solution of some quasi-variational inequalities.

2 Notations, preliminaries and basic assumptions

2.1 Jump Markov processes
Suppose we are giving a measurable space U endowed with its Borel σ-algebra U = B(U), a
set Ω and a function X : Ω× [0,∞[→ U . For I ⊂ [0,∞[, let FI = σ(Xt, t ∈ I). We suppose
that for every t ∈ [0,∞[ and x ∈ U a probability Pt,x is given on (Ω,F[t,∞[). We suppose
that X is a Feller process and càdlàg. Let

GX,t,x
v = σ(Xs, t ≤ s ≤ v) ∨N ; ḠX,t

v =
⋂
x∈U

GX,t,x
v .

Fv =
⋂
u>v

ḠX,t
u ; N =

{
N ⊂ Ω,Pt,x-negligible

}
.

The filtration (Fv)v≥t is by definition complete with respect to Pt,x ∀x ∈ U and right
continuous (E.Protter [32] p.36 Theorem 47). Since X is a Feller and càdlàg Markov process
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with respect to GX,t,x
v , then it remains Markov process with respect to (Fv)v≥t. We can find

a version of X which satisfies the following conditions

(i) U contains all one-point sets. ∆ denotes a point not included in U .

(ii) Xt = x Pt,x-a.s. for every t ∈ [0,∞), x ∈ U

(iii) For every 0 ≤ t ≤ s and A ∈ U the function x 7→ Pt,x (Xs ∈ A) is U-measurable.

(iv) For every 0 ≤ u ≤ t ≤ s,A ∈ U , we have Pu,x
(
Xs ∈ A|F[u,t]

)
= Pt,Xt (Xs ∈ A),

Pu,x-a.s.

(v) For every ω ∈ Ω, the number of jump is finite on every bounded interval.

The class of Markov processes we will consider in this paper will be described by means
of a special form of the joint law Q of the first jump time T1 and the corresponding position
XT1

. To avoid the complication, we first fix t ≥ 0 and x ∈ U , and define the first jump time

T1(ω) = inf {s > t : Xs(ω) 6= Xt(ω)} ,

with the convention that inf ∅ = ∞. Set X∞(ω) = ∆ /∈ U for all ω ∈ Ω, where ∆ and let
S := ([0,∞),×U) ∪ {(∞,∆)} with its Borel σ-algebra S = σ (B([0,∞))⊗ U , (0,∞)). Then
(T1, XT1

) is a random variable with values in (S,S). Its law under Pt,x will be denoted by
Q(t, x, ·).

The distribution Q is constructed via a transformation function ν(t, x, A), for all t ∈
[0, T ], x ∈ U, and A ∈ U ( we require that ν is a positive measure ). We also assume (t, x)

7→ ν(t, x, A) is B([0,∞))⊗ U-measurable for all A ∈ U , such that

sup
t∈[0,T ],x∈U

ν(t, x, U) <∞, ν(t, x, {x}) = 0, for all t ∈ [0,∞), x ∈ U. (2.1)

Define

λ(t, x) = ν(t, x, U), π(t, x, A) =

{
ν(t,x,A)
λ(t,x) , if λ(t, x) > 0

1A(x), if λ(t, x) = 0

Therefore λ is a nonnegative bounded measurable function called jump rate function and
π is a transition probability on U called jump measure. Note that we have ν(t, x, A) =

λ(t, x)π(t, x, A) for all t ∈ [0, T ], x ∈ U,A ∈ U .
Given ν and Q as described above, we will require that for the Markov process X, we have
for 0 ≤ t ≤ a < b ≤ ∞ x ∈ U,A ∈ U

Q(t, x, (a, b)×A) =

∫ b

a

π(s, x,A)λ(s, x) exp

(
−
∫ s

t

λ(r, x)dr

)
ds (2.2)

Note that Q(t, x, ·) stated in (2.2) defines a probability measure on (S,S).
The following result gives an explicit construction of the process X in terms of a discrete

time Markov chain and a sequence of exponential distributed random variables. The result
shows that the distributions Pt,x are uniquely determined by the rate kernel λ(t, x).

Theorem 2.1. (Theorem 10.19 [26]) Let X be a pure-jump Feller process, with càdlàg path
and rate kernel λ = cν. Then, there exist a Markov process Y on N with transition ν and a
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sequence of iid exponentially distributed random variables γ1, γ2 · · · with mean 1 such that
a.s

Xt = Yn for t ∈ [τn, τn+1) , n ∈ N,

where

τn =

n∑
k=1

γk
c (t, Yk−1)

, n ∈ N.

Such that c(t, x) = (Et,xτ1)
−1, ν(t, x,B) = Pt,x (Xτ1 ∈ B).

Example 2.2. Pseudo-Poisson Process, is a process of the form Xt = Y ◦Nt a.s., where
Y is a discrete-time Markov chain in some measurable space S and N is an independent
homogeneous Poisson process. Letting ν be the transition kernel of Y and λ the constant
rate of N . We may construct a kernel

λ(t, x,B) = c(t, x)ν(t, x,B\{x}), x ∈ S, B ∈ B(S). (2.3)

Proposition 2.3. (Proposition 10.22 [26]) A process X in some Borel space S is pseudo-
Poisson if and only if it is a pure-jump Markov with a bounded rate function. Specifically,
if X = Y ◦ N a.s., for some Markov chain Y with transition kernel ν and an independent
Poisson process N with constant rate c, then X has the rate kernel in (2.3).

2.2 Marked point processes and the associated martingales
In the following, we fix a pair (t, x) ∈ [0,∞) × U and look at the process X under the
probability Pt,x. For every t ≥ 0 we denote by Ft the filtration

(
F[t,s]

)
s∈[t,∞)

. The pre-
dictable σ-algebra (respectively, the progressive σ-algebra) on Ω× [t,∞) will be denoted by
Pt (respectively, by Progt ). The same symbols will also denote the restriction to Ω× [t, T ]

for some T > t.

For every t ≥ 0 we define a sequence (T t
n)n≥0 of random variables with values in [0,∞]

setting

T t
0(ω) = t, T t

n+1(ω) = inf
{
s > T t

n(ω) : Xs(ω) 6= XT t
n(ω)(ω)

}
, with inf ∅ = ∞. (2.4)

Therefor, we have for every t ≥ 0 and ω ∈ Ω

• T t
n(ω) ≤ T t

n+1(ω), for all n ≥ 0;

• T t
n(ω) < T t

n+1(ω) if T t
n(ω) <∞, for all n ≥ 0;

• T t
n(ω) ↗∞, since X is non explosive.

Hence, the sequence (T t
n, XT t

n
)n≥0 is well defines a marked point process with values in

[0,∞] × U . For ω ∈ Ω, we associate to each marked point process the random measure pt
on ((t,∞)× U,B((t,∞))× U):

pt(ω,C) =
∑
n≥1

1((
T t
n(ω),XTt

n
(ω)

)
∈C

), C ∈ B((t,∞))⊗ U ,

we also use the notation pt(ds, dy). Note that

pt((t, s]×A) =
∑
n≥1

1{T t
n≤s}1{XTt

n
∈A}, s ≥ t, A ∈ U .
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By general results (see [25] ), it turns out that for every nonnegative Pt⊗U -measurable
function Hs(ω, y) defined on Ω× [t,∞)× U , we have

Et,x

∫ ∞

t

∫
U

Hs(y)p
t(dsdy) = Et,x

∫ ∞

t

∫
U

Hs(y)ν (s,Xs, dy) ds. (2.5)

The random measure ν (s,Xs, dy) ds is called the compensator, or the dual predictable
projection of pt(dsdy).

Now fix T > t. Let H be a Pt ⊗ U-measurable process such that∫ T

t

∫
U

|Hs(y)| ν (s,Xs, dy) ds <∞, Pt,x-a.s.

Then we can define the following stochastic integral∫ s

t

∫
U

Hr(y)q
t(drdy) :=

∫ s

t

∫
U

Hr(y)p
t(drdy)

−
∫ s

t

∫
U

Hr(y)ν (r,Xr, dy) dr, s ∈ [t, T ]

, (2.6)

as the difference of ordinary integrals with respect to pt(dsdy) and ν (s,Xt,x
s , dy) ds. Here

and in the following the symbol
∫ b

a
is to be understood as an integral over the interval (a, b].

We shorten this identity writing

qt(dsdy) = pt(dsdy)− ν
(
s,Xt,x

s− , dy
)
ds.

Note that since pt is a discrete random measure, the integral with respect to pt is a sum:∫ s

t

∫
U

Hr(y)p
t(drdy) =

∑
n≥1,T t

n≤s

HT t
n

(
XT t

n

)
, s ∈ [t, T ],

and it is always well defined since T t
n ↗ ∞.

For m ≥ 1 we define Lm (pt) as the space of Pt ⊗ U-measurable processes with real
values H such that

Et,x

∫ T

t

∫
U

|Hs(y)|m pt(dsdy) = Et,x

∫ T

t

∫
U

|Hs(y)|m ν (s,Xs, dy) ds <∞.

Note that the equality of integrals follows from (2.5).

Note that the Ft is the filtration generated by the process X completed and right con-
tinuous, hence, we have the following martingale representation result for marked point
processes which we will need to construct a solution to the reflected BSDEs.

Theorem 2.4. (Theorem 2 [10]) Given (t, x) ∈ [0, T ] × U , let M be an Ft-martingale on
[t, T ] with respect to Pt,x. Then there exists a process H ∈ L1 (pt) such that

Ms =Mt +

∫ s

t

∫
U

Hr(y)q
t(drdy), s ∈ [t, T ], Pt,x-a.s. (2.7)
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2.3 Reflected BSDE
Next we fix T > 0 and a pair (t, x) ∈ [0, T ] × U . We look at all processes under the
probability Pt,x. Let T t

n, Ft, Pt, Progt, pt(ds, dy), qt(ds, dy) and L2(pt) as before, we
are interested in studying the following family of reflected backward stochastic differential
equations parametrized by (t, x): Pt,x-a.s.

Y t,x
s = g(Xt,x

T ) +
∫ T

s
f
(
r,Xt,x

r , Y t,x
r , Zt,x

r (·)
)
dr

−
∫ T

s

∫
U
Zt,x
r (y)qt(drdy) +Kt,x

T −Kt,x
s , ∀s ∈ [t, T ]

Y t,x
s ≥ h(Xt,x

s ), ∀s ∈ [t, T ]∫ T

t

(
Y t,x
s− − h(Xt,x

s− )
)
dKt,x

s = 0

(2.8)

We introduce the space Mt,x of the processes (Y, Z,K) on [t, T ], such that Y is real-
valued and Progt-measurable, Z : Ω × [t, T ] × U → R is Pt ⊗ U-measurable, K is càdlàg
increasing Ft-adapted with Kt = 0 and

‖(Y, Z)‖2Mt,x := Et,x

∫ T

t

|Ys|2 ds+ Et,x

∫ T

t

∫
U

|Zs(y)|2 ν (s,Xs, dy) ds+ Et,xK2
T <∞.

A solution to the reflected BSDE (5.3) is a triplet (Y t,x, Zt,x,Kt,x) that lies in Mt,x.

Assumption 2.5.

1. The final condition g : U → R is U-measurable and

Et,x|g
(
Xt,x

T

)
|2 <∞.

2. The generator f is such that

(i) for every s ∈ [0, T ], x ∈ K, r ∈ R, f(s, x, r, ·) is a mapping L2(U,U , ν(s, x, dy)) →
R;

(ii) for every bounded and U-measurable function z : U → R, the mapping

(s, x, r) 7→ f(s, x, r, z(·)) is B([0, T ])⊗ U ⊗ B(R)-measurable; (2.9)

(iii) there exist L ≥ 0, L′ ≥ 0 such that for every s ∈ [0, T ], x ∈ U, r, r′ ∈ R, z, z′ ∈
L2(U,U , ν(s, x, dy)),

|f(s, x, r, z(·))− f (s, x, r′, z′(·))|

≤ L′ |r − r′|+ L
(∫

U
|z(y)− z′(y)|2 ν(s, x, dy)

)1/2 ; (2.10)

(iv)

Et,x

∫ T

t

|f (s,Xs, 0, 0)|2 ds <∞

.

3. The barrier h : U → R is U-measurable such that

Et,x sup
s∈[t,T ]

h2(Xt,x
s ) <∞. (2.11)
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Remark 2.6. We recall that the absolute continuity of measure p̃t(ds, dy) = ν(s,Xt,x
s , dy)ds

is equivalent to the fact that the jumps of the marked point process pt are totally inaccessible:
(see [24]). We will often use the following consequence: since Kt,x is predictable, its jumps
are disjoint from the jumps of pt; so at any jump time of Kt,x we also have a jump of Y t,x

with the same size, but of opposite sign: Pt,x-a.s.

∆Kt,x
s 1∆Kt,x

s >0 = (−∆Y t,x
s )+1∆Kt,x

s >0, s ∈ [t, T ]. (2.12)

Lemma 2.7. (Lemma 3.3 [7]) Let f be a generator satisfying Assumption (2.5)-(i)(ii)(iii).
If Zt,x ∈ L2(pt), then the mapping

(ω, s, y) 7→ f(s,Xt,x
s− (ω), y, Zt,x

s (ω, ·))

is Pt × B(R)-measurable.
if, in addition, Y t,x is a Progt-measurable process, then

(ω, s) 7→ f(s,Xt,x
s− (ω), Y t,x

s (ω), Zt,x
s (ω, ·))

is Progt-measurable.

3 Reflected BSDE with given generator
In this section we first study the reflected BSDE in the case when the generator f does not
depend on (Y, Z) but is a given process that satisfy an integrabilty condition (3.2) stated
below.
In this case BSDE (5.3) reduces


Y t,x
s = g(Xt,x

T ) +
∫ T

s
frdr −

∫ T

s

∫
U
Zt,x
r (y)qt(drdy) +Kt,x

T −Kt,x
s , ∀s ∈ [t, T ]

Y t,x
s ≥ h(Xt,x

s ), ∀s ∈ [t, T ]∫ T

t

(
Ys− − h(Xt,x

s− )
)
dKt,x

s = 0

(3.1)

Next, using Snell envelope theory (see Appendix [16]), we show existence and uniqueness of
a solution.

Proposition 3.1. Let assumption (2.5)-(1)(3) and let f : Ω×, T ] → R be a Progt-measurable
process such that

Et,x|fs|2ds <∞. (3.2)

then there exists a unique triplet (Y t,x, Zt,x,Kt,x) ∈ Mt,x solution to the BSDE (3.1).

Proof. Let’s start with the existence. First we define the càdlàg process η by

ηs =

∫ s∧T

t

frdr + h(Xr)1s<T + g(XT )1s≥T .

Note that η is of class [D] since Et,x supt≤s≤T |ηs|2 <∞. Indeed:
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We have clearly that

Et,x sup
t≤s≤T

|ηs|2 ≤ 3Et,x

∫ T

t

|f |2dr + 3Et,x sup
t≤s≤T

|h(Xt,x
s )|2 + 3Et,x|g(Xt,x

T )|2 <∞.

For t ≤ s ≤ T and a stopping time θ, let

Y t,x
s = esssups≤θ≤T Et,x

[∫ θ∧T

s

frdr + h(Xt,x
θ )1θ<T + g(Xt,x

T )1θ≥T |Fs

]
. (3.3)

It follows that
Y t,x
s +

∫ s∧T

t

frdr = esssups≤θ≤T Et,x [ηθ|Fs] .

Hence, since Y is of class [D], it follows that the process R(η) = (Y t,x
s +

∫ s∧T

t
frdr)t≤s≤T is

the Snell envelope of η. Since η is càdlàg, its Snell envelope R(η), and hence Y t,x exist and
càdlàg. Furthermore, for any t ≤ s ≤ T we have

Et,x

[
sup

s∈[t,T ]

(Y t,x
s )2

]
<∞.

In fact, by definition of Y t,x we get

|Y t,x
s | ≤ Et,x

[∫ T

t

|fr|dr + sup
t≤r≤T

|h(Xt,x
r )|+ |g(Xt,x

T )||Fs

]

≤ Et,x

(T − t)

(∫ T

t

|fr|2dr

) 1
2

+ sup
t≤r≤T

|h(Xt,x
r )|+ |g(XT )||Fs

 = Ns.

Under Assumption (2.5)-(1)(3) and (3.2), N is a square integrable martingale. Then by
Doob’s inequality we get

Et,x

[
sup

s∈[t,T ]

|Ys|2
]
≤ Et,x

[
sup

s∈[t,T ]

N2
s

]
≤ CEt,x

[
N2

T

]
<∞.

Now according to Doob-Meyer decomposition theorem, there exist an uniformly integrable
martingale M and a predictable increasing process A staring from zero, such that

R(η)s = R(η)t +Ms −As, for all s ∈ [t, T ] Pt,x-a.s.

Hence, we obtain

Y t,x
s = Y t,x

t −
∫ s

t

frdr +Ms −As, for all s ∈ [t, T ] Pt,x-a.s. (3.4)

Note that M is a càdlàg Ft-martingale since that the filtration Ft generated by the pro-
cess Xt,x is completed and right continuous, hence by representation theorem for square
martingales, there exist Zt,x ∈ L1(pt) such that

Ms =Mt +

∫ s

t

∫
U

Zt,x
r (y)qt(drdy), s ∈ [t, T ], Pt,x-a.s. (3.5)
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Setting, θ = s in (3.3), we get that Pt,x-a.s. Y t,x
s ≥ h(Xt,x

s ) for all s ≤ T and Y t,x
T = g(Xt,x

T ).

Let us set Kt,x
s = As, t ≤ s ≤ T ; then we have that Et,xK2

T <∞, since

Et,x sup
s∈[t,T ]

Y 2
s <∞.

Furthermore, ∆Kt,x is supported by the set {t ≤ s ≤ T ;R(η)s− = ηs−}, but R(η)s− = ηs−

is equivalent of that Y t,x
s = h(Xt,x

s− )1s≤T + g(Xt,x
T )1s>T , hence

∆Kt,x
s = ∆Kt,x

s 1{
Ys=h(Xt,x

s−
)
}, for all s ∈ [t, T ], Pt,x-a.s.

Replacing now (3.5) in (3.4), we conclude that the first equality in (3.1) is verified.

In order to finish the proof of existence it remains to show that the minimal push
condition (Skorohod condition ) in (3.1) is satisfied, that is∫ T

t

(
Y t,x
s− − h(Xt,x

s− )
)
dKt,x

s = 0.

Note that the process Kt,x can be decomposed into Kc +Kd, where Kc (resp. Kd) is the
continuous (resp. the purely discontinuous) part of K. Hence we have∫ T

t

(
Y t,x
s− − h(Xt,x

s− )
)
dKs =

∫ T

t

(
Y t,x
s − h(Xt,x

s )
)
dKc

s +
∑

t≤s≤T

(
Y t,x
s− − h(Xt,x

s− )
)
∆Ks.

First, since jumps of Kt,x are supported by {Y t,x
s− = h(Xt,x

s− )}, then we get∑
t≤s≤T

(
Y t,x
s− − h(Xt,x

s− )
)
∆Kt,x

s =
∑

t≤s≤T

(
Y t,x
s− − h(Xt,x

s− )
)
∆Kt,x

s 1{
Y t,x

s−
=h(Xt,x

s−
)
} = 0.

On the other hand, let Ỹ = Y t,x + Kd and η̃ = η + Kd, hence Ỹ +
∫ ·
t
frdr is the Snell

envelope of η̃. Indeed, Ỹs +
∫ s

t
frdr = Ỹt +Ms −Kc

s is a supermartingale which dominate η̃.
Let S be another supermartingale that dominate η̃, hence, Ss −Kd

s still a supermartingale
such that Ss −Kd

s ≥ η. Henceforth, Ss −Kd
s ≥ Y t,x

s +
∫ s

t
frdr and then Ss ≥ Ỹs +

∫ s

t
frdr,

whence the desired result.
Let the stopping time defined as

ρ∗s = inf {r ≥ s :Mr 6= R(η̃)r} ∧ T = inf {r ≥ s : Kc
r > Kc

s} ∧ T,

we have Kc
s = Kc

ρ∗
s

since Kc is continuous. On the other hand ρ∗ is the largest optimal
stopping time since Ỹs +

∫ s

t
frdr = Ỹt +Ms −Kc

s is regular (see [16] Appendix). Moreover,
we have Ỹρ∗

s
+
∫ ρ∗

t
frdr = η̃ρ∗

s
, which yields Ỹρ∗ = h(Xt,x

ρ∗
s
) +Kd

ρ∗
s
. Now let

ρs = inf{r ≥ s : Ỹr = h(Xt,x
r ) +Kd

r } ∧ T,

then we have ρs ≤ ρ∗s and hence Kc
s = Kc

ρs
for all t ≤ s ≤ T which implies

0 =

∫ T

t

(
Ỹs − h(Xt,x

s )
)
dKc

s =

∫ T

t

(
Y t,x
s − h(Xt,x

s )
)
dKc

s .
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Let us now prove the uniqueness of solution. Let (Y ′, Z ′,K ′) and (Y ′′, Z ′′,K ′′) be tow
solution to RBSDE (3.1), and define

Ȳ = Y ′ − Y ′′ Z̄ = Z ′ − Z ′′ K̄ = K ′ −K ′′,

hence (Ȳ, Z̄, K̄) satisfies

Ȳs = −
∫ T

s

∫
U

Z̄r(y)q
t(drdy) + K̄T − K̄s. (3.6)

Now assuming that (Ȳ, Z̄, K̄) is a solution in Mt,x. Using Itô’s formula we obtain

eβt|Ȳt|2 =− β

∫ T

t

eβr|Ȳr|2dr − 2

∫ T

t

∫
U

eβrȲr−Z̄r(y)q
t(drdy)

+ 2

∫ T

t

eβrȲr−dK̄r −
∑

t<r≤T

eβr|∆Ȳr|2.
(3.7)

The last term can be divided in totally inaccessible jumps from q(dsde) and predictable
jumps, from the process K̄, hence:

∑
t<s≤T

eβs|∆Ȳs|2 ≥
∑

t<Tn≤T

eβTn |Z̄Tn(X
t,x
Tn

)|2 =

∫ T

t

∫
U

|Z̄s(y)|2pt(dsdy)

=

∫ T

t

∫
E

|Z̄s(y)|2qt(dsdy) +
∫ T

t

∫
U

|Z̄s(y)|2ν(s,Xt,x
s , dy)dr.

The integrals with respect to qt(dsdy) are martingales, because the integrand processes
eβrȲr−Z̄r(y) and eβrZ̄2

r (y) are in L1(pt): Indeed, from Young inequality, we get

Et,x

∫ T

t

∫
U

eβr
∣∣Ȳr−‖Z̄r(y)

∣∣ ν (r,Xt,x
r , dy

)
dr

≤ 1

2
Et,x

∫ T

t

∫
U

eβr
∣∣Ȳr−∣∣2 ν (r,Xt,x

r , dy
)
dr +

1

2
E
∫ T

t

∫
U

eβr
∣∣Z̄r(y)

∣∣2 ν (r,Xt,x
r , dy

)
dr

≤ sup
t,x

ν(t, x, U)
eβT

2
Et,x

∫ T

t

∣∣Ȳr∣∣2 dr + eβT

2
Et,x

∫ T

t

∫
U

∣∣Z̄r(y)
∣∣2 ν (r,Xt,x

r , dy
)
dr <∞.

Similarly, we have

Et,x

∫ T

t

∫
U

eβr|Z̄r(y)|2ν
(
r,Xt,x

r , dy
)
dr ≤ eβTEt,x

∫ T

t

∫
U

|Z̄r(y)|2ν
(
r,Xt,x

r , dy
)
dr <∞.

By taking expectation in (3.7), we obtain

βEt,x

∫ T

t

eβr|Ȳr|2dr + Et,x

∫ T

t

∫
U

eβs|Z̄s(y)|2ν(s,Xt,x
s , dy)ds

≤ 2eβTEt,x

∫ T

t

Ȳr−dK̄r.

Now, since the solutions satisfy the minimal push condition, we have
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∫ T

t

Ȳs−dK̄s =

∫ T

t

(
Y ′
s− − h(Xt,x

s− )
)
dK ′

s︸ ︷︷ ︸
=0

−
∫ T

t

(
Y ′
s− − h(Xt,x

s− )
)
dK ′′

s︸ ︷︷ ︸
≥0

−
∫ T

t

(
Y ′′
s− − h(Xt,x

s− )
)
dK ′

s︸ ︷︷ ︸
≥0

+

∫ T

t

(
Y ′′
s− − h(Xt,x

s− )
)
dK ′′

s︸ ︷︷ ︸
=0

≤0,

it follows that

βEt,x

∫ T

s

eβr|Ȳr|2dr + Et,x

∫ T

s

∫
U

eβr|Z̄r(y)|2ν(r,Xt,x
r , dy)dr = 0,

hence the uniqueness of Y and Z. From equation (3.6) we get K̄T = K̄s, for all s ∈ [t, T ],
then K̄T = 0 since K̄t = 0, then K̄s = 0 for all s ∈ [t, T ], which gives the uniqueness of K.

We conclude the proof showing that (Y, Z,K) ∈ Mt,x. We have already noticed that
E
[
K2

T

]
<∞. Next we define the sequence of stopping times:

Sn = inf{s ∈ [t, T ] :

∫ s

t

|Yr|2dr +
∫ s

t

∫
U

|Zr(y)|2ν(r,Xt,x
r , dy)dr > n} ∧ T,

and we consider the Itô’s formula applied to eβr|Yr|2 between t and Sn, we obtain

eβSn |YSn |2 =eβt|Yt|2 + β

∫ Sn

t

eβr|Yr|2dr + 2

∫ Sn

t

∫
U

eβrYr−Zr(y)q
t(drdy)− 2

∫ Sn

t

eβrYrfrdr

− 2

∫ Sn

t

eβrYr−dKr +
∑

t<r≤Sn

eβr∆K2
r +

∫ Sn

t

∫
U

eβr|Zr(y)|2pt(drdy),

we have that for all s ∈ [t, T ]∫ s

t

eβrYr−dKr =

∫ s

t

eβr
(
Yr− − h(Xt,x

r− )
)
dKr︸ ︷︷ ︸

=0

+

∫ s

t

eβrh(Xt,x
r− )dKr

Neglecting the positive terms eβt|Yt|2 and
∑

t<r≤Sn
eβr∆K2

r the previous equation be-
comes

eβSn |YSn
|2 ≥β

∫ Sn

t

eβr|Yr|2dr + 2

∫ Sn

t

∫
U

eβrYr−Zr(y)q
t(drdy)− 2

∫ Sn

t

eβrYrfrdr

− 2

∫ Sn

t

eβrh(Xt,x
r− )dKr +

∫
U

eβr|Zr(y)|2qt(drdy) +
∫
U

eβr|Zr(y)|2ν(r,Xt,x
r , dy)dr,

by definition of (Sn)
’s we have

2Et,x

∫ Sn

t

∫
U

eβrYr−Zr(y)ν(r,X
t,x
r , dy)dr ≤ eβT sup

t,x
ν(t, x, U)Et,x

∫ Sn

t

|Yr|2dr

eβTEt,x

∫ Sn

t

∫
U

|Zr(y)|2ν(r,Xt,x
r , dy)dr ≤ neβT (1 + sup

t,x
ν(t, x, U)) <∞.
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We obtain then that the terms with respect qt(dsdy) are martingales. Taking expectation
in both sides, we get

βEt,x

∫ Sn

t

eβr|Yr|2dr + Et,x

∫
U

eβr|Zr(y)|2ν(r,Xt,x
r , dy)dr

≤ Et,xeβSn |YSn |2 + 2Et,x

∫ Sn

t

eβrYrfrdr + 2Et,x

∫ Sn

t

eβrh(Xt,x
r− )dKr

≤ Et,x sup
t≤s≤T

eβs|Ys|2dr +
1

β
Et,x

∫ Sn

t

eβr|Yr|2 + βeβTEt,x

∫ T

t

|fr|2dr

+ eβTEt,x sup
t≤s≤T

h2(Xt,x
s ) + eβTEt,xK2

T

define a positive constant by c−1(β) = min(β − 1
β , 1), hence we get

Et,x

∫ Sn

t

eβr|Yr|2dr + Et,x

∫
U

eβr|Zr(y)|2ν(r,Xt,x
r , dy)dr

≤ c(β)eβTEt,x

[
sup

t≤s≤T
|Ys|2 + β

∫ T

t

|fr|2dr + sup
t≤s≤T

h2(Xt,x
s ) +K2

T

]
<∞,

Now let S = limn Sn, by definition of (Sn)n≥0, we have S = T , whence, the last estimate
follows that (Y, Z,K) ∈ Mt,x.

4 Reflected BSDE
Now instead of the case where the generator f is just a Progt-measurable process, we will
consider a generator f which depends on solution, that is the reflected BSDE (5.3).
We use a fixed point argument to show the existence and uniqueness of solution, to this
end we define the space Mt,x

β of processes (Y, Z) on [t, T ], such that Y is a real-valued and
Progt-measurable and Z : Ω× [t, T ]× U → R, endowed with the norm

‖(Y, Z)‖2Mt,x
β

:= C‖Y ‖2,β + ‖Z‖2,βν ,

where

‖Y ‖2,β := Et,x

∫ T

t

eβs |Ys|2 ds, ‖Z‖2,βν := Et,x

∫ T

t

∫
U

eβs |Zs(y)|2 ν
(
s,Xt,x

s , dy
)
ds,

for some constants C > 0 and β > 0.

Theorem 4.1. Suppose that Assumption (2.5) holds for some (t, x) ∈ [0, T ] × U . Then
there exists a unique solution to the reflected BSDE (5.3).

Proof. Define the map
Γ : Mt,x

β → Mt,x
β ,

such that for (ϕ,ψ) ∈ Mt,x
β , (Y, Z) = Γ(ϕ,ψ) is the solution of the following reflected BSDE

Y t,x
s = g(Xt,x

T ) +
∫ T

s
f
(
r,Xt,x

r , ϕr, ψr(·)
)
dr

−
∫ T

s

∫
U
Zt,x
r (y)qt(drdy) +Kt,x

T −Kt,x
s , ∀s ∈ [t, T ]

Y t,x
s ≥ h(Xt,x

s ), ∀s ∈ [t, T ]∫ T

t

(
Y t,x
s− − h(Xt,x

s− )
)
dKt,x

s = 0

(4.1)
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The map Γ is well defined: Indeed, for a fixed pair (ϕ,ψ) ∈ Mt,x
β , thanks to Assumption

(2.5)-(2), we have

Et,x

∫ T

t

|f(r,Xt,x
r , ϕr, ψr(·))|2dr ≤ 3Et,x

[∫ T

t

|f(r,Xt,x
r , 0, 0)|2dr + L′

∫ T

t

|ϕr|2dr

]

+ 3LEt,x

[∫ T

t

∫
U

|ψr(y)|2ν(r,Xt,x
r , dy)dr

]
<∞,

so by Proposition (3.1), there exist a unique triplet (Y, Z,K) solution to (4.1).
We show that Γ is a contraction on Mt,x

β . Consider (ϕ′, ψ′) and (ϕ′′, ψ′′) be two elements
in Mt,x

β and let (Y ′, Z ′) = Γ(ϕ′, ψ′) and (Y ′′, Z ′′) = Γ(ϕ′′, ψ′′) be the associated solutions.
Denote Ȳ = Y ′ − Y ′′, Z̄ = Z ′ − Z ′′, K̄ = K ′ − K ′′, ϕ̄ = ϕ′ − ϕ′′, ψ̄ = ψ′ − ψ′′, and
f̄ = f(r,Xt,x

r , ϕ′
r, ψ

′
r(·))− f(r,Xt,x

r , ϕ′′
r , ψ

′′
r (·)), hence (Ȳ, Z̄, K̄) satisfies

Ȳs =

∫ T

s

f̄rdr −
∫ T

s

∫
U

Z̄r(y)q
t(drdy) + K̄T − K̄s.

From Itô’s formula applied on eβs|Ys|2, we get

−eβt|Ȳt|2 = β

∫ T

t

eβr|Ȳr|2dr − 2

∫ T

t

eβrȲrf̄rdr + 2

∫ T

t

∫
U

eβrȲr−Z̄r(y)q
t(drdy)

− 2

∫ T

t

eβrȲr−dK̄r︸ ︷︷ ︸
≤0

+
∑

t<r≤T

eβr|∆K̄r|2︸ ︷︷ ︸
≥0

+

∫ T

t

∫
U

eβr|Zr(y)|2qt(dr, dy)

+

∫ T

t

∫
U

eβr|Zr(y)|2ν(r,Xt,x
r , dy)dr.

From the Lipschitz conditions of f̄ and the fact that the integrals with respect to qt are
martingales, we obtain

βEt,x

∫ T

t

eβr|Ȳr|2dr + Et,x

∫ T

t

∫
U

eβr|Zr(y)|2ν(r,Xt,x
r , dy)dr

≤ 2Et,x

∫ T

t

eβr|Ȳr||f̄r|dr

≤ 2LEt,x

∫ T

t

eβr|Ȳr|
(∫

U

|ψ̄(y)|2
) 1

2

ν(r,Xt,x
r , dy)dr + 2L′Et,x

∫ T

t

eβr|Ȳr||ϕ̄r|dr

≤ δEt,x

∫ T

t

eβr|ψ̄(y)|2ν(r,Xt,x
r , dy)dr +

L2

δ
Et,x

∫ T

t

eβr|Ȳr|2dr

λL′Et,x

∫ T

t

eβr|Ȳr|2dr +
L′

λ
Et,x

∫ T

t

eβr|ϕ̄r|2dr

for some constants δ > 0 and λ > 0, then it follows that(
β − L2

δ
− λL′

)
||Ȳ ||2,β + ||Z̄||2,βν ≤ δ||ψ̄||2,βν +

L′

λ
||ϕ̄||2,β ,
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by choosing β > L2 + 2L′, it is possible to find δ ∈ (0, 1) such that

β >
L2

δ
+

2L′
√
δ
.

If L′ = 0, we see that Γ is δ-contraction on Mt,x
β , for C = β − L2

δ .
If L′ > 0, we choose λ = 1

δ , hence we get

L′
√
δ
‖Ȳ ‖2,β + ‖Z̄‖2,βν ≤ δ

(
L′
√
δ
‖ϕ̄‖2,β + ‖ψ̄‖2,βν

)
,

hence, Γ is a δ-contraction on Mt,x
β , for C = L′

√
δ
. Therefor, using the contraction theo-

rem, there exists a unique fixed point (Y, Z) ∈ Mt,x
β , such that (Y, Z) = Γ(Y, Z) with the

associated K is the solution to the reflected BSDE (5.3).

5 Relation with quasi-variational inequalities
In this section, we present some quasi-variational inequalities associated to the Markov
process X and we show that their solution can be represented probabilistically by means of
an appropriate reflected BSDE of the type studied above.

Next, we suppose that the data (g, f, h) of the RBSDE satisfies Hypothesis (2.5) and
the additional conditions

1. g : U −→ R is continuous and has at most polynomial growth at infinity.

2. f : [0, T ] × U × R × R −→ R is jointly continuous in t and x and for some C > 0,
p ∈ N, satisfies

|f(t, x, 0, 0)| ≤ (1 + |x|p). t ∈ [0, T ], x ∈ U. (5.1)

3. h : [0, T ] × U −→ R is jointly continuous in t and x and for some C > 0, p ∈ N,
satisfies

|h(t, x)| ≤ (1 + |x|p). t ∈ [0, T ], x ∈ U. (5.2)
We assume moreover that h(T, x) ≤ g(x), for all x ∈ U.

It follows from the results of the above sections that for each (t, x) ∈ [0, T ]×U , there exists
a unique triplet (Y t,x, Zt,x,Kt,x) ∈ Mt,x which solves the following reflected BSDE

Y t,x
s = g(Xt,x

T ) +
∫ T

s
f
(
r,Xt,x

r , Y t,x
r , Zt,x

r (·)
)
dr

−
∫ T

s

∫
U
Zt,x
r (y)qt(drdy) +Kt,x

T −Kt,x
s , ∀s ∈ [t, T ]

Y t,x
s ≥ h(Xt,x

s ), ∀s ∈ [t, T ]∫ T

t

(
Y t,x
s− − h(Xt,x

s− )
)
dKt,x

s = 0

. (5.3)

We now consider the related problem of quasi-variational inequalities.

Definition 5.1. A solution of the quasi-variational inequalities problem is a function v :

[0, T ]× U −→ R which satisfies
min {v(t, x)− h(t, x),−∂tv(t, x)− Ltv(t, x)− f(t, x, v(t, x), v(t, ·)− v(t, x))} = 0,

t ∈ [0, T ], x ∈ U,

v(T, x) = g(x),
(5.4)
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where L is the generator of the Markov process X defined by

Ltφ(x) =

∫
U

(φ(y)− φ(x))ν(t, x, dy), t ∈ [0, T ], x ∈ U.

More precisely, we shall consider solutions of (5.4) in the viscosity sens.

Definition 5.2. a) A continuous function v is said to be a viscosity subsolution of (5.4)
if v(T, x) ≤ g(x), x ∈ U and if for any point (t0, x0) ∈ [0, T ] × U and for any
ϕ ∈ C1,2([0.T ]× U) such that ϕ(t0, x0) = v(t0, x0) and ϕ− v attains its minimum at
(t0, x0), then

min {v(t, x)− h(t, x),−∂tv(t, x)− Ltv(t, x)− f(t, x, v(t, x), v(t, ·)− v(t, x))} ≤ 0.

b) A continuous function v is said to be a viscosity supersolution of (5.4) if v(T, x) ≤ g(x),
x ∈ U and if for any point (t0, x0) ∈ [0, T ]× U and for any ϕ ∈ C1,2([0.T ]× U) such
that ϕ(t0, x0) = v(t0, x0) and ϕ− v attains its maximum at (t0, x0), then

min {v(t, x)− h(t, x),−∂tv(t, x)− Ltv(t, x)− f(t, x, v(t, x), v(t, ·)− v(t, x))} ≥ 0.

c) A continuous function v is said to be a viscosity solution if it is both a viscosity
subsolution and supersolution.

We now define
v(t, x) = Y t,x

t , (t, x) ∈ [0, T ]× U. (5.5)

Lemma 5.3. (t, x) 7−→ v(t, x) is continuous.

Proof. We can define the solution Y t,x
s for all s ∈ [0, T ] by choosing

Y t,x
s = Y t,x

t , for all 0 ≤ s ≤ t.

It suffice to show that whenever (tn, xn) → (t, x)

Et,x sup
0≤s≤T

∣∣Y tn,xn
s − Y t,x

s

∣∣2 → 0.

Let X̄ = Xtn,xn −Xt,x, Ȳ = Y tn,xn − Y t,x, Z̄ = Ztn,xn −Zt,x, K̄ = Ktn,xn −Kt,x and f̄ =

f(·, Xtn,xn , Y tn,xn , Ztn,xn) − f(·, Xt,x, Y t,x, Zt,x). Then by Itô’s formula and Burkholder-
Davis-Gundy inequality, we get

Et,x sup
0≤s≤T

|Y tn,xn
s − Y t,x

s |2 + Et,x

(∫ T

s

∣∣Ztn,xn
r (y)− Zt,x

r (y)
∣∣2 ν(r,Xt,x

r , dy)dr

)

≤ Et,x|g(Xt,x
T )− g(Xtn,xn

T )|2 + 1

2
Et,x sup

0≤s≤T

∣∣Y tn,xn
s − Y t,x

s

∣∣2
+ 4(T − t)Et,x

(∫ T

t

(f(r,Xtn,xn
r , Y tn,xn

r , Ztn,xn
r )− f(r,Xt,x

r , Y t,x
r , Zt,x

r ))2dr

)

+ 4CEt,x

(∫ T

s

∣∣Ztn,xn
r (y)− Zt,x

r (y)
∣∣2 ν(r,Xt,x

r , dy)dr

)

+ Et,x

(
sup

t≤s≤T

∣∣h (s,Xtn,xn
s

)
− h

(
s,Xt,x

s

)∣∣2)Et,x(Ktn,xn

T )2
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hence for C <
1

4
, we get

Et,x sup
0≤s≤T

|Y tn,xn
s − Y t,x

s |2 ≤ Et,x|g(Xt,x
T )− g(Xtn,xn

T )|2

+ 4(T − t)Et,x

(∫ T

t

(f(r,Xtn,xn
r , Y tn,xn

r , Ztn,xn
r )− f(r,Xt,x

r , Y t,x
r , Zt,x

r ))2dr

)
+ Et,x( sup

t≤s≤T
|h(s,Xtn,xn

s − h(s,Xt,x
s )|2)Et,x(Ktn,xn

T )2 → 0,

as n→ ∞, which follow from the continuity assumptions and the polynomial growth of f, g
and h.

In the order to show the existence of solution to the equation (5.4), we are going to use
the approximation of the reflected BSDE (5.3) by penalization. For each (t, x) ∈ [0, T ]×U ,
n ∈ N∗, let (Y n,t,x

s , Zn,t,x
s )t≤s≤T denote the solution of the BSDE

Y n,t,x
s = g(Xt,x

T ) +

∫ T

s

f
(
r,Xt,x

r , Y n,t,x
r , Zn,t,x

r (·)
)
dr

+ n

∫ T

s

(Y n,t,x
r − h(r,Xt,x

r ))−dr −
∫ T

s

∫
U

Zn,t,x
r (y)qt(drdy).

(5.6)

It is known from ([7] Theorem 4.4) that

vn(t, x) = Y n,t,x
t , (t, x) ∈ [0, T ]× U,

is the solution of the nonlinear variation Kolmogrov equation{
∂tv

n(t, x) + Ltv
n(t, x) + fn(t, x, vn(t, x), vn(t, ·)− v(t, x)) = 0

vn(T, x) = g(x)

Where fn(t, x, y, z) = f(t, x, y, z) + n(y − h(t, x))−. Moreover, we suppose that

sup
t∈[0,T ],x∈U

(|g(x)|+ |f(t, x, 0, 0)|) <∞. (5.7)

Then, we have Y n,t,x
s = vn(s,Xt,x

s ) and Zn,t,x
s (y) = v(s, y)− vn(s,Xt,x

s− ).

Theorem 5.4. For each (t, x) ∈ [0, T ]× U , we have

sup
(t,x)∈[0,T ]×U

|v(t, x)− vn(t, x)|2 → 0, as n→ 0.

Proof. First, let (Y n,t,x, Zn,t,x) be a solution of equation (5.6), then from ([7], Corollary 3.6
), there exists a positive constant C depending only on T , L and L′, such that

Et,x

∫ T

t

∣∣Y n,t,x
s

∣∣2 ds+ Et,x

∫ T

t

∫
K

∣∣Zn,t,x
s (y)

∣∣2 ν (s,Xt,x
s , dy

)
ds ≤ C. (5.8)

Setting
Kn,t,x

s = n

∫ s

t

(Y n,t,x
r − h(r,Xt,x

r ))−dr.
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From now on, the proof will be divided into five steps and in the following C will be
denoted as a constant whose value can vary from line to line.
Step 1: There exists an Fs-adapted process (Y t,x

s )t≤s≤T such that

lim
n→∞

Et,x

∫ T

t

∣∣Y n,t,x
s − Y t,x

s

∣∣2 ds = 0.

Notice that for all n ≥ 0 and (s, x, y, z) ∈ [0, T ]× U × R× R

fn(s, x, y, z) ≤ fn+1(s, x, y, z),

Therefore, by the comparison theorem (A.1), we have

Y n,t,x
s ≤ Y n+1,t,x

s , for all s ∈ [t, T ], Pt,x-a.s.

Hence, Y n,t,x ↗ Y t,x.
In view of (5.8) and Fatau’s Lemma, we have

Et,x sup
t≤s≤T

∣∣Y t,x
s

∣∣2 ≤ C,

Then, it follows by the dominated convergence theorem

lim
n→∞

Et,x

∫ T

t

∣∣Y n,t,x
s − Y t,x

s

∣∣2 ds = 0. (5.9)

Step 2: limn→∞ Et,x
[
supt≤s<T | (Y n,t,x

s − h(s,Xt,x
s ))

− |2
]
= 0.

Let (Ȳ n,t,x, Z̄n,t,x)t≤s≤T be the solution of the following BSDE

Ȳ n,t,x
s = g(Xt,x

T ) +

∫ T

s

f
(
r,Xt,x

r , Ȳ n,t,x
r , Z̄n,t,x(·)

)
dr

+ n

∫ T

s

(h(r,Xt,x
r )− Ȳ n,t,x)dr −

∫ T

s

∫
U

Z̄n,t,x(y)qt(drdy),

(5.10)

by the comparison theorem, we have for all t ≤ s ≤ T and n ≥ 0, Y n,t.x
s ≥ Ȳ n,t,x

s Pt,x-a.s.
Now let θ be a stopping time such that t ≤ θ ≤ T . Then, applying Itô’s formula to

Ȳ n,t,x
s e−n(s−θ), we have

Ȳ n,t,x
θ =e−n(T−θ)g(Xt,x

T ) + n

∫ T

θ

e−n(s−θ)Ȳ n,t,x
s ds

+

∫ T

θ

e−n(s−θ)f
(
s,Xt,x

s , Ȳ n,t,x
s , Z̄n,t,x

s (·)
)
ds

+ n

∫ T

s

e−n(s−θ)(h(s,Xt,x
s )− Ȳ n,t,x

s )ds−
∫ T

s

∫
U

e−n(s−θ)Z̄n,t,x
s (y)qt(dsdy),

since the integral with respect to qt(ds, sy) is a martingale, we get by taking the conditional
expectation.

Ȳ n,t,x
θ =Et,x

[
e−n(T−θ)g(Xt,x

T ) +

∫ T

θ

e−n(s−θ)f
(
s,Xt,x

s , Ȳ n,t,x
s , Z̄n,t,x

s (·)
)
ds

+n

∫ T

s

e−n(s−θ)h(s,Xt,x
s )ds | Fθ

]
.
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It is easily seen that
e−n(T−θ)g(Xt,x

T ) → g(Xt,x
T )1θ=T

Pt,x-a.s and in L2(Ω). Moreover, using Itô’s formula, we have

n

∫ T

s

e−n(s−θ)h(s,Xt,x
s )ds = h(θ,Xt,x

θ )1θ<T +

∫ T

s

e−n(r−θ)(∂rh(r,X
t,x
r ) + Lrh(r,X

t,x
r ))dr

+

∫ T

s

∫
U

e−n(r−θ)(h(r, y)− h(r,Xt,x
r ))qt(drdy)

−→ h(θ,Xt,x
θ )1θ<T .

Pt,x-a.s and in L2(Ω). Moreover,∣∣∣∣∣
∫ T

τ

e−n(s−θ)f
(
s, Ȳ n,t,x

s , Z̄n,t,x
s

)
ds

∣∣∣∣∣ ≤ 1√
2n

(∫ T

0

f2
(
s, Ȳ n,t,x

s , Z̄n,t,x
s

)
ds

) 1
2

,

hence

Et,x

[∫ T

θ

e−n(s−θ)f
(
s,Xt,x

s , Ȳ n,t,x
s , Z̄n,t,x

s (·)
)
ds | Fθ

]
−→ 0,

in L2(Ω) as n→ ∞. Consequently

Ȳ n,t,x
θ → g(Xt,x

T )1θ=T + h(θ,Xt,x
θ )1θ<T in L2(Ω) as n→ ∞.

Therefore, Y t,x
θ ≥ h(θ,Xt,x

θ ). Hence, from this and the Section Theorem in [11], it follows
that Pt,x-a.s. Y t,x

s ≥ h(s,Xt,x
s ), t ≤ s ≤ T and then(

Y n,t,x
s − h(s,X − st,x)

)− ↘ 0, t ≤ s ≤ T,

since (Y n,t,x
s − h(s,Xt,x

s ))
− ≤ (h(s,X − st,x)− Y n,t,x

s )
+ ≤ |h(s,X − st,x)|+ |Ȳ 0,t,x

s |,
then, it follows from the dominated convergence theorem

lim
n→∞

E

[
sup

t≤s<T

∣∣∣(Y n,t,x
s − h(s,Xt,x

s )
)−∣∣∣2] = 0.

Step 3: limn→∞ Et,x
[
supt≤s<T |Y n,t,x

s − Y t,x
s |2

]
= 0 and there exist, F-adapted processes

Zt,x and Kt,x such that

lim
n→∞

Et,x

[∫ T

t

∫
U

|Zn,t,x
s − Zt,x

s |2ν(s,Xt,x
s , dy)ds+ sup

t≤s≤T
|Kn,t,x

s −Kt,x
s |2

]
= 0.

Indeed, by Itôs formula and taking expectation in both sides, we have for all n ≥ p ≥ 0 and
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t ≤ s ≤ T

Et,x|Y n,t,x
s − Y p,t,x

s |2 + Et,x

∫ T

s

∫
U

|Zn,t,x
r − Zp,t,x

r |2ν(s,Xt,x
s , dy)ds

≤ 2Et,x

∫ T

s

(
f(r,Xt,x

r , Y n,t,x
r , Zn,t,x

r )− f(r,Xt,x
r , Y p,t,x

r , Zp,t,x
r )

) (
Y n,t,x
r − Y p,t,x

r

)
dr

+ 2Et,x

∫ T

s

(
Y n,t,x
r − Y p,t,x

r

)
d(Kn,t,x

r −Kp,t,x
r )

≤ 2LEt,x

∫ T

s

|Y n,t,x
r − Y p,t,x

r |2dr + 2L′Et,x

∫ T

s

∫
U

|Y n,t,x
s − Y p,t,x

s ||Zn,t,x
r − Zp,t,x

r |ν(r,Xt,x
r , dy)dr

+ 2Et,x

∫ T

s

(
Y n,t,x
r − h(r,Xt,x

r )
)−
dKp,t,x

r + 2Et,x

∫ T

s

(
Y p,t,x
r − h(r,Xt,x

r )
)−
dKn,t,x

r

≤ 2(L+ L′2 sup
t,x

ν(t, x, U))Et,x

∫ T

s

|Y n,t,x
r − Y p,t,x

r |2dr

+
1

2
Et,x

∫ T

s

∫
U

|Zn,t,x
r (y)− Zp,t,x

r (y)|ν(r,Xt,x
r , dy)dr

2

∫ T

s

(
Y n,t,x
r − h(r,Xt,x

r )
)−
dKp,t,x

r + 2Et,x

∫ T

s

(
Y p,t,x
r − h(r,Xt,x

r )
)−
dKn,t,x

r .

Therefore

Et,x

∫ T

s

∫
U

|Zn,t,x
r − Zp,t,x

r |2ν(r,Xt,x
r , dy)dr

≤ 2(L+ L′2 sup
t,x

ν(t, x, U))Et,x

∫ T

s

|Y n,t,x
r − Y p,t,x

r |2dr

+ 2

∫ T

s

(
Y n,t,x
r − h(r,Xt,x

r )
)−
dKp,t,x

r

+ 2Et,x

∫ T

s

(
Y p,t,x
r − h(r,Xt,x

r )
)−
dKn,t,x

r .

Using the results of step 2, we get

Et,x

∫ T

s

(
Y n,t,x
r − h(r,Xt,x

r )
)−
dKp,t,x

r

≤
(
Et,x sup

t≤s≤T
|
(
Y p,t,x
r − h(r,Xt,x

r )
)− |2

) 1
2 (

Et,x(Kn,t,x
T )2

) 1
2 → 0,

as n, p→ ∞.

Et,x

∫ T

s

(
Y p,t,x
r − h(r,Xt,x

r )
)−
dKn,t,x

r

≤
(
Et,x sup

t≤s≤T
|
(
Y n,t,x
r − h(r,Xt,x

r )
)− |2

) 1
2 (

Et,x(Kp,t,x
T )2

) 1
2 → 0,

as n, p→ ∞.
Hence, it follows from that and (5.9)

lim
n→∞

Et,x

[∫ T

t

∫
U

|Zn,t,x
s − Zt,x

s |2ν(s,Xt,x
s , dy)ds

]
.
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Moreover, using Burkholder-Davis-Gundy inequality, we get

Et,x
[

sup
t≤s<T

|Y n,t,x
s − Y t,x

s |2
]
≤ (2L+ L′2 sup

t,x
ν(t, x, U))Et,x

∫ T

s

|Y n,t,x
r − Y p,t,x

r |2dr

+ L′Et,x

[∫ T

t

∫
U

|Zn,t,x
s − Zp,t,x

s |2ν(s,Xt,x
s , dy)ds

]
+ 2

∫ T

t

(
Y n,t,x
r − h(r,Xt,x

r )
)−
dKp,t,x

r

+ 2Et,x

∫ T

t

(
Y p,t,x
r − h(r,Xt,x

r )
)−
dKn,t,x

r

+ 2Et,x sup
t≤s<T

∣∣∣∣∣
∫ T

s

∫
U

|(Y n,t,x
r − Y p,t,x

r )(Zn,t,x
s − Zp,t,x

s )q(drdy)

∣∣∣∣∣
≤ (2L+ L′2 sup

t,x
ν(t, x, U))Et,x

∫ T

s

|Y n,t,x
r − Y p,t,x

r |2dr

+ L′Et,x

[∫ T

t

∫
U

|Zn,t,x
s − Zp,t,x

s |2ν(s,Xt,x
s , dy)ds

]
+ 2

∫ T

s

(
Y n,t,x
r − h(r,Xt,x

r )
)−
dKp,t,x

r

+ 2Et,x

∫ T

s

(
Y p,t,x
r − h(r,Xt,x

r )
)−
dKn,t,x

r +
1

2
Et,x sup

t≤s<T
|Y n,t,x

s − Y t,x
s |2

+ CEt,x

∫ T

t

∫
U

|Zn,t,x
s − Zp,t,x

s |2ν(s,Xt,x
s , dy)ds,

hence
Et,x

[
sup

t≤s<T
|Y n,t,x

s − Y t,x
s |2

]
−→ 0

as n, p→ ∞, and then

lim
n→∞

Et,x
[

sup
t≤s<T

|Y n,t,x
s − Y t,x

s |2
]
= 0.

Finally, since for all n ≤ 0, t ≤ s ≤ T

Kn,t,x
s −Kp,t,x

s = Y n,t,x
s − Y p,t,x

s − (Y n,t,x
t − Y p,t,x

t )

−
∫ s

t

f(r,Xt,x
r , Y n,t,x

r , Zn,t,x
r )− f(r,Xt,x

r , Y p,t,x
r , Zp,t,x

r )dr

+

∫ s

t

∫
U

Zn,t,x
s (y)− Zp,t,x

s (y)q(drdy),

Hence, it follows

sup
t≤s≤T

|Kn,t,x
s −Kp,t,x

s |2 ≤ 4|Y n,t,x
s − Y p,t,x

s |2 + 4|(Y n,t,x
t − Y p,t,x

t )|2

+ 8L sup
(t,x)

ν(t, x, U)

∫ T

t

|Y n,t,x
r − Y p,t,x

r |2dr

+ 8L′(T − t)

∫ T

t

∫
U

|Zn,t,x
r − Zp,t,x

r |2ν(r,Xt,x
r , dy)dr

+ 4C

(∫ T

t

∫
U

(Zn,t,x
r − Zp,t,x

r )
1
2 ν(r,Xt,x

r , dy)dr

) 1
2

.
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Hence
Et,x sup

t≤s≤T
|Kn,t,x

s −Kp,t,x
s |2 → 0, as n, p→ ∞.

Consequently, there exists a pair of (F-adapted processes (Zt,x, Kt,x) such that

lim
n→∞

Et,x

[∫ T

t

∫
U

|Zn,t,x
s − Zt,x

s |2ν(s,Xt,x
s , dy)ds+ sup

t≤s≤T
|Kn,t,x

s −Kt,x
s |2

]
= 0.

Step 4: The limit process (Y t,x
s , Zt,x

s ,Kt,x
s )t≤s≤T is the solution to the reflected BSDE (5.3).

Obviously, the process (Y t,x
s , Zt,x

s ,Kt,x
s )t≤s≤T satisfies

Y t,x
s = g(Xt,x

T ) +

∫ T

s

f
(
r,Xt,x

r , Y t,x
r , Zt,x

r (·)
)
dr

−
∫ T

s

∫
U

Zt,x
r (y)qt(drdy) +Kt,x

T −Kt,x
s , ∀s ∈ [t, T ]

Also using step 1, we get

Et,x
(
h(s,Xt,x

s )− Y t,x
s

)2 ≤ lim inf
n→∞

Et,x

(
sup

t≤s≤T

∣∣∣ (Y n,t,x
s − h(s,Xt,x

s )
)− ∣∣∣2)→ 0,

Hence
Y t,x
s ≤ h(s,Xt,x

s ), t ≤ s ≤ T, Pt,x-a.s. (5.11)

Clearly, Kt,x is increasing. Moreover, we have just seen (Y t,x
s ,Kt,x

s ) tends to (Y t,x
s ,Kt,x

s )

uniformly in s in probability. Then the measure dKn,t,x tends to dKt,x weakly in probability
and ∫ T

t

Y n,t,x
s − h(s,Xt,x

s )dKn,t,x
s →

∫ T

t

Y t,x
s − h(s,Xt,x

s )dKt,x
s .

Using (5.11), we get obviously∫ T

t

Y t,x
s − h(s,Xt,x

s )dKt,x
s ≥ 0.

On the other hand ∫ T

t

Y n,t,x
s − h(s,Xt,x

s )dKn,t,x
s ≥ 0, for all n ∈ N.

Hence ∫ T

t

Y t,x
s − h(s,Xt,x

s )dKt,x
s = 0.

Consequently, we have∣∣vn(t, x)− v(t, x)
∣∣2 =

∣∣∣Y n,t,x
t − Y t,x

t

∣∣∣2
≤ Et,x

[
sup

t≤s<T
|Y n,t,x

s − Y t,x
s |2

]
→ 0.

Theorem 5.5. The function v defined by the equation (5.5) is a viscosity solution of the
equation (5.4).
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Proof. First, let us show that u is a viscosity subsolution of equation (5.4). Let (t0, x0) ∈
[0, T ]× U and ϕ ∈ C1,2([0, T ]× U) be such that ϕ(t0, x0) = v(t0, x0).
Suppose that h(t0, x0) < v(t0, x0) and that

−∂sϕ(t0, x0)− Lsϕ(t0, x0)− f(t0, x0, v(t0, x0), ϕ(t0, ·)− ϕ(t0, x0)) > 0,

and we will find a contradiction.
By continuity, we can suppose that there exists ε > 0 and ηε > 0 such that for each (t, x),
t0 ≤ t ≤ t0 + ηε and |x− x0| ≤ ε, we have v(t, x) ≥ h(t, x) + ε and

− ∂tϕ(t, x)− Ltϕ(t, x)− f(t, x, v(t, x), ϕ(t, ·)− ϕ(t, x)) > ε. (5.12)

We define the stopping time

τ = inf{s ≥ t0 : |Xt0,x0
s − x0| > ηε} ∧ (t0 + ηε). (5.13)

By definition of stopping time, we have for t0 ≤ s ≤ τ

v(s,Xt0,x0
s ) ≥ h(s,Xt0,x0

s ) + ε.

Consequently, the process (Kt0,x0
s ) is constant on [t0, τ ] and, hence,

Y t0,x0
s = Y t0,x0

τ +

∫ τ

s

f
(
r,Xt0,x0

r , Y t0,x0
r , Zt0,x0

r

)
dr−

∫ τ

s

∫
U

Zt0,x0
r (y)qt0(dr, dy), t0 ≤ s ≤ τ.

On the other hand, applying Itô’s formula to ϕ(s,Xt0,x0
s ) gives Pt0,x0-a.s.

ϕ(s,Xt0,x0
s ) =ϕ(τ,Xt0,x0

τ )−
∫ τ

s

(∂rϕ(r,X
t0,x0
r ) + Lrϕ(r,X

t0,x0
r ))dr

−
∫ τ

s

∫
U

(ϕ(r, y)− ϕ(r,Xt0,x0

r− ))qt0(drdy), s ∈ [t0, T ].

We can see that (ϕ(s,Xt0,x0
s ), ϕ(s, ·)−ϕ(s,Xt0,x0

s )) is the solution of the BSDE corresponding
to the terminal ϕ(τ,Xt0,x0

τ ) condition and the generator −∂sϕ(s,Xt0,x0
s ) − Lsϕ(s,X

t0,x0
s .

Now by assumption (5.12)

−[∂sϕ(s,X
t0,x0
s ) + Lsϕ(s,X

t0,x0
s )]− f(s,Xt0,x0

s , v(s,Xt0,x0
s ), ϕ(s, ·)− ϕ(s,Xt0,x0

s )) > ε

−∂tϕ(t, x)− Ltϕ(t, x)− f(t, x, v(t, x), ϕ(t, ·)− ϕ(t, x)) > ε, t0 ≤ s ≤ τ.

Also
ϕ(τ,Xt0,x0

τ ) ≥ v(τ,Xt0,x0
τ ) = Y t0,x0

τ .

Consequently, using comparison theorem (A.1), we get

ϕ(t0, x0) > ϕ(t0, x0)− ε(τ − t0) ≥ v(t0, x0),

which leads to a contradiction.
Next, let us show that v is a viscosity supersolution of equation (5.4).

Let (t0, x0) ∈ [0, T ]× U and ϕ ∈ C1,2([0, T ]× U) be such that ϕ(t0, x0) = v(t0, x0).
Since the solution Y t0,x0

s stays above the obstacle h, hence, v(t0, x0) ≥ h(t0, x0). We have
to show that

−∂sϕ(t0, x0)− Lsϕ(t0, x0)− f(t0, x0, v(t0, x0), ϕ(t0, ·)− ϕ(t0, x0)) ≥ 0.
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We suppose that

−∂sϕ(t0, x0)− Lsϕ(t0, x0)− f(t0, x0, v(t0, x0), ϕ(t0, ·)− ϕ(t0, x0)) < 0.

By continuity, we can suppose that there exists ε > 0 and ηε > 0 such that for each (t, x),
t0 ≤ t ≤ t0 + ηε and |x− x0| ≤ ε, we have

− ∂tϕ(t, x)− Ltϕ(t, x)− f(t, x, v(t, x), ϕ(t, ·)− ϕ(t, x)) ≤ −ε. (5.14)

We define the stopping time

τ = inf{s ≥ t0 : |Xt0,x0
s − x0| > ηε} ∧ (t0 + ηε). (5.15)

By definition of stopping time, we have for t0 ≤ s ≤ τ

Y t0,x0
s = Y t0,x0

τ +

∫ τ

s

f
(
r,Xt0,x0

r , Y t0,x0
r , Zt0,x0

r

)
dr−

∫ τ

s

∫
U

Zt0,x0
r (y)qt0(dr, dy)+Kt0,x0

τ −Kt0,x0
s .

On the other hand, as in the case of subsolution, by applying Itô’s formula to ϕ(s,Xt0,x0
s ),

we get Pt0,x0 -a.s.

ϕ(s,Xt0,x0
s ) =ϕ(τ,Xt0,x0

τ )−
∫ τ

s

(∂rϕ(r,X
t0,x0
r ) + Lrϕ(r,X

t0,x0
r ))dr

−
∫ τ

s

∫
U

(ϕ(r, y)− ϕ(r,Xt0,x0

r− ))qt0(drdy), s ∈ [t0, T ].

Note that the couple (ϕ(s,Xt0,x0
s ), ϕ(s, ·)− ϕ(s,Xt0,x0

s )) is the solution of the BSDE corre-
sponding to the terminal ϕ(τ,Xt0,x0

τ ) condition and the generator −∂sϕ(s,Xt0,x0
s )−Lsϕ(s,X

t0,x0
s ).

Now by assumption (5.14)

−[∂sϕ(s,X
t0,x0
s )+Lsϕ(s,X

t0,x0
s )]−[f(s,Xt0,x0

s , v(s,Xt0,x0
s ), ϕ(s, ·)−ϕ(s,Xt0,x0

s ))+dKt0,x0
s ] ≤ −ε

Also
ϕ(τ,Xt0,x0

τ ) ≥ v(τ,Xt0,x0
τ ) = Y t0,x0

τ .

Consequently, using comparison theorem (A.1), we get

ϕ(t0, x0) < ϕ(t0, x0) + ε(τ − t0) ≤ Y t0,x0

t0 = v(t0, x0),

which leads to a contradiction.

A Comparison theorem for BSDE associated to jump
Markov processes

In this section we establish a comparison theorem for BSDE associated to jump Markov
processes. Consider the following BSDE

Y t,x
s = g(Xt,x

T ) +

∫ T

s

f
(
r,Xt,x

r , Y t,x
r , Zt,x

r (·)
)
dr −

∫ T

s

∫
U

Zt,x
r (y)qt(drdy). (A.1)

The solution is a couple (Y t,x, Zt,x), witch exist and unique from [7].
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In the following E(H) denotes the Doleans-Dade exponential of the process∫ ·

t

∫
E

(Hs(e)− 1) q(dsde),

that is
E(H) =

∏
n≥1

HTn
(XTn

) e
∫ s
t

∫
U
(1−Hr(y))ν(r,X

t,x
r ,dy)dr.

We now introduce for a Pt ⊗ U-measurable and positive function λ the supermartingale

Lλ
s = E(λ) =

∏
n≥1

λTn
(XTn

) e
∫ s
t

∫
U
(1−λs(y))ν(r,X

t,x
r ,dy)dr.

When Lλ is a martingale, we define the absolutely continuous probability Qt,x � Pt,x as

Qt,x

Pt,x
= Lλ

T , for all (t, x) ∈ [0, T ]× U.

In this case, under Qt,x the compensator of p becomes

λs(y)ν(r,X
t,x
r , dy)dr.

Assume that for all (s, y) ∈ [t, T ]× U , 0 ≤ λs(y) ≤M . Hence, from ([17], Proposition 2.2),
Lλ is a Pt,x-martingale, and for any process H ∈ L1(p), the process(∫ s

t

∫
U

Hr(y)
(
p(dr, dy)− λr(dy)ν(r,X

t,x, dy)
))

t≤s≤T

is a Qt,x-martingale.

Theorem A.1. Let (gi, f i)i=1,2 be two sets of data for which hypotheses (2.5)-(1)(2) hold.
Let

(
Y t,x,i, Zt,x,i

)
i=1,2

be the corresponding solutions. Assume that

g2(Xt,x
T ) ≤ g1(Xt,x

T ) and f2
(
s,Xt,x

s , Y t,x,1
s , Zt,x,1

s

)
≤ f1

(
s,Xt,x

s , Y t,x,1
s , Zt,x,1

s

)
Pt,x-a.s.

for all s ∈ [t, T ]. Assume there is a Pt ⊗U-measurable function λ such that 0 ≤ λs(y) ≤M

and for all (s, x, y) ∈ [t, T ]× U × R and z2, z1 ∈ L2 (U,U , ν(s,Xt,x
s , dy))

f2
(
s, x, y, z2

)
− f2

(
s, x, y, z1

)
≤
∫
U

λ(e)
(
z2(e)− z1(e)

)
ν(s, x, de).

Then we have that Y t,x,2
s ≤ Y t,x,1

s Pt,x-a.s. for all s ∈ [t, T ].

Proof. Define

ḡ = g2(Xt,x
T )− g1(Xt,x

T ), f̄s = f2
(
s,Xt,x

s , Y t,x,1
s , Zt,x,1

s

)
− f1

(
s,Xt,x

s , Y t,x,1
s , Zt,x,1

s

)
,

Ȳ = Y t,x,2 − Y t,x,1 and Z̄ = Zt,x,2 − Zt,x,2.

Ȳ satisfies

Ȳs = ḡ+

∫ T

s

(
f2
(
s,Xt,x

r , Y t,x,2
r , Zt,x,2

r

)
− f1

(
r,Xt,x

r , Y t,x,1
r , Zt,x,1

r

))
dr

−
∫ T

s

∫
U

Z̄r(y)q
t(dr, dy).
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Setting

φs =
f2
(
s,Xt,x

s , Y t,x,2
s , Zt,x,2

s

)
− f2

(
s,Xt,x

s , Y t,x,1
s , Zt,x,1

s

)
Ȳs

1{
Ȳs 6=0

} ≤ L

Thus, the equation can be written as

Ȳs = ḡ +

∫ T

s

φrȲrdr+

∫ T

s

(
f2
(
s,Xt,x

r , Y t,x,1
r , Zt,x,1

r

)
− f2

(
r,Xt,x

r , Y t,x,1
r , Zt,x,2

r

))
dr

+

∫ T

s

f̄rdr −
∫ T

s

∫
U

Z̄r(y)q
t(dr, dy).

Consider now the positive process (Γs)t≤s≤T defined by

Γs = e
∫ s
t
φrdr, Γt = 1.

We now apply Itô’s formula to ΓȲ between s and T , we get

ΓT ḡ = ΓsȲs−
∫ T

s

Γr

(
f2
(
s,Xt,x

r , Y t,x,21
r , Zt,x,1

r

)
− f2

(
r,Xt,x

r , Y t,x,1
r , Zt,x,2

r

))
dr

−
∫ T

s

Γrf̄rdr +

∫ T

s

∫
U

ΓrZ̄r(y)q
t(dr, dy).

Since ḡ and f̄ are non-positive, we obtain

ΓsȲs ≤
∫ T

s

Γr

(
f2
(
s,Xt,x

r , Y t,x,21
r , Zt,x,1

r

)
− f2

(
r,Xt,x

r , Y t,x,1
r , Zt,x,2

r

))
dr

−
∫ T

s

∫
U

ΓrZ̄r(y)q
t(dr, dy)

≤
∫ T

s

Γrλr(y)Z̄r(y)ν(r,X
t,x
r , dy)dr −

∫ T

s

∫
U

ΓrZ̄r(y)q
t(dr, dy).

Consider η > 0. Then for ε < η we add to both sides of the previous inequality the term

ε

∫ T

s

∫
U

ΓrZ̄r(y)ν(r,X
t,x
r , dy)dr.

Obtaining

ΓsȲs + ε

∫ T

s

∫
U

ΓrZ̄r(y)ν(r,X
t,x
r , dy)dr

≤ −
∫ T

s

∫
U

ΓrZ̄r(y)
[
p(dr, dy)− (λr(y) + ε+ 1)ν(r,Xt,x

r , dy)dr
]
.

Now we can consider λr(y)+ε+1 as Girsanov kernel and then we can introduce the equivalent
probability

Qt,x,ε = Lλ+ε+1
T Pt,x, for all (t, x) ∈ [0, T ]× U.

Therefor, any Pt,x-martingale is a Qt,x,ε-martingale, thus by taking Qt,x,ε conditional ex-
pectation on Fs in the previous inequality, we get for any ε < η
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ΓsȲs + εEQt,x,ε

[∫ T

s

∫
U

ΓrZ̄r(y)ν(r,X
t,x
r , dy)dr | Fs

]
≤ 0, Qt,x,ε-a.s.

and then

ΓsȲs + εEQt,x,ε

[∫ T

s

∫
U

ΓrZ̄r(y)ν(r,X
t,x
r , dy)dr | Fs

]
≤ 0, Pt,x-a.s.

In the order to conclude the proof, we have to show that

εEQt,x,ε

[∫ T

s

∫
U

ΓrZ̄r(y)ν(r,X
t,x
r , dy)dr | Fs

]
→ 0, as ε→ 0.

To this end, we have

EQt,x,ε

[∫ T

s

∫
U

ΓrZ̄r(y)ν(r,X
t,x
r , dy)dr | Fs

]

= Et,x

[
Lλ+ε+1
T

Lλ+ε+1
s

∫ T

s

∫
U

ΓrZ̄r(y)ν(r,X
t,x
r , dy)dr | Fs

]

≤ TEt,x

(Lλ+ε+1
T

Lλ+ε+1
s

)2

| Fs

 1
2

Et,x

[∫ T

s

∫
U

Γ2
rZ̄

2
r (y)ν(r,X

t,x
r , dy)dr | Fs

] 1
2

.

From ([17], Proposition 2.2), we have

Et,x

(Lλ+ε+1
T

Lλ+ε+1
s

)2

| Fs

 ≤ e3+T (M+η+1)4 supt,x ν(t,x,U), Pt,x-a.s.

On the other hand, we have

Et,x

[∫ T

s

∫
U

Γ2
rZ̄

2
r (y)ν(r,X

t,x
r , dy)dr | Fs

]

≤ e2(T−t)LEt,x

[∫ T

s

∫
U

Z̄2
r (y)ν(r,X

t,x
r , dy)dr | Fs

]
, Pt,x-a.s.

Hence the theorem is proven.
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