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and Canonical Decompositions” [International Journal of

Approximate Reasoning 53 (2012) 146–158]
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Univ. Artois, EA 3926, Laboratoire de Génie Informatique et d’Automatique de l’Artois
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Abstract

Proposition 4 and Theorem 1 of the article “Belief Functions Contextual
Discounting and Canonical Decompositions” [International Journal of Ap-
proximate Reasoning 53 (2012) 146–158] provide an erroneous result. We
give here the true result with a correct proof.
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We hereby correct Proposition 4 and Theorem 1 in [2], which contained
erroneous results.

Let us first recall the problem. A source S of information provides to
agent Ag a piece of information represented by a mass function mΩ

S (with
Ω = {ω1, . . . , ωK}), simply denoted by m in this corrigendum. Let A be
a non empty set of subsets of Ω called contexts. Agent Ag owns a meta-
knowledge regarding the reliability of S conditionally on each set A ∈ A.
Formally, for all A ∈ A, we suppose that{

mRAg[A]({R}) = 1− αA = βA
mRAg[A](R) = αA ,

(1)

where αA ∈ [0, 1] and R = {R,NR} (R meaning the source is reliable, NR
otherwise), and the notation m[·] denotes conditioning.

With the same reasoning as in [1] (where A was supposed to form a
partition of Ω), the knowledge mΩ

Ag held by agent Ag on Ω, based on the in-
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formation m provided by S and his metaknowledge regarding S represented
by (1) for all A ∈ A, can be obtained by the following computation,(

mΩ[{R}]⇑Ω×R
∩©A∈Am

R[A]⇑Ω×R
)↓Ω

, (2)

where symbol ⇑ and ↓ denote, respectively, the deconditioning and projec-
tion operations, and mΩ[{R}] = m.

It is stated in [2] that, for A = 2Ω (Proposition 4) and more generally
for any set A of contexts (Theorem 1), Equation (2) is equivalent to

m ∪© ( ∪©A∈AAβA) . (3)

This statement is incorrect. In the general case, for any non empty A,
Equation (2) is equivalent to

m ∪©
(
∩©A∈AA

αA
)
, (4)

as shown by the following proof, which corrects Theorem 1 from [2]. The
fact that, in general, (4) is not equivalent to (3) (and particularly when
A = 2Ω), and therefore (2) is not equivalent in general to (3), is shown
below by Example 1.

Proof 1. Let us denote by Ai, i ∈ I = {1, . . . , n}, the contexts present in
A, and let us write βAi simply by βi, for all i ∈ I. For all Ai ∈ A, the
deconditioning of mR[Ai] over Ω×R is given by

mR[Ai]
⇑Ω×R(Ai × {R} ∪Ai ×R) = βi, (5a)

mR[Ai]
⇑Ω×R(Ω×R) = αi. (5b)

Moreover, for all (Ai, Aj) ∈ A2, such that j 6= i,

(Ai × {R} ∪Ai ×R) ∩ (Aj × {R} ∪Aj ×R)

= (Ai ∩Aj)× {R} ∪ (Ai ∩Aj)× {R} ∪ (Ai ∩Aj)× {R} ∪ (Ai ∪Aj)×R
= (Ai ∪Aj)× {R} ∪ (Ai ∪Aj)×R.

With A composed of two elements denoted by Ai and Aj, we then have
(mR[Ai]

⇑Ω×R ∩©mR[Aj ]
⇑Ω×R)((Ai ∪Aj)× {R} ∪ (Ai ∪Aj)×R) = βiβj

(mR[Ai]
⇑Ω×R ∩©mR[Aj ]

⇑Ω×R)(Ai × {R} ∪Ai ×R) = βiαj
(mR[Ai]

⇑Ω×R ∩©mR[Aj ]
⇑Ω×R)(Aj × {R} ∪Aj ×R) = αiβj

(mR[Ai]
⇑Ω×R ∩©mR[Aj ]

⇑Ω×R)(Ω×R) = αiαj

.
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In other words, all the focal elements of ∩©A∈Am
R[A]⇑Ω×R are the elements

C ×{R} ∪C ×R with C composed of a union of elements Ai in A, I ′ being
the set of indices of the Ai’s, which means with C = ∪i∈I′⊆IAi. Moreover,
each focal element has a mass equal to

∏
i∈I′ βi

∏
j∈I\I′ αj. Let us note that

this latter result is also true if A is composed of one element A ⊆ Ω (directly
from Equations (5)).

By induction, we can show that this property remains true with A com-
posed of n contexts Ai, i ∈ I = {1, . . . , n}. Indeed, let us suppose the
property true with A composed of n− 1 contexts Ai, i ∈ I = {1, . . . , n− 1},
we then have for all focal elements C × {R} ∪ C ×R of ∩©i∈Im

R[Ai]
⇑Ω×R,

with C = ∪i∈I′⊆IAi,

( ∩©i∈Im
R[Ai]

⇑Ω×R
∩©mR[An]⇑Ω×R)((C ∪An)× {R} ∪ (C ∪An)×R)

= βn
∏
i∈I′

βi
∏

j∈I\I′
αj =

∏
i∈I′∪{n}

βi
∏

j∈(I∪{n})\(I′∪{n})

αj ,

and

( ∩©i∈Im
R[Ai]

⇑Ω×R
∩©mR[An]⇑Ω×R)(C × {R} ∪ C ×R)

= αn
∏
i∈I′

βi
∏

j∈I\I′
αj =

∏
i∈I′

βi
∏

j∈(I∪{n})\I′
αj ,

which means that focal elements of ∩©i∈{1,...,n−1}m
R[Ai]

⇑Ω×R ∩©mR[An]⇑Ω×R

are also of the form C × {R} ∪C ×R, with C = ∪i∈I′⊆IAi, I = {1, . . . , n},
Ai ∈ A, and have for mass:

∏
i∈I′ βi

∏
j∈I\I′ αj.

Besides, for all B ⊆ Ω,

mΩ[{R}]⇑Ω×R(B × {R} ∪ Ω× {NR}) = m(B) ,

and, for all B ⊆ Ω, for all C = ∪i∈I′⊆IAi,

(C × {R} ∪C ×R)∩ (B × {R} ∪Ω× {NR}) = B × {R} ∪C × {NR} .

Therefore, after the projection on Ω,
(
mΩ[{R}]⇑Ω×R ∩©A∈Am

R[A]⇑Ω×R)↓Ω
consists in transferring a part

∏
i∈I′ βi

∏
j∈I\I′ αj of each mass m(B), B ⊆

Ω, from B to B ∪ C, for all C = ∪i∈I′⊆IAi.
On the other hand, m ∪©

(
∩©A∈AA

αA
)
can be written as

m ∪©
(
∩©i∈IAi

αi
)

= m ∪©
(
∩©i∈I

{
Ω 7→ αi
Ai 7→ βi

)
.
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As for all (i, j) ∈ I2 s.t. i 6= j, Ai ∩Aj = Ai ∪Aj, it can be shown (with an
induction for example) that the focal elements of ∩©i∈IAi

αi are the elements
C with C = ∪i∈I′⊆IAi and have a mass equal to

∏
i∈I′ βi

∏
j∈I\I′ αj.

Consequently, operation m ∪©
(
∩©i∈IAi

αi
)
also consists in transferring a

part
∏
i∈I′ βi

∏
j∈I\I′ αj of each mass m(B), B ⊆ Ω, from B to B ∪ C, for

all C = ∪i∈I′⊆IAi. We can then conclude that Equations (2) and (4) are
equivalent for any non empty set of contexts A.

�

Example 1. Let us consider Ω = {ω1, ω2} and A = 2Ω, and let us denote
α{ω1} by α1, α{ω2} by α2, and αΩ by α12. Equation (4) gives

m ∪©
(
∩©A∈AA

αA
)

= m ∪©
(
∅α∅ ∩©{ω1}

α1
∩©{ω2}

α2
∩©Ω

α12
)

= m ∪© ({ω2}α1 ∩©{ω1}α2 ∩©∅α12)

= m ∪©
({
{ω2} 7→ β1

Ω 7→ α1
∩©
{
{ω1} 7→ β2

Ω 7→ α2
∩©
{
∅ 7→ β12

Ω 7→ α12

)

= m ∪©


∅ 7→ β1β2α12 + β12

{ω1} 7→ α1β2α12

{ω2} 7→ β1α2α12

Ω 7→ α1α2α12

.

In contrast, Equation (3) leads to

m ∪© ( ∪©A∈AAβA)
= m ∪© ∅β∅ ∪©{ω1}β1 ∪©{ω2}β2 ∪©Ωβ12

= m ∪© {ω1}β1 ∪©{ω2}β2 ∪©Ωβ12

= m ∪©
{
∅ 7→ β1

{ω1} 7→ α1
∪©
{
∅ 7→ β2

{ω2} 7→ α2
∪©
{
∅ 7→ β12

Ω 7→ α12

= m ∪©


∅ 7→ β1β2β12

{ω1} 7→ α1β2β12

{ω2} 7→ β1α2β12

Ω 7→ α1α2β12 + α12

.

To summarize, in [1], the equivalence was shown between (2) and (3)
whenA forms a partition of Ω. This corrigendum shows that this equivalence
does not hold for any A, and that (2) is actually equivalent to (4) for any
(non empty) A.
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