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Abstract

A canonical decomposition of belief functions is a unique decomposition of belief func-

tions into elementary pieces of evidence. Smets found an equivalent representation of be-

lief functions, which he interpreted as a canonical decomposition. However, his proposal

is not entirely satisfactory as it involves elementary pieces of evidence, corresponding to

a generalisation of belief function axioms, whose semantics lacks formal justifications.

In this paper, a new canonical decomposition relying only on well-defined concepts is

proposed. In particular, it is based on a means to induce belief functions from the

multivariate Bernoulli distribution and on Teugels’ representation of this distribution,

which consists of the means and the central moments of the underlying Bernoulli random

variables. According to our decomposition, a belief function results from as many crisp

pieces of information as there are elements in its domain, and from simple probabilistic

knowledge concerning their marginal reliability and the dependencies between their re-

liability. In addition, we show that instead of interpreting with some difficulty Smets’

representation of belief functions as a canonical decomposition, it is possible to give it a

different and well-defined semantics in terms of measures of information associated with

the reliability of the pieces of information in our decomposition.

Keywords: Dempster-Shafer Theory; Belief Function; Canonical Decomposition;

Multivariate Bernoulli Distribution; Moment; Mutual Information; Random Set.



1 Introduction

A belief function [34, 40] is a rich mathematical object for representing uncertain infor-

mation on the actual value taken by a variable. Belief functions have been successfully

applied to numerous problems such as, recently, clustering of large dissimilarity data [6],

multi-label classification [7], object association [25, 8], and rule-based classification [17];

we refer the reader to [5] and the references therein for a much larger account of belief

function applications.

Belief functions were originally introduced by Shafer [34], as a formal object for the

representation of evidence. An important result shown in [34] is that the so-called sepa-

rable belief functions can be canonically decomposed, that is, decomposed uniquely into

elementary pieces of evidence. Smets [37] extended this result and proposed a solution

to canonically decompose any belief function. The concept of canonical decomposi-

tion is important at a fundamental level in that it lays bare the underlying elementary

components of a complex belief state. It also raises the interesting question as to how

can one accumulate evidence progressively to construct probability judgements on the

value taken by a variable of interest. Moreover, it can be useful to tackle several prob-

lems, as exemplified in recent years where proposals based on Smets’ decomposition

have appeared to address the issues of belief function combination [4, 19, 29], correc-

tion [24, 26, 31] and clustering [33].

In this paper, this concept is deeply revisited. First, a critical review of Smets’

canonical decomposition is conducted (Section 2): we challenge his solution and argue

that it is not entirely satisfactory. Then, a new canonical decomposition of belief func-

tions is proposed (Section 3). This new decomposition is in the same spirit as Smets’ – a

belief function is viewed as resulting from partially reliable sources providing crisp pieces

of information –, but it follows a completely different approach based on some results

concerning the representation of the multivariate Bernoulli distribution [42]. Next, some

comments on our solution are provided and, in particular, our solution is compared to

Smets’ and is considered in the context of random sets [21, 23] (Section 4). Finally, a

new perspective on Smets’ decomposition is brought to light using measures of informa-

tion [14] associated with the multivariate Bernoulli distribution (Section 5). Section 6

concludes the paper.
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2 Review of Smets’ Canonical Decomposition

In this section, necessary background on belief functions and on their canonical decom-

position as proposed by Smets is provided. Then, a general information fusion approach

based on explicit assumptions about the reliability of information sources is recalled and

used for critical examination of Smets’ canonical decomposition.

2.1 Basics of Belief Function Theory

Belief function theory [34, 40] is a framework for uncertainty modelling and reasoning.

In this theory, uncertainty regarding the actual value taken by a variable y defined on a

finite domain Y = {y1, ..., yn}, is represented by a so-called mass function (MF) defined

as a mapping m : 2Y → [0, 1] satisfying
∑

A⊆Y m (A) = 1. The quantity m(A) may be

interpreted as the probability of knowing only that y ∈ A, A ⊆ Y [2]. Subsets A of Y

such that m(A) > 0 are called focal sets of m. A mass function is called: dogmatic if Y

is not a focal set; normal if ∅ is not a focal set; vacuous if Y is its only focal set; simple

if it has at most two focal sets, and if it has two, Y is one of those; Bayesian if its focal

sets are singletons. A non normal MF m can be normalised, i.e., transformed into a

normal MF m∗, by the following operation:

m∗(A) =

 κ ·m(A) for all A ⊆ Y, A 6= ∅,

0 if A = ∅,
(1)

with κ = (1−m(∅))−1.

The belief function bel is an equivalent representation of a mass function m. It is

defined as

bel (A) =
∑
∅6=B⊆A

m (B) , ∀A ⊆ Y.

The degree of belief bel(A) evaluates to what extent event A is logically implied by the

available evidence [13]. Other equivalent representations of m that are of interest for

this paper are the plausibility pl and commonality q functions:

pl (A) =
∑

B∩A 6=∅

m (B) , ∀A ⊆ Y,

q (A) =
∑
B⊇A

m (B) , ∀A ⊆ Y. (2)

The degree of plausibility pl(A) evaluates to what extent event A is consistent with

the available evidence [13]. The commonality function has a technical role, which will
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be described later. Functions m, bel, pl and q are in one-to-one correspondence, in

particular mass function m can be recovered from any of these functions. For instance,

we have:

m(A) =
∑
B⊇A

(−1)|B|−|A|q(B), ∀A ⊆ Y, (3)

with |A| denoting the cardinality of A ⊆ Y. Let us note that the plausibility function

restricted to the singletons of Y is called the contour function. Besides, the plausibility

of any singleton of Y is equal to its commonality, i.e., pl({y}) = q({y}) for all y ∈ Y.

Matrix calculus is useful to simplify the mathematics of belief function theory [38].

A mass function m and its associated functions, such as q, can be seen as column vectors

of size 2|Y| = 2n, whose elements are ordered according to the so-called binary order

detailed hereafter. Let k be an integer such that 1 ≤ k ≤ 2n. k can be written in a

binary expansion, i.e.,

k = 1 +

n∑
i=1

ki2
i−1, (4)

where ki ∈ {0, 1}. Expansion (4) induces a one-to-one correspondence k ↔ (k1, . . . , kn),

that is Eq. (4) associates to each integer k, 1 ≤ k ≤ 2n, a binary vector (k1, . . . , kn) ∈

{0, 1}n. Let Ak, 1 ≤ k ≤ 2n, be the subset of Y, such that yi ∈ Ak if ki = 1 and

yi 6∈ Ak if ki = 0, with ki, i = 1, . . . , n, the terms in the binary expansion (4) of k. In

the binary order, the k-th element of the vector m corresponds to the set Ak. Thus ∅

is the first element, {y1} the second element, {y2} the third element, {y1, y2} the fourth

element, etc. For instance, for n = 4, A14 = {y1, y3, y4} since k = 14 is in one-to-one

correspondence with (k1 = 1, k2 = 0, k3 = 1, k4 = 1). Eqs. (2) and (3) become in matrix

form [38]:

q =

 n⊗
i=1

1 1

0 1

m, (5)

m =

 n⊗
i=1

1 −1

0 1

q,

where ⊗ denotes Kronecker product.

Several so-called belief function combination rules have been proposed to combine

multiple pieces of information about a variable [39]. The most classical ones are Demp-

ster’s rule of combination [3, 34] and its unnormalised version called conjunctive rule [39].

We denote the former by ⊕ and the latter by ∩©. They are defined as follows. Let

m1 and m2 be two mass functions representing uncertainty about a variable y. Let
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m1⊕2 = m1 ⊕m2 and m1 ∩©2 = m1 ∩©m2 denote the mass functions resulting from the

combination of m1 and m2 by ⊕ and by ∩© respectively. We have

m1 ∩©2(A) =
∑

B∩C=A

m1(B)m2(C), ∀A ⊆ Y, (6)

and, assuming that m1 ∩©2(∅) 6= 1, m1⊕2 = m∗1 ∩©2, i.e., combination by Dempster’s

rule amounts to combination by the conjunctive rule (6) followed by normalisation (1).

Both rules are commutative, associative and admit the vacuous mass function as only

neutral element. These rules are appropriate when m1 and m2 represent independent

bodies of evidence, and the conjunctive rule is sensible under the so-called open world

assumption, whereas Dempter’s rule corresponds to the closed world assumption [39].

The conjunctive rule has a simple expression using the commonality function:

q1 ∩©2(A) = q1(A) · q2(A), ∀A ⊆ Y, (7)

with q1, q2 and q1 ∩©2 the commonality functions associated to m1, m2 and m1 ∩©2, re-

spectively.

The inverse of the conjunctive rule, denoted by 6∩©, can be defined [37, 4]. It is the

rule which restores m1 from m1 ∩©2 and m2, i.e., m1 ∩©2 6∩©m2 = m1. It is sensible if we

learn that m2 is actually not supported by evidence and should thus be removed from

m1 ∩©2. Let q1 and q2 be the commonality functions associated respectively to any two

mass functions m1 and m2, the inverse of the conjunctive rule is defined as:

q1 6∩©2 (A) =
q1(A)

q2(A)
, ∀A ⊆ Y. (8)

This operation is well-defined as long as (i) m1 6∩©2 is a mass function, which is not

necessarily the case since the quotient of two commonality functions is not always a

commonality function, and (ii) m2 is non dogmatic, which ensures q2(A) > 0 for all

A ⊆ Y.

2.2 Smets’ Canonical Decomposition of Belief Functions

Some mass functions can be obtained as the result of the combination by Dempster’s

rule of simple mass functions; they are called separable by Shafer [34]. A simple mass

function having two focal sets A ⊂ Y and Y, with respective masses 1 − w and w,

w ∈ [0, 1], may be simply denoted Aw. For every separable mass function m, one has

m =
⊕
∅6=A⊂Y

Aw(A), (9)
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with w(A) ∈ [0, 1] for all A ⊂ Y, A 6= ∅. This canonical decomposition of m is unique if

m is non dogmatic (in which case w(A) > 0 for all A ⊂ Y, A 6= ∅).

Smets [37] extended the concept of separability to the more general case of non

normal mass functions. This extended concept is called u-separability in [4] (u stands

for unnormalised) and relies on the unnormalised version of Dempster’s rule, i.e., the

conjunctive rule. A mass function m is thus u-separable if it can be expressed as:

m = ∩©
A⊂Y

Aw(A), (10)

with w(A) ∈ [0, 1] for all A ⊂ Y. This decomposition is also unique if m is non dogmatic.

Smets [37] extended this latter decomposition to all non dogmatic mass functions.

The decomposition of non dogmatic mass functions relies on the concept of generalised

simple mass function defined as a function µ : 2Y → IR verifying:

µ(A) = 1− w,

µ(Y) = w,

µ(B) = 0, ∀B ∈ 2Y\{A,Y},

for some A 6= Y and some w ∈ [0,+∞). Any generalised simple mass function µ can be

noted Aw for some A 6= Y and w ∈ [0,+∞). When w ≤ 1, Aw is a simple mass function.

When w > 1, Aw is called inverse simple mass function; Smets [37] proposed to interpret

such function as reasons not to believe in A (he also speaks of “debt of belief” in A)

since combining A1/w with Aw by ∩© (using a trivial extension of the conjunctive rule to

combine generalised simple mass functions) yields the vacuous mass function, that is,

the reasons to believe in A represented by A1/w are counter-balanced by Aw.

Using the concept of generalised simple mass function, Smets showed that for any

non dogmatic mass function m, we have:

m = ∩©
A⊂Y

Aw(A), (11)

with w(A) ∈ (0,+∞) for all A ⊂ Y. The weight function w : 2Y\{Y} → (0,+∞) that

appears in (11), is an equivalent representation of a non dogmatic mass function. It can

be obtained from the commonality function as follows:

w(A) =
∏
B⊇A

q(B)(−1)|B|−|A|+1
, ∀A ⊂ Y. (12)
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Note that the conjunctive rule has a simple expression using the weight function:

w1 ∩©2(A) = w1(A) · w2(A), ∀A ⊂ Y. (13)

Using function w, Smets [37] further showed that any non dogmatic mass function

m can be written as

m = mc
6∩©md, (14)

with mc and md two u-separable mass functions such that

mc = ∩©
A⊂Y

A1∧w(A),

and

md = ∩©
A⊂Y

A
1∧ 1

w(A) ,

where ∧ denotes the minimum operator. In other words, Smets [37] showed with (14)

that any non dogmatic mass function can be uniquely obtained from simple mass func-

tions. The mc and md mass functions in (14) are called the confidence and diffidence

components, respectively, of m by Smets [37], who proposed to view mc as representing

“good reasons to believe” in some propositions A ⊂ Y, and md as representing “good

reasons not to believe” in some other propositions.

Smets’ canonical decomposition of non dogmatic mass functions is illustrated by

Example 1.

Example 1 (“Example 2, continuation” of [37]). Let Y = {y1, y2, y3} be the domain of

a variable y and let m be a mass function on Y such that

m({y1, y2}) = m({y1, y3}) = m({y1, y2, y3}) = 1/3. (15)

We have

w({y1, y2}) = 1/2,

w({y1, y3}) = 1/2,

w({y1}) = 4/3,

and w(A) = 1 for all A ∈ 2Y\{Y, {y1, y2}, {y1, y3}, {y1}}. Hence, using (11) and the

fact that the vacuous mass function is the neutral element of ∩© and can be noted A1 for

any A ⊂ Y, we have

m = {y1, y2}1/2 ∩©{y1, y3}1/2 ∩©{y1}4/3,
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and using (14) we have

m = {y1, y2}1/2 ∩©{y1, y3}1/2 6∩©{y1}3/4.

According to Smets [37], m is thus the result of the following independent pieces of

evidence:

• a first source provides the evidence believe {y1, y2} and this source is given relia-

bility 1/2;

• a second source provides the evidence believe {y1, y3} and this source is given

reliability 1/2;

• a third source provides the evidence do not believe {y1} and this source is given

reliability 3/4.

Smets’ decomposition is quite elegant and has sparked several contributions such

as fusion [4, 19, 29], correction [24, 26, 31] and clustering schemes [33]. Nonetheless,

despite its appeal and the success that it has enjoyed, we will try and argue in Sec-

tion 2.4 that Smets’ decomposition is not entirely satisfactory and we will provide an

alternative decomposition in Section 3. Both our critique of Smets’ decomposition and

our alternative to it rely in part on a general approach to information fusion, which is

recalled in the next section.

2.3 Behaviour-Based Fusion

In [30], Pichon et al. introduced a general approach to information fusion. In this

approach, an agent builds his belief about the actual value of a variable y defined on

a domain Y, given pieces of information about y provided by some sources and given

his knowledge about the behaviour of these sources (called meta-knowledge in [30] as

it is higher order knowledge that differs from the knowledge supplied by the sources).

This approach is recalled hereafter in the particular case where the sources provide

crisp pieces of information about y and meta-knowledge on the sources concern their

reliability, as this particular case is instrumental to the present paper.

Let us consider the simple situation where there is a single source s1 providing to an

agent a piece of information about y and this piece of information is crisp, i.e., it is of

the form y ∈ A for some A ⊆ Y. Besides, the agent assumes that the source can be in

only one of two states: reliable or not reliable. If the source is reliable, then the agent
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should deduce that y ∈ A from the piece of information provided by s1. If the source is

not reliable, then the piece of information provided by s1 is useless and the agent knows

only that y ∈ Y, i.e., he knows nothing.

Let X1 = {0, 1} be the space denoting the reliability of s1, where 0 means that s1

is reliable and 1 means that s1 is not reliable. The above reasoning can be encoded by

multi-valued mappings ΓA, A ⊆ Y, from X1 to Y such that

ΓA(0) = A,

ΓA(1) = Y.

ΓA(k1) interprets the testimony y ∈ A in each configuration k1 ∈ X1 of the source s1.

More generally, meta-knowledge on the source may be uncertain and specifically s1

may be assumed to be reliable with probability 1−π1 and not reliable with probability π1,

π1 ∈ [0, 1]. In such case, if s1 provides the piece of information y ∈ A, then probability

1 − π1 will be transferred to ΓA(0) and probability π1 to ΓA(1), i.e., the knowledge of

the agent about y is represented by a mass function defined as [30]1:

m(A) = 1− π1,

m(Y) = π1. (16)

We may remark that mass function defined by (16) is a simple mass function, which

may be denoted by Aπ1 . Besides, the transformation of testimony y ∈ A according

to (16) is nothing but the discounting operation proposed by Shafer [34] to integrate the

reliability of information sources.

Let us now consider the case where there are N sources providing crisp pieces of

information about y and each source can either be reliable or not reliable. Let Xi =

{0, 1} be the space denoting the reliability of source si, i = 1, . . . , N , where 0 means

that si is reliable and 1 means that si is not reliable. The set of elementary joint

states on the sources is therefore the Cartesian product XN := ×Ni=1Xi. To any state

(k1, . . . , kN ) ∈ XN , we associate the number k, 1 ≤ k ≤ 2N , such that

k = 1 +

N∑
i=1

ki2
i−1, (17)

1Mass function m may be induced formally as follows. (X1, 2
X1 , P ) is a probability space, with P a

probability measure on X1 such that P ({0}) = 1 − π1 and P ({1}) = π1, and (Y, 2Y) is a measurable

space. Since ΓA is strongly measurable [27] with respect to 2Y and 2X1 , the four-tuple (X1, 2
X1 , P,ΓA)

induces a belief function on Y (obtained by composition of P and the lower inverse [27] of ΓA) with

associated mass function m defined by (16) [27, 20].
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i.e., we have k ↔ (k1, . . . , kN ) ∈ XN . Furthermore for any k ↔ (k1, . . . , kN ) ∈ XN , we

define a mapping ΓA for any A = (As1 , . . . , AsN ) ⊆ ×Ni=1Y as

ΓA(k) =
N⋂
i=1

ΓAsi
(ki).

ΓA(k) represents the information deduced on Y from crisp testimonies (As1 , . . . , AsN )

provided by sources s1, . . . , sN , when they are in states (k1, . . . , kN ) [30]. We have

ΓA(k) ⊆ Y since ΓA(k) is defined as the intersection of subsets of Y.

In the more general case where meta-knowledge on the sources is uncertain and

each joint state k ∈ XN has a probability pk, the knowledge of the agent about Y is

represented by a mass function defined as [30]:

m(B) =
∑

k:ΓA(k)=B

pk, ∀B ⊆ Y. (18)

An important special case of uncertain meta-knowledge is when for each k ∈ XN , the

probability pk that the sources are in joint state (k1, . . . , kN ) is equal to the product of

the marginal probabilities of the individual states ki, i = 1, . . . , N , i.e., the probabilities

pk satisfy the following property

pk =

N∏
i=1

(1− πi)1−kiπkii , ∀k ∈ XN , (19)

with ki, i = 1, . . . , N , the terms in the binary expansion (17) of k, and πi the marginal

probability that si is not reliable, i.e.,

πi =
∑
k:ki=1

pk. (20)

This property is a case of so-called meta-independence between the sources [30], which

corresponds to the situation where pieces of meta-knowledge regarding the states of each

source are independent. From [30, Theorem 1], if the probabilities pk satisfy (19), then

the mass function m given by (18) can be equivalently written as:

m =
N

∩©
i=1

Aπisi , (21)

with Aπisi the simple mass function such that m(Asi) = 1− πi and m(Y) = πi.
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2.4 Discussion on Smets’ Decomposition

It is clear that the canonical decomposition (10) is an instance of (21) and thus can be

given an interpretation using Pichon et al.’s scheme recalled in the preceding section.

Precisely, any u-separable mass function m defined on a domain Y = {y1, . . . , yn} and

with associated weight function w, can be seen as originating from the following pieces

of evidence:

• there are 2n− 1 sources, with source si, i = 1, . . . , 2n− 1, providing the crisp piece

of information y ∈ Ai, with Ai the i-th subset of Y according to the binary order;

• each source si is non reliable with marginal probability w(Ai);

• the sources are meta-independent.

This interpretation of the canonical decomposition (10), obtained using Pichon et

al.’s scheme, is totally in line with Smets’ interpretation of this decomposition, as can be

recognised when comparing the above pieces of evidence to the ones at play in Example 1.

The above interpretation is a bit more cumbersome due to its heavier formalisation but

it has the advantage to rely on well-known concepts since it follows Dempster’s original

approach [3], where belief functions are induced from a space equipped with a probability

measure and a multi-valued mapping from this space to another one. Overall, one may

argue that both interpretation are essentially one and the same, and that Pichon et

al.’s scheme merely provides a formal ground to Smets’ interpretation using well-known

concepts.

Due to the similarity between (10) and (11), one may wonder whether the straightfor-

ward extension of the above interpretation to non-dogmatic mass functions decomposed

using (11) is possible. The answer is negative since it would require allowing marginal

probabilities w(Ai) greater than 1. We feel that it is a drawback of Smets’ decompo-

sition that it is incompatible with the partially reliable source model relying only on

well-known concepts and leading to (21), while this formal model seems to be totally in

line with his view on his decomposition.

This leads us to discuss further Smets’ decomposition of non-dogmatic mass func-

tions, irrespective of our previous comment. His decomposition involves so-called inverse

simple mass functions Aw, w > 1, which we recall are not mass functions since they do

not satisfy m(A) ∈ [0, 1] for all A ⊆ Y. Smets [37] proposed to interpret these functions

as pieces of evidence of the form a source provides the evidence do not believe A and this
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source is given reliability 1/w. While Smets [37] provides some intuition on why such

semantics might suit such functions, it lacks an operational definition2, as is necessary

for any uncertainty representation (see, e.g., [13]). Moreover, if one is to accept the

existence of this notion of “good reasons not to believe” and its associated mathematical

representation, and one wants to model every possible state of belief involving “good

reasons to believe” and “good reasons not to believe” in some propositions, then one ac-

tually needs to consider what Smets calls latent belief structures [37], which are couples

of belief functions (representing respectively confidence and diffidence) that cannot be

reduced in general to a single belief function. For instance, replacing the third piece of

evidence in Example 1 a third source provides the evidence do not believe {y1} and this

source is given reliability 3/4 by a third source provides the evidence do not believe {y2}

and this source is given reliability 3/4 does not yield a mass function (one can easily

check that {y1, y2}1/2 ∩©{y1, y3}1/2 6∩©{y2}3/4 is not a mass function); even modifying only

slightly the third piece of evidence to a third source provides the evidence do not believe

{y1} and this source is given reliability 0.74 does not yield a mass function. A theory

based on latent belief structures and involving inverse simple mass functions clearly goes

beyond a theory based only on belief functions. A fully operationalised theory based on

this richer mathematical object remains to be proposed.

This section has reviewed Smets’ canonical decomposition and has also recalled Pi-

chon et al.’s fusion scheme, which allows one to account explicitly for uncertain knowl-

edge about source reliability. In the next section, we use this latter scheme to unveil

a new canonical decomposition of belief functions. As will be seen, this new canonical

decomposition relies only on well-defined concepts, contrary to Smets’ decomposition.

3 A New Canonical Decomposition of Belief Functions

In this section, a specific connection between the multivariate Bernoulli distribution and

belief functions is established and used in conjunction with Pichon et al.’s fusion scheme

to lay the foundations for a new canonical decomposition of belief functions. Then,

Teugels’ representations of the multivariate Bernoulli distribution [42] are recalled and

used together with the aforementioned connection to propose a new canonical decom-

position of belief functions.

2Their relevance has also been questioned in [28].
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3.1 Multivariate Bernoulli Distribution Induced Belief Function

In this section, one way is provided to induce from the multivariate Bernoulli distribution

any belief function on domain Y = {y1, . . . , yn}.

Let {Xi : i = 1, . . . , n} be a sequence of Bernoulli random variables with ranges

Xi = {0, 1}, i = 1, . . . , n, i.e., for i = 1, . . . , n,

P (Xi = 1) = πi, P (Xi = 0) = ξi,

where 0 ≤ πi = 1− ξi ≤ 1. Recall that E[Xi] = πi.

Consider the multivariate Bernoulli distribution (MBD)

pk1,...,kn := P (X1 = k1, . . . , Xn = kn) (22)

where ki ∈ {0, 1}, i = 1, . . . , n. Let k be an integer such that 1 ≤ k ≤ 2n. Using

the binary expansion of k based on the ki, i = 1, . . . , n, that is the correspondence

k ↔ (k1, . . . , kn), we can write

pk = pk1,...,kn , 1 ≤ k ≤ 2n,

and represent a MBD p by the vector p containing 2n components, with pk its k-th

component, 1 ≤ k ≤ 2n. This latter convenient notation for the MBD is borrowed

from [42].

Definition 1 (MBD-equivalent). Let m be any mass function on Y and let p be the

MBD (22) such that pk = m(Ak), 1 ≤ k ≤ 2n, with Ak the k-th subset of Y according

to the binary order. p is called the MBD-equivalent of m.

Accordingly, the vector p associated to the MBD-equivalent of a mass function m,

is the same vector as m.

In addition, for i = 1, . . . , n, let Γi be a multi-valued mapping from Xi to Y such

that

Γi(0) = Y\{yi} = {yi},

Γi(1) = Y. (23)

Let X n := ×ni=1Xi and T be a multi-valued mapping from X n to Y s.t.

T(k) =
n⋂
i=1

Γi(ki), (24)

for all k ↔ (k1, . . . , kn) ∈ X n. Remark 1 provides a setting in which mapping T naturally

occurs.
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Remark 1. Let Y = {y1, . . . , yn} be the domain of a variable y. Assume there are n

sources of information si, i = 1, . . . , n, with si providing the following piece of informa-

tion about y: y ∈ {yi}. Furthermore, an agent who receives these pieces of information,

considers that each source can either be reliable or not reliable. Let Xi = {0, 1} be

the space denoting the reliability of si, where 0 means that si is reliable and 1 means

that si is not reliable. Following Pichon et al.’s fusion scheme recalled in Section 2.3,

a multi-valued mapping Γi from Xi to Y can be defined as (23); Γi(ki) interprets the

testimony y ∈ {yi} in each configuration ki ∈ Xi of the source si. More generally, a

multi-valued mapping T from X n to Y can be defined as (24); T(k) interprets the tes-

timonies y ∈ {yi}, i = 1, . . . , n, in each joint configuration k ∈ X n of the sources si,

i = 1, . . . , n.

Proposition 1. Let m be any mass function on Y and let p be its MBD-equivalent.

Then transferring p via the multi-valued mapping T defined by (24) induces m.

Proof. Following [3], transferring distribution p via mapping T yields a mass function

m′ on Y defined, for 1 ≤ k ≤ 2n, by

m′(Ak) =
∑

k′∈Xn:T(k′)=Ak

pk′ .

For any 1 ≤ k ≤ 2n, we have

T(k) =

n⋂
i=1

Γi(ki)

=

 ⋂
i:ki=0

Γi(0)

⋂ ⋂
i:ki=1

Γi(1)


=

⋂
i:ki=0

Γi(0)

=
⋂

i:ki=0

Y\{yi}

= Y\{yi : i, ki = 0}

= {yi : i, ki = 1} = Ak.

Hence
∑

k′∈Xn:T(k′)=Ak
pk′ = pk and thus m′ is m.

Example 2 illustrates Proposition 1.

13



Example 2 (Example 1 continued). Consider the same mass function m as in Example

1. This mass function can be equivalently written as

m(A4) = m(A6) = m(A8) = 1/3,

since A4 = {y1, y2}, A6 = {y1, y3} and A8 = {y1, y2, y3}.

In addition, let p be the MBD-equivalent of m, i.e., the MBD defined by

p4 = p110 = m({y1, y2}),

p6 = p101 = m({y1, y3}),

p8 = p111 = m({y1, y2, y3}),

and pk = 0 for k = 1, 2, 3, 5, 7.

We have

T(4) = T[(1, 1, 0)]

= Γ1(1)
⋂

Γ2(1)
⋂

Γ3(0)

= Y ∩ Y ∩ {y3}

= {y1, y2}

and, similarly, T(6) = {y1, y3} and T(8) = {y1, y2, y3}. Hence, probability p4 is trans-

ferred to T(4) = {y1, y2} = A4, probability p6 to A6 and probability p8 to A8, i.e., the

mass function m defined by (15) is recovered.

Considering the setting of Remark 1, this means that mass function m can be viewed

as resulting from having three sources si, each telling y ∈ {yi}, i = 1, 2, 3, and such that

the agent has the following knowledge on the reliability of the sources: with probability

p4, s1 and s2 are not reliable and s3 is reliable; with probability p6, s1 and s3 are not

reliable and s2 is reliable; with probability p8, the three sources are not reliable.

Let us finally state a result, which links the contour function of a mass function and

the marginal expectations (called means in [42]) of its MBD-equivalent.

Lemma 1. Let m be any mass function on Y and let p be its MBD-equivalent. The

contour function of m is equal to the expectations of the r.v. {Xi : i = 1, . . . , n}:

pl({yi}) = πi, 1 ≤ i ≤ n.

14



Proof. For any 1 ≤ i ≤ n, we have

πi =
∑
k:ki=1

pk

and

pl({yi}) =
∑
k:ki=1

m(Ak).

The lemma holds since pk = m(Ak) for all 1 ≤ k ≤ 2n, by definition of p.

This section has provided a way to meaningfully induce any belief function from

the MBD. This relation between the MBD and belief functions will be exploited in

conjunction with Teugels’ representations of the MBD [42] recalled in the next section,

to introduce a new canonical decomposition of belief functions in Section 3.3.

3.2 Teugels’ Representations of the MBD

In [42], Teugels considers two vectors associated to the MBD (22): the vector µ and the

vector σ defined respectively as

µ = (µ1, . . . , µ2n)′,

σ = (σ1, . . . , σ2n)′,

where, for 1 ≤ k ≤ 2n,

µk = E

[
n∏
i=1

Xki
i

]
,

σk = E

[
n∏
i=1

(Xi − πi)ki
]
,

with ki, i = 1, . . . , n, the terms in the binary expansion of k. Let us remark that µk

comes down to the (marginal) probability that each of the variables in {Xi : i, ki = 1}

equals 1. This is not to be confused with pk, which is the probability that each of

the variables in {Xi : i, ki = 1} equals 1 and each of the variables in {Xi : i, ki = 0}

equals 0. In addition, we note that vector µ contains the moments of order 1 of the

r.v. in {Xi : i = 1, . . . , n}, and it contains also so-called product moments (or, joint

moments) [41, 32] of all subsets of at least two r.v. in {Xi : i = 1, . . . , n}. Following [42],

µ is simply referred to in this paper as the vector of moments of the MBD (22). Vector

σ contains the central moments of order 1 of the r.v. in {Xi : i = 1, . . . , n}, which
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equal 0, as well as product (or, joint) central moments [41, 32] of all subsets of at least

two r.v. in {Xi : i = 1, . . . , n}, and in particular the covariances of all pairs of r.v. in

{Xi : i = 1, . . . , n} (this will be illustrated later by Example 3). Following again [42], σ

is simply referred to as the vector of central moments of the MBD (22).

Teugels [42] shows that interesting relations hold between vectors µ, σ and the MBD

vector p. We reproduce his results for convenience:

Theorem 1 (Theorem 1 and p. 261 of [42]). We have

(i)

p =

 n⊗
i=1

1 −1

0 1

µ (25)

and

µ =

 n⊗
i=1

1 1

0 1

p. (26)

(ii)

p =

ξn −1

πn 1

⊗ · · · ⊗
ξ1 −1

π1 1

σ (27)

and

σ =

 1 1

−πn ξn

⊗ · · · ⊗
 1 1

−π1 ξ1

p. (28)

(iii)

µ =

 1 0

πn 1

⊗ · · · ⊗
 1 0

π1 1

σ (29)

and

σ =

 1 0

−πn 1

⊗ · · · ⊗
 1 0

−π1 1

µ. (30)

Of particular interest with respect to the new canonical decomposition of a belief

function to be introduced in the next section, are relations (27) and (28); the former is

illustrated by Example 3.
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Example 3 (Example 1.2 of [42]). Let n = 3. In this case, we have

σ =



σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8



=



1

0

0

E [(X1 − π1)(X2 − π2)]

0

E [(X1 − π1)(X3 − π3)]

E [(X2 − π2)(X3 − π3)]

E [(X1 − π1)(X2 − π2)(X3 − π3)]



.

σ4 is nothing but the covariance between r.v. X1 and X2; accordingly we may denote σ4

by σ1,2. Similarly, we may denote σ6 by σ1,3, σ7 by σ2,3, and σ8 by σ1,2,3. Thus, we can

write:

σ = (1, 0, 0, σ1,2, 0, σ1,3, σ2,3, σ1,2,3)′.

From (27), one obtains

p =



p000

p100

p010

p110

p001

p101

p011

p111



=

ξ3 −1

π3 1

⊗
ξ2 −1

π2 1

⊗
ξ1 −1

π1 1

σ

=



ξ1ξ2ξ3 + ξ3σ1,2 + ξ2σ1,3 + ξ1σ2,3 − σ1,2,3

π1ξ2ξ3 − ξ3σ1,2 − ξ2σ1,3 + π1σ2,3 + σ1,2,3

ξ1π2ξ3 − ξ3σ1,2 + π2σ1,3 − ξ1σ2,3 + σ1,2,3

π1π2ξ3 + ξ3σ1,2 − π2σ1,3 − π1σ2,3 − σ1,2,3

ξ1ξ2π3 + π3σ1,2 − ξ2σ1,3 − ξ1σ2,3 + σ1,2,3

π1ξ2π3 − π3σ1,2 + ξ2σ1,3 − π1σ2,3 − σ1,2,3

ξ1π2π3 − π3σ1,2 − π2σ1,3 + ξ1σ2,3 − σ1,2,3

π1π2π3 + π3σ1,2 + π2σ1,3 + π1σ2,3 + σ1,2,3



.

As detailed in [42, Section 2.3 (i)], both representations (25) and (27) contain as

many parameters as p, that is 2n− 1, since µ1 = σ1 = 1. Specifically, in (27), 2n−n− 1
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parameters are given by σ, as σk = 0 when k1 + · · · + kn = 1, and the n remaining

parameters are πi, i = 1, . . . , n. The non-null components of σ represent the 2n − n −

1 possible dependencies between any subset (of at least two) of the r.v. {Xi : i =

1, . . . , n}; under independence of all these r.v., we have σ = e1. As a matter of fact,

Teugels [42] refers to σ as the dependency vector. The central moments stored in σ may

be particularly useful as illustrated by Teugels and Van Horebeek [43], who use them to

formulate hypothesis tests about the interactions between treatments by several kinds

of drugs.

Representation (27) can be insightfully depicted graphically using a Venn diagram3,

as illustrated in Figure 1 for the case n = 3:

• each Bernoulli random variable Xi underlying the MBD is represented by a circle

(and more generally a closed curve for the cases n > 3);

• the dependency (central moment) σk between the variables {Xi : i, ki = 1} is in

one-to-one correspondence with an overlap region, i.e., the non-null components

of σ are mapped to overlap regions;

• the mean πi of each variable Xi is in one-to-one correspondence with a non overlap

region, i.e., the means πi, i = 1, . . . , n, are mapped to non overlap regions.

3.3 A New Canonical Decomposition of Belief Functions Based on

Teugels’ Representation of the MBD

It will be convenient to introduce the following definition associated with representa-

tion (27).

Definition 2 (Teugels’ representation of the MDB). The Teugels’ representation of the

MBD (22) is the vector τ of size 2n such that, for 1 ≤ k ≤ 2n,

τk =

πarg max1≤i≤n ki if k1 + · · ·+ kn = 1,

σk otherwise.
(31)

Definition 2 basically introduces a vector which stores the 2n − 1 parameters of

representation (27), i.e, the (marginal) mean values πi, i = 1, . . . , n, and the non-null

3Although one must be aware that some individual (specifically overlap) regions can have positive or

negative value.
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π1 π2

π3

X1 X2

X3

σ1,2,3

σ1,2

σ1,3 σ2,3

Figure 1: Venn diagram for representation (27) of the multivariate Bernoulli distribution,

using the notation for σ introduced in Example 3.

components of σ. Note that τ1 = σ1 = 1. For instance, for n = 2, Equation (27) is

p =

ξ2 −1

π2 1

⊗
ξ1 −1

π1 1



σ1

σ2

σ3

σ4



=

ξ2 −1

π2 1

⊗
ξ1 −1

π1 1




1

0

0

σ4


and it can be rewritten using τ as

p =

1− τ3 −1

τ3 1

⊗
1− τ2 −1

τ2 1




1

0

0

τ4

 .

Proposition 1 and Definition 2 allow us to propose the following decomposition of a

mass function into elementary items, which have well-defined semantics.

Definition 3 (t-canonical decomposition). Let m be a mass function defined on a do-

main Y = {y1, . . . , yn} and let τ be the Teugels’ representation of its MBD-equivalent.
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Its t-canonical decomposition (or t-decomposition for short) is the mapping t on 2Y\{∅},

called the Teugels function and defined by:

t(Ak) = τk, 1 < k ≤ 2n, (32)

with Ak the k-th subset of Y according to the binary order.

The t-canonical decomposition of a mass function m is thus basically Teugels’ repre-

sentation of its MBD-equivalent. It is unique since the Teugels function t is in one-to-one

correspondence with function m (function τ is in such correspondence with the MBD-

equivalent p of m and the vector p is equal to the vector m).

The Teugels function t can be computed from Eqs. (32), (31), (28) and Lemma 1,

which comes down to the following definition for t, for all A ∈ 2Y\{∅}:

t(A) =


pl(A), if |A| = 1,
 1 1

−pl({yn}) 1− pl({yn})

⊗ · · · ⊗
 1 1

−pl({y1}) 1− pl({y1})

m

 (A) , otherwise.

(33)

Adopting the setting of Remark 1, the t-decomposition of a mass function can be

interpreted in the same vein as Smets’ decomposition, i.e., a mass function can be viewed

as resulting from partially reliable sources providing crisp pieces of information. More

precisely, any mass function m can be recovered from the following basic components:

• crisp testimonies y ∈ {yi} provided by sources si, i = 1, . . . , n;

• knowledge on the individual (marginal) reliability of each source si, represented

by the mean t({yi}) (which happens to be given by the contour function, i.e.,

t({yi}) = pl({yi}));

• knowledge on the dependency between the source reliabilities for each subset of

sources {si : i, ki = 1}, represented by the central moment t(Ak), |Ak| > 1, with

ki, i = 1, . . . , n, the terms in the binary expansion of k.

This is illustrated by Examples 4 and 5.
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Example 4. Let m be a mass function about a variable y defined on Y = {y1, y2}, with

associated Teugels function t. From (33) we obtain

t({y1}) = pl({y1})

= m({y1}) +m({y1, y2}), (34)

t({y2}) = pl({y2})

= m({y2}) +m({y1, y2}), (35)

t({y1, y2}) =


pl({y2})pl({y1})

−pl({y2})(1− pl({y1}))

−pl({y1})(1− pl({y2}))

(1− pl({y1}))(1− pl({y2}))



′

m

= m({y1, y2})m(∅)−m({y1})m({y2}). (36)

Let us now consider the following pieces of evidence:

• There are two sources s1 and s2, with si providing the crisp piece of information

y ∈ {yi}, i.e., s1 tells y ∈ {y2} and s2 tells y ∈ {y1};

• s1 and s2 are believed to be non reliable with probabilities t({y1}) and t({y2})

respectively;

• The dependence between their reliabilities is given by covariance t({y1, y2}).

These latter two pieces of evidence yield, using (27), the following knowledge about the

reliability of the sources

P (X1 = 0, X2 = 0) = (1− t({y1}))(1− t({y2})) + t({y1, y2}),

P (X1 = 1, X2 = 0) = t({y1})(1− t({y2}))− t({y1, y2}),

P (X1 = 0, X2 = 1) = (1− t({y1}))t({y2})− t({y1, y2}),

P (X1 = 1, X2 = 1) = t({y1})t({y2}) + t({y1, y2}).

Besides, the mapping T representing the interpretations of the source testimonies in
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each of their joint configurations in terms of reliability is:

T[(0, 0)] = Γ1(0) ∩ Γ2(0)

= {y2} ∩ {y1}

= ∅,

T[(1, 0)] = Γ1(1) ∩ Γ2(0)

= Y ∩ {y1}

= {y1},

T[(0, 1)] = {y2},

T[(1, 1)] = Y.

Using Eqs. (34), (35) and (36), it can easily be checked that

(1− t({y1}))(1− t({y2})) + t({y1, y2}) = m(∅),

t({y1})(1− t({y2}))− t({y1, y2}) = m({y1},

(1− t({y1}))t({y2})− t({y1, y2}) = m({y2},

t({y1})t({y2}) + t({y1, y2}) = m({y1, y2}.

Mass function m is thus clearly recovered when transferring P to Y via T. Remark also

that the greater the covariance t({y1, y2}) is, the greater are the probabilities P (X1 =

1, X2 = 1) and P (X1 = 0, X2 = 0) that the sources are jointly non reliable and that they

are jointly reliable, respectively (and the smaller are the probabilities P (X1 = 0, X2 = 1)

and P (X1 = 1, X2 = 0) that the first source is reliable whereas the second is not and that

the first source is not reliable whereas the second is, respectively). Hence, the greater

this covariance is, the greater are the masses on Y and on ∅ (and the smaller are the

masses on {y1} and on {y2}).

Example 5 (Example 2 continued). Let us compute the Teugels function t associated

to the mass function m of Example 2. We find using (33)

t({y1}) = pl({y1}) = 1,

t({y2}) = pl({y2}) = 2/3,

t({y3}) = pl({y3}) = 2/3,
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and since (using πi = pl({yi}) and ξi = 1− πi, 1 ≤ i ≤ 3, to shorten expressions) 1 1

−pl({y3}) 1− pl({y3})

⊗
 1 1

−pl({y2}) 1− pl({y2})

⊗
 1 1

−pl({y1}) 1− pl({y1})

m

=



1 1 1 1 1 1 1 1

−π1 ξ1 −π1 ξ1 −π1 ξ1 −π1 ξ1

−π2 −π2 ξ2 ξ2 −π2 −π2 ξ2 ξ2

π2π1 −π2ξ1 −π1ξ2 ξ2ξ1 π2π1 −π2ξ1 −π1ξ2 ξ2ξ1

−π3 −π3 −π3 −π3 ξ3 ξ3 ξ3 ξ3

π3π1 −π3ξ1 π3π1 −π3ξ1 −π1ξ3 ξ3ξ1 −π1ξ3 ξ3ξ1

π3π2 π3π2 −π3ξ2 −π3ξ2 −π2ξ3 −π2ξ3 ξ3ξ2 ξ3ξ2

−π1π3π2 π3π2ξ1 π1π3ξ2 −π3ξ2ξ1 π1π2ξ3 −π2ξ3ξ1 −π1ξ3ξ2 ξ3ξ2ξ1





0

0

0

m({y1, y2})

0

m({y1, y3})

0

m({y1, y2, y3})



,

we find

t({y1, y2}) = m({y1, y2})ξ2ξ1 −m({y1, y3})π2ξ1 +m({y1, y2, y3}ξ2ξ1 = 0 (since ξ1 = 0),

t({y1, y3}) = −m({y1, y2})π3ξ1 −m({y1, y3})ξ3ξ1 +m({y1, y2, y3}ξ3ξ1 = 0 (since ξ1 = 0),

t({y2, y3}) = −m({y1, y2})π3ξ2 −m({y1, y3})π2ξ3 +m({y1, y2, y3}ξ3ξ2

= −(1/3)(2/3)(1/3)− (1/3)(2/3)(1/3) + (1/3)(1/3)(1/3) = −1/9,

t({y1, y2, y3}) = −m({y1, y2})π3ξ2ξ1 −m({y1, y3})π2ξ3ξ1 +m({y1, y2, y3}ξ3ξ2ξ1 = 0 (since ξ1 = 0).

In other words, considering as in Example 2 the setting of Remark 1, mass function

m can be seen as originating from the following pieces of evidence:

• There are three sources sources si, each telling y ∈ {yi}, i = 1, 2, 3;

• s1, s2 and s3 are believed to be non reliable with probabilities 1, 2/3 and 2/3

respectively;

• The covariance between the reliabilities of s2 and s3 is −1/9, and all other subsets

of variables representing the reliabilities of the sources have null central moments.

Note that this is clearly a different decomposition to that of Smets provided for the same

mass function in Example 1.

Since it relies on representation (27) of the MBP, the t-decomposition can also be

represented by a Venn diagram. For instance, the pieces of evidence underlying mass

function m in Example 5 are shown in Figure 2.
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t({y1})=1 t({y2})=2/3

t({y3})=2/3

y∈{y1} y∈{y2}

y∈{y3}

t({y1,y2,y3})=0

t({y1,y2})=0

t({y1,y3})=0 t({y2,y3})=−1/9

Figure 2: t-decomposition of mass function m in Example 5, with t({yi}) the marginal

probability that source si is not reliable, t(Ak), |Ak| > 1, the central moment between

the reliabilities of the subset of sources {si : i, ki = 1}, and y ∈ {yi} the testimony

provided by source si.
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Up until now, the Teugels function t has been computed using (33), where t is

obtained from the contour function and the mass function. However, as will be explained

in the remainder of this section, t can also conveniently be obtained using only the

commonality function.

Theorem 1 leads to the following straightforward remark.

Remark 2. Let m be a mass function on Y and p its MBD-equivalent. By compar-

ing Eqs. (26) and (5), it is clear that the vector µ of moments of p is equal to the

commonality vector q associated to m, i.e., µk = q(Ak) for all 1 ≤ k ≤ 2n.

Adopting the setting of Remark 1 and using Remark 2, a new interpretation is ob-

tained for the commonality function: q(Ak) is the moment between the random variables

{Xi : i, ki = 1}, representing the reliabilities of sources {si : i, ki = 1}. More simply,

q(Ak) is the marginal probability that each of the sources in {si : i, ki = 1} is not

reliable.

In particular, Remark 2 yields an alternative and direct proof for Lemma 1. Indeed,

for k such that k1 + · · ·+ kn = 1, we have

q(Ak) = E
[
Xarg max1≤i≤n ki

]
= πarg max1≤i≤n ki ,

and thus q({yi}) = πi, for all 1 ≤ i ≤ n.

In addition, from Lemma 1 and Eqs. (32), (31) and (30), the following equivalent

definition based only on the commonality function is obtained for t:

t(A) =


q(A), if |A| = 1,
 1 0

−q({yn}) 1

⊗ · · · ⊗
 1 0

−q({y1}) 1

q

 (A), otherwise.
(37)

For instance, for n = 2, the Teugels function t associated to a mass function with

commonality function q is

t({y1}) = q({y1}),

t({y2}) = q({y2}),

t({y1, y2}) =
[
q({y1})q({y2}) −q({y2}) −q({y1}) 1

]
q

= q({y1, y2} − q({y1})q({y2}).
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This section has proposed a new solution to decompose a belief function (Defini-

tion 3). This solution relies on the following building blocks: (i) the notion of MBD-

equivalent of a belief function (Definition 1) and a particular multi-valued mapping

allowing one to recover a belief function from its MBD-equivalent (Proposition 1), (ii)

a setting that provides a meaning to this connection between the MBD and belief func-

tions (Remark 1), and (iii) a particular representation of the MBD (Definition 2). Next

section provides some comments on this solution.

4 Some Comments on the t-Canonical Decomposition

In this section, some comments are provided on the t-canonical decomposition. First,

we study a particular case of the general approach proposed in [11] for the conjunctive

combination of bodies of evidence with known dependence structure. Then, this study

is used to express the t-canonical decomposition in terms of simple mass functions,

similarly as Smets’ decomposition. Next, the t-canonical decomposition is compared

further with Smets’ decomposition. Finally, the t-canonical decomposition is considered

in the context of random sets.

4.1 Conjunctive combination with known dependence structure

The general approach proposed in [11] for the conjunctive combination of bodies of

evidence represented by mass functions, allows for other dependence structures among

them besides independence. This approach is the following. Let m1, . . . ,mN be N mass

functions on Y. The approach [11] defines a mass function m∩ on Y resulting from a

conjunctive combination of m1, . . . ,mN as the result of the following procedure:

1. A so-called joint mass function jm : ×Ni=12Y → [0, 1] is built, preservingm1, . . . ,mN

as marginals, which means that ∀Ai ∈ Fi, with Fi the set of focal sets of mi,

mi(Ai) =
∑

A1∈F1,...,Ai−1∈Fi−1,Ai+1∈Fi+1,...,AN∈FN

jm(A1, . . . , Ai−1, Ai, Ai+1, . . . , AN ).

(38)

2. Each joint mass jm(A1, . . . , AN ) is allocated to the subset
⋂N
i=1Ai in the final

mass function m∩, i.e., for all A ⊆ Y

m∩(A) =
∑

⋂N
i=1 Ai=A

jm(A1, . . . , AN ).
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As noted in [11], Eq. (38) indicates that the information mi representing each body of

evidence can be retrieved from the richer information jm that includes a representation

of their mutual dependence. In particular, the combination of m1, . . . ,mN by the con-

junctive rule ∩© is a particular case of this approach, retrieved for jm(A1, . . . , AN ) =

m1(A1)m2(A2) . . .mN (AN ) in Step 1; this latter equality corresponds to the assumption

that the bodies of evidence represented by mass functions m1, . . . ,mN are independent.

Let us now consider a particular case of this general approach where each mass

function mi has only two focal sets, denoted Ai0 and Ai1 , for some Ai0 , Ai1 ⊆ Y, such

that m(Ai1) = πi and m(Ai0) = 1− πi for some πi ∈ [0, 1]. Such kind of mass function

will be called binary hereafter and may be simply denoted (Ai0 , Ai1)πi .

When each mass function mi is binary and such that mi = (Ai0 , Ai1)πi , it is clear

that only subsets Ak := (A1k1
, A2k2

, . . . , ANkN
) ⊆ ×Ni=1Y, 1 ≤ k ≤ 2N with k ↔

(k1, . . . , kN ) ∈ {0, 1}N , can receive a non null joint mass in jm. Moreover, by associating

a Bernoulli r.v. Xi to each mi, such that P (Xi = 1) = mi(Ai1) = πi and P (Xi = 0) =

mi(Ai0) = 1− πi, we can establish a one-to-one correspondence between the MBD with

underlying r.v. Xi, i = 1, . . . , N , and the joint mass function jm, by setting

P (X1 = k1, . . . , XN = kN ) = jm(A1k1
, A2k2

, . . . , ANkN
),

or for short, using k ↔ (k1, . . . , kN ), pk = jm(Ak) with pk := P (X1 = k1, . . . , XN =

kN ). From Theorem 1, we have that the joint mass function jm can be fully specified

by parameters πi, i = 1, . . . , N , and vector σ associated with its corresponding MBD.

Most interestingly, the dependence structure encoded in jm between the binary mass

functions mi is actually entirely captured by vector σ, since any MBD (and thus any

corresponding joint mass function) with given marginals is obtained for a unique vector

σ. More specifically, since σk, k1 + · · · + kN > 1, represents the dependency among

variables {Xi : i, ki = 1}, and since variable Xi is associated to mass function mi,

i = 1, . . . , N , we may regard σk as capturing the dependency among mass functions

{mi : i, ki = 1}.

Since the conjunctive combination of N binary mass functions with dependence

structure represented by a joint mass function jm, is completely determined by vector

σ associated to jm, then this combination can be expressed as a parameterised combi-

nation rule for binary mass functions, with parameter σ representing the dependence

structure. Formally, let B denote the set of all binary mass functions on Y and M the

set of all mass functions on Y. In addition, let mi = (Ai0 , Ai1)πi , i = 1, . . . , N , be N
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binary mass functions. Then, we refer to the operator ∩©σ : BN →M such that

∩©σ(m1, . . . ,mN ) = ∩©σ ((A10 , A11)π1 , . . . , (AN0 , AN1)πN ) := m∩,

with m∩ the result of the conjunctive combination of mass functions mi with dependence

represented by the joint mass function jm determined by vector σ and having marginals

mi, i = 1, . . . , N , as the conjunctive combination with dependence σ (or, for short, σ-

conjunctive combination) of these mass functions. This is illustrated by Example 6.

Example 6. Let m1 = (A10 , A11)π1 and m2 = (A20 , A21)π2 be two binary mass functions

on Y = {y1, y2, y3} such that A10 = {y2}, A11 = Y, π1 = 0.4, and A20 = {y2, y3}, A21 =

{y1, y2}, π2 = 0.5. In other words, m1 = ({y2},Y)0.4 and m2 = ({y2, y3}, {y1, y2})0.5.

Let their dependence structure be represented by the joint mass function jm such that

jm(A1) = jm({y2}, {y2, y3}) = 0.4,

jm(A2) = jm(Y, {y2, y3}) = 0.1,

jm(A3) = jm({y2}, {y1, y2}) = 0.2,

jm(A4) = jm(Y, {y1, y2}) = 0.3.

One can easily check that jm satisfies (38) for i = 1, 2.

Performing Step 2 of the conjunctive combination of m1 and m2, we obtain:

m∩({y2}) = jm({y2}, {y2, y3}) + jm({y2}, {y1, y2}) = 0.6,

m∩({y2, y3}) = jm(Y, {y2, y3}) = 0.1,

m∩({y1, y2}) = jm(Y, {y1, y2}) = 0.3.

Now, the MBD in one-to-one correspondence with jm is

P (X1 = 0, X2 = 0) = p1 = jm({y2}, {y2, y3}),

P (X1 = 1, X2 = 0) = p2 = jm(Y, {y2, y3}),

P (X1 = 0, X2 = 1) = p3 = jm({y2}, {y1, y2}),

P (X1 = 1, X2 = 1) = p4 = jm(Y, {y1, y2}).

The vector σ associated to this MBD is, using (28),

σ =

 1 1

−π2 1− π2

⊗
 1 1

−π1 1− π1



p1

p2

p3

p4


= (1, 0, 0, 0.1)′
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From the definition of ∩©σ, we have then

m∩ = ∩©σ(m1,m2) = ∩©(1,0,0,0.1)′

(
({y2},Y)0.4 , ({y2, y3}, {y1, y2})0.5

)
.

The operation ∩©σ(m1, . . . ,mN ) is well-defined as long as there exists a joint mass

function jm compatible with vector σ and binary mass functions mi.

In addition, it is clear that the case where the bodies of evidence, represented by

binary mass functions m1, . . . ,mN , are independent, comes down to σ = e1, which

means that the following equality holds:

∩©e1(m1, . . . ,mN ) = m1 ∩© . . . ∩©mN ,

that is, the conjunctive rule is a particular case of the σ-conjunctive rule, recovered for

σ = e1.

Finally, note that σ-conjunctive combination ∩©σ ((A10 , A11)π1 , . . . , (AN0 , AN1)πN ) of

N binary mass functions (Ai0 , Ai1)πi may be denoted for short ∩©σ
(
Aπ110

, . . . , AπNN0

)
when

Ai1 = Y, i = 1, . . . , N , since a binary mass function (Ai0 , Ai1)πi such that Ai1 = Y is

nothing but the simple mass function Aπii0 .

4.2 t-Canonical Decomposition in Terms of Simple Mass Functions

In Section 2.3, it was recalled that when some sources s1, . . . , sN provide crisp testimonies

A = (As1 , . . . , AsN ), and when knowledge about the source reliability is uncertain such

that each joint state k ∈ XN has a probability pk, then the induced knowledge of the

agent about Y is represented by a mass function m defined by

m(B) =
∑

k:ΓA(k)=B

pk, ∀B ⊆ Y. (39)

This induced knowledge may be seen as the ‘trace’ on Y of the available pieces of infor-

mation, that is, of the source testimonies and of the knowledge about their reliability.

Besides, let us note that the vector σ, obtained using (28) from the MBD such that

P (X1 = k1, . . . , XN = kN ) = pk with Xi representing the reliability of si, represents

the meta-dependences among the sources, that is, the dependences (in terms of central

moments) between the reliabilities of all subsets of (at least two) sources.

Considering solely the testimony of source si and what is known of its reliability,

i.e., it is not reliable with marginal probability πi given by (20), then the induced

knowledge on Y given this testimony is represented according to (16) by the simple mass

29



function Aπisi . This latter mass function is the trace on Y of the pieces of information

pertaining only to si, that is, of the testimony of si and of what is known of its reliability.

Accordingly, it will be referred to as the individual (or, marginal) trace associated with

si.

Theorem 2. The trace m defined by (39) verifies

m = ∩©σ(Aπ1s1 , . . . , A
πN
sN ), (40)

with Aπisi the marginal trace associated with si and σ the vector obtained using (28) from

the MBD such that P (X1 = k1, . . . , XN = kN ) = pk with Xi representing the reliability

of si.

Proof. Since ΓA(k) =
⋂N
i=1 ΓAsi

(ki), the mass function m defined by (39) is recovered

by considering a joint mass function jm defined by

jm(ΓAs1
(k1), . . . ,ΓAsN

(kN )) = pk,

and by allocating the joint mass jm(ΓAs1
(k1), . . . ,ΓAsN

(kN )) to
⋂N
i=1 ΓAsi

(ki). Besides,

it is direct to see that the marginals of jm are the marginal traces Aπisi , i = 1, . . . , N

associated with sources s1, . . . , sN .

Hence, the mass function m defined by (39) may be obtained as the conjunctive

combination of elementary pieces of evidence represented by the simple mass functions

Aπisi with dependence structure jm, or, equivalently, we have

m = ∩©σ(Aπ1s1 , . . . , A
πN
sN ),

since the MBD in one-to-one correspondence with jm is formally equivalent to the one

representing the meta-knowledge about the sources and thus the dependence structure

in jm is represented by σ.

The fact that the mass function given by (39) can be equivalently obtained with (40)

corresponds to the intuition. It means that a situation where some sources provide crisp

testimonies Asi , are assumed to be marginally non reliable with probabilities πi and to

have a meta-dependence structure σ, can be equivalently regarded with respect to the

knowledge it induces on Y, as a situation where one has accumulated elementary pieces

of evidence, represented by the marginal traces Aπisi , and one assumes that these pieces of

evidence have a dependence structure σ among them. In particular, we remark that the
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dependence structure at the meta level ‘flows down’ to the trace level, and specifically

σk, k1 + · · · + kN > 1, which represents the dependency among the marginal traces

{Aπisi : i, ki = 1} as explained in Section 4.1, is thus nothing but the inheritance of the

dependency σk between the reliability of the sources {si : i, ki = 1} that are at the origin

of these marginal traces.

An important particular case of this is when the dependence structure at the meta

level is that of independence, which corresponds to σ = e1 (in which case Eq. (40) re-

duces to (21)). Indeed, in such a case where the sources s1, . . . , sN are meta-independent,

then the induced knowledge on Y is given by (21), as explained in Section 2.3. Yet, ac-

cording to the conjunctive combination approach recalled in Section 4.1, m defined

by (21) is also obtained if one receives N elementary pieces of evidence represented by

simple mass functions Aπisi , i = 1, . . . , N , i.e., one receives the marginal traces associated

with the sources, and assumes that these pieces of evidence are independent. That is,

one obtains m by assuming the same dependence structure at the trace level than that

at the meta level.

Theorem 2 is further illustrated by Example 7.

Example 7. Let s1 and s2 be two sources providing the testimonies As1 = A and

As2 = B, for some A,B ⊆ Y, A 6= B. Assume that s1 and s2 are both reliable with

probability p1, s1 is not reliable and s2 is reliable with probability p2, s1 is reliable and

s2 is not reliable with probability p3, and they are both not reliable with probability p4,

i.e., we have

P (X1 = 0, X2 = 0) = p1,

P (X1 = 1, X2 = 0) = p2,

P (X1 = 0, X2 = 1) = p3,

P (X1 = 1, X2 = 1) = p4.

Then, from (39), the induced knowledge on Y is represented by the mass function m

defined as

m(A ∩B) = p1,m(B) = p2,m(A) = p3,m(Y) = p4.

Now, the marginal probabilities that sources s1 and s2 are non reliable are π1 =

p2 + p4 and π2 = p3 + p4, respectively. In addition, their meta-dependence structure is

σ = (1, 0, 0, σ4)′, with σ4 = p4 ·p1−p2 ·p3. Hence, from Theorem 2, m can be equivalently
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obtained as the conjunctive combination of the simple mass functions Aπ1 and Bπ2 with

dependence structure σ, that is, as

m = ∩©(1,0,0,σ4)′(A
π1 , Bπ2).

Theorem 2 is particularly useful to obtain an expression of the t-decomposition in

terms of a conjunctive combination of some simple mass functions:

Theorem 3. Any mass function m defined on a domain Y = {y1, . . . , yn} with Teugels

function t satisfies

m = ∩©σ
(
{y1}

t({y1})
, . . . , {yn}

t({yn})
)
, (41)

with σ the vector such that σ1 = 1 and, for 1 < k ≤ 2n, σk = t(Ak) if |Ak| > 1, and

σk = 0 otherwise.

Proof. As shown in Section 3.3, the t-canonical decomposition allows one to view any

mass function on a domain Y = {y1, . . . , yn} as resulting from crisp testimonies {yi}

provided by sources si, i = 1, . . . , n, assumed to be non reliable with marginal prob-

abilities t({yi}) and having some meta-dependence represented by central moments

t(Ak), |Ak| > 1. The theorem follows from this latter fact and Theorem 2.

Theorem 3 shows that according to the t-decomposition, any mass function results

from the conjunctive combination of |Y| elementary pieces of evidence represented by

simple mass functions having some dependence structure. This is illustrated by Exam-

ples 8 and 9.

Example 8 (Example 4 continued). Let m be a mass function defined on Y = {y1, y2},

with associated Teugels function t. From Theorem 3, m results from the conjunctive

combination of simple mass functions {y1}
t({y1})

and {y2}
t({y2})

with dependence struc-

ture σ = [1, 0, 0, t({y1, y2})]′, i.e., we have

m = ∩©[1,0,0,t({y1,y2})]′
(
{y1}

t({y1})
, {y2}

t({y2})
)
.

Example 9 (Example 5 continued). From Theorem 3, the mass function m of Ex-

ample 2, with function t provided in Example 5, results from the conjunctive combi-

nation of simple mass functions {y1}
1
, {y2}

2/3
and {y3}

2/3
with dependence structure

σ = (1, 0, 0, 0, 0, 0,−1
9 , 0)′, i.e., we have

m = ∩©(1,0,0,0,0,0,− 1
9
,0)′

(
{y1}

1
, {y2}

2/3
, {y3}

2/3
)
.
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Remark 3 (Bayesian mass function on a binary frame). Let y be a variable defined on

Y = {y1, y2}. Let s1 and s2 be two sources providing the testimonies y ∈ {y1} = {y2}

and y ∈ {y2} = {y1}, respectively. Assume that s1 is reliable and s2 is not reliable with

probability α, and that s1 is not reliable and s2 is reliable with probability 1−α, for some

α ∈ [0, 1], i.e., we have

P (X1 = 0, X2 = 0) = 0,

P (X1 = 1, X2 = 0) = 1− α,

P (X1 = 0, X2 = 1) = α,

P (X1 = 1, X2 = 1) = 0.

Then, from (39), the induced knowledge on Y is represented by the Bayesian mass

function m such that

m({y1}) = 1− α, m({y2}) = α. (42)

The marginal probabilities that sources s1 and s2 are non reliable are π1 = 1−α and

π2 = α, respectively. In addition, their meta-dependence structure is σ = (1, 0, 0, α2 −

α)′. Hence, from Theorem 2, m can be equivalently obtained as

m = ∩©(1,0,0,α2−α)′({y1}
1−α

, {y2}
α
),

which is nothing but the t-decomposition of the Bayesian mass function (42).

Now, suppose we are given only the marginal probabilities π1 = 1 − α and π2 = α.

Then, assume that there is a perfect dependence [15] between s1 being reliable and s2

being not reliable, which means that the probability P (X1 = 0, X2 = 1) that s1 is reliable

and s2 is not reliable is such that

P (X1 = 0, X2 = 1) = P (X1 = 0) ∧ P (X2 = 1) = (1− π1) ∧ π2,

where ∧ denotes the minimum operator. This latter assumption is equivalent4 to assum-

ing σ = (1, 0, 0, α2 − α)′, since by definition σ1 = 1, σ2 = 0, σ3 = 0 and from (27)

P (X1 = 0, X2 = 1) = (1− π1)π2 − σ4

⇔ σ4 = (1− π1)π2 − (1− π1) ∧ π2

= α2 − α.
4Vector σ is equivalently obtained by three other assumptions: i) perfect dependence between s1

being not reliable and s2 being reliable, ii) opposite dependence [15] between s1 being reliable and s2

being reliable, iii) opposite dependence between s1 being not reliable and s2 being not reliable.
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Hence, any Bayesian mass function on a binary domain is obtained, according to the

t-decomposition, from two sources such that the marginal probability that the first source

is reliable is equal to the marginal probability that the second source is not reliable, and

such that there is a perfect dependence between the first source being reliable and the

second source being not reliable.

Remark 4. The cautious rule ∧©, which is based on Smets’ decomposition, was proposed

in [4] for the conjunctive combination of bodies of evidence, which cannot be assumed

to be independent. The definition of this rule for the combination of two simple mass

functions is the following. For all A,B ⊂ Y such that A 6= B, and π1, π2 ∈ (0, 1], we

have

Aπ1 ∧©Aπ2 = Aπ1∧π2 , (43)

Aπ1 ∧©Bπ2 = Aπ1 ∩©Bπ2 . (44)

The behaviour of the cautious rule can be analysed in the light of our framework of

meta-dependent and partially reliable sources. Specifically, viewing Aπi as the trace of

a source si providing testimony y ∈ A and assumed to be not reliable with marginal

probability πi, i = 1, 2, then Eq. (43) is recovered by assuming that there is a perfect

dependence between s1 not being reliable and s2 not being reliable, which is equivalent to

assuming that their meta-dependence is σ = (1, 0, 0, π1 ∧ π2 − π1π2)′. From Theorem 2,

we obtain then:

Aπ1 ∧©Aπ2 = ∩©(1,0,0,π1∧π2−π1π2)′ (A
π1 , Aπ2) .

Furthermore, viewing Bπ2 as the trace of a source s3 providing testimony y ∈ B and

assumed to be not reliable with marginal probability π2, then Eq. (44) is recovered by

assuming independence between s1 not being reliable and s3 not being reliable, which is

equivalent to assuming that their meta-dependence is σ = e1. In other words, we have:

Aπ1 ∧©Bπ2 = ∩©e1 (Aπ1 , Bπ2) .

Hence, the combination by the cautious rule of two elementary pieces of evidence

is recovered as different particular cases of the rule ∩©σ, that is, by assuming different

dependence structures among these pieces of evidence – the dependence structure to be

used in a given situation being determined by whether the pieces of evidence support the

same subset or not.
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4.3 Comparison with Smets’ Decomposition

(i) The t-canonical decomposition of belief functions bears some resemblance with that

of Smets, in that both of these decompositions view a belief function defined on a domain

Y = {y1, . . . , yn} as resulting from partially reliable sources providing crisp pieces of

information about a variable of interest y. As a matter of fact, these decompositions

coincide in the following special case.

Let m be a mass function with Teugels function t such that for all A ⊆ Y, |A| > 1,

t(A) = 0. Then, we have

m = ∩©e1

(
{y1}

t({y1})
, . . . , {yn}

t({yn})
)
,

=
n

∩©
i=1

{yi}
t({yi})

. (45)

Mass functions satisfying (45) will be called e1-separable hereafter. Moreover, for mass

function m, Smets’ decomposition yields:

m =

n

∩©
i=1

{yi}
w({yi})

,

with w({yi}) = t({yi}), i = 1, . . . , n. Hence, according to both decompositions, any

e1-separable mass function m is obtained from the conjunctive combination of |Y| inde-

pendent elementary pieces of evidence represented by simple mass functions {yi}
t({yi})

.

In sum, the decompositions coincide for e1-separable mass functions.

In contrast, it may be interesting to note that the decompositions do not coincide in

general for u-separable mass functions as shown by Example 10.

Example 10. Let m be a u-separable mass function on Y = {y1, y2} such that m =

∅w(∅) ∩©{y1}w({y1}), with w(∅), w({y1}) ∈ (0, 1). We may remark that

m = ∩©e1

(
∅w(∅), {y1}w({y1})

)
,

but that does not mean that m is e1-separable. Indeed, for m to be e1-separable, we must

have m = ∩©e1

(
{y1}

t({y1})
, {y2}

t({y2})
)

.

Function t associated with m is

t({y1}) = w(∅), t({y2}) = w(∅)w({y1}), t({y1, y2}) = w(∅)w({y1})(1− w(∅)).

Hence, m = ∩©[1,0,0,w(∅)w({y1})(1−w(∅))]′
(
{y1}

w(∅)
, {y2}

w(∅)w({y1})
)
, that is, m results ac-

cording to the t-decomposition from the conjunctive combination of simple mass func-

tions {y1}
w(∅)

and {y2}
w(∅)w({y1})

with dependence structure σ = [1, 0, 0, w(∅)w({y1})(1−
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w(∅))]′, which is different from Smets’ decomposition for which m results from the con-

junctive combination of the independent simple mass functions ∅w(∅) and {y1}w({y1}).

The fact that the decompositions coincide for e1-separable mass functions and do

not coincide for u-separable mass functions actually follows from Lemma 2.

Lemma 2. Let m be a mass function on Y. We have

• m is e1-separable ⇒ m is u-separable.

• m is e1-separable 6⇐ m is u-separable.

Proof. ⇒ follows from the definitions of e1-separability and u-separability.

6⇐: Example 10 shows that a u-separable mass functionm admits the t-decomposition

m = ∩©[1,0,0,w(∅)w({y1})(1−w(∅))]′
(
{y1}

w(∅)
, {y2}

w(∅)w({y1})
)
6= ∩©e1

(
{y1}

w(∅)
, {y2}

w(∅)w({y1})
)
.

In general, Smets’ decomposition and the t-decomposition significantly differ on vari-

ous aspects. First, Smets’ decomposition involves 2n−1 sources while the t-decomposition

involves n sources, and the sources are in general not meta-independent in the t-

decomposition whereas Smets’ decomposition involves meta-independence. In terms

of elementary pieces of evidence, this means that the t-decomposition breaks down a

mass function as the result of the conjunctive combination of n simple mass functions

that have a dependency structure, whereas with Smets’ decomposition it is the result of

the conjunctive combination of 2n−1 (generalised) simple mass functions that are inde-

pendent. Second, the t-decomposition can be obtained for any mass function, whereas

Smets’ decomposition is restricted to non dogmatic mass function5. Third and most im-

portantly, the t-decomposition involves only well-defined concepts with clear semantics,

in particular means and central moments of Bernoulli variables, which is not the case of

Smets’ decomposition.

(ii) Smets’ decomposition has a nice behaviour (13) with respect to the unnormalised

Dempster’s rule. It seems thus interesting to comment on the behaviour of our solution

with respect to this rule. It is actually easy to uncover the assumptions associated

with the use of this rule in our solution since Dempster’s rule was originally introduced

5Smets [37] proposed a technical means to decompose a dogmatic mass function m, which consists

essentially in assigning an ε to Y. However, this comes down to approximating m by a non dogmatic

mass function.
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in a similar setting as ours [3]. Let m1 and m2 be two mass functions defined on

Y = {y1, . . . , yn}. In our approach, mass functionmj , j = 1, 2, can be viewed as resulting

from having n sources Sji , i = 1, . . . , n, each telling y ∈ {yi}, and such that uncertainty

with respect to the reliability of these sources is represented by a probability distribution,

with pkj the probability that sources Sji , i = 1, . . . , n, are in the joint state kj . Assuming

that the sources S1
i , i = 1, . . . , n, underlying m1 are meta-independent from the sources

S2
i , i = 1, . . . , n, underlying m2, we obtain that the joint probability p(k1,k2) that sources

S1
i and S2

i , i = 1, . . . , n, are in the joint state (k1, k2) is p(k1,k2) = pk1 · pk2 . Besides,

if the sources S1
i and S2

i , i = 1, . . . , n, are in the joint state (k1, k2), then we should

deduce that y ∈ T(k1)∩T(k2). Hence assuming meta-independence between the sources

underlying m1 and m2 yield the mass function m12 such that

m12(A) =
∑

k1,k2:T(k1)∩T(k2)=A

p(k1,k2). (46)

It can easily be checked that m12 = m1 ∩©2 and thus the unnormalised Dempster’s rule

has a nice interpretation in our approach: it corresponds simply to assuming meta-

independence between the sources underlying m1 and the sources underlying m2.

In addition, let us remark that the mass function m1 ∩©2 can be viewed using our

solution as originating from n sources, which we denote by S12
i , i = 1, . . . , n, and an

associated probability distribution p12 representing uncertainty with respect to the reli-

ability of these latter sources. We may remark that due to (7) the vector µ12 of moments

associated with p12 is such that µ12 = µ1 ·µ2, with µi the vector of moments associated

with the MBD-equivalent of mi, i = 1, 2. In other words, any moment between the re-

liabilities of the sources underlying m1 ∩©2 is equal to the pointwise product of the same

moments between the reliabilities of the sources underlying m1 and m2. This means

that in our approach the unnormalised Dempster’s rule has a similar behaviour to the

one it has in Smets’ solution: it comes down to a simple pointwise product of some

functions (µ1 and µ2 in our case, w1 and w2 in Smets’ case).

4.4 t-Canonical Decomposition of Random Sets

A random set is a random element taking values as subsets of some space [21, 23]. A

random set is thus defined in the finite case by a probability distribution m on the power

set 2X of some finite set X = {x1, . . . , xn} such that
∑

A⊆X m(A) = 1. Distribution m

is formally equivalent to a mass function on X [27], but it has different semantics [35].
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For instance, borrowing from [2], let X = {English, French, Spanish} denote the set of

languages that a person can speak, then m(A) is the probability that someone speaks

exactly all the languages in A (and not other ones), A ⊆ X . Furthermore, the com-

monality degree q(A) =
∑

B⊇Am(B) is the probability that someone speaks at least all

the languages in A; for instance, the probability q({English} that someone speaks at

least English is obtained by summing the probabilities m({English} of speaking only En-

glish, m({English, French} of speaking only English and French, m({English, Spanish}

of speaking only English and Spanish, and m({English, French, Spanish} of speaking

the three languages.

Definition 4 (MBD-RS-equivalent). Let m be the probability distribution of some finite

random set, defined on the power set of some set X = {x1, . . . , xn} and let p be the

MBD (22) such that pk = m(Ak), 1 ≤ k ≤ 2n, with Ak the k-th subset of X according

to the binary order. p is called the MBD-Random Set-equivalent (MBD-RS-equivalent

for short) of m.

Although they seem fairly similar, the bond between the probability distribution of

a random set and its MBD-RS-equivalent is much stronger than that of a mass function

and its MBD-equivalent. Indeed, the notion of MBD-equivalent becomes interesting

mostly in conjunction with Proposition 1. In contrast, the semantics of a random set

and its MBD-RS-equivalent are in immediate correspondence. For instance, let m be

the preceding probability distribution representing the languages that someone speaks

among the n = 3 languages English, French and Spanish. Furthermore, let p be the

MBD-RS-equivalent of m, where Bernoulli random variables X1, X2 and X3 underlying

p represent respectively whether someone speaks English, French and Spanish, with

Xi = 1 meaning that someone speaks the i-th language and Xi = 0 meaning that

someone does not speak the i-th language. Then pk has the same interpretation as

m(Ak), 1 ≤ k ≤ 2n: it is the probability that someone speaks exactly all the languages

in Ak (and not other ones). We have for instance A4 = {English, French} and the

probability m(A4) that someone speaks only English and French is equal to p4 = p110 =

P (X1 = 1, X2 = 1, X3 = 0).

It is clear that the vector µ computed through (26) from the MBD-RS-equivalent p

of the probability distribution m of a random set, is the vector q of commonality degrees

associated to m. Most importantly, thanks to the Teugels’ representation τ of p, we can

propose a canonical decomposition of a random set, which has a well-defined semantics.
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This canonical decomposition is given by function t computed using (37). For instance,

continuing the language example, let m be such that

m(A4) = m(A6) = m(A8) = 1/3, (47)

withA4 = {English, French}, A6 = {English, Spanish} andA8 = {English, French, Spanish}.

We have

t({English} = 1,

t({French} = 2/3,

t({English,French} = 0,

t({Spanish} = 2/3,

t({English,Spanish} = 0,

t({French,Spanish} = −1/9,

t({English,French,Spanish} = 0.

Hence, the random set defined by m can be seen as originating from the following pieces

of information

• Someone speaks English, French and Spanish with probabilities 1, 2/3 and 2/3

respectively;

• The covariance between someone speaking French and speaking Spanish is −1/9,

and all other subsets of variables representing the languages spoken by someone

have null central moments.

Let us conclude this section by remarking that the correspondence established be-

tween finite random sets and the MBD can be used together with the multi-valued map-

ping T (24) to relate random sets and belief functions in a different way than in [27], and

specifically as a means to obtain a belief function from a random set. Indeed, let p be

the MBD-RS-equivalent of the probability distribution m of some random set, defined

on 2X with X = {x1, . . . , xn}. Then, transferring MBD p via multi-valued mapping

T (24) yield a mass function m′ on Y = {y1, . . . , yn} defined, for 1 ≤ k ≤ 2n, by

m′(Ak) =
∑

k′∈Xn:T(k′)=Ak

pk′ ,

with Ak the k-th subset of Y. For instance, consider again probability distribution m

defined by (47) and let p be its MBD-RS-equivalent, where Bernoulli random variables
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Xi, i = 1, 2, 3, underlying p represent respectively whether someone speaks English,

French and Spanish. Let y be a variable defined on

Y = {British citizen, French citizen, Spanish citizen}

= {y1, y2, y3}

and denoting the citizenship of someone (we assume someone has only one citizenship).

Furthermore, assume the following pieces of information:

• Someone who does not speak the language of a given country, is surely not a citizen

of that country;

• A citizen of a given country may speak the language of another country (e.g., a

Spanish man may speak French).

For each language i, i = 1, 2, 3, these pieces of information can be represented by a

multi-valued mapping Γi defined by (23). For instance, we have Γ2(0) = {y1, y3} and

Γ2(1) = Y since someone who does not speak French (X2 = 0) is surely not a French

citizen (y ∈ {y1, y3}), and since someone who speaks French (X2 = 1) may be a citizen

of any country (y ∈ Y). More generally, what can be deduced about the citizenship

of someone given the languages that she speaks can be represented by multi-valued

mapping T (24). For instance, someone who speaks English and French but not Spanish

is a British citizen or a French citizen, as

T[(1, 1, 0)] = Γ1(1)
⋂

Γ2(1)
⋂

Γ3(0)

= Y ∩ Y ∩ {y3}

= {y1, y2}.

Hence, if knowledge about the languages spoken by someone is represented by probability

distribution m defined by (47), we obtain that the citizenship of someone is represented

by mass function m′ defined on Y by m′({y1, y2}) = m′({y1, y3}) = m′(Y) = 1/3.

5 A MBD-Based Perspective on the Weight Function

We have argued that the semantics provided by Smets for the function w, as weights

associated with statements of the form believe and do not believe in some propositions,

is not totally satisfactory. However, this does not mean that this function does not

40



represent some facet of the information contained in a mass function, similarly as, e.g.,

pl or bel – it just means that the interpretation given by Smets for this function as

representing a canonical decomposition, that is, a decomposition into elementary pieces

of evidence, is not totally acceptable, at least for the time being, and deserves further

justifications.

As a matter of fact, a completely new perspective on the weight function w as-

sociated to a mass function m is brought to light in this section, using measures of

information associated with the MBD-equivalent of m. As will be seen, the proposed

interpretation is not as appealing as Smets’, and especially is unrelated to the concept

of canonical decomposition, but it relies only on well-defined concepts. Then, a similar

result is provided for the disjunctive counterpart of w known as the disjunctive weight

function [4] and a disjunctive counterpart of the expression (41) is also unveiled for the

t-decomposition.

5.1 Weights as Measures of Information

Instead of using function w, Smets’ decomposition (11) can be equivalently presented

using a function s : 2Y\{Y} → (−∞,+∞) such that s(A) = − lnw(A) for all A ⊂ Y (see,

e.g., [16]). We note that simple mass functions correspond to the case where s(A) ≥ 0

and that inverse simple mass functions correspond to the case where s(A) < 0. Function

s is actually the function Shafer originally used in his monograph [34] to present the

canonical decomposition of separable mass functions (9). Accordingly and following [16],

s(A), A ⊂ Y, may be referred to as Shafer’s weights.

Let p be the MBD-equivalent of some mass function m and let µ be the moments of

p. By replacing q in (12) by µ, we obtain the following expression for function s, for all

Ak ⊂ Y:

s(Ak) = − ln(
∏

Ak′⊇Ak

q(Ak′)
(−1)|Ak′ |−|Ak|+1

),

= − ln(
∏

Ak′⊇Ak

µ
(−1)|Ak′ |−|Ak|+1

k′ ). (48)
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In particular, let m be a mass function on Y = {y1, y2}. We have:

s(∅) = − ln
µ2µ3

µ1µ4

= − ln
µ2µ3

µ4

= ln
µ4

µ2µ3
,

s({y1}) = − ln
µ4

µ2
,

s({y2}) = − ln
µ4

µ3
.

Interestingly, these latter combinations of the marginal probabilities µk′ , and thus

Shafer’s weights, correspond to known quantities associated with the MBD. This is

detailed hereafter.

Let X1 and X2 be two Bernoulli random variables and let p be the MBD such that

pk = pk1,k2 , 1 ≤ k ≤ 4, with pk1,k2 := P (X1 = k1, X2 = k2) where ki ∈ {0, 1}, i = 1, 2,

are the terms in the binary expansion of k. Furthermore, let µ be the vector of moments

of p. Recall (cf [14, p. 28]) that the mutual information I(X1 = k1;X2 = k2) between

two events X1 = k1 and X2 = k2 is6

I(X1 = k1;X2 = k2) = ln
P (X1 = k1, X2 = k2)

P (X1 = k1)P (X2 = k2)

= ln
pk

(
∑

k′:k′1=k1
pk′)(

∑
k′:k′2=k2

pk′)
.

Besides, the conditional self information I(X1 = k1|X2 = k2) of event X1 = k1 given

event X2 = k2 is [14, p. 36]

I(X1 = k1|X2 = k2) = − ln
P (X1 = k1, X2 = k2)

P (X2 = k2)

= − ln
pk∑

k′:k′2=k2
pk′

,

and the conditional self information I(X2 = k2|X1 = k1) of event X2 = k2 given event

X1 = k1 is

I(X2 = k2|X1 = k1) = − ln
P (X1 = k1, X2 = k2)

P (X1 = k1)

= − ln
pk∑

k′:k′1=k1
pk′

.

6Usually, log rather than ln is used, but this is just a change of unit of information: the unit is bits

when using log and nats when using ln [14].
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In particular, we have for k = 4↔ (k1 = 1, k2 = 1)

I(X1 = 1;X2 = 1) = ln
p4

(
∑

k′:k′1=1 pk′)(
∑

k′:k′2=1 pk′)

= ln
µ4

µ2µ3
,

I(X2 = 1|X1 = 1) = − ln
p4∑

k′:k′1=1 pk′

= − ln
µ4

µ2
,

I(X1 = 1|X2 = 1) = − ln
p4∑

k′:k′2=1 pk′

= − ln
µ4

µ3
.

Hence, when m is a mass function defined on the binary domain Y = {y1, y2}, with

MBD-equivalent p, we have

s(∅) = I(X1 = 1;X2 = 1),

s({y1}) = I(X2 = 1|X1 = 1),

s({y2}) = I(X1 = 1|X2 = 1).

Adopting the setting of Remark 1, s(∅) is then equal to the mutual information between

both sources underlying m not being reliable, s({y1}) is equal to the conditional self

information of the second source not being reliable given that the first source is not

reliable, and s({y2}) is equal to the conditional self information of the first source not

being reliable given that the second source is not reliable.

Remark that for any mass functionm on Y = {y1, y2}, we have s({yi}) = − ln q({y1,y2})
q({yi}) ≥

0 , i = 1, 2, and s(∅) = ln q({y1,y2})
q({y1})q({y2}) ∈ (−∞,+∞). In other words, when Y is binary,

only for A = ∅ one can have s(A) < 0, which is a case of debt of belief for A according

to Smets’ interpretation of s. Our new perspective on s provides a completely different

meaning to s(∅) < 0 than that of debt of belief, and especially a well-established mean-

ing which is that of mutual information. More generally, our alternative interpretation

for the whole function s is admittedly less appealing than the one proposed by Smets,

but it is rigorous.

When m is a mass function on Y = {y1, y2, y3}, its associated weight function s can

also be interpreted using measures of information, as explained hereafter. The MBD-

equivalent p of m relies in this case on three Bernoulli random variables {X1, X2, X3}.

Let us recall that the mutual information I(X1 = 1;X2 = 1;X3 = 1) between the three
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events X1 = 1, X2 = 1 and X3 = 1 is [14, p. 57-58]

I(X1 = 1;X2 = 1;X3 = 1) = ln
P (X1 = 1, X2 = 1)P (X1 = 1, X3 = 1)P (X2 = 1, X3 = 1)

P (X1 = 1)P (X2 = 1)P (X3 = 1)P (X1 = 1, X2 = 1, X3 = 1)

= ln
µ4µ6µ7

µ2µ3µ5µ8
.

with µ the vector of moments of p. The conditional mutual information I(X2 = 1;X3 =

1|X1 = 1) between events X2 = 1 and X3 = 1 given event X1 = 1 is [14, p. 28]

I(X2 = 1;X3 = 1|X1 = 1) = ln
P (X1 = 1)P (X1 = 1, X2 = 1, X3 = 1)

P (X1 = 1, X2 = 1)P (X1 = 1, X3 = 1)

= ln
µ2µ8

µ4µ6
.

The conditional self information I(X3 = 1|X1 = 1, X2 = 1) of event X3 = 1 given events

X1 = 1 and X2 = 1 is

I(X3 = 1|X1 = 1, X2 = 1) = − ln
P (X1 = 1, X2 = 1, X3 = 1)

P (X1 = 1, X2 = 1)

= − ln
µ8

µ4
.

For m a mass function on Y = {y1, y2, y3}, we have thus

s(∅) = − ln
µ2µ3µ5µ8

µ1µ4µ6µ7

= I(X1 = 1;X2 = 1;X3 = 1), (since µ1 = 1)

s({y1}) = − ln
µ4µ6

µ2µ8

= I(X2 = 1;X3 = 1|X1 = 1),

s({y1, y2}) = − ln
µ8

µ4

= I(X3 = 1|X1 = 1, X2 = 1),

and similarly we obtain

s({y2}) = I(X1 = 1;X3 = 1|X2 = 1),

s({y3}) = I(X1 = 1;X2 = 1|X3 = 1),

s({y1, y3}) = I(X2 = 1|X1 = 1, X3 = 1),

s({y2, y3}) = I(X1 = 1|X2 = 1, X3 = 1).

Hence, for instance, s({y2}) is equal to the conditional mutual information between the

first and third sources underlying m not being reliable given that the second source is

not reliable.
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The above interpretation for function s in terms of measures of information can be

extended to belief functions defined on domains Y of any cardinality. This extension is

based on the notion of conditional mutual information between an arbitrary number of

events [14] recalled hereafter.

Let {Vi : i = 1, . . . , `} be a sequence of discrete random variables with ranges Vi,

i = 1, . . . , `. Consider the multivariate distribution P (V1 = v1, . . . , V` = v`) with vi ∈

Vi, i = 1, . . . , `. Then, the conditional mutual information between events Vi = vi, i =

1, . . . , `− 1, given event V` = v`, for some vi ∈ Vi, i = 1, . . . , `, is [14, p. 58]

I(V1 = v1; . . . ;V`−1 = v`−1|V` = v`) = ln

∏
E⊆Ξ,(V`=v`)∈E,|E|6∈2IN P (E)∏
E⊆Ξ,(V`=v`)∈E,|E|∈2IN P (E)

, (49)

with Ξ := {Vi = vi : i = 1, . . . , `}. It will be convenient to denote the conditional

mutual information between all the events belonging to some set S, given another event

E, as I(Mut(S))|E). For instance, the quantity (49) may be equivalently denoted as

I(Mut(S)|V` = v`) with S := {Vi = vi : i = 1, . . . , `− 1}.

Theorem 4. Let m be a mass function on Y = {y1, . . . , yn} with MBD-equivalent p and

with {Xi : i = 1, . . . , n} the Bernoulli random variables underlying p. We have

s(Ak) = I(Mut(Sk)|Ck = 1), 1 ≤ k < 2n,

with, using k ↔ (k1, . . . , kn), Ck :=
∏n
i=1X

ki
i and Sk := {Xi = 1 : i, ki = 0}.

Proof. Eq. (48) can be rewritten as

s(Ak) =
∑

Ak′⊇Ak

(−1)|Ak′ |−|Ak| lnµk′ . (50)

For all Ak′ , Ak ⊆ Y, we have Ak′ ⊇ Ak ⇔ ∀1 ≤ i ≤ n s.t. ki = 1, we have k′i = 1,

using k ↔ (k1, . . . , kn) and k′ ↔ (k′1, . . . , k
′
n).

Let 1 ≤ k ≤ 2n and 1 ≤ k′ ≤ 2n. If ∀1 ≤ i ≤ n s.t. ki = 1, we have k′i = 1, we will

write k′ w k. Hence, for any Ak′ , Ak ⊆ Y, Ak′ ⊇ Ak ⇔ k′ w k.

Let |k| := |{i : i, ki = 1}|. Hence, for all Ak ⊆ Y, we have |Ak| = |k|.

Using these notations, Eq. (50) can be rewritten as

s(Ak) =
∑
k′wk

(−1)|k
′|−|k| lnµk′ . (51)

For 1 ≤ k < 2n, let Ξk := Sk ∪ {Ck = 1}. Since for 1 ≤ k < 2n, Ck = 1 is equivalent

to the event {Xi = 1 : i, ki = 1} with k ↔ (k1, . . . , kn), any E ⊆ Ξk s.t. (Ck = 1) ∈ E
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is equivalent to the event E\{(Ck = 1)} ∪ {Xi = 1 : i, ki = 1} and has thus probability

P (E) = µk′ with µ the vector of moments of the MBD p and k′ ↔ (k′1, . . . , k
′
n) s.t., for

all 1 ≤ i ≤ n, k′i = 1 if ki = 1 or (Xi = 1) ∈ E\{(Ck = 1)}, and k′i = 0 otherwise.

Hence, for the conditional mutual information between events in Sk given event Ck = 1,

we have

I(Mut(Sk)|Ck = 1) = ln

∏
E⊆Ξk,(Ck=1)∈E,|E|6∈2IN P (E)∏
E⊆Ξk,(Ck=1)∈E,|E|∈2IN P (E)

= ln

∏
k′wk,|k′|−|k|∈2IN µk′∏
k′wk,|k′|−|k|6∈2IN µk′

=
∑

k′wk,|k′|−|k|∈2IN

lnµk′ −
∑

k′wk,|k′|−|k|6∈2IN

lnµk′

=
∑
k′wk

(−1)|k
′|−|k| lnµk′ .

Since for 1 ≤ k < 2n, Ck = 1 is equivalent to the event {Xi = 1 : i, ki = 1},

Theorem 4 shows, using the setting of Remark 1, that s(Ak) is equal to the conditional

mutual information between sources si, i such that ki = 0, not being reliable, given that

the sources si, i such that ki = 1, are not reliable.

5.2 Disjunctive Counterparts

The implicability function b is another equivalent representation of a mass function m,

defined as

b (A) =
∑
B⊆A

m (B) , ∀A ⊆ Y.

It allows an expression similar to Eq. (7) for the combination by the disjunctive rule

∪© [12, 36], which is a combination rule that has the same definition as ∩© except that

∩ is replaced by ∪ in (6): we have b1 ∪©2(A) = b1(A) · b2(A), for all A ⊆ Y. In matrix

form, we have [38]

m =

 n⊗
i=1

 1 0

−1 1

b. (52)

Let us consider the MBD p (22) and its associated vector λ defined as

λ = (λ1, . . . , λ2n),
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where, for 1 ≤ k ≤ 2n,

λk = E

[
n∏
i=1

(1−Xi)
1−ki

]
,

with ki, i = 1, . . . , n, the terms in the binary expansion of k. λk comes down to the

(marginal) probability that each of the variables in {Xi : i, ki = 0} equals 0.

Using a similar7 proof to that of (25) provided in [42], it is straightforward to show

that the following relation holds

p =

 n⊗
i=1

 1 0

−1 1

λ. (53)

Let m be a mass function on Y with associated implicability function b, and let p

be its MBD-equivalent, with associated vector λ. By comparing Eqs. (52) and (53), it

is clear that λk = b(Ak) for all 1 ≤ k ≤ 2n. Hence, adopting the setting of Remark 1,

b(Ak) is equal to the (marginal) probability that each of the sources in {si : i, ki = 0} is

reliable.

As shown in [4], there exists a decomposition of non normal belief functions based

on the disjunctive rule. This decomposition relies on the disjunctive weight function

v : 2Y\{∅} → (0,+∞), which is an equivalent representation of a non normal mass

function m, defined as

v(A) =
∏
B⊆A

b(B)(−1)|A|−|B|+1
, ∀A 6= ∅,

with b the implicability function associated to m. We have, for any non normal mass

function m,

m = ∪©
A6=∅

Av(A), (54)

with v the disjunctive weight function associated to m and Av(A) : 2Y → IR a mapping

called a negative generalised simple mass function allocating v(A) to ∅, 1 − v(A) to

A ⊆ Y, A 6= ∅, and 0 to all B ∈ 2Y\{A, ∅} (if v(A) ≤ 1, then this mapping is a proper

mass function called a negative simple mass function). Decomposition (54) is unique and

7The main difference with the proof of (25) is that one needs to use1−Xi

Xi

 =

 1 0

−1 1

1−Xi

1

 , i = 1, . . . , n.
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is the disjunctive counterpart of (11). The interpretation of disjunctive weights v(A),

A 6= ∅, is not discussed in [4]. However, using a similar reasoning to the one followed in

Section 5.1 for the weight function w, disjunctive weights can be related to measures of

information, as detailed below.

Much as it is possible to present decomposition (11) using function s rather than

w, the decomposition (54) can be presented using a function r : 2Y\{∅} → (−∞,+∞)

such that r(A) = − ln v(A). Let m be a mass function defined on Y = {y1, y2}, with

MBD-equivalent p. We obtain

r({y1}) = − ln
b(∅)

b({y1})

= − ln
λ1

λ2

= I(X1 = 0|X2 = 0),

r({y2}) = − ln
b(∅)

b({y2})

= − ln
λ1

λ3

= I(X2 = 0|X1 = 0),

r(Y) = − ln
b({y1})b({y2})
b(∅)b(Y)

= ln
λ1

λ2λ3

= I(X1 = 0;X2 = 0),

since we have, for k = 1↔ (k1 = 0, k2 = 0),

I(X1 = 0;X2 = 0) = ln
P (X1 = 0, X2 = 0)

P (X1 = 0)P (X2 = 0)

= ln
p1

(
∑

k′:k′1=0 pk′)(
∑

k′:k′2=0 pk′)

= ln
λ1

λ3λ2
,

I(X2 = 0|X1 = 0) = − ln
P (X1 = 0, X2 = 0)

P (X1 = 0)

= − ln
λ1

λ3
,

I(X1 = 0|X2 = 0) = − ln
P (X1 = 0, X2 = 0)

P (X2 = 0)

= − ln
λ1

λ2
.

Adopting the setting of Remark 1, we have for instance that r(Y) is thus equal to the

mutual information between both sources underlying m being reliable.
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More generally, the above interpretation for function r in terms of measures of in-

formation can be extended to belief functions defined on domains Y of any cardinality,

thanks to Theorem 5, which is the counterpart to Theorem 4 for function r.

Theorem 5. Let m be a mass function on Y = {y1, . . . , yn} with MBD-equivalent p and

with {Xi : i = 1, . . . , n} the Bernoulli random variables underlying p. We have

r(Ak) = I(Mut(Rk)|Dk = 1), 1 < k ≤ 2n,

with, using k ↔ (k1, . . . , kN ), Dk :=
∏n
i=1(1−Xi)

1−ki and Rk := {Xi = 0 : i, ki = 1}.

Proof. The proof is similar to that of Theorem 4.

Since for 1 < k ≤ 2n, Dk = 1 is equivalent to the event {Xi = 0 : i, ki = 0},

Theorem 5 shows, using the setting of Remark 1, that r(Ak) is equal to the conditional

mutual information between sources si, i such that ki = 1, being reliable, given that the

sources si, i such that ki = 0, are reliable.

Let us conclude by remarking that much as Eq. (54) is the disjunctive counterpart

of Eq. (11), it is possible to obtain a disjunctive counterpart of Theorem 3 as follows.

In [11], a general approach for the disjunctive combination of bodies of evidence is also

mentioned: it consists in a simple modification of Step 2 of the general approach to the

conjunctive combination of bodies of evidence recalled in Section 4.1, where each joint

mass jm(A1, . . . , AN ) is now allocated to the subset
⋃N
i=1Ai. As a result, the disjunctive

combination of N mass functions m1, . . . ,mN on Y is the mass function m∪ defined as

m∪(A) =
∑

⋃N
i=1 Ai=A

jm(A1, . . . , AN ). ∀A ⊆ Y.

Let us consider the case where the mass functions m1, . . . ,mN are binary and such

that mi = (Ai0 , Ai1)πi . In such case, the dependence structure represented by a joint

mass function jm, is completely determined as explained in Section 4.1 by vector σ

associated with the MBD such that pk = jm(Ak) with Ak := (A1k1
, . . . , ANkN

) using

k ↔ (k1, . . . , kN ), 1 ≤ k ≤ 2N . As a result, the disjunctive combination of N binary

mass functions can be expressed as a parameterised combination rule ∪©σ : BN → M,

with parameter σ representing the dependence structure, defined as

∪©σ((A10 , A11)π1 , . . . , (AN0 , AN1)πN ) := m∪,
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with m∪ the result of the disjunctive combination of mass functions mi with dependence

represented by the joint mass function jm determined by vector σ and having marginals

mi, i = 1, . . . , N .

When Ai0 = ∅, i = 1, . . . , N , we may denote ∪©σ ((A10 , A11)π1 , . . . , (AN0 , AN1)πN )

for short as ∪©σ
(
A111−π1 , . . . , AN11−πN

)
, since a binary mass function (Ai0 , Ai1)πi such

that Ai0 = ∅ is nothing but the negative simple mass function Ai11−πi .

Theorem 6. Any mass function m defined on a domain Y = {y1, . . . , yn} with Teugels

function t satisfies

m = ∪©σ
(
{y1}1−t({y1}), . . . , {yn}1−t({yn})

)
, (55)

with σ the vector such that σ1 = 1 and, for 1 < k ≤ 2n, σk = t(Ak) if |Ak| > 1, and

σk = 0 otherwise.

Proof. The MBD in one-to-one correspondence with the joint mass function jm under-

lying the disjunctive combination (55), is such that its marginals satisfy P (Xi = 1) =

πi = t({yi}), i = 1, . . . , n, and its vector of central moments is σ. Hence, its Teugels’

representation τ is such that τk = t(Ak), 1 < k ≤ 2n. In other words, the MBD asso-

ciated with jm is the MBD-equivalent of m, and thus pk = m(Ak), 1 ≤ k ≤ 2n, from

which we obtain jm(Ak) = m(Ak) since pk = jm(Ak), with Ak := (A1k1
, . . . , Ankn

).

Moreover, for 1 ≤ k ≤ 2n, we have

n⋃
i=1

Aiki = (
n⋃

i=1,ki=0

Aiki )
⋃

(
n⋃

i=1,ki=1

Aiki )

=

n⋃
i=1,ki=1

Aiki

=
n⋃

i=1,ki=1

{yi}

= Ak.

Hence, jm(Ak) = m(Ak) is allocated to Ak.

Theorem 6 is the counterpart of Theorem 3. It shows that any mass function results

from the disjunctive combination of |Y| negative simple mass functions having some

dependence structure.
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6 Conclusions

The problem of decomposing uniquely any belief function into elementary items received

a solution from Smets [37], extending previous ideas from Shafer [34]. As argued in this

paper, Smets’ solution has a major weakness, which is that it involves elementary items

whose proposed semantics lacks formal justifications.

In Dempster’s seminal work [3], a belief function is induced from a space equipped

with a probability measure and a multi-valued mapping from this space to another one.

In this paper we have considered a particular case of this framework where the prob-

ability measure is multivariate Bernoulli and where the multi-valued mapping is the

conjunction of multi-valued mappings associated to the Bernoulli random variables un-

derlying the multivariate Bernoulli distribution. Using Pichon et al.’s general approach

to information fusion [30], we have provided a setting in which this particular case of

Dempster’s framework receives a concrete meaning: it may be associated to a simple sit-

uation where partially reliable sources provide crisp pieces of information. Furthermore,

using this latter setting and a representation of the multivariate Bernoulli distribution

due to Teugels [42], we have been able to propose a new canonical decomposition of be-

lief functions and an associated new equivalent representation of a belief function which

we called the Teugels function. This decomposition resembles Smets’ decomposition in

that a belief function is also seen as the result of partially reliable pieces of evidence.

However, all the elementary items that it involves have well-defined semantics. In a

nutshell, a belief function stems according to this decomposition, from as many crisp

pieces of information as there are elements in its domain of definition Y, and from simple

probabilistic knowledge concerning both the marginal reliability of each of these pieces of

information and the dependencies between their reliability. In addition, we showed that

computing the Teugels function of a finite random set provides a meaningful canonical

decomposition of the random set.

We were also led to consider the weight function associated with Smets’ decompo-

sition in light of our framework. We showed that the weight function corresponds to

measures of information of the case where the sources involved in our framework are not

reliable. This constitutes a completely different perspective on this function than the

one proposed by Smets. This new semantics for the weight function is unfortunately

less appealing than Smets’, but it is well-defined, contrary to Smets’. In addition, we

provided a similar semantics for the disjunctive weight function, whose interpretation
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had never been discussed.

The t-canonical decomposition and its building blocks open a potentially fruitful

path. It seems indeed interesting to revisit in light of our framework, the main problems

concerning belief functions and their associated solutions, such as combination [39] and

specifically combination under ill-known dependency [11, 4], distance evaluation [18],

building methods [1], measurement of uncertainty [22] and of consistency [10].

On the one hand, revisiting an existing solution or notion, as we have done in this

paper for instance for the unnormalised Dempster’s rule and the equivalent representa-

tions of a belief function that are the commonality, implicability, weight and disjunctive

weight functions, may provide a new and useful perspective on the solution or notion,

as was the case in particular for the weight functions that we were able to relate to

information measures.

On the other hand, tackling these main problems using our framework might lead to

new solutions for them. For instance, the problem of combining belief functions under

ill-known dependency could be looked at in light of the elementary pieces of evidence

underlying a belief function according to the t-decomposition. New distances between

belief functions, based on Teugels function t, could be investigated. Uncertainty mea-

sures and building methods (such as the one used in [43, Section 2.2.1]) for the MBD

could yield new uncertainty measures and building methods for belief functions. The

conjunctive combination with dependence σ of simple mass functions could present some

interest in preference modelling as a means to resolve inconsistency between elementary

information items, represented by simple mass functions and assumed so far to be in-

dependent [9], since the dependence assumption made between pieces of information is

known to have potentially a significant impact on consistency [10].
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[31] F. Pichon, D. Mercier, E. Lefèvre, and F. Delmotte. Proposition and learning of

some belief function contextual correction mechanisms. International Journal of

Approximate Reasoning, 72:4–42, 2016.

[32] C. Rose and M. D. Smith. Mathematical Statistics with Mathematica. Springer-

Verlag, New York, 2002.

[33] J. Schubert. Clustering decomposed belief functions using generalized weights of

conflict. International Journal of Approximate Reasoning, 48(2):466 – 480, 2008.

55



[34] G. Shafer. A mathematical theory of evidence. Princeton University Press, Prince-

ton, N.J., 1976.

[35] P. Smets. The Transferable Belief Model and random sets. International Journal

of Intelligent Systems, 7:37–46, 1992.

[36] P. Smets. Belief functions: the disjunctive rule of combination and the generalized

Bayesian theorem. International Journal of Approximate Reasoning, 9(1):1–35,

1993.

[37] P. Smets. The canonical decomposition of a weighted belief. In Proceedings of the

14th Int. Joint Conf. on Artificial Intelligence (IJCAI’95), San Mateo, California,

USA, 1995, pages 1896–1901. Morgan Kaufmann, 1995.

[38] P. Smets. The application of the matrix calculus to belief functions. International

Journal of Approximate Reasoning, 31(1–2):1–30, 2002.

[39] P. Smets. Analyzing the combination of conflicting belief functions. Information

Fusion, 8(4):387–412, 2007.

[40] P. Smets and R. Kennes. The Transferable Belief Model. Artificial Intelligence,

66:191–243, 1994.

[41] I. Song and S. Lee. Explicit formulae for product moments of multivariate gaussian

random variables. Statistics and Probability Letters, 100:27–34, 2015.

[42] J. L. Teugels. Some representations of the multivariate Bernoulli and binomial

distributions. Journal of Multivariate Analysis, 32(2):256 – 268, 1990.

[43] J. L. Teugels and J. Van Horebeek. Algebraic descriptions of nominal multivariate

discrete data. Journal of Multivariate Analysis, 67(2):203 – 226, 1998.

56


