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Abstract

Based on simulations similar to the ones used to gen-
erate high-quality Michel–Lévy charts, graphical rep-
resentations of anomalous interference colours which
are based on a linear model for the dispersion of bire-
fringence are shown. In the charts, the path length
difference ∆ΓD forms the ordinate, while the birefrin-
gence ∆ΓF − ∆ΓC forms the abscissa. Using these
charts, many facts which are in principle well known,
but whose justification requires rather abstract argu-
mentation, can be grasped intuitively. The usefulness
is shown by comparison with several photographs
of anomalous interference colours observed either on
wedges or conoscopically on various minerals and sub-
stances spanning the whole range of possible linear
dispersion ranges quantified by different Ehringhaus
numbers N .

These diagrams may be of high pedagogical value
in the teaching of polarisation microscopy and may
complement the well known Michel–Lévy chart.

1 Introduction

It is well known that the index of refraction n is in
general a function of the wavelength λ, n = n(λ),
which is known as dispersion of the index. With the
exception of regions where substances show strong
absorption, n(λ) decreases with increasing wave-
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length. In anisotropic materials, the index of refrac-
tion depends on the orientation of the polarisation
vector relative to the crystal. The change of n with
λ is usually different for different directions of the
polarisation too, so that also birefringence, ∆n(λ),
becomes wavelength dependent, which is known as
dispersion of the birefringence (DoB). This effect was
first described by Herschel and Brewster (Herschel,
1820). By the end of the 19th century, DoB was
well understood (Hlawatsch, 1902, 1904) and its use-
fulness for mineral identification in polarisation mi-
croscopy came into focus. E.g., Ehringhaus (1920)
tabulated measured DoBs for a number of minerals
and substances.

While it is relatively easy for a student to get an
intuitive understanding how to interpret normal in-
terference colours using a Michel–Lévy chart, the de-
scription of the DoB in textbooks (Raith, Raase, and
Reinhardt, 2012, Schumann and Kornder, 1973, Pich-
ler and Schmitt-Riegraf, 1997) is often rather brief
and may appear cryptic to the student.

With modern computer graphics it easy to calcu-
late highly realistic Michel–Lévy charts as shown by
Sørensen (2013). It is the aim of the present arti-
cle, to extend this methodology to visualize the DoB
and compare it to images of the DoB as observed on
actual minerals and substances.

While there are minerals for which the dependence
of DoB on wavelength is complicated, for the vast
majority of them, it seems sufficient to assume this
dependence to be rather smooth and simple so that it
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can be described well by a first order Taylor expan-
sion, e.g., in 1/λ2 (Cauchy dispersion) (Fig. 1), or
directly in λ (Fig. 2). The difference between differ-
ent first order approximations will be the smaller the
narrower the wavelength range into question, which
is quite restricted in the case of human vision, any-
how. It will be shown that in the linear approxima-
tion the interference colours show some periodicity
which has early been observed and even been used to
name some variety of apophyllite as leucocyclite, due
to the periodic repetition of black and white inter-
ference colours with changing thickness. Due to this
higher symmetry of the interference patterns, the lin-
ear approximation will be used in the generation of
DoB charts.

After giving a discussion of the new graphical rep-
resentation, its interpretation and some details of
their generation, the simulation will be compared to
photographs of interference patterns recorded either
on wedge-shaped samples or conoscopically on slabs
of several minerals and substances showing different
degrees of DoB.

2 Dispersion of Birefringence

When trying to quantify DoB, birefringence is usu-
ally reported at the wavelengths of the three Fraun-
hofer lines C, D, and F, with λD = 589 nm (yellow-
orange), λC = 656 nm (red), and λF = 486 nm (sky
blue). Just like the birefringence itself depends on
the direction of the light ray relative to the main
axes of the crystal, also DoB is orientation depen-
dent. In uniaxial crystals, one usually reports the
DoB measured for maximal birefringence. In crystals
of lower symmetry, DoB is not as useful diagnosti-
cally, it may even change sign for different orienta-
tions of the crystal. Furthermore, in crystals from the
tri- or monoclinic system, also the orientation of the
principal axes of the crystal is in general wavelength
dependent (dispersion of the axes). Notwithstanding
sporadic works which tried to establish quantitative
DoB measurements diagnostically (e.g. Hörmann and
Raith (1971)), nowadays, the qualitative aspects of
DoB are considered of most diagnostic value. Never-
theless, it is important to know how it can be quan-

tified. Ehringhaus (1920) recommended to use the
quotient

N =
∆ΓD

∆ΓF −∆ΓC
=

∆nD
∆nF −∆nC

,

which is commonly referred to as the Ehringhaus
number, to quantify the inverse of birefringence,
where ∆Γ = d∆n, with d being the thickness of the
crystal. He also composed comprehensive tabulation
of measured N for a large number of minerals and
substances. For convenience (and with some correc-
tions), this tabulation is available in the supplemen-
tary materials. If nothing else is said, N refers to an
orientation of the crystal for which also the maximal
value of ∆nD is observed. The Ehringhaus number
has the advantage to be independent of the thickness
of the crystal. For substances showing a |N | > 30, ef-
fects of DoB are to weak to be detected by the naked
eye. E.g., N = 33.7 for quartz and N = 23 for calcite.
Hence when using calcite compensators to measure
DoB of other samples, its own DoB has to be taken
into account.

If the birefringence in the blue ∆nF is greater than
the birefringence in the red part of the spectrum,
∆nC, the resulting interference colours are called
“supra-normal”, while if ∆nF < ∆nC, one speaks of
“sub-normal” interference colours. If ∆n is zero for
some λ in the visible range (from λmin = 380 nm to
λmax = 780 nm), but dispersion is non-zero, the re-
sulting interference colours are called “anomalous” in
sensu stricto. In the linear approximation assumed,
anomalous colors appear in the wedges with

N ≤ λmax − λD
λC − λF

= 1.12

and
N ≥ λmin − λD

λC − λF
= −1.23.

For Cauchy dispersion, slightly different values result,
but it should be clear that this are not hard bound-
aries with a quantitative significance.

In the following diagram, the parameter N corre-
sponds to lines of constant slopes through the origin.
The corresponding colours lying on such a line will
be observed on a wedge-shaped crystal (Fig. 4).
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The assumption that the change of birefringence
with wavelength is linear, means that

∆n(λ) ≈ ∆nD +
d∆n

dλ
(λ− λD).

Within the same approximation, the differential
quotient may be replaced by a quotient of differences

∆n(λ) ≈ ∆nD −
∆nF −∆nC
λC − λF

(λ− λD). (1)

The difference ∆ΓF −∆ΓC is conveniently printed
along the abscissa, while the ordinate values are taken
as ∆ΓD. When the ∆Γ’s are measured in units of 25
µm, the values coincide numerically with the corre-
sponding ∆n for the standard thickness of thin sec-
tions. As the colours depend only on the relative sign
of birefringence and its dispersion, it is sufficient to
plot only positive values of birefringence.

In the resulting diagram (Fig. 2), besides the lines
with N = ±30, which bound the region of normal in-
terference colours, and the boundaries of the wedges
below which anomalous colour in sensu stricto are
observed. The line with slope N = λD/(λF − λC) =
−3.46 is shown, too. Along this line, ∆Γ(λ) is di-
rectly proportional to λ so that only black and white
interference stripes are observed, but no colours. The
apophyllite variant leucocyclite owes its name to this
succession of black and white interference colors.
This represents a special case of sub-normal inter-
ference colours. For a slab of such a material with
N = −3.46, the optical path length difference ∆Γ is
constant for all wavelengths, making it a perfect ma-
terial for achromatic retardation plates. Below this
line, also the ordering of the colours near an intensity
minimum will be reversed.

The limits of the interference orders are defined as
the values where the optical path difference is a multi-
ple of the wavelength 551 nm (this value is somewhat
arbitrary, sometimes 530 nm is used, instead). To
extend these limits to materials with DoB, it seems
reasonable to linearly extend them to pass through
the intensity minima along the leucocyclite line.

While in the case of normal interference colours,
the same interference colours are observed on a
wedge-shaped crystal on one hand side and on a crys-

tal of fixed thickness in combination with a compen-
sator on the other hand side, this is no longer true
for crystals showing DoB.

−0.02 −0.01 0.00 0.01 0.02

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

∆ΓF − ∆ΓC

25 µm

∆Γ
D

25
 µ

m

Figure 1: Plot of the anomalous interference colours
as a function of ∆ΓF − ∆ΓC and ∆ΓD assuming a
Cauchy DoB and a light source emitting a blackbody
radiation of temperature T = 5100 K.

3 Simulation of the anomalous
interference colours

The simulation of the anomalous interference
colours follows closely the methodology described by
Sørensen (2013) to which the reader is referred for
further details. The following information is needed:

1. The spectral intensity distribnution of the light
source. In the examples shown below, a Planck
curve describing the emission of a black body at
5100 K was used to model the spectrum of the
halogen incandescent light source with daylight
filter.
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Figure 2: Plot of the anomalous interference colours
as a function of ∆ΓF−∆ΓC and ∆ΓD assuming a lin-
ear DoB and a light source emitting blackbody rati-
ation of temperature T = 5100 K. To the right of the
dashed line, colours are supra-normal and to the left
sub-normal, respectively. The dotted lines of slope
N = ±30 bound the range of colours perceived as
normal. The dash-dotted line of slope N = −3.46
corresponds to special case of sub-normal colours,
where only black and white colours appear. Along
the direction of this line, the whole plot is periodic,
which makes the concept of interference order more
precise; the only slightly inclined dashed lines sepa-
rate the different orders. Below the two long dashed
lines anomalous colours in the strict sense can be
found which arise when the birefringence changes sign
inside the optical range.

2. The tristimulus functions describing the spectral
sensitivity of the eye of a standard observer, as
derived by the CIE (Smith and Guild, 1932).

3. The transmission T (λ) of the polariser–crystal

sandwich (polarisers crossed),

T (λ) =
1

2

(
1− cos

(
2πd∆n(λ)

λ

))
,

where ∆n(λ) is given by eq. 1.

Only the latter expression is more general than the
one used in Sørensen (2013) whence it shall be dis-
cussed in more detail: Using eq. 1, one obtains

T (λ) =
1

2

(
1−cos

(
2πd

λ

(
∆nD + λD

∆nF −∆nC
λC − λF

)
−

− 2πd
∆nF −∆nC
λC − λF

))
. (2)

Clearly, the term in the second line corresponds
to a constant phase shift induced by DoB. As the
cosine is periodic, from the observation of DoB at a
given thickness of the crystal slab, this phase, and
hence also the DoB can only be estimated up to a
multiple of 2π. This also explains the periodicity of
the interference colour pattern. Thus for thick slabs,
it becomes difficult to estimate the interference order.
Specifically, a slab with a thickness d such that the
quantity

d
∆nF −∆nC
λC − λF

is integer will show the same interference colours with
a compensator as a mineral without DoB (that is, the
usual colours form the Michel–Lévy chart). However,
the point of complete extinction will no longer corre-
spond to the zeroth interference order. If this quan-
tity is half integer, the interference colours will be
those observed on a mineral without DoB with par-
allel polariser and analyser direction, as rotation of
the analyzer by θ = π/2 corresponds to an overall
phase shift of 2θ = π.

4 Examples
Experimentally obtained interference patterns were
recorded for several minerals or chemical substances.
All photographs where taken on a Leitz Orthoplan
Pol microscope, using an incandescent halogen illu-
mination with a daylight filter whose spectral dis-
tribution was modelled by a Planck curve of colour
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temperature T = 5100 K. To record the variation of
birefringence with path length d, in the first exam-
ple, a wedge shaped sample was used. For the other
substances, suitable wedges were not available. In-
stead, conoscopic figures obtained for planar slabs of
uniaxial substances cut perpendicular to the optical
axis were were recorded using a Bertrand lens. In
these conoscopic figures, both path length and bire-
fringence increases monotonically with the radial dis-
tance from the center, whence the sequence of the
colours of the isochromates is identical to the ones one
would observe on a wedge in orthoscopic mode. Of
course, the spacing of the isochromates differs from
the colour spacing observed on a wedge. As the radial
distance of the isochromates depends on other fac-
tors, like the mean index of refraction of the sample in
question, it was not intended to simulate this depen-
dence. Rather, in all the simulations the the colour
pattern which would result for a wedge is shown. In
Fig. 3, the same interference colours as in Fig. 2 are
shown, but in addition lines of slope N correspond-
ing to the Ehringhaus numbers of the samples ana-
lyzed are printed. As the Ehringhaus numbers of the
samples were not available, these numbers where op-
timized manually so as to produce an optimal visual
similarity of the observed colours and the simulated
ones. Where available, values tabulated in the work
of Ehringhaus (1920) are reported for comparison.

4.1 Apophyllite

The first example Fig. 4, shows the interference pat-
tern for a wedge made from apophyllite. Interference
order increases with thickness from left to right. The
simulated spectrum, assuming N = −2.5 coincides
very well with the recorded one. The small shift of the
left side of the recorded spectrum and the measured
one takes account of the fact, that wedges cannot be
made infinitely thin. The N of different samples of
apophyllite are very variable. Ehringhaus lists values
of 0.63, −0.065, −1.5, −1.9, and −5.6. In the in-
terference pattern it strikes the eye that the order of
the interference colours is reversed when compared to
normal dispersion. It can be seen that this is the case
for all N between −3.46 and 0. Ehringhaus proposed
to call this DoB range "anti-normal".
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Figure 3: Plot of the anomalous interference colours
as a function of ∆ΓF − ∆ΓC and ∆ΓD assuming a
blackbody source of temperature T = 5100 K. Also
shown are the simulated interference colours for sev-
eral substances. The line with N = −2.5 belongs to
an apophyllite with very sub-normal colours so that
the order of the interference colours is even inverted.
The line withN = −3.46 belongs to another apophyl-
lite named leucocyclite, which nearly shows a periodic
black and white pattern. The line with N = −1.7 be-
longs to the organic compound benzil. The line with
N = 3 belongs to strontium dithionate tetrahydrate,
and shows very supra-normal colours. As an example,
also the vertical lines along which birefringence varies
for a fixed value of dispersion = 0.005 are shown, as
would be observed with a compensator.

4.2 Brucite

The next example is the mineral brucite, Fig. 5. The
picture is taken in conoscopic mode, so that the dis-
tance of the isochromates does not correspond to the
distances of the colours in the simulation. Ehring-
haus reports a value of N = −7.1 and this seems to
describe the interference pattern very well. The or-
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Figure 4: Interference colours of a wedge of apophyl-
lite. Its sub-normal interference pattern is repro-
duced well by a simulation with N = −2.5 (see in-
sert).

der of the interference colours is still normal, but the
hue is darker.

4.3 Leucocyclite

Leucocyclite, here also shown in conoscopic mode,
is a variant of apophyllite whith a value of N near
−3.46. If the dispersion were really linear with this
Ehringhaus number, the interference orders would be
a succession of black and white light. Even small
deviations both from linearity and in N are therefore
visible in the form of coloured fringes on both sides
of the minima.

4.4 Benzil

Benzil (1,2-diphenylethane-1,2-dione) is an organic
compound and has the smallest value of N = −1.7
among the examples shown. The colours are of com-
parable intensity as normal interference colours, al-
beit their order is reversed. The coincidence of the
observed and simulated colours is striking. Ben-
zil crystallizes in the rhombohedric enantiomorphic
crystal structure P3121, (More, Odou, and Lefebvre,
1987), although the benzil molecule is achiral. This
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Figure 5: Interference colours on consoscopic obser-
vation (isochromates) of brucite. Its sub-normal in-
terference colours are reproduced well by a simulation
with N = −7.1 (see insert).

explains the brightening of the center of the cono-
scopic figure.

4.5 Strontium dithionate tetrahy-
drate

The last example is the DoB of the substance stron-
tium dithionate tetrahydrate, Sr2S2O6 · 4H2O, which
shows supra-normal colours with N = 2.4 (Ehring-
haus reports an even smaller value N = 1.8). The
first order colours are very intense and in the same
order as in substances without DoB, but already the
second order appears faded as colours of high normal
order.

5 Discussion

Polarisation microscopy is still an essential tool in
geo-science as, in contrast to more advanced meth-
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Figure 6: Conoscopic figure of the apophyllite variety
leucocyclite. Its sub-normal black and white interfer-
ence pattern is reproduced well by a simulation with
N = −3.46 (see insert).

ods, it yields an overview of the mineral content and
structure of a thin section. However, to be able to
extract the wealth of information which can be ob-
tained by microscopic analysis, considerable training
effort by the student is required. Graphical charts,
like the Michel–Lévy chart of interference colours,
are invaluable pedagogical tools which also induce
new questions like why we observe different inter-
ference orders whose colour sequence is similar but
gets more faint with increasing order. The answer
becomes intuitively clear from a look at Fig. 2, where
strict periodicity pertains along the direction with
slope N = −3.46, which is realized to good approxi-
mation in minerals like leucocyclite. This periodicity
does not disappear when going away from this line
to the region of normal birefringence, but for higher
orders, these will overlap increasingly and therefore
the orders become more faint. While this relation is
immediately obvious looking at the figure, even an
expert like Ehringhaus, who dedicated his thesis to
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Figure 7: Conoscopic figure of the organic compound
benzil. Its sub-normal interference pattern is repro-
duced well by a simulation with N = −1.7 (see in-
sert).

the study of DoB, was truly astonished to be able
to distinguish more than 36 interference orders on a
wedge of leucocyclite while, from his experience with
wedges of quartz, he would have expected no more
than 20. It can also be seen that interference orders
will wash out even more rapidly for small (positive
and negative) values of N , which coincides with the
observations on conoscopic figures of benzil or stron-
tium dithionate.

Another point which becomes intuitively clear
is the inversion of the order in which interference
colours appear for values ofN < −3.46 (cf. the benzil
example).

It becomes also apparent that the anomalous
colours in sensu stricto are not special. The dark
blue, violet or brownish colours observed on minerals
like melilite or chlorite are often mistaken by the stu-
dent for first order colours. From the Figs. 2, 4 or 5
it can be seen that the first order colours of apophyl-
lite or brucite, which show sub-normal interference
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Figure 8: Conoscopic figure of Strontium dithionate
tetrahydrate. Its supra-normal interference pattern
is reproduced well by a simulation with N ≈ 2.5 (see
insert).

colours near the leucocyclite line, are very similar to
anomalous colour in sensu stricto.

This leads naturally to the explanation of another
observation, namely the incompensatability of DoB.
From diagrams 2 and 3, it can be inferred that
upon changing the thickness of a mineral slab, one
moves along the lines of constant slope N . Com-
pensators are typically made from materials like cal-
cite or MgF2, which show only negligible DoB and
for which the corresponding lines are almost vertical.
While changing thickness d of a single slab or wedge
yields lines passing through the origin, the situation
becomes more complicated for a combination of two
materials, one of them being the compensator. In
Fig. 3 two dash dotted vertical lines are shown to ex-
emplify the effect of an idealized compensator. In its
zero position, one would for example observe yellow
colours on a slab of strontium dithionate where the
line with N = 2.5 and the vertical compensator line
cross. If now ∆ΓD is compensated, instead of the ex-

pected black, anomalous, deep blue colours would be
observed. This is known as incompensability of DoB.
If the compensator is now moved further, due to the
restricted range and symmetry of the graphic, the
vertical line has to be continued on the left side of
the graphic at negative abscissa values. Upon fur-
ther compensation, one passes first through white
and then through nearly black colours at abscissa
values of ∆nD ∼ 0.024. With only the Michel–Lévy
chart in mind, one would erroneously conclude that
this point represents the true compensation point. In
fact, in the presence of DoB, with only a compensator
it becomes impossible to determine the interference
order, especially if the slab is either very thick or DoB
is strong.

A final point concerns the variation of strictly
anomalous interference colours with composition as
observed for example in melilite crystals. In these
crystals, the composition sometimes changes between
one with higher åkermanite fraction in the center and
one with higher gehlenite content in the fringes. If the
molar fraction of gehlenite is x, the birefringence can
be developed into a Taylor series in both x and λ to
first order,

∆n(x, λ) ≈ ∂∆n

∂x

∣∣∣∣
x0,λD

(x−x0)+
∂∆n

∂λ

∣∣∣∣
x0,λD

(λ−λD),

where x0 is the molar fraction of the average com-
position. The difference ∆nF − ∆nC plotted on the
abscissa, is therefore independent of composition in
this approximation, while the ordinate values ∆nD
are proportional to x − x0. Hence the variation of
the interference colours one observes with changing
composition will follow the same compensator lines
as shown in Fig. 3 for small values of ∆nD, cf. Raith
et al. (2012, Fig. 4-36, p. 98), which also means that
this colour change can be simulated with a compen-
sator.

Many materials, for which the determination of
the DoB might be useful, like e.g. Chlorites, show
some absorption colours. However, as nowadays it
is easy to attach a digital camera to any microscope
(even smart phones cameras yielding excellent pic-
tures), it is possible to first take a picture with the
analyzer removed, and use this picture to perform
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white-balancing on the picture taken with crossed po-
larizers. The corrected picture will then ideally show
cthe pure colours due to birefringence, only.

In conclusion, a diagram like Fig. 2, despite the
underlying idealizations, appears to be a potentially
very valuable tool in the teaching of the use of the
polarizing microscope and can complement the well
established Michel–Lévy chart.
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