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This work focuses on a study of a dynamical process on metric graphs that can be described as follows. At the initial moment a single point is placed at some vertex of the graph that then starts travelling along its edges in continuous time with the unit velocity. Each time when any moving point lies at a vertex (including the initial moment) it spreads over all incident edges, thus creating new travelling points. Previously, the phenomenon of stabilisation (the state of the system when the number of moving points becomes constant forever) was studied for the graphs with commensurable edges, and it was proven not to exist for the graphs with incommensurable edges over Q. For graphs with non-commensurable edges, we study a different interpretation of stabilisation (namely, ε-stabilisation), we show that it exists for all star graphs with non-commensurable edges, and also provide some time bounds for ε-saturation.

Introduction

Let us consider the process on a metric graph defined by the following rules. Say, there are isolated moving points that travel along the edges of the graph in continuous time with the unit velocity. Whenever any such point is located at the vertex of the graph, it creates new points by splitting itself and propagating over all edges incident to this vertex. At the initial moment a single point is placed at one of the vertices.

This setting is closely related to the problem of wave propagation in physical objects represented with quantum graphs. Examples of such problems may be found in [8, [START_REF] Freidlin | Diffusion Processes and PDE's in Narrow Branching Tubes[END_REF][START_REF] Mittra | Analytical Techniques in the Theory of Guided Waves[END_REF] and their mathematical study using Schrödinger equation is presented in [START_REF] Chernyshev | Time-dependent schrödinger equation: statistics of the distribution of gaussian packets on a metric graph[END_REF][START_REF] Banica | Dispersion for the schrödinger equation on networks[END_REF][START_REF] Chernyshev | Behavior of quasi-particles on hybrid spaces. relations to the geometry of geodesics and to the problems of analytic number theory[END_REF]. The model of travelling points explained above is significantly simpler, but still could be used to obtain general knowledge about the behaviour of the system.

In particular, the problem of stabilisation of such systems has been studied. Stabilisation can be understood as the state of the system when the number of points in it remains constant forever. For instance, in [START_REF] Dworzanski | Towards dynamic-point systems on metric graphs with longest stabilization time[END_REF] it was shown that graphs with rank-1 system of lengths of edges over Q always stabilise in finite time. On the other hand, in [START_REF] Chernyshev | The second term in the asymptotics for the number of points moving along a metric graph[END_REF] finite graphs with linearly independent lengths of edges over Q were proven to never stabilise. In this paper we investigate the new interpretation of stabilisation proposed in [START_REF] Dworzanski | Towards dynamic-point systems on metric graphs with longest stabilization time[END_REF] on star graphs with rank-r system of lengths of edges over Q with r > 1.

The rest of the paper is structured as follows: chapter 2 provides all necessary definitions and the goals of this research, chapter 3 contains the proof of existence of ε-stabilisation, chapter 4 gives the necessary condition for εsaturation, chapter 5 presents lower bounds for the first ε-saturation moment for certain star graphs, chapter 6 provides the results of several numerical experiments.

Definitions and goals

Before providing a formal statement of the problem considered in the text, let us explicitly introduce all necessary definitions.

Since the main focus of this work is star graphs, we agree that for any vector ℓ = ℓ (1) , ℓ (2) , . . . , ℓ (n) T with 0 < ℓ (1) ≤ ℓ (2) ≤ • • • ≤ ℓ (n) a star graph S(ℓ) is a metric graph with the set of vertices V = {c, v 1 , v 2 , . . . , v n } and the set of edges E = {e 1 , e 2 , . . . , e n } where for all i ∈ N ≤n = {1, 2, . . . , n} each e i is an interval 0, ℓ (i) connecting vertices c and v i . Vertices c and v i are interpreted as the boundary points 0 and ℓ (i) of this interval, respectively. We also say that the star graph has commensurable edges if ℓ has rank 1 over rational numbers, and non-commensurable edges otherwise. In particular, we will say that the star graphs with full rank of ℓ have incommensurable edges. Evidently, only graphs with |E| > 1 can have non-commensurable edges.

As for moving points of the system, the term agent is introduced to avoid confusion with the points of the metric graph. Each agent moves along a particular edge from E back and forth and has the fixed birth-time τ ∈ R. Birth-time depends on the moment in time when the agent was created, either by a split of another agent that hit a vertex of the graph, or by the initial placement of this agent at one of the vertices. Obviously, for a star graph S(ℓ) a new agent may only be born when some another agent hits the central vertex c. Hence, it is convenient to describe the agent lying on the edge e i of S(ℓ) with the birth-time τ by the following position function:

a i,τ (t) = ℓ (i) -2ℓ (i) t -τ 2ℓ (i) - 1 2 ( 1 
)
where ⟨x⟩ is the fractional part of x and t ≥ τ . Several plots of this function may be found in figure 1.

As it can be observed, a i,τ models the position of the agent that is created at moment τ at point 0 (or, in terms of the star graph, at vertex c). However, in general, it might also be the case that an agent is created at the vertex v i by the initial placement. In this case, such an agent can either be modelled by a slightly different position function, or it can use the very same function but with τ being set to -ℓ (i) to satisfy all formal constraints. We also agree that if at time moment t 0 agents from edges E ′ ⊆ E hit the vertex v ∈ V , then new agents will not be created at vertex v on edges E ′ . Otherwise, multiple agents on these edges will completely overlap with one another "sitting on top of each other".

As it was stated before, originally, the stabilisation of the system was understood as the state in which the number of points remains the same forever. Here, we understand stabilisation of the system with the help of ε-nets. A set N ⊆ X is said to be an ε-net on set

X for ε ∈ R >0 = {x ∈ R|x > 0} if X ⊆ p∈N U ε (p) where U ε (p) is the ε-neighbourhood of p.
The edge e ∈ E is said to be ε-saturated at time moment t 0 ∈ R ≥0 if all agents present on the edge e at t 0 form an ε-net on e together with its incident vertices at time moment t 0 . In particular, for star graphs it means that the agents lying on the edge e i should form an ε-net on e i ∪ {c, v i }.

Analogously, the entire graph G is said to be ε-saturated at time moment t 0 if all its edges are ε-saturated at t 0 .

An ε-saturation interval for edge e (or graph G) is a connected set T ⊆ R ≥0 such that the edge e (or the graph G) is ε-saturated at each time moment t ∈ T . An ε-saturation interval is called maximal if any connected X ⊆ R ≥0 such that T ⊂ X is not an ε-saturation interval.

An ε-saturation moment is an infimum of any maximal ε-saturation interval. Speaking in plain English, it can be generally understood as the moment when the transition from an unsaturated state to a saturated state happens.

Let M (G, ε, v) be the set of all maximal ε-saturation intervals for graph G with the given value of ε and the initial agent placed at the vertex v ∈ V , and M inf (G, ε, v) = {inf m|m ∈ M (G, ε, v)} be the set of all corresponding ε-saturation moments.

Finally, we say that the graph is ε-stabilises if there exists an unbounded maximal ε-saturation interval for it. The ε-saturation moment corresponding to it is called an ε-stabilisation moment.

The main goal of this work is to explore ε-stabilisation for star graphs with non-commensurable edges, and to provide lower bounds for the values of M inf (S(ℓ), ε, c) for star graphs with incommensurable edges. It is important to notice that we only consider the case when the initial agent is created at the central point c. This can be justified by the fact that if we put the initial agent at the vertex v i , then the values of M inf (S(ℓ), ε, v i ) can be calculated as the values of M inf (S(ℓ), ε, c) shifted by ℓ (i) .

Existence of ε-stabilisation

In this chapter we show that the ε-stabilisation (and, hence, ε-saturation) exists for star graphs with non-commensurable edges.

To prove the claim, we are going to use the elements of discrepancy theory. Let us first agree that for any numeric sequence (p k ) the indexing starts with zero and for any K ∈ Z ≥0 the set P K is the set of its elements from 0 to K. In terms of discrepancy theory, a numeric sequence

(p k ) lying in the range [a, b] is called equidistributed on [a, b] if for any (u, v) ⊂ [a, b] |P K ∩ (u, v)| |P K | K→+∞ -----→ v -u b -a .
Hereafter, if any (p k ) is said to be equidistributed on any [a, b], the fact that (p k ) lies completely in [a, b] will be implied.

Discrepancy of a finite set W ⊂ [a, b] on the range [a, b] is defined as D(a, b, W ) = sup a≤u≤v≤b |W ∩ (u, v)| |W | - v -u b -a .
The following three statements are well-known theorems from discrepancy theory.

Theorem

1 [9] A numeric sequence (p k ) is equidistributed on [a, b] if and only if D(a, b, P K ) → 0 as K → +∞. Theorem 2 [9] Let α m , α m-1 , ..., α 1 , α 0 ∈ R with at least one of them be- sides α 0 being irrational. Then the sequence (p k ) with p k = ⟨α m k m +α m-1 k m-1 + • • • + α 1 k + α 0 ⟩ is equidistributed on [0, 1]. Theorem 3 [2] Let α 1 , α 0 ∈ R with α 1 being irrational of rank ρ. Then, for a numeric sequence (p k ) with p k = ⟨α 1 k + α 0 ⟩ it is true that D(0, 1, P K ) ∈ O(K -1/ρ+o(1)
) as K → +∞ where the function induced by o(1) does not depend on α 0 .

We first proof the following two auxiliary statements.

Lemma 1 Let (p k ) be equidistributed on [a, b]. Then: -if α ∈ R >0 and β ∈ R, then (q k ) with q k = αp k + β is equidistributed on [αa + β, αb + β]; -if b > 0 and a = -b, then (q k ) with q k = |p k | is equidistributed on [0, b]; -(q k ) with q k = -p k is equidistributed on [-b, -a].
Proof Let us proof the first claim on the list. The fact that all elements of (q k ) lie in [αa + β, αb + β] is evident. As for any (u, v) ⊂ [αa + β, αb + β], we can get:

|Q K ∩ (u, v)| |Q K | = |{q ∈ Q K |u < q < v}| |Q K | = q ∈ Q K u-β α < q-β α < v-β α |Q K | = P K ∩ u-β α , v-β α |P K | K→+∞ -----→ v-β α -u-β α b -a = v -u (αb + β) -(αa + β) .
Hence, (q k ) is equidistributed on [αa + β, αb + β] by definition. The rest of the claims are proven analogously.

⊓ ⊔ Lemma 2 Let α 1 , α 2 ∈ R >0 , α 3 ∈ R ≥0 with α 2 being irrational. Then the sequence (p k ) with p k = α 1 -2α 1 ⟨α 2 k + α 3 ⟩ - 1 2 is equidistributed on [0, α 1 ].
Proof Straightforward consequence of theorem 2 and lemma 1.

⊓ ⊔

Let us now introduce a new notion of minimal epsilon. A minimal epsilon

of a set W ⊆ [a, b] on the range [a, b] is defined as µ(a, b, W ) = inf{ε ∈ R >0 |W forms an ε-net on [a, b]}.
Obviously, for a finite set W ⊂ [a, b] a minimal epsilon can be equivalently defined with the expression µ(a, b, W ) = max{w (1) a, (w (2) -w (1) )/2, (w (3) -w (2) )/2, . . . , (w (K) -w (K-1) )/2, b -w (K) }, where vector w = w (1) , w (2) , . . . , w (K) T is such that w (1) ≤ w (2) ≤ • • • ≤ w (K) and W = {w (1) , w (2) , . . . , w (K) }.

Lemma 3 Let W ⊂ [a, b] be a finite set. Then µ(a, b, W ) ≤ (b-a)•D(a, b, W ).
Proof As was stated above, a minimal epsilon of a finite set is determined as the difference of a form (v -u) where interval (u, v) ⊂ [a, b] does not contain any points from W . Thus,

µ(a, b, W ) = v -u = (b -a) 0 - v -u b -a = (b -a) |W ∩ (u, v)| |W | - v -u b -a ≤ (b -a) • sup a≤u ′ ≤v ′ ≤b |W ∩ (u ′ , v ′ )| |W | - v ′ -u ′ b -a = (b -a) • D(a, b, W ).
This finalises the proof.

⊓ ⊔ Lemma 4 If numerical sequence (p k ) is equidistributed on [a, b], then the value µ(a, b, P K ) → 0 as K → +∞.
Proof Straightforward consequence of theorem 1 and lemma 3.

⊓ ⊔

We are now fully ready to prove the main claim of this section.

Theorem 4 Let S(ℓ) be a star graph with non-commensurable edges, ε ∈ R >0 .

Then M (S(ℓ), ε, c) is non-empty and contains an unbounded interval.

Proof Since |E| > 1 and rank of ℓ over Q is at least 2, we can state that for each edge e i ∈ E there exists another edge e j ∈ E such that ℓ (i) ̸ = αℓ (j) for all α ∈ Q, or, in other words, such that ℓ (i) /ℓ (j) / ∈ Q. Let us fix then the edges e i and e j . As the process starts at the vertex c, at time moment t = 0 there is only one agent on each of these edges: a i,0 on the edge e i , and a j,0 on the edge e j . Agent a j,0 is going to hit the vertex c and, hence, create a new agent on the edge e i at t = 2mℓ (j) for m ∈ N. With this being said, at time moment t = 2(M + r)ℓ (j) for any M ∈ Z ≥0 , m ≤ M , and r ∈ [0, 1):

a i,2mℓ (j) 2(M + r)ℓ (j) = ℓ (i) -2ℓ (i) 2(M + r)ℓ (j) -2mℓ (j) 2ℓ (i) - 1 2 = ℓ (i) -2ℓ (i) (M -m) ℓ (j) ℓ (i) + rℓ (j) ℓ (i) - 1 2 
.

By substituting (M -m) with k we may now introduce for each r ∈ [0, 1) a sequence (p[r] k ) where

p[r] k = ℓ (i) -2ℓ (i) ℓ (j) ℓ (i) k + rℓ (j) ℓ (i) - 1 2 .
As it is easy to see, each of these sequences is equidistributed on [0, ℓ (i) ] by lemma 2, and, hence, by lemma 4 for each sequence (p[r] k ) there exists K r ∈ Z ≥0 such that for each K > K r it is true that µ(0, ℓ (i) , P [r] K ) < ε. Due to theorem 5 and lemma 3, set of K r is bounded, hence, there exists a supremum value K ′ , and, hence, the edge e i is ε-saturated at t i = K ′ ℓ (j) and is never unsaturated after it. By choosing maximum among t 1 , t 2 , . . . , t |E| we may find a moment in time after which the entire graph is saturated for an infinite period. Thus, the theorem is proven.

⊓ ⊔

Theorem 4 implies that for star graphs S(ℓ) with non-commensurable edges there always exists a maximum of M inf (S(ℓ, ε, v)) for any positive ε and for any v ∈ V which is going to be exactly the moment of ε-stabilisation.

Necessary condition for ε-saturation

Knowing that ε-saturation is the real event occurring in our systems, let us explore the necessary condition for ε-saturation for star graphs with incommensurable edges, and for some more particular cases.

First, let us introduce the series of sets T i with i ∈ N ≤|E| for a star graph S(ℓ) with incommensurable edges which are defined as

T i = {2(α, ℓ) 2 |α ∈ Z |E| ≥0 , α (i) = 0}.
Notice, that if ℓ is of full rank over Q, we may say that each set T i is the set of birth-times of all agents that will ever be born on the edge e i . Indeed, if τ = 2(α, ℓ) 2 has a non-zero component α (i) , then the agent a i,τ -α (i) ℓ (i) will hit the vertex c at time moment τ preventing the creation of a new agent on e i , hence, τ / ∈ T i . Thus, having a set T i (t) = {τ ∈ T i |τ ≤ t} for i ∈ N ≤n and t ∈ R ≥0 as the set of birth-times of all agents that will have been born on the edge e i by the time moment t, we may say that |T i (t)| is the number of agents present on the edge e i at the time moment t. The fact that the edge e i can only be ε-saturated

at t 0 ∈ R ≥0 if |T i (t 0 )| ≥ ℓ (i) 2ε + 1
follows directly from the necessary condition for the existence of an ε-net on [0, ℓ (i) ]. Thus, to provide a necessary condition for ε-saturation of an entire star graph we may simply write the system

               |T 1 (t 0 )| ≥ ℓ (1) 2ε + 1 |T 2 (t 0 )| ≥ ℓ (2) 2ε + 1 . . . T |E| (t 0 ) ≥ ℓ (|E|) 2ε + 1
.

(2

)
The system (2) can be significantly simplified in some particular cases. For example, if lengths of edges are "insignificantly different" (in the sense described further in the text), then the system can be reduced to a single inequality with the help of the following lemma.

Lemma 5 For any star graph S(ℓ) with incommensurable edges at any time moment

t 0 ∈ R ≥0 it is true that |T i (t 0 )| ≤ |T j (t 0 )| if i < j (since S(ℓ) is incommensurable, i < j implies ℓ (i) < ℓ (j) ). Proof Let us bipartition T i (t 0 ) as T i (t 0 ) = T ij (t 0 ) ∪ R ij (t 0 ) where T ij (t 0 ) = {2(α, ℓ) 2 |α ∈ Z |E| ≥0 , 2(α, ℓ) 2 ≤ t 0 , α (i) = 0, α (j) = 0} and R ij (t 0 ) = {2(α, ℓ) 2 | α ∈ Z |E| ≥0 , 2(α, ℓ) 2 ≤ t 0 , α (i) = 0, α (j) > 0}.
Let us also do an analogous partition for T j (t 0 ): T j (t 0 ) = T ij (t 0 ) ∪ R ji (t 0 ). By the well-known property of finite set partitions,

|T i (t 0 )| = |T ij (t 0 )| + |R ij (t 0 )| and |T j (t 0 )| = |T ij (t 0 )| + |R ji (t 0 )|. Sets R ij (t 0 ) and R ji (t 0 ) can be partitioned further. For a set R ij (t 0 ) it is R ij (t 0 ) = τ ∈Tij (t0) R ij (t 0 )[τ ]
where R ij (t 0 )[τ ] = {τ + 2α (j) ℓ (j) |α (j) ∈ N, τ + 2α (j) ℓ (j) ≤ t 0 }. For these sets we notice that

|R ij (t 0 )[τ ]| = t 0 -τ 2ℓ (j) ≤ t 0 -τ 2ℓ (i) = |R ji (t 0 )[τ ]| , hence, |R ij (t 0 )| = τ ∈Tij (t0) |R ij (t 0 )[τ ]| ≤ τ ∈Tij (t0) |R ji (t 0 )[τ ]| = |R ji (t 0 )|
and, finally,

|T i (t 0 )| = |T ij (t 0 )| + |R ij (t 0 )| ≤ |T ij (t 0 )| + |R ji (t 0 )| = |T j (t 0 )| .
Thus, the statement is proven.

⊓ ⊔

With this we are ready to provide a simple version of the necessary condition for ε-saturation for star graphs with insignificantly different lengths of edges.

Theorem 5 System (2) is equivalent to inequality |T 1 (t 0 )| ≥ ℓ (1) 2ε + 1
if the lengths of edges satisfy the condition

ℓ (1) 2ε = ℓ (2) 2ε = • • • = ℓ (|E|) 2ε .
Proof Straightforward consequence of lemma 5. ⊓ ⊔

Lower bounds

Now, we provide lower bounds for the first ε-saturation moment, or, in other words, lower bounds for M inf (S(ℓ), ε, c). Calculation of lower bounds is based on the necessary condition for ε-saturation, hence, for the sake of simplicity, we only provide lower bounds for the edge e 1 as lower bounds for other edges can be deduced analogously and lower bounds for an entire graph can be easily calculated with the system (2). We distinguish between three cases: |E| = 2, |E| = 3, and |E| ≥ 4.

The case of |E| = 2 is the simplest one. Here, we may notice that T 1 (t) has a particularly nice expression:

T 1 (t) = α (2) ℓ (2) |α (2) ∈ Z ≥0 .
From this expression we can deduce that all agents on the edge e 1 (except the initial one) are created by the splits of the original agent a 2,0 from the edge e 2 . Thus, the expression for |T 1 (t)| is going to be incredibly simple as well:

|T 1 (t)| = t 2ℓ (2) + 1 ≤ t 2ℓ (2) + 1.
(

) 3 
With this being said, we are ready to provide the following result.

Theorem 6 Let t 0 ∈ R ≥0 , ε ∈ R >0 . If t 0 ∈ M inf (S(ℓ), ε, c
) for a star graph S(ℓ) with incommensurable edges and |E| = 2, then

t 0 ≥ 2ℓ (2) ℓ (1)
2ε .

Proof Straightforward consequence of equations ( 2) and ( 3).

⊓ ⊔

Unfortunately, when |E| ≥ 3, there is no easy way to calculate |T 1 (t)| precisely. This leads us to the necessity of approximations for this value. ε,c) for a star graph S(ℓ) with incommensurable edges and |E| = 3, then

Theorem 7 Let t 0 ∈ R ≥0 , ε ∈ R >0 . If t 0 ∈ M inf (S(ℓ),
t 0 ≥ -6ℓ (2) -4ℓ (3) + 2ℓ (2) + ℓ (3) 2 -4ℓ (2) ℓ (2) -2ℓ (3) ℓ (1) 2ε 1 2
.

Proof In this particular case, T 1 (t) is defined as (2) , α (3) ∈ Z ≥0 , 2α (2) ℓ (2) + 2α (3) ℓ (3) ≤ t}. Since it is difficult to provide a precise formula for |T 1 (t)| here, let us find an upper bound for it. First of all, we notice that the constraining inequality from the expression of |T 1 (t)| can be rewritten as 3) .

T 1 (t) = {2(α, ℓ) 2 |α ∈ Z |E| ≥0 , α (i) = 0, 2(α, ℓ) 2 ≤ t} = {2α (2) ℓ (2) + 2α (3) ℓ (3) |α
α (3) ≤ - ℓ (2) ℓ (3) α (2) + t 2ℓ ( 
With this it is easy to iterate over all possible values of α (2) and see that

|T 1 (t)| = t 2ℓ (2) k=0 - ℓ (2) ℓ (3) k + t 2ℓ (3) + 1 ≤ t 2ℓ (2) k=0 - ℓ (2) ℓ (3) k + t 2ℓ (3) + 1 = t 2ℓ (2) + 1 t 2ℓ (3) + 1 - ℓ (2) ℓ (3) t 2ℓ (2) k=0 k = t 2ℓ (2) + 1 t 2ℓ (3) + 1 - ℓ (2) 2ℓ (3) t 2ℓ (2) t 2ℓ (2) + 1 = t 2ℓ (2) + 1 t 2ℓ (3) + 1 - ℓ (2) 2ℓ (3) t 2ℓ (2) + 1 2 + ℓ (2) 2ℓ (3) t 2ℓ (2) + 1 = t 2ℓ (2) + 1 ℓ (2) 2ℓ (3) + t 2ℓ (3) + 1 - ℓ (2) 2ℓ (3) t 2ℓ (2) + 1 2 ≤ t 2ℓ (2) + 1 ℓ (2) 2ℓ (3) + t 2ℓ (3) + 1 - ℓ (2) 2ℓ (3) t 2ℓ (2) 2 = 1 8ℓ (2) ℓ (3) t 2 + 3ℓ (2) + 2ℓ (3) 4ℓ (2) ℓ (3) t + ℓ (2) 2ℓ (3) + 1. 
We may now unify this with the necessary condition for ε-saturation:

1 8ℓ (2) ℓ (3) t 2 0 + 3ℓ (2) + 2ℓ (3) 4ℓ (2) ℓ (3) t 0 + ℓ (2) 2ℓ (3) + 1 ≥ |T 1 (t 0 )| ≥ ℓ (1) 2ε + 1 1 8ℓ (2) ℓ (3) t 2 0 + 3ℓ (2) + 2ℓ (3) 4ℓ (2) ℓ (3) t 0 + ℓ (2) 2ℓ (3) - ℓ (1) 2ε ≥ 0.
For the latest quadratic function, it can be primitively shown that its discriminant is always positive and that its positive root is exactly the right-hand side of the inequality from the statement of this theorem.

⊓ ⊔

To provide lower bounds for the last case of |E| ≥ 4 we will use an additional theorem.

Theorem 8 [START_REF] Yau | An upper estimate of integral points in real simplices with an application to singularity theory[END_REF] 

Let m ∈ N ≥3 , α 1 , α 2 , . . . , α m ∈ R, 1 ≤ α 1 ≤ α 2 ≤ • • • ≤ α m and P(α 1 , α 2 , . . . , α m ) = x ∈ N m x (1) α 1 + x (2) α 2 + • • • + x (m) α m ≤ 1 . Then P(α 1 , α 2 , . . . , α m ) ≤ 1 m! (α 1 -1)(α 2 -1) • • • (α m -1).
This theorem provides an estimation for a number of natural points within the m-dimensional simplex formed as a convex hull of m + 1 points, namely, (0, 0, . . . , 0) T , (α 1 , 0, . . . , 0) T , (0, α 2 , . . . , 0) T , . . . , and (0, 0, . . . , α m ) T . It is important to notice that this theorem only counts points with positive coordinates; however, there is a way to include points with zero coordinates as well. For them, let us introduce a notion of Q(α 1 , α 2 , . . . , α m ):

Q(α 1 , α 2 , . . . , α m ) = x ∈ Z m ≥0 x (1) α 1 + x (2) α 2 + • • • + x (m) α m ≤ 1 .
Then, with

α ′ = α -1 1 + α -1 2 + • • • + α -1
m the following is true [START_REF] Yau | An upper estimate of integral points in real simplices with an application to singularity theory[END_REF]:

Q(α 1 , α 2 , . . . , α m ) = P(α 1 (1 + α ′ ), α 2 (1 + α ′ ), . . . , α m (1 + α ′ )). ( 4 
)
Theorem 9 Let t 0 ∈ R ≥0 , ε ∈ R >0 . If t 0 ∈ M inf (S(ℓ), ε, c
) for a star graph S(ℓ) with incommensurable edges and |E| ≥ 4, then t 0 ≥ t * where t * ∈ R is the greatest root of the polynomial

χ(ℓ, t) = |E| i=2 t + ℓ (i) -2 |E|-1 (|E| -1)! ℓ (1) 2ε + 1 |E| i=2 ℓ (i) .
Proof Here, the representation of a set (2) , α (3) , . . . , α (|E|) ∈ Z ≥0 , 2α (2) ℓ (2) + 2α (3) 

T 1 (t) is T 1 (t) = {2(α, ℓ) 2 |α ∈ Z |E| ≥0 , α (i) = 0, 2(α, ℓ) 2 ≤ t} = {2α (2) ℓ (2) + 2α (3) ℓ (3) + • • • + 2α (|E|) ℓ (|E|) |α
ℓ (3) + • • • + 2α (|E|) ℓ (|E|) ≤ t}.
Let us notice that this set is exactly the set of all integral points inside of an (|E|-1)dimensional simplex defined by the intersection of the positive orthant with the hyperplane 2α (2) ℓ (2) + 2α (3) 

ℓ (3) + • • • + 2α (|E|) ℓ (|E|) = t.
This simplex is the convex hull of points (0, 0, . . . , 0) T , (t/(2ℓ (2) ), 0, . . . , 0) T , (0, t/(2ℓ (3) ), . . . , 0) T , . . . , (0, 0, . . . , t/(2ℓ (|E|) )) T . To estimate |T 1 (t)|, we can use theorem 8 and formula (4). Here, α ′ = (2ℓ (2) + 2ℓ (3) + • • • + 2ℓ (|E|) )/t and, hence, (2) , t 2ℓ (3) , . . . , t 2ℓ (|E|) = P t 2ℓ (2) 

|T 1 (t)| = Q t 2ℓ
(1 + α ′ ), t 2ℓ (2=3) (1 + α ′ ), . . . , t 2ℓ (|E|) (1 + α ′ ) ≤ 1 (|E| -1)! |E| i=2 t 2ℓ (i) 1 + 2ℓ (2) + 2ℓ (3) + • • • + 2ℓ (|E|) t -1 = 1 (|E| -1)! |E| i=2 t + ℓ (i)
2ℓ (i) .

We may now utilise the necessary condition for ε-saturation:

1 (|E| -1)! |E| i=2 t + ℓ (i) 2ℓ (i) ≥ |T 1 (t 0 )| ≥ ℓ (1) 2ε + 1.
From this we easily get:

|E| i=2 t + ℓ (i) -2 |E|-1 (|E| -1)! ℓ (1) 2ε + 1 |E| i=2 ℓ (i) ≥ 0.
The statement of the theorem follows trivially.

⊓ ⊔

Finally, let us deduce a lower asymptotic bound for the first ε-saturation moment.

Theorem 10 Let ε ∈ R ≥0 . For a star graph S(ℓ) with incommensurable edges

inf M inf (S(ℓ), ε, c) ∈ Ω ε -1 |E|-1 .
Proof In the following proof we will use three easily provable statements, namely:

-as x → +∞ it is true that ⌊x⌋ ∈ Θ(x); -as x → +∞ for u, v ∈ N it is true that v Θ(x u ) ∈ Θ( v √ x u ); -as x → +∞ for α u , α u-1 , . . . , α 0 ∈ R >0 it is true that v α u x u + α u-1 x u-1 + • • • + α 0 ∼ v √ α u • x.
Let us first examine the lower bounds presented above. For the case |E| = 2, by theorem 6, the lower bound is

2ℓ (2) ℓ (1) 2ε = ℓ (2) Θ 1 ε ∈ Θ(ε -1 ).
For the case |E| = 3, by the theorem 7, the lower bound is

-6ℓ (2) -4ℓ (3) + 2ℓ (2) + ℓ (3) 2 -4ℓ (2) ℓ (2) -2ℓ (3) ℓ (1) 2ε 1 2 = -6ℓ (2) -4ℓ (3) + Θ 1 ε = -6ℓ (2) -4ℓ (3) + Θ 1 √ ε ∈ Θ ε -1 2 .
As for the case |E| ≥ 4, we need to find the largest t * such that

|E| i=2 t * + ℓ (i) -2 |E|-1 (|E| -1)! ℓ (1) 2ε + 1 |E| i=2 ℓ (i) = 0 |E| i=2 t * + ℓ (i) = 2 |E|-1 (|E| -1)! ℓ (1) 2ε + 1 |E| i=2 ℓ (i) .
A polynomial on the left-hand side of the equation is monotonically increasing and unbounded in some neighbourhood of +∞. From this it follows that there exists ε 0 ∈ R >0 such that for any ε ∈ R >0 , ε < ε 0 there is a unique t * > 0 such that the equality above holds. In further asymptotic estimations we only consider a region of ε ∈ (0, ε 0 ):

  |E| i=2 t * + ℓ (i)   1 |E|-1 =   2 |E|-1 (|E| -1)! ℓ (1) 2ε + 1 |E| i=2 ℓ (i)   1 |E|-1   |E| i=2 t * + ℓ (i)   1 |E|-1 = Θ 1 ε 1 |E|-1   |E| i=2 t * + ℓ (i)   1 |E|-1 = Θ 1 |E|-1 √ ε .
Here, as ε → 0 and, hence, as t * → +∞, we may replace left-hand side with its asymptotic equivalent, namely, t * and deduce that t * ∈ Θ(ε -1/(|E|-1) ). Thus, we have shown that lower bounds for all cases belong to Θ(ε

-1/(|E|-1) ) which means that inf M inf (S(ℓ), ε, c) ≥ Θ ε -1 |E|-1 , hence, inf M inf (S(ℓ), ε, c) ∈ Ω ε -1 |E|-1
.

This finalises the proof. ⊓ ⊔

Empirical evaluation

In the end, let us take a look at how well the lower bounds from chapter 5 approximate the first moment of ε-saturation. 2 below. It is easy to notice that the best precision is achieved in the case |E| = 2 while in other cases the error seems to gradually increase. To be more precise, the distances between the lower bounds and the real first εsaturation moments have been measured with three metrics induced by norms ∥ • ∥ 1 , ∥ • ∥ 2 and ∥ • ∥ ∞ for S 2 , S 3 , S 5 , and S 7 . The values of respective distances may be found in table 1.

Evidently, values of errors heavily depend on the lengths of edges and will significantly differ for different ℓ. Particularly in these cases, values of 1-norm are rather small which means that presented lower bounds provide relatively good estimations of the first ε-saturation moment "on average", however, demonstrate huge discrepancy in the worst case as the values of ∞norm suggest. It is also important to know how well these bounds approximate real value depending on ε. The plots showing this may be found in figure 3.

As we can see, difference tends to significantly increase as ε → 0. 

Results and discussion

Provided lower bounds, both precise and asymptotic, show a decent level of approximation, however, can be further improved. The trend of approximation error to rapidly grow as ε → 0 suggests that the achieved bounds have smaller order of growth in the neighbourhood of 0 compared to the order of growth of the real ε-saturation moments. More importantly, the existence of ε-stabilisation has been proven for all star-graphs with non-commensurable edges. Estimation of ε-stabilisation moment may provide valuable insights about the capacities of the given network with regards to the considered propagation process.

Conclusions

The existence of ε-saturation moments and of the ε-stabilisation moment has been proven for star graphs with non-commensurable edges. Lower bounds have been provided for the first ε-saturation moment of the star graphs with incommensurable edges alongside with the lower asymptotic bound for the first ε-saturation moment Ω(ε -1/(|E|-1) ).

Fig. 1 :

 1 Fig. 1: Plots of the function from equation (1) for ℓ (i) = 2 and τ = 0 (solid), τ = 1 (dashed), τ = π (dotted).

Fig. 2 :

 2 Fig. 2: First ε-saturation moments and lower bounds for graph (a) S 2 , (b) S 3 , (c) S 5 , (d) S 7 .

Fig. 3 :

 3 Fig. 3: Difference between the first ε-saturation moments and lower bounds for graph (a) S 2 , (b) S 3 , (c) S 5 , (d) S 7 .

Table 1 :

 1 Errors of lower bounds.

	Graph ∥ • ∥ 1	∥ • ∥ 2	∥ • ∥∞
	S 2	2.559073967850258 8.295458475494103 62.13764376269049
	S 3	5.603169124579192 9.442165451912466 41.44507322328316
	S 5	3.47324692241770	5.24478176826632	18.6063583987517
	S 7	6.27626406890605	9.34037704647724	25.2263036130506
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