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Lensless in-line holography can produce high resolution images over a large field of view (FoV). In a
previous work [1], we have shown that (i) the actual FoV can be extrapolated outside of the camera FoV
and (ii) effective resolution of the setup can be several times higher than the resolution of the camera. In
this paper, we present of a reconstruction method to recover high resolution with an extrapolated FoV
images of the phase and the amplitude of a sample from aliased intensity measurements taken at lower
resolution.
OCIS codes: 100.5070, 100.3020, 100.3190,100.6640
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1. INTRODUCTION

Lensless inline holography is an imaging technique where
diffracted light is recorded without any optical parts between
the sample and the camera. Given the simplicity, the compact-
ness, the robustness and the relatively low cost of this setup [2–
4], inline digital holography is successfully employed in many
applications such as lensfree microscopy[3–6] or metrology[7].
However, unlike direct imaging methods, the recorded holo-
gram cannot be directly visualized. Instead, computational algo-
rithms are required to image the phase and the amplitude of the
sample or to extract parameters of interest.

The naive backpropagation of the measured hologram to
the sample plane leads to the well-known twin-image artifacts
caused by the loss of information about phase. Phase retrieval
methods rely either on phase diversity and/or prior knowledge
on the sample to estimate the missing phase. Phase diversity
[8] consists in the recording of several images with an addi-
tional known phase variation (i.e., varying illumination angle
[9], wavelength [10–13], or sample-camera distance[10, 14–20] ).
The priors can be enforced either by constraining the solution
to belong to a given subspace (e.g., the subspaces of phase- or
absorption-only objects or the subspace of objects with a given
spatial support [21]) or by imposing a priori statistics on the
object. The most generic way to account for prior knowledge
is to introduce a so-called regularization function that favors
reconstructions with desirable properties (e.g., smoothness). In
diffraction imaging, the most popular priors are the sparsity
[17, 22–27], total variation [28–31], and learned priors such as
dictionary-based [32] or deep-learning plug-and-play [33] regu-

larizations.
The earliest phase-retrieval algorithm is due to Gerchberg

and Saxton [14]. It reconstructs a complex wavefront in the object
plane from intensity measurements taken at two different depths.
This alternating-projection strategy was further improved by
Fienup [21, 34] and gave birth to a large family of (non-convex)
successive projection algorithms [35–39]. The proposed COn-
strained Method for lensless Coherent Imaging (COMCI) origi-
nates from these projection methods as its optimization scheme
is the alternating-direction-of-multipliers-method (ADMM) [40],
where each step makes use of generalized projections (the so-
called proximity operator). This ADMM scheme was already
successfully used in a phase-retrieval context[41–44].

For a decade, several authors [23–26] have also proposed to
address the phase-retrieval problem through convex relaxation.
More recently deep-learning-based methods were also proposed
[45]. A state-of-the-art review of phase-retrieval methods can be
found in [30, 46].

One of the main advantages of lensless inline holography
is that it can produce high-resolution images over a large field
of view (FoV) which can be even larger than the camera FoV.
Indeed, while most works [41, 47–54] restrict the reconstructed
FoV to that of the sensor, other works[22, 31, 55, 56] achieve, for
similar measurements, the retrieval of information over a much
larger FoV.

In a previous work[1], we have shown that (i) the actual FoV
can be extrapolated outside of the camera FoV and (ii) the reso-
lution does not dependent on the sampling by the detector (for
instance in terms of sampling rate, pixel shape, pixel fill-factor)

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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Fig. 1. Setup.

and is determined only by the propagation distance z and the
illumination parameters (wavelength, coherence, incidence an-
gle). From these parameters, we have proposed some estimates
of the FoV and the resolution of any given setup.

The estimated [1] effective resolution of the setup can be
several times higher than that of the camera even though the
recorded signals are often undersampled and the Nyquist crite-
rion not fulfilled. This induces aliasing issues ignored in many
works [41, 47–51] that reconstruct the object at the same resolu-
tion as that of the detector. To overcome this limitation, several
methods have proposed to recover aliased spatial frequencies
on super-resolved holograms built from subpixels-shifted low-
resolution holograms[9, 31, 52–54, 57]. Other works directly
reconstruct the object from aliased intensity using prior knowl-
edge on its shape or bandwidth [58–61].

In this paper, we present a reconstruction method that recov-
ers high-resolution, large FoV images of the phase and ampli-
tude of a sample from intensity measurements taken at a lower
resolution and over a smaller FoV. It does not need the estima-
tion of superresolution holograms before use. The presented
framework is versatile enough to be suitable to a wide range of
applications with varying depth, wavelength, and illumination.
It derives from a similar framework for image reconstruction
in optical long-baseline interferometry [43, 62] and was already
successfully applied in lensless microscopy [3, 4].

COMCI has the same objective as the propagation phasor
approach proposed in [63], but it has only one stage ad no need
for super-resolution methods while still being able to extrapo-
late the FoV. Moreover, based on an inverse-problem approach,
COMCI is optimal in a likelihood-related statistical sense.

2. IMAGE FORMATION MODEL

A. Notations
We typeset symbols in lowercase for functions and scalars (e.g.,
o and λ), in boldface lowercase for vectors (e.g., o), in upper-
case calligraphic for operators acting on functions (e.g., M),
and in boldface uppercase for matrices (e.g., H). In this context,
vectors are collections of values (e.g., dataset, sampled object)
while matrices are linear mappings that produce vectors when
applied to vectors. We denote by x> the adjoint (i.e., the con-
jugate transpose) of x, 〈x, y〉 = x>y is the scalar product be-
tween vectors x and y and x× y their element-wise (Hadamard)
product. The Euclidean norm of x being ‖x‖2 =

√
x>x while

‖x‖W =
√

x>Wx is a weighted version of the norm (with W
Hermitian positive semidefinite). With these notations, a wave,
say w ∈W, is a complex-valued function of the 2D lateral coor-
dinates x = (x1, x2). Due to the finite amount of power trans-

ported by a physically realistic wave, w is square-integrable,
hence W is the Hilbert space of square-integrable functions
from R2 to C. The discretized version of this wave is the vector
w = (w1, . . . , wN) ∈ CN ordered in lexicographical order of N
samples. Functions and vectors with a hat (i.e., ŵ) and without a
hat (i.e., w) are in the Fourier and in the space domains, respec-
tively. We note ω = (ω1, ω2) ∈ R2 the 2D angular frequency
and by F the continuous (non-unitary) 2D Fourier-transform
operator defined as

f̂ (ω) , F { f } (ω) =
∫∫

R2
f (x)e− x>ωdx . (1)

B. Setup
We consider the lensless setup depicted in Fig. 1. There a thin
(2D) sample, described by the function o : R2 → C, is placed
orthogonally to the optical axis at z = 0. For each observation
t = {1, . . . , T}, the sample is illuminated by the wave ut of
wavelength λt (or a wavenumber kt = n 2 π

λt
) arriving at the in-

cidence angle θt = (θ1,t, θ2,t) relatively to the optical axis. After
propagation in a medium of refractive index n, the diffracted
wave wt is recorded by a detector of size (`1 × `2) placed at a
distance zt, orthogonally to the optical axis. The detector pro-
duces the discrete measurements dt ∈ RP. The detector is of
size ` = (`1 × `2) with a square pixel pitch of ∆ and a number
of pixels P = `1 `2/∆2.

C. Varying Parameters
The phase-retrieval problem can be solved only by varying the
parameters between observations to provide sufficient diversity.
The parameters that can vary are:

• the distance zt between the sample and the detector;

• the wavelength λt or the wavenumber kt = n0
2 π
λt

of the
illumination light;

• the illumination wave ut and its angle θt = (θ1,t, θ2,t) with
the optical axis. In addition to providing diversity to solve
the phase retrieval, an inclined illumination also increases
the spatial resolution through aperture synthesis;

• the lateral shift γt = (γx,1, γy,2) of the detector. As no
phase diversity is introduced, detector shifts do not add
information for phase retrieval.

3. CONTINUOUS MODEL

To interpret the measurements dt, one has to derive a rigor-
ous model that accounts for the totality of the measured infor-
mation. This model is summarized in the forward operator
Ht : L2(R2) → RP that acts on the Hilbert space of square-
integrable functions L2 and links the object o to the measure-
ments d ∈ RP as in

dt = Ht(o) + et , (2)

where et is an error term.

A. Sample Illumination
The complex electrical field vt right after a sample illuminated
by a wave ut with an incident angle θt is

vt(x) = o(x) ut(x) exp
(

 kt x> sin(θt)
)

. (3)

The fact that the incidence is tilted induces a modulation that can
be expressed as a kt sin(θt) shift in the Fourier domain, defining
sin(θt) = (sin(θ1,t), sin(θ2,t))
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B. Propagation

As lensless setups can have a high numerical aperture, the prop-
agation from the sample plane to the detector plane is modeled
by the mean of the angular-spectrum (AS) propagation model
[48]. Under a tilted illumination, this propagation kernel writes
[1]

ĥAS
t (ω) =

 e zt

√
k2

t−‖ω+kt sin(θt)‖2

, ‖ω + kt sin(θt)‖2 ≤ k2
t

0, otherwise.
(4)

C. Detector Shift

From one measurement to another, the detector may experience
lateral shifts γt with respect to the system of coordinates used in
the propagation model. Thus, in the detector plane, the relation
between the electrical field in the system of coordinates qt of the
sample and the electrical field in the system of coordinates wt of
the detector is modeled as

qt(x + γt) = wt(x) . (5)

Equivalently, it can also be expressed as a modulation in the
Fourier domain:

ŵ(ω) = q̂(ω) e− γ>t ω . (6)

D. Overall Model

Taking into an account illumination, propagation, and detector
shifts, the model that links the object and the measurements in
the detector plane is

wt(x) = F−1
{

ĥt ×F {ut × o}
}
(x) e k x> sin(θt) , (7)

with the kernel ĥt given by

ĥt(ω) =

 e


(
zt

√
k2

t−‖ω+kt sin(θt)‖2−γ>t ω

)
, ‖ω + kt sin(θt)‖2 ≤ k2

t

0 , otherwise .
.

(8)
If the object spatial-frequency bandwidth is narrow or if the

paraxial-approximation hypothesis is fulfilled (see [1]), this prop-
agation model can be approximate by

ĥF
t (ω) = e

(
ktzt−γ>t ω− zt

2 kt
‖ω+kt sin(θt)‖2

)
. (9)

E. Sensing

The intensity of the diffracted wave wt is sampled on P pixels
by the detector according to

dp,t =
∫∫

ϕp,t(x) |wt(x)|2 dx + ep,t , (10)

where ϕp,t(x) is the response of the pixel p of the observation
t at the position x. The error term ep,t accounts for the noise
of detector, for the photon noise, and for approximation errors
such as quantization.

4. DISCRETIZATION

A. Field of View and Superresolution
In practice, to numerically model the propagation, one has to
establish a discrete versions of the equations found in section 3.
To that end, it is important to determine the field of view and the
spatial-frequency bandwidth probed by the setup. Due to the
bandlimited nature of the propagation kernel given in Eq. (4),
the theoretical field of view of a lensless setup is infinite and
its angular spatial-frequency bandwidth is B = 2 k, centered on
k sin(θ). In a recent paper [1], we have derived more realistic
bounds on the size `′t of the FoV and the bandwidth B′t for the
set {zt, λt, θt, γt} of setup parameters. These bounds can be
easily derived from few setup properties, namely, the noise level
and the spatio-temporal coherence of the source. In this work,
we define the field of view and the bandwidth of the object o
as the maxima `′ = maxt(`

′
t) and B′ = maxt(B′t), over all T

observations.
To ensure the separability of the likelihood term in the recon-

struction algorithm, we impose commensurability between the
sampling rates of the detector and of the object o. Consequently,
if we sample the object on a grid, its pixel pitch ∆′ is given by an
integer superresolution factor S such that

∆′ = ∆/S , (11)

S =

⌈
∆ B′

2 π

⌉
. (12)

At optical wavelengths, detectors cannot measure complex
amplitudes of the electric field but only the intensity of the light.
The Fourier spectrum of the intensity is the auto-correlation
of the Fourier spectrum of the complex amplitude [48]. As
consequence, the bandwidth of the intensity can be twice as
wide as the bandwidth B′ of the diffracted wave w. Thus, in the
modeling (Eq. (10)) of the sensing, w must be oversampled by a
factor two along each dimension before to being converted to
intensity. Hence for an object o sampled on N pixels, the electric
field w in the detector plane must be oversampled on 4N pixels.

Among all possible interpolation functions, we choose to
sample the functions of the object o, the waves wt and the op-
erators and ĥt using Dirac delta functions to form the vectors
o ∈ CN , u ∈ CN , w ∈ C4N , and ĥt ∈ CN , where

on = o(xn) , (13)

ut,n = u(xt,n) , (14)

wt,n = wt(xn) , (15)

ĥt,n = ĥt(ωn) . (16)

There, xn is the position of the nth pixel and ω is the angular
frequency of the nth frequel. It is possible to use better sampling
functions when permitted by the spatio-frequency properties of
the observed sample [64].

B. Discrete Forward Model
With discretization of Sec. A, for each observation t the complex
electrical field on the surface of the detector is given by

wt = Ht o , (17)

where the forward operator Ht ∈ C4N×N is a propagation oper-
ator given by

Ht = F−1
4N ·Q · diag

(
ĥt

)
· FN · diag (ut) . (18)
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where FN is the 2D discrete Fourier operator of size N. Q ∈
C4N×N is a zero-padding operator accounting for the spatial
over-sampling of w.

From Eq. (10), this intensity is linked to the measured image
intensities dt ∈ RP

+ by

dp,t = ∑
n∈Sp

ϕp,t,n |wn,t|2 + ep,t . (19)

As the wave is sampled at a rate that is higher than that of
the detector, Sp is the set of samples of the wave wn,t in the
sensitive area of the detector pixel p and ϕp,t,n = ϕp,t(xn) is the
discretized response of the pixel p in the observation t for a wave
sample at position xn.

5. INVERSE PROBLEM

The goal of this work is to estimate the complex object o from the
observation of the diffracted intensity, which is an inverse prob-
lem. It is classically solved in a variational framework where
one estimates o+ minimizing a cost function built as the sum of
the likelihood term L and a regularization termR like in

o+ = arg min
o∈DN

(L(o) + µR(o)) , (20)

where D is the subspace of C where lies the object. In this
approach, known as penalized maximum likelihood or maximum
a posteriori, the data term is defined according to the forward
model and the statistics of the noise, whereas the regularization
function is designed to enforce some prior knowledge about the
object such as support, non-negativity or smoothness.

A. Likelihood

The likelihood term L is computed according to the forward
model described in Sec. B and the statistics of the noise. We
assume that the noise ep is independent and there is no crosstalk
between pixels (Sp ∩ Sp′ = ∅ ; ∀p 6= p′) . As consequence, the
likelihood term is separable with

L(o) =
T

∑
t=1

∑
p∈Pt

Lp,t

 ∑
n∈Sp

φp,n |wn,t|2
 . (21)

The set Pt provides an easy way to cope with badly measured
pixels, such as saturated ones which do not belong to Pt .

In most applications, only two types of noise are considered:
non-stationary Gaussian noise or Poisson noise in the low-flux
case. In the Gaussian case, the likelihood term writes

Lp,t(x) =
1

σ2
p,t

(
x− dp,t

)2 , (22)

where σ2
p,t is the variance of the noise at the pixel p of the tth

image.
In the photon-counting case, the noise follows a Poisson dis-

tribution and the likelihood function writes

Lp,t(x) = x− dp,t log
(

x + βp,t
)

, (23)

where βp,t is the expectation of some spurious independent Pois-
son process that accounts for incoherent background emission
and detector dark current at the pixel p of the tth image.

B. Regularization
The regularization functionR enforces some prior knowledge
about the observed sample. In this work, we use the total varia-
tion [28]. For a complex object o, it is:

R(o) = ‖B o‖2,1 (24)

=
N

∑
n=1
‖[B o]n‖2 , (25)

while B is the spatial gradient operator

B =

 ∇1

∇2

 , (26)

where ∇1 and ∇2 are finite-difference operators along the hor-
izontal and vertical directions, respectively. Under circulant
boundaries condition, these finite-difference operators can be
defined in the Fourier domain as

B =

 F−1 · diag
(

b̂1

)
F−1 · diag

(
b̂2

)
 F . (27)

where b̂1 and b̂2 are spatial differentiation operator expressed in
the Fourier domain along dimension 1 and 2 respectively.

Compared to the total variation applied separately on the
phase and modulus of o, as in [65], this complex regulariza-
tion function enforces a correlation between edges in both the
real and imaginary parts. This means that different area of the
sample are supposed differ in their real and imaginary parts or,
equivalently, for both the modulus and phase. That makes sense
as different media may differ at the same time in their refractive
index and in their absorption.

C. Constraints
Depending on the object, various constraints can be chosen to
define the subspace D. We define the characteristic function of
the subspace D as

CD(x) =

 0, x ∈ D

+∞ , otherwise.
(28)

No amplification As no emission occurs within the sample, the
modulus of the object must be lower than 1, so that

D1 = {x ∈ C ; |x| ≤ 1} . (29)

Phase-only object Biological samples are often transparent and
can be modeled as phase-only object. In this case, the mod-
ulus of the object is constrained to have a unit modulus
leading to

D2 = {x ∈ C ; |x| = 1} . (30)

Absorption-only object If the sample is composed of opaque
structures, then its phase is null and its magnitude must be
either 0 or 1. Such prior is highly non-convex; we relax it to
the convex constraint

D3 = {x ∈ R ; 0 ≤ x ≤ 1} . (31)

Support Constraint The constraint can also be a support con-
straint, as classically done in phase retrieval [34]. It con-
strains the object to be 1 outside of the support G of the
object

D4 = {xn ∈ C ; xn = 1 if n /∈ G} . (32)
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6. MINIMIZATION SCHEME

From the forward model of Section B and the separable likeli-
hood in Eq. (21), the Equation 20 can be rewritten in the con-
strained form, introducing the auxiliary variables y ∈ CN and
z ∈ C2 N

o+ = arg min
o

T

∑
t=1

P

∑
p=1
Lp,t

 ∑
m∈Sp

φp,n |wm,t|2


+ µ ‖z‖2,1 +
N

∑
n
CD(yn)

subject to


Ht o = wt , ∀t

o = y

z = B o ,

(33)

These constraints are enforced by means of an augmented-
Lagrangian formulation. The augmented-Lagrangian is

J (o, w, y, z, q, v, r) =
T

∑
t=1

P

∑
p=1
Lp,t

 ∑
m∈Sp

|wm,t|2


+ µ
N

∑
n
‖zn‖2,1 +

N

∑
n
Cn(|yn|2) +

ρ1
2

T

∑
t=1
‖Ht o−wt + qt‖

2
2

+
ρ2
2
‖o− y + v‖2

2 +
ρ3
2
‖B o− z + r‖2

2 , (34)

where qt ∈ CN , v ∈ CN , r ∈ C2 N are the scaled Lagrange
multipliers and ρ1 > 0, ρ2 > 0, and ρ3 > 0 the augmented-
penalty scalar parameters. As there is no theoretical guidelines to
set these augmented penalty, we choose to rely on the empirical
rules described in Sec. E

Under this form, the problem can be solve by the mean of the
alternating-direction method of multiplier (ADMM)[40], solving
at each iteration k the series of problems

w(k+1)
t =prox1/ρ1 L

(
Ht o(k) + q(k)t

)
, (35)

y(k+1) =prox1/ρ2 CD

(
o(k) + v(k)

)
, (36)

z(k+1) =proxµ/ρ3 ‖‖2,1

(
B o(k) + r(k)

)
, (37)

o(k+1) = arg min
o∈CN

ρ1
2

T

∑
t=1

∥∥∥Ht o−w(k)
t + q(k)t

∥∥∥2

2

+
ρ2
2

∥∥∥o− y(k) + v(k)
∥∥∥2

2
+

ρ3
2

∥∥∥B o− z(k) + r(k)
∥∥∥2

2
.

(38)

There, prox1/ρ1 L, prox1/ρ2 CD
, and proxµ/ρ3 ‖‖2,1

are proximity
operators (a.k.a. Moreau’s proximal mapping operators) of the
likelihood function, the constraints characteristic function, and
the regularization function, respectively.

At each iteration, the scaled Lagrange multipliers are updated
using the rule

q(k+1)
t = q(k)t + Ht o(k+1) −w(k+1)

t , (39)

v(k+1) = v(k) + y(k+1) − o(k+1) , (40)

r(k+1) = r(k) + B o(k+1) − z(k+1)
t . (41)

A. Likelihood Sub-Problem
The solution of the first inner problem Eq. (35) is given by the
proximity operator of the likelihood function L. As the likeli-
hood function is separable, its solution is given by the proximity
operator of the function Lp,t for each observation t and each low
resolution pixel p

prox1/ρLp,t
(y) = arg min

x

(
Lp,t(x) +

ρ

2
‖x− y‖2

2

)
. (42)

For Gaussian and Poisson likelihoods, and without crosstalk
between pixels, this proximity operator admits closed form solu-
tions [66] that are used further in the paper. A generalization of
these proximity operators in presence of crosstalk is proposed
in [67].

B. Constraints Sub-Problem
The solution of the second inner problem Eq. (36) is given by the
proximity operator of the characteristic function CD of the con-
straints. All the constraints described in Section C are separable
and the solution is given for each pixel p by

prox1/ρ C (yn) = arg min
x

(
CD(x) +

ρ

2
‖x− yn‖2

2

)
. (43)

For each constraint described in Section C, this proximity oper-
ator is a simple projection on the subspace D and has a closed-
form solution.

C. Regularization Sub-Problem
The solution of the third inner problem Eq. (37) is given by the
proximity operator of the mixed norm ‖‖2,1. This proximity
operator has the closed-form solution [68][

prox1/ρ ‖‖2,1
(y)
]

n,d
= yn,d

(
1−

(
ρ
√

y2
n,1 + y2

n,2

)−1
)
+

, (44)

with (x)+ = max(0, x) , x ∈ R. The pixel index is given by n
and d ∈ {1, 2} is the direction of the derivative.

D. Fourth (Consensus) Sub-Problem
The fourth problem Eq. (38) is a quadratic problem. It has the
closed-form solution

o+ =

[
ρ1
2

T

∑
t=1

H>t Ht +
ρ2
2

+
ρ3
2

B> B

]−1

[
ρ1
2

T

∑
t=1

H>t (wt − qt) +
ρ2
2

(y− v) +
ρ3
2

B> (z− r)

]
.

(45)

Unfortunately, in the general case, owing to the size of H and
B, the matrix inversion of the first term cannot be performed in
practice. However, this problem can be solved approximately by
conjugate-gradient steps as is classically done[40]. In this case,
the number M of Fourier transforms of size N computed per
iteration is:

M = MCG (4 T + 2) + 2 T + 3 , (46)

where MCG is the number of conjugate-gradient steps. In addi-
tion, at each iteration, there are (T× P) estimations of a root of
a cubic or quadratic polynomial needed at Equation 35.

The use of the conjugate gradient makes the computational
burden very high and prevents the use of the algorithm for large
problem. However there are some cases where the exact solution
of Equation 45 can be efficiently estimated: when the illumina-
tion is a plane wave and when the illumination is uniform.
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D.1. Plane Wave Illumination

When the sample is illuminated by plane waves, the term ut
in Eq. (3) is constant: ut,p = at , ∀p . In this case, for each ob-
servation t, the matrix H>t Ht becomes diagonal in the Fourier
domain

H>t Ht = |at|2 F−1 diag
(∣∣∣ĥt

∣∣∣2) F . (47)

The solution of Eq. (38) can be written in the Fourier domain as

ô+ =

ρ1

T

∑
t=1

a2
t + ρ2 + ρ3 ∑

d∈{1,2}
|b̂d|2

−1

ρ1

T

∑
t=1

at ĥt
∗
(ŵt − q̂t) + ρ2 ∑

d∈{1,2}
b̂d
∗
(ẑd − r̂d) + ρ3 (ŷ− v̂)


(48)

Let us notice that, in that case, it is possible to spare Fourier
transform computations by performing all ADMM steps (Equa-
tions (35) to (38)) in the Fourier domain. Equations (37) and (36)
are solved in accordance with the following property of the
proximal operator [69]:

g(x) = f (F x) & FF> = I ⇒ proxg (x) = F> prox f (F x) .
(49)

The number of Fourier transforms per iteration is reduced to

M = 2 T + 6 . (50)

D.2. Uniform Illumination and Fresnel Propagation

In the Fresnel regime, the Fresnel propagation operator hF de-
scribed in Eq. (9) has a unit modulus. Whatever the phase of the
illumination wave, if its magnitude is uniform (

∣∣ut,p
∣∣ = bt , ∀p )

the expression H>t Ht becomes

H>t Ht = b2
t I . (51)

The matrix inversion Eq. (45) can then be computed efficiently in
Fourier domain. The number of Fourier transforms per iteration
becomes

M = 4 T + 5 . (52)

E. Setting Parameters
In addition to the hyperparameter µ common to all maximum a
posteriori (MAP) methods, there are three more parameters to
be set in this method: the augmentation parameters ρ1, ρ2, and
ρ3. As the overall problem is not convex, its solution depends on
them. The optimum for these four parameters cannot be found
by trials and errors with such iterative methods. Fortunately,
after investigating the range of possible parameters, we found
empirically the rules:

ρ = 100 µ (53)

ρ1 = ρ/(T I0) (54)

ρ2 = ρ (55)

ρ3 = ρ , (56)

where I0 is the mean intensity per pixel. These rules are used
throughout all our results, leaving only the hyperparameter µ to
tune.

The superresolution parameter s is usually set according to
the rules derived in [1]. We experimentally found that the hy-
perparameter µ is approximately independent of this super-
resolution parameter s. Using this observation, one can rapidly
estimate the hyperparameter at a small superresolution before
to perform a full reconstruction at larger superresolution.

7. NUMERICAL RESULTS

The proposed method covers a wider panel of applications that
we can deal with. Nevertheless, we present in this section some
results on synthetic data covering typical setups. All simulations
and reconstructions presented in this paper were done in MAT-
LAB™ using the GLOBALBIOIM library [70]. The open-source
code used is available in the COMCI repository [71]. To assess its
FoV extrapolation and super-resolution capabilities, all COMCI
reconstruction were perform on an larger, extended FoV, with
smaller pixels than prescribed in [1].

The computation time is dominated by the Fourier transform
involved in the propagation modeling. Due to the GPU im-
plementation of the FFT algorithm, it is possible to maintain
acceptable processing times despite the method being computa-
tionally intensive: a handful to tens of minutes on an NVIDIA
TITAN X GPU. However, given the superresolution and the
extrapolation capabilities of COMCI, the dimension of the esti-
mated vectors can reach tens of million pixels. It is limited by the
amount of memory of GPU cards to less than (10 000× 10 000)
pixels, which corresponds to a few mm2 sampled at λ/2.

Whether COMCI was already used in its preliminary form on
real experiments ([3, 4], its performance was never assessed. We
assessed it in terms of actual FoV, resolution, and reconstruction
signal-to-noise ratio (SNR). This SNR is computed only on the
camera FoV in order to be comparable with the reconstruction
SNR of the Error Reduction (ER) algorithm, when possible. The
ER algorithm [14, 34] is an alternating projection algorithm. It
consists in propagating the wavefront back and forth between
object and detector plane, constraining the modulus of the wave-
front to be equal to the square root of the measured intensities in
the detector plane and enforcing prior knowledge on the object
by the mean of constraints as defined in section C.

The half-pitch resolution of the reconstructed target is given
by the finest-resolved element of the target. It can be compared
to the theoretical half-pitch resolution at the center of the FoV
given by [1]

R =
λ

2 n0

(
`/2√

(`/2)2 + z2
+ sin(|θ|)

)−1

, (57)

with ` = max(`1, `2) the largest width of the detctor and θ =
max(θ1, θ2) the higher illumination angle.

A. Simulating Data
To assess the performance of COMCI, we have built a synthetic
vectorial image of a USAF-1951 resolution target [72] shown on
Fig. 2. This vectorial image contains all resolution groups from
group -1 to group 11. The smallest resolution element (11-6) has
a width of 65 nm.

To avoid the so-called inverse crime, where one reconstructs
the object from simulated data with exactly the same numerical
model as the one used for the simulation, the propagation is
simulated using bandlimited angular spectrum [73] with very
high resolution over a very large field of view that is much
larger than the camera FoV. This prevents the border artifacts
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Fig. 2. Vectorial USAF-1951 resolution chart.

caused by propagation over a small FoV, as well as the frequency
aliasing caused by the undersampling by the camera.

B. Low-Light Single Exposure of Absorbing Object

To assess the performance of COMCI under various noise condi-
tions, we reconstruct an absorbing object from a single exposure
for two levels of illumination: a low-light condition with 1 pho-
ton per pixel in average and an intense-light condition with
106 photons per pixel. The hologram of an opaque USAF-1951
target is simulated at z = 1.5 mm for a normal illumination at
λ = 532 nm and a refractive index of 1. To prevent aliasing, the
propagation is done over (23000× 23000) square pixels of width
∆s = 140 nm. The modeled intensity in the detector plane is
then downsampled on pixels of width ∆ = 2.24 µm with unit fill-
factor (φp,n = 1 in Eq. (21)). The central area of (512× 512) pixels
is then corrupted by Poisson noise and used as the simulated
measurements.

The target is reconstructed in 3000 iterations under an
absorption-only object as described in Sec. C and a likelihood
term adapted to photon counting (Eq.23). The data and the
reconstructed targets are shown in Fig. 3 and compared to the
result of the ER algorithm [74] that appears, in this case, still
competitive with the state of the art [75]. Reconstruction pa-
rameters and quantitative assessments in terms of size of the
FoV, resolution, and reconstruction SNR are given in Tab.1. The
modulus of the reconstructed target is shown on Fig. 3 with
zooms on high-resolution group on Fig. 4 and Fig. 5. Due to the
absorption-only constraint the phase is 0 everywhere.

In the high-flux (low-noise) case, the reconstructed target by
the ER algorithm is qualitatively good but suffer from border
artifacts near the edges of the camera. Its resolution is limited by
the sampling of the camera to a half-pitch of 2.19 µm (group 7-6).
By comparison, the COMCI reconstruction enjoys a much higher
SNR (36.25 dB vs 19.92 dB) and, above all, has high resolution
and a larger FoV as predicted from [1]. The extrapolation is
clearly visible on Fig. 3. As stated in [1], lensless setups can-
not capture low-spatial frequencies from regions outside of the
FoV; but the edges of the resolution elements that contain high
frequencies are clearly visible as far as 210 µm away from the
detector FoV. The smallest element being resolved by the recon-
struction is the group 8-6, with a half-pitch resolution of 1.1 µm

Mean number of photons per pixel

1 106

reconstruction parameters

∆′ (recon-
struction) 560 nm

FoV (3120× 3120) pixels

(1.7× 1.7)mm2

µ 0.2 10−6

COMCI

Extrapolation
along each
directions

210 µm 14 µm

FoV (1.57× 1.57) mm2 (1.12× 1.12) mm2

half-pitch
resolution 7.81 µm 1.1 µm

SNR 14.76 dB 36.25 dB

Error reduction

∆ 2.24 µm

FoV (1.1× 1.1) mm2 (1.1× 1.1) mm2

SNR 4.07 dB 19.92 dB

half-pitch
resolution 13.92 µm 2.19 µm

Table 1. Reconstruction parameters and assessment of the
reconstruction quality for the two illumination-flux cases.

(NA= 0.24) that corresponds to a superresolution factor S = 2
and a space-bandwidth product of the reconstruction almost
8 times larger than that of the camera. It is still larger than
the theoretical half-pitch resolution at the center of the FoV of
R = 760 nm.

In the very-low-flux case, the ER algorithm fails to reconstruct
the target. COMCI achieves the recovery of low-resolution ele-
ments down to the 6-1 group. This corresponds to a half-pith
of 7.8 µm (NA= 0.03), similar to the theoretical half-pitch reso-
lution at the center of the FoV of 8 µm estimated from [1]. The
noise in the measurements almost prevents extrapolation and
limits it to few pixels (14 µm).

C. Multi-Angles Illumination

By combining holograms with various illumination angles, it
is possible to increase the resolution by aperture synthesis. We
test the performance in resolution of COMCI by simulating 9
holograms under various incidence angles, varying θi ∈ [−50 :
25 : 50]◦ along both axis separately. The simulated target is a
transparent USAF-1951 target whose phase is either 0 or 1 . The
illumination at λ = 700 nm and a refractive index of 1.52. The
propagation to z = 0.1 mm is done over (23000× 23000) pixels of
width ∆s = 120 nm. The modeled intensity in the detector plane
is then downsampled on pixels of width ∆ = 1.2 µm with unit
fill-factor (φp,n = 1 in Eq. (21)). The central area of (308× 308)
pixels is then corrupted by 60 dB Gaussian noise and used as the
simulated measurements.
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Fig. 3. Simulated hologram and modulus of the reconstructed target by the ER and COMCI algorithms for two levels of flux. On
the COMCI reconstruction, the inner square represents the camera FoV, the outer square represents the extrapolated FoV. As a
scalebar, an element of the group 5-1 is of size 78× 16 µm2.
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(a) 106 photons / pix. (b) 1 photon / pix.

Fig. 4. Zoom on the group 6 and 7 of the modulus of the re-
constructed target by the ER and COMCI algorithms. As a
scalebar, an element of the group 6-1 is of size 39× 7.8 µm2.
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(a) 106 photons / pix. (b) Truth

Fig. 5. Zoom on the group 8 and 9 of (a) Fig. 3 in the 106 pho-
tons / pixel case compared to the ground truth (b) raster-
ized at the camera resolution (top) and the resolution of the
COMCI reconstruction (bottom).As a scalebar, an element of
the group 6-1 is of size 9.75× 1.95 µm2.

Fig. 6. Reconstructed target in the multiangle case (9 angles).
The 9 black squares represent the FoV of the 9 different mea-
surements. The central gray square depicts the area common
to the 9 holograms. The very small inner white square covers
the zoom on the group 10 shown Fig. 7.

The target is reconstructed with ∆′ = 120 nm pixel-pitch over
a FoV of (7200× 7200) pixels. Its phase, after 3000 iterations, is
shown in Fig. 6 with a zoom on the group 10 shown in Fig. 7. As
a tilted illumination shifts the hologram, the camera FoV varies
from one frame to the next. Only a small area of (104× 104)µm2

centered on the group 8 is visible on the nine holograms. How-
ever, the structures are well recovered even in area in the FoV
of only a single hologram. The edges are visible well outside
of the FoV of all hologram, which sets the actual reconstructed
FoV to (810× 810)µm2, more than 5 times the detector area.
The finest resolved element on Fig. 7 is the group 10-6, giving
a half-pitch resolution of 275 nm (NA= 1.25), at twice the the-
oretical resolution of R = 138 nm. This corresponds an actual
superresolution factor S = 4 and gives a space-bandwidth prod-
uct of the reconstruction that is 20 times larger than the camera
space-bandwidth product. Even at such high resolution, the
reconstructed phase is accurate, as can be seen on the profile
plotted on Fig. 8 where the phase varies on a range of 1 radian
in accordance with the ground truth.

D. Multi-height reconstruction

To show the versatility of the COMCI framework, we recon-
struct in this section an object with amplitude and phase from
measurements with two different distance between the sample
and the sensor: z = {250, 270}µm. The data was simulated
with parameters similar to [63]: a normal incidence illumination
at λ = 530 nm, a refractive index of n0 = 1 and a camera of
(500× 500) square pixels of width ∆ = 1.12 µm (camera FoV of
(560× 560)µm2). To prevent aliasing we simulate data over a
FoV of (1.3× 1.3)mm2 with pixels of width 93 nm. As gigapix-
els images was needed, we build a ground truth image from a
NASA MODIS earth observation color image, using the hue and
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𝜋/2

-𝜋/2
(a) Target at the camera resolution (b) target at reconstruction resolution (c) reconstructed phase

Fig. 7. Zoom on the groups 10 and 11 of the reconstructed target shown as the inner white square in Fig. 6 compared to the ground
truth.

Fig. 8. Profile of the phase of the reconstructed target along
the line plotted on Fig. 7.(c) along the group 10 of the resolu-
tion target.

saturation channels as the phase and amplitude, respectively.
The simulated data is corrupted with 30 dB Gaussian noise and
is shown in Fig. 9.

According to [1] prescription, the target is reconstructed with
∆′ = 560 nm pixel-pitch (superresolution S = 2) over a FoV of
(0.8× 0.8)mm2 (1432× 1432 pixels). As the object has features
both in phase and modulus, it was reconstructed under "no
amplification" constraint only enforcing a modulus equal to
or below 1. The hyperparameter was set to µ = 10−2. The
reconstruction after 3000 iterations is shown on Fig. 10. It shows
that on an object much more complex than a USAF-1951 target,
the COMCI provides qualitatively good reconstruction both in
term of resolution and FoV extrapolation.

8. CONCLUSION

The key contributions of this article are twofold. Firstly, we
have shown that, as we suggested in [1], it is possible to perform
lensless holographic image reconstruction over a FoV larger than
the camera FoV with a half-pitch resolution that is several times
finer than that of the camera without relying on subpixel-shifted
holograms. This means that images are reconstructed with a
space-bandwidth product that is an order of magnitude greater
than that of the camera (i.e., there are an order of magnitude
fewer data than unknowns). Therefore, some prior knowledge
must be introduced into the reconstruction process. Secondly, we

z = 250 µm z = 270 µm

Fig. 9. Simulated data at two different heights.

have proposed a quantitative reconstruction method (COMCI)
that allows us to recover an image over an area 5 times larger
than the camera FoV, with a resolution 4 times better. COMCI
is an open-source generic framework that can be applied to
a wide variety of lensless imaging setups (e.g., multi-heights,
multi-wavelength, multiangle). It follows a complete "inverse
problems" approach that involves three terms: a likelihood term
that is adapted to the noise statistics (either Gaussian or Poisson
noise); a constraint term that prevents unphysical solutions; a
regularization term that enforces more generic knowledge about
the object statistics. The regularization adopted in this work
was the general-purpose Total Variation regularization which
appears to be well suited to the USAF-1951 target. It can easily
be replaced by any regularization involving a proximity operator
such as learned plug-and-play priors [33]. It is likely that such a
regularization will be more effective on biological samples.
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Fig. 10. Amplitude and phase of the reconstructed object from the multi-height data given Fig. 9. The black square and the white
square cover the camera field of view and the area zoomed in the inset, respectively.
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