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Sub-Gaussian symmetric alpha-stable random vectors are a particular sub-class of alpha-stable random vectors, which inherit their dependence structure from the underlying Gaussian random vector. In this case, both the matrix of signed symmetric covariation coefficients and the generalized covariation matrix reduce to the correlation matrix of the underlying Gaussian random vector. A relation is established between the codifference, the generalized association parameter and the signed symmetric covariation coefficient.

Introduction

Many types of physical phenomena and financial data exhibit a very high variability and stable distributions are often used to model them. These laws are the only possible limiting laws for normalized sums of independent, identically distributed random variables. However, stable non-Gaussian random vectors do not possess moments of second order. As a consequence, the concept of the correlation matrix, which allows us to understand the association between the coordinates of a finite variance random vector, is meaningless. Over the years, several measures of dependence have been proposed with the aim to overcome this drawback.

In 1976, Paulauskas [START_REF] Paulauskas | Some remarks on multivariate stable distributions[END_REF] proposed the generalized association parameter (g.a.p), applicable to general symmetric α-stable random vector. In 1983, Astrauskas [START_REF] Samorodnitsky | Stable non-Gaussian random processes: Stochastic Models with Infinite Variance[END_REF] introduced another measure of bivariate dependence called the codifference, which is also defined for general symmetric α-stable random vector. Based on the covariation introduced by Miller [START_REF] Samorodnitsky | Stable non-Gaussian random processes: Stochastic Models with Infinite Variance[END_REF], Kodia and Garel [START_REF] Kodia | Signed symmetric covariation coefficient and Generalized Association Parameter for alpha-stable dependence modeling. Estimation and Comparison[END_REF] proposed the signed symmetric covariation coefficient (scov) for symmetric α-stable random vectors with α > 1.

Sub-Gaussian stable random distributions are a particular sub-class of the multivariate α-stable distributions. For instance, Kring et al. [START_REF] Kring | Estimation of α-Stable Sub-Gaussian Distributions for Asset Returns[END_REF] fitted these distributions to asset returns. Sub-Gaussian symmetric alpha-stable random vectors inherit their dependence structure from the underlying Gaussian random vector. In that context, Kodia and Garel [START_REF] Kodia | Signed symmetric covariation coefficient and Generalized Association Parameter for alpha-stable dependence modeling. Estimation and Comparison[END_REF] established that the matrix of signed symmetric covariation coefficients and the matrix of generalized association parameters, called generalized covariation matrix, reduce to the correlation matrix of the underlying Gaussian random vector. In this paper, we state a relation between the codifference, the generalized association parameter and the signed symmetric covariation coefficient in the context of sub-Gaussian symmetric alpha-stable random vectors. This paper is organized as follow: Section 2 gives a brief reminder of basic definitions and properties of general stable random variables and vectors and the above mentioned measures of dependence. We focus on sub-Gaussian symmetric α-stable random vectors in Section 3. We give the expression of the codifference and a simpler form for the signed symmetric covariation coefficient. We end this section by stating a relation between the codifference, the generalized association parameter and the signed symmetric covariation coefficient.

2 Alpha-stable random vectors and some measures of dependence For our purposes, we define stable random variables and vectors by their characteristic functions. Following Samorodnitsky and Taqqu [START_REF] Samorodnitsky | Stable non-Gaussian random processes: Stochastic Models with Infinite Variance[END_REF], we denote the law of a stable random variable by S α (γ, β, d), with 0 < α ≤ 2, γ ≥ 0, -1 ≤ β ≤ 1, and d a real parameter. A random variable has a stable distribution S α (γ, β, d) if its characteristic function has the form

φ X (t) = E exp(itX) = exp{-γ α |t| α [1 + iβsign(t)w(t, α)] + itd}, (1) 
where

w(t, α) = -tan πα 2 if α = 1, 2 π ln |t| if α = 1,
with t a real number, and

sign(t) = 1 if t > 0, sign(t) = 0 if t = 0 and sign(t) = -1 if t < 0.
The parameter α is the characteristic exponent or index of stability, β is a measure of skewness, γ is a scale parameter, and d is a location parameter. The case α = 2 corresponds to the Gaussian distribution, which is the only one having a finite variance. When β = d = 0, the distribution is symmetric (i.e. X and -X have the same law) and is denoted SαS(γ) or shortly SαS.

Let 0 < α < 2. The characteristic function of a bivariate random vector X = (X 1 , X 2 ) is given by

φ X (t) = exp - S 2 | t, s | α [1 + isign( t, s )w( t, s , α)]Γ(ds) + i t, d , (2) 
where Γ is a finite measure on the unit circle S 2 = {s ∈ R 2 : s = 1}, and d is a vector in R 2 . Here t, s denotes the inner product of R 2 . The measure Γ is called the spectral measure of the bivariate α-stable random vector X, and the pair (Γ, d) is unique. The vector X is symmetric if and only if d = 0 and Γ is symmetric on S 2 . In this case, its characteristic function is given by

φ X (t) = exp - S 2 | t, s | α Γ(ds) . (3) 
For any u ∈ R 2 , the projection u, X = 2 k=1 u k X k has a univariate SαS distribution. The spectral measure determines the projection parameter function γ(u) by:

γ α (u) = S 2 | u, s | α Γ(ds). ( 4 
)
The covariation is defined as follows.

Definition 2.1. Let X 1 and X 2 be jointly SαS with α > 1 and let Γ be the spectral measure of the random vector (X 1 , X 2 ). The covariation of X 1 on X 2 is the real number defined by

[X 1 , X 2 ] α = S 2 s 1 s α-1 2 Γ(ds), (5) 
where, for real numbers s and a: if a = 0, s a = |s| a sign(s) and if a = 0, s a = sign(s).

This definition is equivalent to:

[X 1 , X 2 ] α = 1 α ∂γ α (θ 1 , θ 2 ) ∂θ 1 θ 1 =0, θ 2 =1 , (6) 
where θ 1 and θ 2 are real numbers and γ(θ 1 , θ 2 ) is the scale parameter of the random variable

Y = θ 1 X 1 + θ 2 X 2 .
It is well known that although the covariation is linear in its first argument, it is, in general, not linear in its second argument and not symmetric in its arguments. We also have

[X 1 , X 1 ] α = S 2 |s 1 | α Γ(ds) = γ α X 1 , (7) 
where γ X 1 is the scale parameter of the SαS random variable X 1 . The covariation norm is defined by

X 1 α = ([X 1 , X 1 ] α ) 1/α . (8) 
When X 1 and X 2 are independent, then [X 1 , X 2 ] α = 0. Proofs of these properties and other details are given in Samorodnitsky and Taqqu ( [START_REF] Samorodnitsky | Stable non-Gaussian random processes: Stochastic Models with Infinite Variance[END_REF], pp. 87-97).

The codifference is a measure of bivariate dependence defined for all 0 < α ≤ 2.

Definition 2.2. The codifference of two jointly SαS, 0 < α ≤ 2, random variables X 1 and

X 2 equals τ X 1 ,X 2 = X 1 α α + X 2 α α -X 1 -X 2 α α , (9) 
where X 1 α , X 2 α and X 1 -X 2 α denote, respectively, the scale parameters of X 1 , X 2 and X 1 -X 2 .

Like the covariation, the codifference reduces to the covariance when α = 2 and vanishes when the random variables are independent. However, in contrast to the covariation, the codifference is symmetric in all its arguments, namely τ

X 1 ,X 2 = τ X 2 ,X 1 .
The generalized association parameter (g.a.p) is a measure of dependence introduced by Paulauskas [3].

Definition 2.3. Let (X 1 , X 2 ) be SαS, 0 < α ≤ 2, random vector and Γ its spectral measure on the unit circle S 2 . Let (U 1 , U 2 ) be a random vector on S 2 with probability distribution Γ = Γ/Γ(S 2 ). Due to the symmetry of Γ, one has EU 1 = EU 2 = 0. The g.a.p. is defined as:

ρ(X 1 , X 2 ) = EU 1 U 2 (EU 2 1 EU 2 2 ) 1/2 . ( 10 
)
Proposition 2.1. Let (X 1 , X 2 ) be SαS, 0 < α ≤ 2, random vector. Then (i) we always have -1 ≤ ρ(X 1 , X 2 ) ≤ 1;

(ii) if X 1 and X 2 are independent, ρ(X 1 , X 2 ) = 0;

(iii) | ρ(X 1 , X 2 )| = 1 if, and only if, the distribution of (X 1 , X 2 ) is concentrated on a line;

(iv) for α = 2, ρ coincides with the correlation coefficient of the Gaussian random vector;

(v) ρ is independent of α and depends only on the spectral measure.

Kodia and Garel [START_REF] Kodia | Signed symmetric covariation coefficient and Generalized Association Parameter for alpha-stable dependence modeling. Estimation and Comparison[END_REF] proposed a measure of dependence of bivariate SαS random vectors with 1 < α ≤ 2, based on the covariation and called the signed symmetric covariation coefficient (scov).

Definition 2.4. Let (X 1 , X 2 ) be a bivariate SαS random vector with α > 1. The signed symmetric covariation coefficient of X 1 and X 2 is the quantity:

scov(X 1 , X 2 ) = κ (X 1 ,X 2 ) [X 1 , X 2 ] α [X 2 , X 1 ] α X 1 α α X 2 α α 1/2 , ( 11 
)
where

κ (X 1 ,X 2 ) =    sign([X 1 , X 2 ]) α if sign([X 1 , X 2 ] α ) = sign([X 2 , X 1 ] α ) -1 if sign([X 1 , X 2 ] α ) = -sign([X 2 , X 1 ] α ) (12) 
Proposition 2.2. Let (X 1 , X 2 ) be SαS, 0 < α ≤ 2, random vector. Then (i) we always have -1 ≤ scov(X 1 , X 2 ) ≤ 1 ;

(ii) if X 1 and X 2 are independent, scov(X 1 , X 2 ) = 0;

(iii) |scov(X 1 , X 2 )| = 1 if, and only if, the distribution of (X 1 , X 2 ) is concentrated on a line;

(iv) for α = 2, scov coincides with the correlation coefficient of the Gaussian random vector.

Measures of dependence in the sub-Gaussian SαS case

In general, α-stable random vectors have a complex dependence structure defined by the spectral measure. Since this measure is very difficult to estimate even in low dimensions, we have to retract to certain subclasses, where the spectral measure becomes simpler. One of these special classes is the multivariate α-stable sub-Gaussian distributions (see Kring et al. [START_REF] Kring | Estimation of α-Stable Sub-Gaussian Distributions for Asset Returns[END_REF]). We recall the definition of a sub-Gaussian SαS random vector in R 2 , as given in Samorodnitsky and Taqqu ( [START_REF] Samorodnitsky | Stable non-Gaussian random processes: Stochastic Models with Infinite Variance[END_REF], pp. 77-94)

Definition 3.1. Let 0 < α < 2, let G = (G 1 , G 2
) be a zero mean Gaussian random vector in R 2 , and let A be a positive random variable such that A ∼ S α/2 ((cos πα 4 ) 2/α , 1, 0), independent of G. Then the random vector

X = (A 1/2 G 1 , A 1/2 G 2 ) (13) 
is called a sub-Gaussian SαS random vector in R 2 with underlying Gaussian vector G. It is also said to be subordinated to G.

The characteristic function of X has the particular form:

φ X (t) = E exp i 2 m=1 t m X m = exp    - 1 2 2 j=1 2 k=1 t j t k R jk α/2    , (14) 
where R jk = EG j G k , j, k = 1, 2, are the covariances of the underlying Gaussian random vector G.

From ( 14), we note that for sub-Gaussian SαS random vectors, we do not need the spectral measure in the characteristic function. Such vectors inherit their dependence structure from the underlying Gaussian random vector.

Proposition 3.1. Let X be a sub-Gaussian random vector with characteristic function (14), 0 < α < 2, then the codifference of X 1 and X 2 is given by

τ X 1 ,X 2 = 2 -α 2 R α/2 11 + R α/2 22 -(R 11 + R 22 -2R 12 ) α/2 . (15) 
In the following proposition, we give a simpler form for the signed symmetric covariation coefficient.

Proposition 3.2. Let X be a sub-Gaussian SαS random vector with characteristic function (14), 1 < α < 2, then the signed symmetric covariation coefficient of the components X 1 and X 2 , can simply be written as:

scov(X 1 , X 2 ) = sign([X 1 , X 2 ] α ) [X 1 , X 2 ] α [X 2 , X 1 ] α X 1 α α X 2 α α 1/2 . ( 16 
)
The next result is due to Kodia and Garel [START_REF] Kodia | Signed symmetric covariation coefficient and Generalized Association Parameter for alpha-stable dependence modeling. Estimation and Comparison[END_REF].

Proposition 3.3. Let X be a sub-Gaussian random vector with characteristic function (14), 0 < α < 2, then the matrix of generalized association parameters of X, called Generalized covariation matrix, reduces to the correlation matrix of the underlying Gaussian vector G. In particular, when α > 1, the matrix of signed symmetric covariation coefficients of X also reduces to the correlation matrix of the underlying Gaussian vector G.

Lemma 3.1. Let 0 < α ≤ 2. Let X = (X 1 , X 2 ) be a sub-Gaussian random vector. Then the g.a.p. between the components X 1 and X 2 can be expressed by

ρ(X 1 , X 2 ) = E|X 1 | p | 2/p + E|X 2 | p | 2/p -E|X 1 -X 2 | p | 2/p 2 E|X 1 | p E|X 2 | p 1/p . (17) 
In particular, when α > 1, we have scov

(X 1 , X 2 ) = ρ(X 1 , X 2 ) = E|X 1 | p | 2/p + E|X 2 | p | 2/p -E|X 1 -X 2 | p | 2/p 2 E|X 1 | p E|X 2 | p 1/p . (18) 
The following result establishes a relation between the codifference, the g.a.p. and the scov.

Proposition 3.4. Let X be a sub-Gaussian SαS random vector with characteristic function (14), 0 < α < 2, then ρ(X 1 , X 2 ) =

X 1 α + X 2 α + X 1 α α + X 2 α α -τ X 1 ,X 2 1 α X 1 α + X 2 α - 2 X 1 α X 1 α α + X 2 α α -τ X 1 ,X 2 1 α X 2 α -1. ( 19 
)
where X 1 α and X 2 α denote, respectively, the scale parameters of the components X 1 and X 2 .

In particular, if α > 1, then scov(X 1 , X 2 ) =

X 1 α + X 2 α + X 1 α α + X 2 α α -τ X 1 ,X 2 1 α X 1 α + X 2 α - 2 X 1 α X 1 α α + X 2 α α -τ X 1 ,X 2 1 α X 2 α - 1. 
(20)

Remark 3.1. Proposition 3.4 shows clearly that for a sub-Gaussian SαS random vector, the g.a.p. and the scov of two components of this random vector can be expressed by means of the scale parameters of these components and their codifference.