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Abstract—This paper proposes a fast strategy for optimal 

dispatching of power flows in a microgrid with storage. The 
investigated approach is based on the use of standard Linear 
Programming (LP) algorithm in association with a coarse but 
linear model of the microgrid. The control references resulting 
from the LP optimization are adapted in order to comply with a 
finer model which takes nonlinear features (efficiencies) into 
account. This approach allows simulating long periods of time 
and estimating the cost effectiveness with regard to various 
energy price policies. It would lead to a systemic optimization 
that would integrate the management strategy device sizing. 

Keywords—microgrid, storage, optimal dispatching, linear 
programming, dynamic programming 

I.  INTRODUCTION  
With the growing number of renewable energy sources, major 
changes have occurred in electrical grid architecture in the past 
ten years. In the near future, the grid could be described as an 
aggregation of several microgrids both consumer and producer 
[1]. For those "prosumers", a classical strategy consists in 
selling all the highly subsidized production at important prices 
while all consumed energy is purchased [2]. Smarter operations 
now become possible with developments of energy storage 
technologies and evolving price policies [3]. Those operations 
would aim at reducing the electrical bill taking account of 
consumption and production forecasts as well as the different 
fares and possible constraints imposed by the power supplier 
[4]. The microgrid considered in the paper is composed of a set 
of industrial buildings and factory with a subscribed power of 
156 kW and a PV generator with a peak power of 175 kW 
(Fig. 1a). A 100 kW/100 kWh storage consisting in the 
association of ten high-speed flywheels is also introduced and 
will have to be operated as efficiently as possible. The strategy 
chosen to manage the overall system is based on a daily off-
line optimal scheduling of power flows for the day ahead. 
Then, in real time, an on-line procedure adapts the same power 
flows in order to correct errors between forecasts and actual 
measurements [5]. Several algorithms have been investigated 
in previous works to perform the off-line optimization for a 
single day but the high computational times observed did not 
comply with a sizing procedure that would require many 
simulations of the microgrids over long periods of time (e.g., 
weeks, months, year) [6]. The present study focuses on a faster 
approach consisting in two steps. Firstly, a basic Linear 
Programming (LP) algorithm solves the cost minimization 
problem with a coarse linear model of the system as in [7]. 
Then, a second procedure adapts the obtained solutions to 
comply with the requirements of a finer nonlinear model. The 

paper is organized as follows. The first section describes both 
coarse and fine models used to represent the system and the 
various considered hypotheses. Then, the second section 
presents the fast optimization approach and gives details about 
adaptation of the control references resulting from the LP 
optimization. In section III, the results on a test day are 
presented, by considering particular production and 
consumption forecasts and according to given energy price 
policies. Various power dispatching algorithms are compared 
with regard to their performance and computational time. 
Finally, a whole year is simulated and the obtained results are 
discussed with respect to the investment cost of the storage 
unit.  

 
Fig. 1: Studied microgrid - a) 3D view - b) Power flow model 
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II. MODEL OF THE STUDIED MICROGRID 

A. Power flow model and degrees of freedom 
As illustrated in Fig. 1b, the components are connected 

though a common DC bus. Voltages and currents are not 
considered so far and the study only refers to the optimization 
of active power flows. In the paper the instantaneous values 
are denoted as Pi(t) while the profiles over the periods of 
simulation are written in vectors Pi. Due to the grid policy, 
three constraints have to be fulfilled at each time step t: 

• P1(t) ≥ 0: the power flowing through the consumption 
meter is strictly mono-directional 

• P10(t) ≥ 0: the power flowing through the production 
meter is strictly mono-directional 

• P6(t)  ≥ 0: to avoid illegal use of the storage: flywheels 
cannot discharge themselves through the production 
meter 

A particular attention is paid to the grid power Pgrid(t) 
which should comply with requirements possibly set by the 
power supplier: 
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The equations between all power flows are generated using 
the graph theory and the incidence matrix [8]. As illustrated in 
Fig. 1b, three degrees of freedom are required to manage the 
whole system knowing production and consumption: 

• P5(t) = Pst(t): the power flowing from/to the storage unit 
(defined as positive for discharge power) 

• P6(t): the power flowing from the PV arrays to the 
common DC bus 

• P9(t) = ΔPPV denotes the possibility to decrease the PV 
production (MPPT degradation) in order to fulfill grid 
constraints, in particular when the power supplier does 
not allow (or limits) the injection of the PV production 
into the main grid (P9 is normally set to zero). 

B. Efficiencies and fine model 
A “fine model” is defined taking account of efficiencies of 

power converters (typically 98 %) and storage losses. These 
losses are computed versus the state of charge SOC (in %) and 
the power Pst using a function Ploss(SOC) and calculating the 
efficiency with a fourth degree polynomial ηFS(Pst) (see (3)). 
Both Ploss and ηFS functions are extracted from measurements 
provided by the manufacturer (Levisys). Another coefficient 
KFS (in kW) is also introduced to estimate the self-discharge of 
the flywheels when they are not used (see (4)). Once the 
overall efficiency is computed, the true power PFS associated 
with the flywheel is calculated as well as the SOC evolution 
using the maximum stored energy EFS (here 100 kWh), the 
time step Δt (typically 1 hour for the off-line optimization) and 
the control reference P5. 
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Due to the bidirectional characteristics of static converters 
and especially with flywheel efficiency, the overall system is 
intrinsically nonlinear and suitable methods have to be used to 
solve the optimal power dispatching problem. 

C. Definition of a coarse linear model 
In a second step, a coarse model is developed in order to 

speed up the solving by using a linear formulation of the 
problem. Converter efficiencies as well as losses within the 
storage are neglected. This leads to the following 
simplifications: 
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III. A FAST OPTIMIZATION APPROACH BASED ON LP 

A. Standard cost minimization with the fine model 
The dispatching aims at minimizing the electrical bill for 

the day ahead. Prices for purchased and sold energy are 
assumed to be time dependent with instantaneous values 
respectively denoted as Cp(t) and Cs(t). References of the 
power flows associated with the degrees of freedom over the 
simulated period are computed in a vector Pref=[P5 P6 P9]. 
Once Pref is determinate, all the other power flows are 
computed from the forecasted values for consumption and 
production. Then P1 and P11 are known to estimate the balance 
between purchase and sale. Thus, the cost function is calculated 
as follows for a 24 hours simulated period: 
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In previous works, three algorithms were  applied in order 
to solve the dispatching problem with the fine model finding 
optimal references Pref* [6]. Firstly, a trust-region-reflective 
algorithm (TR) that approximates the objective function with a 
simpler quadratic function is used [9]. From an initial starting 
solution, the cost is minimized while fulfilling all nonlinear 
constraints computed in a vector cnl. 
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The second method uses the clearing algorithm, a niching 
Genetic Algorithm (GA) which preserves diversity in the 



population in order to avoid premature convergence [10]. All 
constraints related to power flows are included in the cost 
function with a classical exterior penalty approach. The 
algorithm returns the best individual in the population from a 
given number of generations: 
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where the penalty factor λ is set to a sufficiently high value 
(typically 106) in order to ensure fulfilment of constraints. 

Finally, an original self-adaptive approach based on 
dynamic programming (DP) [11] has been developed in [6]. It 
consists in a step by step minimization of the storage SOC 
levels, sampled on the overall range (i.e. [0%-100%]) with 
given accuracy ΔSOC [12]. The complexity and performance 
of this algorithm depend on the SOC sampling that determines 
the number of studied states. 

B. LP applied to a coarse model 
In this paragraph, the standard fast LP is considered to 

solve the problem related to the coarse model developed in 
section II. Such linear approach aims at decreasing CPU time. 
Using LP imposes to have a linear cost (expressed with a 
matrix CL) and linear constraints (expressed though a matrix A 
and a vector B) The procedure is then run according to [13]: 
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The upper (ub) and lower (lb) bounds of the decision 
variables are expressed using the column vector Jn with n 
coefficients equal to 1, where n is the number of simulated time 
steps, i.e. n = 24 for a whole day with Δt = 1h. In particular, the 
limits of P5 refer to the maximum charge and discharge powers 
of the storage with Pst_min = −100 kW and Pst_max = 100 kW. 
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The previous cost function C(Pref) is developed for the 
coarse model according to the decision variables P5, P6 and P9 
(10). Then, the nonlinear term is removed to obtain the matrix 
CL (see (11)) used in the LP optimization. 
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The constraint matrix A and vector B are built by 
concatenating the matrices Ai and Bi used to express each grid 
requirement (14), (15), (16), (17) or storage specified limits 
(18), (19), (20). In the following equations, the identity and 
zero matrices n×n are denoted as In and 0n, and the lower 
triangular is Tn. 
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The storage SOC has to lie between 0 % and 100 %. An 
additional constraint is introduced to force the SOC to return to 
its initial level, i.e.  SOC(24 h) = SOC(0) = 50 %: in fact this 
equality constraint is indirectly set through the inequality of 
(20) and by means of the cost optimization which naturally 
leads to fully exploit (i.e. to discharge) the storage device. 
Constraints are expressed for t=0..24 h using (6):  
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C. Correction of the obtained solutions 
The dispatching problem defined in the previous subsection 

can quickly be solved in less than one second using a standard 
LP algorithm e.g. the Matlab© function linprog with sparse 
matrices. Some preliminary results show that the obtained 
solutions obviously do not comply with requirements of the 
fine microgrid model. Fig. 2 illustrates a case for which the 
solution Pref

* obtained with LP is simulated with fine model 
equations. It should be noted that a deep discharge occurs at 
around 22 p.m. The SOC goes down to −25 % with the fine 
model while it remains to 0 % and fulfills the constraints with 
the coarse linear model. Taking account of the flywheel losses 
also leads to slow down the storage charge and to speed up the 
storage discharge. 



 
Fig. 2: SOC constraint violation with the fine model 

In the same way, the cost function returned by the coarse 
model is not correct. Therefore, the control references (Pref_LP) 
relative to the degrees of freedom obtained with the LP in 
association with the coarse model should be adapted in order 
to comply with the fine microgrid model. This can be 
performed using a step by step correction which aims at 
minimizing the cost while aligning the SOC computed from 
the fine model with the one resulting from the LP optimization 
(denoted as SOCLP). At each time step t, the correction 
procedure is formulated as follows to find the instantaneous 
optimal references Pi

*(t): 
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The cost function and the bounds associated with the 
decisions variables are computed similarly to (7) and (11) at a 
given time step. The additional constraints are computed in the 
vector ct

nl as follows: 
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This local minimization problem is solved using the TR 
method with a starting point equal to Pref_LP(t). The 
convergence is ensured in all cases in a very short CPU time 
due to its small dimensionality (only three decision variables 
have to be determined, the P5 decision variable being directly 
coupled with the SOC trajectory). Typically, the CPU time 
related to this correction procedure is less than one second 
over a day of simulation. The LP algorithm associated with the 
previous correction procedure is denoted as LPC in the 
following parts. 

IV. TEST RESULTS 

A. Comparison of dispatching strategies on a single day 
In this subsection, we compare performance of four 

dispatching strategies (i.e. TR, GA, DP and LPC) presented in 
the previous parts, with regard to their accuracy and CPU time. 
For the considered day, consumption and production forecasts 
are illustrated in Fig. 3.  

 
Fig. 3: Typical forecasted consumption (a) and production (b) 

The consumption profile is extracted from data provided by 
the microgrid owner while the production estimation is based 
on solar radiation forecasts computed with a model of PV 
arrays [14]. Energy prices result from one of the fares proposed 
by the French main power supplier [15] increased by 30%. 
Thus, the purchase cost Cp has night and daily values with 
0.10 €/kWh from 10 p.m. to 6 a.m. and 0.17 €/kWh otherwise. 
Cs is set to 0.1 €/kWh which corresponds to the price for such 
PV plants.  

In a situation with no storage device, all the production is 
sold (66.0 €) while all loads are supplied through the 
consumption meter (94.5 €). In that case, this leads to an 
overall cost equal to 28.5 € (Fig. 3) for the considered day. It 
should also be noted that no grid constraints are introduced in 
the investigated simulations. 

Results obtained with TR and GA, are illustrated in Fig. 4. 
The TR method is successively performed 50 times with 
different starting points chosen at random within predefined 
bounds. Each computation takes on average 1 min with 150 
iterations at the most. The convergence is only ensured in 24 % 
of cases and the obtained solutions are not necessary satisfying. 
Fig. 4a shows the density function associated with the values 
of the cost function for all computed solutions. The significant 
deviations between cost function values after convergence 
indicates that the TR efficiency strongly depends on the initial 
points. The solutions provided by the GA after 10 000 
generations are of equivalent value but the CPU time of 1 hour 
is far more expensive. However, the GA is more reliable than 
the TR method with good solutions obtained after only few 
minutes of computation whatever the initial population. The 
GA continuously improves the cost function during 
generations. A cost of 0.7 € has been obtained after 50 000 
generations with a corresponding CPU time of 5 hours. As 
shown in Table I, the DP allows reaching the same cost value 
with a faster CPU time. In addition, the cost function is further 
improved when the storage discretization is decreased. The 
best cost value is obtained with ΔSOC = 1 % but after more 
than 2 hours. The self-adaptive DP developed in [6] ensures a 
similar cost while reducing the CPU time down to 10 min. 

With the same hypothesis, the LPC reaches an overall cost 
of 0.9 € on the considered day. Even if that value does not 
comply with the best observed, it remains satisfying with 
regard to the previous results. The best advantage of this 
strategy is the really fast CPU time: about one second 
compared to several minutes or more with other algorithms. 
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Fig. 4: Results obtained with the TR (a) and the GA (b) 

TABLE I.  DP RESULTS  

ΔSOC 15 % 10% 5% 1% Self-
adaptive 

C(Pref
*) 4.4 € 3.7 € 1.2 € 0.1€ 0.2 

CPU Time 1 min 2 min 9 min 2 h 10 min 

 
Fig. 5: Results obtained with LPC and self-adaptive DP - a) p1 - b) SOC - c) p5  

d) p6 

Fig. 5 shows the optimal SOC and the P1 flow profiles 
obtained with the self-adaptive DP and LPC. As can be seen in 
Fig. 5a, both algorithms try to minimize the cost by lowering 
as much as possible the power flowing though the 
consumption meter when the energy prices remain high. The 
SOC profiles found  by both algorithms have similar 
overall shapes. At the beginning of the day, the flywheel feeds 
the load in order to reduce the energy consumption issued 
from the grid. During the day, the PV production is mostly 
exploited to feed the load and charge the storage. The surplus 
is sold to generate additional benefit and no production is 
wasted (P9(t) = 0 ∀t) as the injected power flowing through the 
main grid is not limited here. When solar radiation falls down 
at 8 p.m., the storage is strongly discharged until the price 
becomes lower at 10 p.m. The storage SOC returns to its initial 
state of 50 % at the end of the day so as to fulfil the 
requirements.  

As previously underlined, both solutions obtained with the 
self-adaptive DP and LPC are quite similar with respect to the 
overall cost. However, as shown in Fig. 5c-d, the values of 
decision variables appear to be quite different. This can be 
explained by the non-uniqueness of the dispatching problem 
solutions. Indeed, this problem could be considered as an 
optimal energy balance between purchase, sale, storage charge 
or discharge. At a given time step and over a period of several 
hours, different power profiles can led to the same result with 
regard to the storage energy variations. 

B. A whole year simulated with various price policies 

Estimating the cost effectiveness of the microgrid from an 
optimal power dispatching strategy implies to run simulations 
of longer periods than a single day. Algorithms with 
“expensive” CPU times cannot be considered in that context. 
The LPC appears to be the most suitable here leading to the 
best compromise with regard to cost and computational time 
minimizations. It should be reminded that the chosen control 
is based on an optimal scheduling performed each day for the 
day ahead. Thus, to simulate a whole year, the LPC procedure 
is successively carried out over 365 days. For each run, the 
storage has to return to the initial SOC value of 50 % at the 
end of the day.  

Investment costs of PV arrays are not considered so far as 
they are already on site. The model only refers to the cost of 
the storage flywheel estimated at 1500 €/kWh [16]. According 
to the manufacturer, the flywheel lifetime is ensured on 20 
years. Therefore, the storage cost per year is estimated at 
7500 € for a 100 kWh unit. Four hypotheses are investigated 
for the future price policies set by the power supplier that buys 
or sells energy. Cases 1 and 2 correspond with the fares 
related to industrial sites [15] with different values between 
winter and summer. Cases 3 and 4 refer to the actual prices 
increased by 30 %. Simulations with (i.e. cases 1 and 3) and 
without (i.e. cases 2 and 4) the payment of the sold energy are 
also performed. 

• Case 1: Cp = 0.05 €/kWh from 10 p.m. to 6 a.m. and 
0.08 €/kWh otherwise from November to 
March. Cp = 0.02 €/kWh from 10 p.m. to 
6 a.m. and 0.03 €/kWh otherwise from April 
to October. Cs = 0.10 €/kWh. 

• Case 2: Cp  same as in case 1 and Cs = 0 €/kWh. 

• Case 3: Cp = 0.10 €/kWh from 10 p.m. to 6 a.m. and 
0.17 €/kWh otherwise. Cs = 0.10 €/kWh. 

• Case 4: Cp same as in case 1 and Cs = 0 €/kWh. 

 The obtained results with a storage (WS) controlled by an 
optimal dispatching are compared with a microgrid with no 
storage (NS). For the case NS, only purchased and sold 
energies are considered in the overall cost of the simulated year 
expressed in k€. The CPU time required to perform 365 runs of 
24 h with the LPC in order to estimate the overall energy cost is 
about 8 min. 
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TABLE II.  INVESTMENT COST STUDY WITH VARIOUS PRICE SCENARIOS 

 Case 1 Case 2 Case 3 Case 4 

NS 

Purchase 24.9 k€ 24.9 k€ 72.8 k€ 72.8 k€ 

Sale 16.3 k€ 0 k€ 16.3 k€ 0 k€ 

Total cost 8.6 k€ 24.9 k€ 56.5 k€ 72.8 k€ 

WS 

Purchase 24.8 k€ 19.7 k€ 49.7 k€ 49.7 € 

Sale 16.3 k€ 0 k€ 2.7 k€ 0 k€ 

Storage 7.5 k€ 7.5 k€ 7.5 k€ 7.5 k€ 

Total cost 16.0 k€ 27.2 k€ 54.5 k€ 57.2 k€ 

As seen in Table II, the cost effectiveness strongly depends 
on the price policy. If prices of the purchased energy remain 
low (cases 1 and 2) earnings brought by storage do not 
compensate investment. Shifting consumption when prices are 
reduced does not improve the overall cost if daily and night 
fares are close and both at low values. In the same time, if 
selling the production is highly subsidized (case 1), using a 
storage is irrelevant because production is always sold to 
maximize the profit. If buying energy becomes more 
expensive and prices more variable, managing a storage unit 
would certainly become interesting with higher benefits 
brought by the load shifting (cases 3 and 4). The cost 
effectiveness could even be greater if the fare of the sold 
power decreases (case 4). This situation could correspond to 
future price policies that would favor self-consumption as well 
as optimal use of microgrid components. Note that potential 
future price policies could offer additional benefits to 
microgrids ensuring grid services (here, a predictive control of 
grid trajectory for the day ahead). 

V. CONCLUSIONS 

The study carried out in this paper aims at proposing a fast 
procedure in terms of computation time that could be used to 
investigate cost-effectiveness of a microgrid with storage. In 
previous works efficient algorithms have been developed to 
perform the daily scheduling of power flows. However, the 
main drawbacks of these methods reside in their 
computational times that become prohibitive if the microgrid 
has to be simulated over a long period of time. To overcome 
this problem, a fast optimization approach based on LP has 
been proposed. This approach consists in two successive steps. 
Firstly, a coarse linear model of the microgrid is exploited to 
solve the optimal dispatching with a classical LP algorithm. 
Secondly, control references optimized with the coarse model 
are adapted in order to comply with a finer model of the 
microgrid which takes account of nonlinear features (i.e. 
efficiencies). The performance of this approach with regard to 
energy cost minimization and computational time reduction 
has been shown on a particular test day. Moreover, the fast 
CPU time resulting from this optimal dispatching method has 
allowed to simulate the microgrid over a whole year and to 
investigate its cost effectiveness by considering several 
scenarios of price policies. The obtained results have shown 
that the interest of using a storage unit is closely linked to the 

economical context. Future studies will be focused on the 
same issue with other kind of storage technologies such as Li-
ion batteries for which cycling effect would have to be 
included in the cost function. Finally, the fast control 
algorithm may offer the ability of achieving systemic design 
of microgrids integrating sizing optimization loop with power 
dispatching optimization by taking account of system 
environment and requirements. 
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