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REDUCED POLYNOMIAL INVARIANT INTEGRITY BASIS

FOR IN-PLANE MAGNETO-MECHANICAL LOADING

J. TAURINES, B. KOLEV, R. DESMORAT, AND O. HUBERT

Abstract. The description of the behavior of a material subjected to multi-physics loadings re-
quires the formulation of constitutive laws that usually derive from Gibbs free energies, using in-
variant quantities depending on the considered physics and material symmetries. On the other
hand, most of crystalline materials can be described by their crystalline texture and the associated
preferred directions of strong crystalline symmetry (the so-called fibers). Moreover, among the ma-
terials produced industrially, many are manufactured in the form of sheets or of thin layers. This
article has for object the study of the magneto-mechanical coupling which is a function of the stress
𝜎𝜎𝜎 and the magnetization 𝑀𝑀𝑀 . We consider a material with cubic symmetry whose texture can be
described by one of three fibers denoted as 𝜃, 𝛾 or 𝛼′, and which is thin enough so that both the
stress and the magnetization can be considered as in-plane quantities. We propose an algorithm able
to derive linear relations between the 30 cubic invariants 𝐼𝑘 of a minimal integrity basis describing
a magneto-elastic problem, when they are restricted to in-plane loading conditions and for different
fiber orientations. The algorithm/program output is a reduced list of invariants of cardinal 7 for
the {100}-oriented 𝜃 fiber, of cardinal 15 for the {110}-oriented 𝛼′ fiber and of cardinal 8 for the
{111}-oriented 𝛾 fiber. This reduction (compared to initial cardinal 30) can be of great help for the
formulation of low-parameter macroscopic magneto-mechanical models.

1. Introduction

Since the discovery of the crystalline nature of metals, and of the anisotropic nature of the
associated behaviors, metallurgists have sought to improve thermomechanical treatments in order
to develop the most favorable crystallographic textures. Research is carried out, in particular, on
magnetic materials [10, 31]. In this regard, we can cite the well-known Goss texture for 3%silicon-
iron alloys [39] used as vehicles of the magnetic flux in high power transformers: the magnetic
permeability in the rolling direction is greatly improved comparing to the magnetic permeability
of an isotropic 3%silicon-iron polycrystal; the coercive field is considerably reduced, leading to
a drastic decrease of energy losses per magnetization cycle. References [34, 56, 45] thus report
recent developments in this field. On the other hand, cold rolled and annealed FeNi alloys are
known to be able to develop a so-called cube texture during recrystallization [3, 57], meaning that
the crystallographic frame coincides with the sheet frame: this texture leads to a high magnetic
permeability in both the rolling and transversal (to the rolling) directions. For their part, magnetic
shape memory alloys (MSMA) are generally produced as single crystalline bulk materials since
polycrystals exhibit lower magneto-mechanical and fatigue performances. Recent works show the
possibility of producing hypertextured polycrystalline Ni-Mn-Ga MSMA and possibly in the form of
thin layers, opening a wide new range of applications [38]. Conversely, the crystallographic texture
can be high and uncontrolled. This is frequently observed for very thin magnetic materials used
in high frequency electronic systems (the small thickness allows for a better homogeneity of the
electromagnetic fields through the thickness at very high frequency, typically GHz). The textures
encountered may vary but generally follow epitaxy rules (depending on the sublayer orientation):
the direction normal to the layer is frequently a direction of strong crystalline symmetry [9, 60, 30].
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Finally, the increasing miniaturization of electronic systems is pushing for the use of small size
–therefore thin– magnetic components. We thus observe an increasing scale confusion between
component and crystals, making behaviors very sensitive to surface effects [31, 32].

Moreover, just like a magnetic material magnetizes under the effect of a magnetic field, it deforms.
This deformation, called magnetostriction strain, is the first manifestation of the magneto-elastic
coupling [23]. The inverse magneto-elastic coupling is the effect of a mechanical stress on the
magnetic behavior (the Villari effect) [8, 11]. Some materials such as 3%silicon-iron or 27%cobalt-
iron alloys develop such a sensitivity to mechanical loading that a second-order phenomenon appears
(the morphic effect [22]): increasing magnetic permeability with increasing stress at low stress level,
then decreasing magnetic permeability with increasing stress at higher stress level. The introduction
of a second-order (quadratic both in 𝜎𝜎𝜎 and in 𝑀𝑀𝑀) magneto-elastic coupling term in the expression
of the Gibbs free energy density makes it possible to account for this effect: simulations and model-
experiment comparisons have been proposed in [33] using a second-order isotropic approximation.
The isotropic approximation is however reductive given the cubic symmetry of the medium. The
development of a cubic second order term however requires the use of a 6th order tensor. Its
construction and handling are difficult. The approach by Invariant Theory and the use of a minimal
integrity basis (see [43, 18]) are the core of a recent article dealing with magneto-elastic coupling
in cubic media [54]. It allows for a rigorous construction of Gibbs free energy density at any order
without missing any term.

However, this integrity basis has a large cardinal (= 30), which can make the identification
process very cumbersome, when higher order terms are involved. In this paper, we consider thin
textured sheets for which the integrity basis given in [54] can be reduced when only in-plane magneto-
mechanical loadings are considered. Indeed, the magnetization of the material is assumed to remain
in the sheet plane due to the strong demagnetizing fields created by any emergent magnetization [31].
This boundary condition is completed by the usual plane stress assumption.

The paper is organized as follows. In section 2, we present the main concepts related to the
definition of a crystallographic texture for materials with cubic symmetry. In section 3, we introduce
cubic magneto-elasticity energy densities and the fundamental 30 invariants 𝐼𝑘 obtained in [54] which
are necessary to formulate them. The mathematical formalism used to describe in-plane loadings
and reduce the number of fundamental invariants for these loadings is introduced in section 4. The
results for the three main material fibers are provided in details in section 5. Finally, an algorithm
and its implementation in Macaulay2 to obtain relations between the evaluated invariants 𝐼𝑘 for
some given crystallographic textures is proposed in Appendix A. The output is a minimal list of
polynomial invariants that allows for the most general expression of Gibbs free energy density to
be formulated for a large set of crystallographic textures.

2. Texture and orientation data function of crystalline materials

The crystallographic texture is a simplified description of how the individual crystallites that
make up the material are distributed. In materials science, Euler angles are used to describe a
single crystal orientation relative to the axes of the sample (as the reference orthonormal frame).
The following denomination is usually employed and illustrated in Figure 1: 𝑟𝑟𝑟 =RD for Rolling
Direction, 𝑡𝑡𝑡 =TD for Transversal Direction and 𝑛𝑛𝑛 =ND for Normal Direction indicate the reference
orthonormal frame. Such denominations are obviously borrowed from sheets metallurgy and rolling
process.

The three angles defining the orientation of crystal axes relative to the reference frame are noted
(𝜙1, 𝜓, 𝜙2) using Bunge representation:

∙ 𝜙1 corresponds to a first rotation operation around ND axis; the new coordinate system is
named (𝑟𝑟𝑟′, 𝑡𝑡𝑡′,𝑛𝑛𝑛).

∙ 𝜓 corresponds to a second rotation operation around 𝑟𝑟𝑟′ axis; the new coordinate system is
named (𝑟𝑟𝑟′, 𝑡𝑡𝑡′′, 𝑒𝑒𝑒3).
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Figure 1. Illustration of reference (𝑟𝑟𝑟, 𝑡𝑡𝑡,𝑛𝑛𝑛)=(RD,TD,ND) and rotated (𝑒𝑒𝑒1, 𝑒𝑒𝑒2, 𝑒𝑒𝑒3)
frames using (𝜙1, 𝜓, 𝜙2) Euler angles and Bunge rotation rules.

∙ 𝜙2 corresponds to a third and last rotation operation around 𝑒𝑒𝑒3 axis; the new frame is
denoted (𝑒𝑒𝑒1, 𝑒𝑒𝑒2, 𝑒𝑒𝑒3).

Associating the cubic crystallographic frame ([100] [010] [001]) to the orthonormal frame (𝑒𝑒𝑒1, 𝑒𝑒𝑒2, 𝑒𝑒𝑒3),
it is possible to observe some connection between a crystallographic axis [𝑢𝑣𝑤] and the principal
axes of the reference frame. We thus usually designate by the following Miller indices combination

{ℎ𝑘𝑙} < 𝑢𝑣𝑤 >

a situation where {ℎ𝑘𝑙} corresponds to ND (for cubic symmetry, ℎ, 𝑘 and 𝑙 also indicate the
components of the vector normal to the sheet plane) and where < 𝑢𝑣𝑤 > corresponds to RD.
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Figure 2. Cut of Euler space for 𝜙2 = 45∘ and highlighting of some major texture components.

Some remarkable directions do obviously correspond to a given set of Euler angles. It is thus
possible to place some of these remarkable directions in a (𝜙1, 𝜓) plane for a fixed 𝜙2. Figure 2
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illustrates a cut of the Euler space for 𝜙2 = 45∘, highlighting some remarkable orientations. The
three main situations colored in red, green and blue are:

∙ 𝜃 fiber: {100}< 𝑢𝑣𝑤 > - the normal plane corresponding to a cube face;
∙ 𝛼′ fiber: {110}< 𝑢𝑣𝑤 > - the normal plane corresponding to a cube diagonal plane;
∙ 𝛾 fiber: {111}< 𝑢𝑣𝑤 > - the normal direction corresponding to a cube trisectrix.

When specific planes and directions are considered (and not direction and plane families), paren-
theses and brackets are used. We highlight the following classical textures:

∙ Cube texture, belonging to 𝜃 fiber: (001)[01̄0];
∙ Goss texture, belonging to 𝛼′ fiber: (110)[001].

Of course, most materials do not present a single {hkl} < 𝑢𝑣𝑤 > orientation but a set of
orientations, corresponding to a set of Euler angles and defining the orientation data function (ODF).
A material is denoted as textured when this distribution is tightened on one or more particular
directions. Otherwise, it is a non-textured material. Magnetic materials obtained by rolling process
or deposit thus often present remarkable textures that can be found in the above list 1. Some others
may be described by a combination of these textures [41, 14]. A texture can thus represent, beyond a
simple assembly of crystals, the material itself, thereby allowing for a macroscopic modeling, ignoring
its multiscale nature. Within the framework of the development of magnetoelastic constitutive laws
of any order, taking into account the existence of a texture can lead to significant simplifications.
We focus our efforts on the three main fibers listed above.

3. Cubic magneto-elasticity

There are two main manifestations of magnetoelastic coupling in magnetic materials: the magne-
tostriction strain and the variation of the magnetization under stress. The modeling which is pro-
posed in the literature is generally based either on constitutive tensors (of order 3 and higher [33, 40])
or on well chosen invariants [55, 25, 26, 21, 13, 4]. Such a modeling can also be carried out at differ-
ent scales from microscopic to macroscopic. At the crystal scale, magnetization is associated with
the cubic (octahedral) symmetry group O which is defined by

O = {𝑔 ∈ O(3); 𝑔𝑒𝑒𝑒𝑖 = ±𝑒𝑒𝑒𝑗} ,

where (𝑒𝑒𝑒𝑖) is the canonical orthonormal basis of R3 and O(3) is the orthogonal group. This group is
of order 48 : it contains 24 rotations and 24 orientation-reversing isometries leaving the cube invari-
ant [36, 35, 58, 54]. The stress tensor 𝜎𝜎𝜎 and the magnetization pseudo-vector𝑚𝑚𝑚 (with ‖𝑚𝑚𝑚‖ = 𝑚𝑠 the
saturation magnetization) are almost homogeneous at this scale. The macroscopic behavior, i.e.,
at the representative volume element (RVE) scale of volume 𝑉 , is obtained by an homogenization
process [16, 15, 33]. The macroscopic magnetization is, for example, given by

𝑀𝑀𝑀 = ⟨𝑚𝑚𝑚⟩ =
1

𝑉

∫︁
𝑉
𝑚𝑚𝑚𝑑𝑣. (3.1)

A direct description of the macroscopic behavior by using a well chosen expression of the Gibbs
free energy density is an alternative approach. For instance, isotropic energy densities have been
proposed in [49, 47, 4], transversely isotropic ones in [12] and orthotropic ones in [46]. Cubic
invariants of the pair (𝑚𝑚𝑚,𝜎𝜎𝜎) [51, 54], fully relevant at the magnetic domains scale, may also be
relevant at the macroscopic scale, by considering the macroscopic magnetization 𝑀𝑀𝑀 in place of
the local magnetization 𝑚𝑚𝑚, if cubic symmetry applies at the macroscopic scale. As extensively
explained in the introduction of this paper, this situation is encountered in single crystals, or when
the material, consisting of an assembly of cubic crystals, is highly textured.

1Other textures are referenced in literature -so called brass texture, copper texture, 𝛼 fiber, 𝜖 fiber and so on - but
they do not exhibit a single crystallographic direction perpendicular to the sheet plane.
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Classical Invariant Theory [53, 44, 17] is a robust and efficient tool which helps to formulate
Gibbs energy densities that respect the material symmetry, the key points of this theory being

(1) the choice of the relevant group 𝐺 for the material symmetry/physics [37, 6, 50, 58],
(2) the determination of an integrity basis {𝐼𝑘} or, more generally, of a functional basis [7, 59].

Therefore, each magneto-elasticity energy density which is 𝐺-invariant can be expressed as

Ψ𝜇𝜎 = Ψ𝜇𝜎(𝐼𝑘). (3.2)

In the following, we consider a cubic microstructure, i.e., a microstructure which is invariant by
the octahedral symmetry group 𝐺 = O, and where the set {𝐼𝑘} is the integrity basis for polynomial
cubic invariants in 𝑀𝑀𝑀 and 𝜎𝜎𝜎 [51, 36, 35] provided in Table 1 (see also [58, 54] for how accounting for
magnetic point groups [50, 24]). Transversely isotropic (resp. orthotropic) magneto-elastic energy
densities are handled in the same way, but by considering transversely isotropic (resp. orthotropic)
invariants instead of cubic ones (see [1, 2, 13]).

deg(𝑀𝑀𝑀) deg(𝜎𝜎𝜎) Formula Tri-graded notation

0 1 tr𝜎𝜎𝜎 –
0 2 𝜎𝜎𝜎𝑑 : 𝜎𝜎𝜎𝑑 𝐼002
0 2 𝜎𝜎𝜎𝑑 : 𝜎𝜎𝜎𝑑 𝐼020
0 3 tr(𝜎𝜎𝜎𝑑 3) 𝐼003
0 3 𝜎𝜎𝜎𝑑 2 : 𝜎𝜎𝜎𝑑 𝐼012
0 3 tr(𝜎𝜎𝜎𝑑 3) 𝐼030
0 4 (𝜎𝜎𝜎𝑑 2)𝑑 : (𝜎𝜎𝜎𝑑 2)𝑑 𝐼004
0 4 tr(𝜎𝜎𝜎𝑑𝜎𝜎𝜎𝑑𝜎𝜎𝜎𝑑𝜎𝜎𝜎𝑑) 𝐼022
0 5

(︀
𝜎𝜎𝜎𝑑(𝜎𝜎𝜎𝑑 2)𝑑𝜎𝜎𝜎𝑑

)︀
: 𝜎𝜎𝜎𝑑 𝐼014

2 0 ‖𝑀𝑀𝑀‖2 𝐼200
2 1 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 : 𝜎𝜎𝜎𝑑 𝐼201
2 1 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 : 𝜎𝜎𝜎𝑑 𝐼210
2 2 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 : 𝜎𝜎𝜎𝑑 2 𝐼𝑎202
2 2 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 : 𝜎𝜎𝜎𝑑 2 𝐼𝑏202
2 2 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 : (𝜎𝜎𝜎𝑑𝜎𝜎𝜎𝑑) 𝐼211
2 2 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 : 𝜎𝜎𝜎𝑑 2 𝐼220
2 3 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 :

(︀
(𝜎𝜎𝜎𝑑 2)𝑑𝜎𝜎𝜎𝑑

)︀
𝐼203

2 3 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 :
(︀
(𝜎𝜎𝜎𝑑 2)𝑑𝜎𝜎𝜎𝑑

)︀
𝐼𝑎212

2 3 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 :
(︀
(𝜎𝜎𝜎𝑑 2)𝑑𝜎𝜎𝜎𝑑

)︀
𝐼𝑏212

2 3 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 :
(︀
𝜎𝜎𝜎𝑑𝜎𝜎𝜎𝑑𝜎𝜎𝜎𝑑

)︀
𝐼221

2 4 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 :
(︀
𝜎𝜎𝜎𝑑(𝜎𝜎𝜎𝑑 2)𝑑𝜎𝜎𝜎𝑑

)︀
𝐼204

2 4 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 :
(︀
(𝜎𝜎𝜎𝑑 2)𝑑𝜎𝜎𝜎𝑑𝜎𝜎𝜎𝑑

)︀
𝐼213

2 4 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 :
(︀
𝜎𝜎𝜎𝑑(𝜎𝜎𝜎𝑑 2)𝑑𝜎𝜎𝜎𝑑

)︀
𝐼222

4 0 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 : (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 𝐼400
4 1 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 2 : 𝜎𝜎𝜎𝑑 𝐼401
4 1 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 2 : 𝜎𝜎𝜎𝑑 𝐼410
4 2 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 2 :

(︀
𝜎𝜎𝜎𝑑 2

)︀𝑑 𝐼402
4 2 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 2 :

(︀
𝜎𝜎𝜎𝑑𝜎𝜎𝜎𝑑

)︀
𝐼411

6 0 tr
(︀
(𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 3

)︀
𝐼600

6 1 tr
(︀
(𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑(𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑(𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑𝜎𝜎𝜎𝑑

)︀
𝐼601

Table 1. A minimal integrity basis [54] of O-invariants for (𝑀𝑀𝑀,𝜎𝜎𝜎).

A minimal integrity basis of 30 polynomials for cubic invariant polynomials in the pair (𝑀𝑀𝑀,𝜎𝜎𝜎)
has been obtained first by Smith, Smith and Rivlin in [51], and expressed in the components 𝑀𝑖 and
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𝜎𝑖𝑗 of 𝑀𝑀𝑀 and 𝜎𝜎𝜎. Recently [54, Theorem 2.10 and Remark 2.11], we have proposed an alternative
minimal integrity basis of invariants expressed using intrinsic tensorial expressions, rather than
components. They are provided in Table 1. To obtain these invariants, the following decomposition
of the stress tensor, which was introduced in [5]

𝜎𝜎𝜎 = 𝜎𝜎𝜎𝑑 + 𝜎𝜎𝜎𝑑 +
1

3
(tr𝜎𝜎𝜎)1,

has been used. In the canonical cubic basis (𝑒𝑒𝑒1, 𝑒𝑒𝑒2, 𝑒𝑒𝑒3),

𝜎𝜎𝜎𝑑 =

⎛⎝ 0 𝜎12 𝜎13
𝜎12 0 𝜎23
𝜎13 𝜎23 0

⎞⎠ , 𝜎𝜎𝜎𝑑 =

⎛⎝𝜎′11 0 0
0 𝜎′22 0
0 0 𝜎′33

⎞⎠ .

This decomposition is stable under the action of O. In particular, for cubic materials, the deviatoric
stress tensor 𝜎𝜎𝜎′ = 𝜎𝜎𝜎 − 1

3(tr𝜎𝜎𝜎)1 splits into

𝜎𝜎𝜎′ = 𝜎𝜎𝜎𝑑 + 𝜎𝜎𝜎𝑑.

Remark 3.1. The introduction of the following two fourth order tensors P𝑑
O and P𝑑

O = J − P𝑑
O,

where

P𝑑
O :=

1

2

∑︁
𝑖<𝑗

e𝑖𝑗 ⊗ e𝑖𝑗 , e𝑖𝑗 := 𝑒𝑒𝑒𝑖 ⊗ 𝑒𝑒𝑒𝑗 + 𝑒𝑒𝑒𝑗 ⊗ 𝑒𝑒𝑒𝑖 (𝑖 ̸= 𝑗).

and J = I − 1
31 ⊗ 1 is the deviatoric projector, removes the dependency of this decomposition to

the canonical basis (𝑒𝑒𝑒𝑖). Indeed, P𝑑
O and P𝑑

O correspond to the two orthogonal projectors of 𝜎𝜎𝜎 onto

the O-irreducible components 𝜎𝜎𝜎𝑑 and 𝜎𝜎𝜎𝑑 [48, 27, 20] in any orthonormal frame:{︃
𝜎𝜎𝜎𝑑 := P𝑑

O : 𝜎𝜎𝜎

𝜎𝜎𝜎𝑑 := P𝑑
O : 𝜎𝜎𝜎

This result is axis (𝑒𝑒𝑒𝑖) independent.

4. In-plane stress and magnetization for plates with strong crystallographic
textures

General three-dimensional magneto-elasticity laws have been proposed in [54] for alloys composed
of cubic symmetry crystals. Due to the quite high (= 30) cardinal of the minimal integrity basis
{𝐼𝑘}, recalled in Table 1, a large number of material parameters — quantified for polynomial energy
densities — has been introduced.

deg(𝑀𝑀𝑀)
deg(𝜎𝜎𝜎)

0 1 2 3 4 5 6 7 8 9 10

0 – 1 3 6 11 18 32 48 75 111 160
2 0 2 6 14 31 60 106 180 288 442 659
4 1 3 10 24 53 102 185 312 504 777 1161
6 1 4 13 34 73 144 262 444 717 1112 1660
8 1 5 17 42 95 186 378 576 933 1443 2162
10 1 6 20 52 115 228 375 708 1146 1748 2661

Table 2. Number of material parameters [54] for polynomial energy densities with
given bi-degree in (𝑀𝑀𝑀,𝜎𝜎𝜎).

When studying thin sheets or layers and considering in-plane stress and magnetization, some
relations may appear between the evaluated invariants, leading to a redundancy of information
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in the Gibbs energy density Ψ(𝐼𝑘). A beforehand rewriting of Ψ, involving only the invariants
that cannot be rewritten when evaluated for the considered in-plane loading, as functions of some
other 𝐼𝑘 is then necessary for an efficient (low-parameter) modeling. These relations depend on the
crystallographic texture of the sheet, i.e., on the considered fiber (𝜃, 𝛼′ or 𝛾, see Figure 2).

It is obvious that the form of the stress 𝜎𝜎𝜎 and of the magnetization 𝑀𝑀𝑀 that satisfy the in-plane
conditions are

𝜎𝜎𝜎 ·𝑛𝑛𝑛 = 0 and 𝑀𝑀𝑀 ·𝑛𝑛𝑛 = 0. (4.1)

We note stress and magnetization: 𝜎𝜎𝜎𝜃, 𝑀𝑀𝑀 𝜃 (for 𝑛𝑛𝑛 = 𝑛𝑛𝑛𝜃), 𝜎𝜎𝜎𝛼′ , 𝑀𝑀𝑀𝛼′ (for 𝑛𝑛𝑛 = 𝑛𝑛𝑛𝛼′) and 𝜎𝜎𝜎𝛾 , 𝑀𝑀𝑀𝛾 (for
𝑛𝑛𝑛 = 𝑛𝑛𝑛𝛾), for the three fibers 𝜃, 𝛼′ and 𝛾. More precisely, the following equations describe the
in-plane hypothesis (4.1) for these three cases,

𝜎𝜎𝜎𝜃 =

⎛⎝𝜎11 𝜎12 0
𝜎12 𝜎22 0
0 0 0

⎞⎠ , 𝑀𝑀𝑀 𝜃 =

⎛⎝𝑀1

𝑀2

0

⎞⎠ , (4.2)

𝜎𝜎𝜎𝛼′ =

⎛⎝ 𝜎11 𝜎12 −𝜎12
𝜎12 −𝜎23 𝜎23
−𝜎12 𝜎23 −𝜎23

⎞⎠ , 𝑀𝑀𝑀𝛼′ =

⎛⎝ 𝑀1

𝑀2

−𝑀2

⎞⎠ , (4.3)

𝜎𝜎𝜎𝛾 =

⎛⎝−𝜎12 − 𝜎13 𝜎12 𝜎13
𝜎12 −𝜎12 − 𝜎23 𝜎23
𝜎13 𝜎23 −𝜎13 − 𝜎23

⎞⎠ , 𝑀𝑀𝑀𝛾 =

⎛⎝ 𝑀1

𝑀2

−𝑀1 −𝑀2

⎞⎠ . (4.4)

Expressions are given in the canonical cubic symmetry basis (𝑒𝑒𝑒1, 𝑒𝑒𝑒2, 𝑒𝑒𝑒3) of Figure 1, with 𝑛𝑛𝑛𝜃 = 𝑒𝑒𝑒3,
𝑛𝑛𝑛𝛼′ = 1√

2
(𝑒𝑒𝑒2 + 𝑒𝑒𝑒3) and 𝑛𝑛𝑛𝛾 = 1√

3
(𝑒𝑒𝑒1 + 𝑒𝑒𝑒2 + 𝑒𝑒𝑒3).

The assumption of plane stress leads to the reduction of the number of independent components
𝜎𝑖𝑗 from 6 to 3. The assumption of plane magnetization reduces the number of independent com-
ponents 𝑀𝑖 to 2 instead of 3. We denote by ℳℬ = {𝐼𝑘} the initial integrity basis given in Table 1.

The set ̃︂ℳℬ of restrictions of polynomial functions 𝐼𝑘 to the subspace of (𝑀𝑀𝑀,𝜎𝜎𝜎) which satisfy (4.1)

spans a new algebra 𝒜 of polynomial functions in 5 variables. Our goal is to reduce this set ̃︂ℳℬ of

30 invariants into a smaller generating set 𝒢 =
{︁
𝐼𝑙

}︁
of 𝒜.

5. Reduced sets of generators for the different fibers

Several algorithms/programs, able to check whether or not a set ℬ = {𝐼𝑗} of homogeneous
polynomial invariants 𝐼𝑗 is an integrity basis, are available in the literature [28, 7, 17, 42, 19, 54].
In the case of finite groups, these algorithms require the knowledge, a priori, of a bound on the
total degree of the generators. Moreover, these algorithms also allow for reducing an integrity basis
ℬ into a minimal integrity basis ℳℬ, by checking linear relations among the invariants. In the
present problem, a minimal integrity basis ℳℬ = {𝐼𝑘} is already known [51, 54] and recalled in
Table 1. Then, we evaluate all the 𝐼𝑘 for a given stress/magnetization state (here for 𝑀𝑀𝑀 · 𝑛𝑛𝑛 = 0

and 𝜎𝜎𝜎 ·𝑛𝑛𝑛 = 0). The restrictions of the function 𝐼𝑘 to this subspace, denoted by 𝐼𝑘, are however not
linearly independent: they satisfy some linear relations. An algorithm to compute these relations is
provided in Appendix A, as well as its implementation in Macaulay2 [29], a software system devoted
to computations in algebraic geometry and commutative algebra.

Finally, a minimal set of generators 𝒢 =
{︁
𝐼𝑘𝑙

}︁
of 𝒜 can be produced, removing redundant

generators from ̃︂ℳℬ =
{︁
𝐼𝑘

}︁
. This has been done for each in-plane magneto-mechanical loading

(4.2), (4.3) or (4.4). Corresponding minimal sets of generators are denoted respectively by 𝒢𝜃, 𝒢𝛼′ ,
and 𝒢𝛾 . The results are summarized in Table 3. The cardinalities of these sets are small (compared
to the initial 30 invariants in Table 1). In terms of modeling, this means that the Gibbs free energy
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density can be expressed, with no lack of generality, as a function of invariants 𝐼𝑘 such that 𝐼𝑘
belongs to 𝒢 when in-plane stress and magnetization are considered:

Ψ = Ψ(𝐼𝑘1 , . . . , 𝐼𝑘𝐿), 𝐼𝑘𝑙 ∈ 𝒢, 𝐿 = card𝒢.

Remark 5.1. Plane constitutive laws can be deduced either by restricting first the energy density
to the plane state variables and then, by deriving them with respect to these variables to get the
dual plane variables (a) or by selecting the in-plane terms of 3D constitutive laws restricted to a
2D loading (b). This is mathematically justified by the fact that the pullback and the exterior
derivative commute [52, theorem 5.3].

Reduced basis Cardinal 𝐿 List of O-invariants

𝒢𝜃 7 tr𝜎𝜎𝜎, 𝐼002, 𝐼020, 𝐼200 𝐼201, 𝐼210, 𝐼400

𝒢𝛼′ 15
tr𝜎𝜎𝜎, 𝐼002, 𝐼020, 𝐼003, 𝐼030, 𝐼200, 𝐼201, 𝐼210,
𝐼𝑎202, 𝐼211, 𝐼220, 𝐼400, 𝐼401, 𝐼410, 𝐼600

𝒢𝛾 8 tr𝜎𝜎𝜎, 𝐼020, 𝐼030, 𝐼200, 𝐼210, 𝐼220, 𝐼410, 𝐼600

Table 3. Reduced generating sets 𝒢 =
{︁
𝐼𝑘𝑙

}︁
for the different textures.

5.1. 𝜃-fiber. This is the most favorable texture orientation for a reduction of the integrity basis
evaluated with in-plane conditions. The direction {001} is indeed the normal 𝑛𝑛𝑛𝜃 = 𝑒𝑒𝑒3 to the
cubic crystal network (a symmetry plane of the microstructure). Because of the presence of null
coefficients in (4.2) (especially on the off-diagonal part of 𝜎𝜎𝜎), 12 evaluated invariants in ℳℬ vanish,
namely

𝐼003 = 𝐼004 = 𝐼014 = 𝐼𝑏202 = 𝐼203 = 𝐼𝑏212 = 𝐼204 = 𝐼402 = 𝐼222 = 𝐼401 = 𝐼411 = 𝐼600 = 0.

In addition, we get the following 11 relations.

𝐼012 =
1

6
𝐼002 tr𝜎𝜎𝜎, 𝐼030 =

1

18

(︀
9𝐼020 tr𝜎𝜎𝜎 − 2(tr𝜎𝜎𝜎)3

)︀
,

𝐼022 =
1

18

(︀
2𝐼002(tr𝜎𝜎𝜎)2 − 9𝐼002𝐼020

)︀
, 𝐼211 =

1

6
𝐼201 tr𝜎𝜎𝜎,

𝐼𝑎212 =
1

6
(𝐼002𝐼210 − 2𝐼𝑎202 tr𝜎𝜎𝜎) , 𝐼221 =

1

18

(︀
2𝐼201(tr𝜎𝜎𝜎)2 − 9𝐼020𝐼201

)︀
,

𝐼213 =
1

36
𝐼002𝐼201 tr𝜎𝜎𝜎, 𝐼𝑎202 =

1

6
𝐼002𝐼200,

𝐼220 =
1

18

(︀
6𝐼210 tr𝜎𝜎𝜎 + 3𝐼020𝐼200 − 2𝐼200(tr𝜎𝜎𝜎)2

)︀
, 𝐼410 =

1

6
𝐼400 tr𝜎𝜎𝜎,

𝐼601 =
1

18

(︀
9𝐼201𝐼400 − 4𝐼2200𝐼201

)︀
.

5.2. 𝛼′-fiber. 𝑛𝑛𝑛𝛼′ is normal to another symmetry plane of the crystal network. This explains why
the number of useful invariants is drastically reduced (this reduction is however smaller than for
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the 𝜃 fiber). For this configuration, we get the following 15 relations.

𝐼012 =
1

54

(︀
−18𝐼003 − 18𝐼030 + 9𝐼002 tr𝜎𝜎𝜎 + 9𝐼020 tr𝜎𝜎𝜎 − 2(tr𝜎𝜎𝜎)3

)︀
𝐼004 =

1

72

(︀
9(𝐼002)

2 + 6𝐼002𝐼020 − 3(𝐼020)
2 + 12𝐼003 tr𝜎𝜎𝜎

−12𝐼012 tr𝜎𝜎𝜎 + 12𝐼030 tr𝜎𝜎𝜎 − 2𝐼002(tr𝜎𝜎𝜎)2 − 2𝐼020(tr𝜎𝜎𝜎)2
)︀

𝐼022 =
1

18

(︀
−6𝐼002𝐼020 + 3(𝐼020)

2 − 12𝐼030 tr𝜎𝜎𝜎 + 2𝐼020(tr𝜎𝜎𝜎)2
)︀

𝐼014 =
1

18

(︀
6𝐼020𝐼003 + 9𝐼002𝐼012 + 3𝐼020𝐼012 + 6𝐼002𝐼030 − 2𝐼002𝐼020 tr𝜎𝜎𝜎 − 2𝐼012(tr𝜎𝜎𝜎)2

)︀
𝐼𝑎212 =

1

36

(︀
3𝐼002𝐼210 − 3𝐼020𝐼210 + 12𝐼220 tr𝜎𝜎𝜎 − 2𝐼210(tr𝜎𝜎𝜎)2

)︀
𝐼𝑏212 =

1

36

(︁
−9𝐼002𝐼201 + 72𝐼203 + 18𝐼221 − 12𝐼𝑏202 tr𝜎𝜎𝜎 + 12𝐼211 tr𝜎𝜎𝜎 + 2𝐼201(tr𝜎𝜎𝜎)2

)︁
𝐼204 =

1

18

(︀
6𝐼003𝐼210 + 9𝐼002𝐼

𝑎
202 + 3𝐼020𝐼

𝑎
202 + 6𝐼002𝐼220 − 2𝐼002𝐼210 tr𝜎𝜎𝜎 − 2𝐼𝑎202(tr𝜎𝜎𝜎)2

)︀
𝐼213 =

1

18

(︁
3𝐼003𝐼201 + 3𝐼012𝐼201 − 3𝐼020𝐼

𝑏
202 − 12𝐼203 tr𝜎𝜎𝜎 + 2𝐼𝑏202(tr𝜎𝜎𝜎)2

)︁
𝐼222 =

1

18
(3𝐼002𝐼211 − 2𝐼020𝐼201 tr𝜎𝜎𝜎 + 3𝐼020𝐼211 + 3𝐼003𝐼201 + 6𝐼012𝐼201

+6𝐼030𝐼201 + 2𝐼𝑏202(tr𝜎𝜎𝜎)2 − 2𝐼211(tr𝜎𝜎𝜎)2 − 12𝐼203 tr𝜎𝜎𝜎
)︁

𝐼𝑏202 =
1

18
(3𝐼002𝐼200 + 3𝐼020𝐼200 − 18𝐼𝑎202 − 36𝐼211 − 18𝐼220 + 6𝐼201 tr𝜎𝜎𝜎

+6𝐼210 tr𝜎𝜎𝜎 − 2𝐼200(tr𝜎𝜎𝜎)2
)︀

𝐼203 =
1

72
(12𝐼003𝐼200 + 24𝐼012𝐼200 + 12𝐼030𝐼200 + 9𝐼002𝐼201 + 3𝐼020𝐼201 + 3𝐼002𝐼210 − 3𝐼020𝐼210

−4𝐼002𝐼200 tr𝜎𝜎𝜎 − 4𝐼020𝐼200 tr𝜎𝜎𝜎 − 12𝐼𝑎202 tr𝜎𝜎𝜎 − 24𝐼211 tr𝜎𝜎𝜎 + 2𝐼201(tr𝜎𝜎𝜎)2 + 2𝐼210(tr𝜎𝜎𝜎)2
)︀

𝐼221 =
1

18
(−6𝐼003𝐼200 − 18𝐼012𝐼200 − 12𝐼030𝐼200 − 6𝐼020𝐼201 + 3𝐼020𝐼210 + 2𝐼002𝐼200 tr𝜎𝜎𝜎

+4𝐼020𝐼200 tr𝜎𝜎𝜎 + 6𝐼𝑎202 tr𝜎𝜎𝜎 + 6𝐼𝑏202 tr𝜎𝜎𝜎 + 12𝐼211 tr𝜎𝜎𝜎 − 2𝐼201(tr𝜎𝜎𝜎)2 − 2𝐼210(tr𝜎𝜎𝜎)2
)︁

𝐼402 =
1

72

(︀
9𝐼2201 + 6𝐼201𝐼210 − 24𝐼200𝐼211 + 3𝐼020𝐼400 + 12𝐼401 tr𝜎𝜎𝜎 − 2𝐼400(tr𝜎𝜎𝜎)2

)︀
𝐼411 =

1

144

(︁
−9𝐼2201 − 6𝐼201𝐼210 − 24𝐼200𝐼

𝑏
202 − 24𝐼200𝐼211 + 12𝐼002𝐼400 + 9𝐼020𝐼400

+8𝐼200𝐼201 tr𝜎𝜎𝜎 + 12𝐼401 tr𝜎𝜎𝜎 − 6𝐼400(tr𝜎𝜎𝜎)2
)︀

𝐼601 =
1

18

(︀
−4𝐼2200𝐼201 + 6𝐼201𝐼400 − 3𝐼210𝐼400 + 6𝐼200𝐼410 + 𝐼200𝐼400 tr𝜎𝜎𝜎 − 3𝐼600 tr𝜎𝜎𝜎

)︀

5.3. 𝛾-fiber. In this configuration, stress tensor and magnetization do not have vanishing compo-
nents (see (4.4)). However, useful relations appear between the invariants involving the off-diagonal
part of 𝜎𝜎𝜎. We get for this fiber the following 22 relations.
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𝐼002 =
1

6

(︀
12𝐼020 + (tr𝜎𝜎𝜎)2

)︀
𝐼012 =

1

12
(−6𝐼003 − 𝐼002 tr𝜎𝜎𝜎 + 9𝐼020 tr𝜎𝜎𝜎)

𝐼003 =
1

6
(12𝐼030 − 𝐼002 tr𝜎𝜎𝜎 + 5𝐼020 tr𝜎𝜎𝜎)

𝐼004 =
1

6

(︀
3𝐼2002 − 18𝐼002𝐼020 + 27𝐼2020 + 2𝐼003 tr𝜎𝜎𝜎

)︀
𝐼022 =

1

6

(︀
−2𝐼2002 + 13𝐼002𝐼020 − 18𝐼2020 − 2𝐼003 tr𝜎𝜎𝜎

)︀
𝐼𝑎202 =

1

3
(−3𝐼220 + 𝐼210 tr𝜎𝜎𝜎)

𝐼𝑎212 =
1

6
(4𝐼002𝐼210 − 9𝐼020𝐼210 − 2𝐼𝑎202 tr𝜎𝜎𝜎)

𝐼𝑏212 =
1

12

(︁
−3𝐼002𝐼201 + 3𝐼020𝐼201 + 12𝐼203 − 𝐼𝑏202 tr𝜎𝜎𝜎 + 6𝐼211 tr𝜎𝜎𝜎

)︁
𝐼203 =

1

12
(+2𝐼002𝐼201 − 𝐼020𝐼201 − 6𝐼221 − 4𝐼211 tr𝜎𝜎𝜎)

𝐼204 =
1

6
(2𝐼003𝐼210 − 6𝐼002𝐼

𝑎
202 + 18𝐼020𝐼

𝑎
202 + 3𝐼002𝐼210 tr𝜎𝜎𝜎 − 9𝐼020𝐼210 tr𝜎𝜎𝜎)

𝐼213 =
1

24
(2𝐼003𝐼201 − 32𝐼002𝐼211 + 72𝐼020𝐼211 + 3𝐼002𝐼201 tr𝜎𝜎𝜎 − 3𝐼020𝐼201 tr𝜎𝜎𝜎 − 16𝐼203 tr𝜎𝜎𝜎)

𝐼402 =
1

36

(︀
4𝐼020𝐼

2
200 + 9𝐼2201 − 12𝐼2210 − 12𝐼200𝐼

𝑎
202 − 3𝐼002𝐼400

−6𝐼020𝐼400 + 4𝐼200𝐼210 tr𝜎𝜎𝜎 − 12𝐼410 tr𝜎𝜎𝜎)

𝐼222 =
1

54

(︁
8𝐼002𝐼201 tr𝜎𝜎𝜎 + 9𝐼002𝐼

𝑏
202 − 108𝐼002𝐼211 − 45𝐼020𝐼

𝑏
202 + 216𝐼020𝐼211

+3𝐼003𝐼201 − 12𝐼012𝐼201 − 36𝐼203 tr𝜎𝜎𝜎)

𝐼014 =
1

12

(︀
6𝐼002𝐼003 − 14𝐼020𝐼003 + 𝐼2002 tr𝜎𝜎𝜎 − 6𝐼002𝐼020 tr𝜎𝜎𝜎 + 9𝐼2020 tr𝜎𝜎𝜎

)︀
𝐼201 =

1

6
(12𝐼210 + 𝐼200 tr𝜎𝜎𝜎)

𝐼𝑏202 =
1

6
(−4𝐼002𝐼200 + 9𝐼020𝐼200 − 12𝐼𝑎202 + 3𝐼201 tr(𝜎𝜎𝜎)

𝐼211 =
1

12
(𝐼002𝐼200 + 12𝐼𝑎202 − 𝐼201 tr𝜎𝜎𝜎)

𝐼221 =
1

36
(−6𝐼003𝐼200 − 12𝐼002𝐼201 + 24𝐼020𝐼201 + 𝐼002𝐼200 tr𝜎𝜎𝜎 + 12𝐼𝑎202 tr𝜎𝜎𝜎)

𝐼400 =
1

2
𝐼2200

𝐼401 =
1

12

(︀
6𝐼200𝐼201 − 24𝐼410 − 𝐼2200 tr𝜎𝜎𝜎

)︀
𝐼411 =

1

72

(︀
𝐼002𝐼

2
200 − 6𝐼2201 + 12𝐼200𝐼

𝑎
202 + 6𝐼401 tr𝜎𝜎𝜎

)︀
𝐼601 =

1

36

(︀
𝐼2200𝐼201 − 6𝐼200𝐼401 − 6𝐼600 tr𝜎𝜎𝜎

)︀
5.4. Combination of 𝜃, 𝛼′ and 𝛾 fibers. As explained in introduction of this work, it is usually
possible to find a set of fibers that describes the texture of a material. If the three previous fibers are
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combined to form the texture of a thin layer material subjected to an in-plane magneto-mechanical
loading, the invariant generators in this situation is the union of the invariant generators of each
fiber. Then it can be noticed that the list of O-invariants of the reduced generating sets of 𝜃 and
𝛾 fibers are included in the list of O-invariants of the reduced generating set of the 𝛼′ fiber. This
means that the list of 15 invariants associated with the reduced generating set 𝒢𝛼′ is the reduced
generating set of any combination of the three preceding fibers.

6. Conclusion

The magneto-elasticity of cubic ferromagnetic materials is described using a Gibbs free energy
density Ψ = Ψ(𝐼𝑘) defined as a function of well-chosen cubic invariants 𝐼𝑘 of the stress 𝜎𝜎𝜎 and the
magnetization𝑀𝑀𝑀 . It is relevant to take these cubic invariants into account for every crystallographic
texture/fiber, with the drawback that the corresponding minimal integrity basis is constituted of a
quite large number (30) of invariants [51, 54].

The magneto-mechanical coupled behavior of textured (cubic) ferromagnetic materials subjected
to in-plane magneto-mechanical loadings has been streamlined. We have shown that for such load-
ings, and for specific textures/fibers, the Gibbs free energy density can be written as a function of
a lower number of invariants

Ψ = Ψ(𝐼𝑘1 , . . . , 𝐼𝑘𝐿), 𝐿 < 30.

Indeed, we have computed relations among the fundamental cubic invariants 𝐼𝑘 which arise when
they are restricted to plane magneto-elasticity problems. We have obtained, this way, some reduced
(minimal) sets of cardinal 𝐿 of cubic generators 𝐼𝑘𝑙 for three major fibers, namely 𝜃 (𝐿 = 7), 𝛼′

(𝐿 = 15) and 𝛾 (𝐿 = 8) and their combination (𝐿 = 15). To do so, we have adapted an algorithm
initially proposed to prove the minimality of an integrity basis in [54]. An implementation of this
algorithm in Macaulay2, a software devoted to algebraic geometry and commutative algebra [29],
has also been provided.

Appendix A. Reduction algorithm and implementation

A.1. Algorithm. The algorithm we propose here generates all the relations between the homo-

geneous polynomials
{︁
𝐼𝑘

}︁
in ̃︂ℳℬ, the set of cubic invariants {𝐼𝑘} restricted to plane loadings

(plane defined by the normal unit vector 𝑛𝑛𝑛). For instance, for the fiber 𝜃 (𝑛𝑛𝑛𝜃 = 𝑒𝑒𝑒3), 𝑀3 = 0 and
𝜎13 = 𝜎23 = 𝜎33 = 0. If we choose ̃︀𝑒𝑒𝑒1 = 𝑒𝑒𝑒1, ̃︀𝑒𝑒𝑒2 = 𝑒𝑒𝑒2 as a natural basis of the subspace 𝑀3 = 0 of
vectors 𝑀𝑀𝑀 and

̃︀eI = eee11 =

⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠ , ̃︀eII = eee22 =

⎛⎝0 0 0
0 1 0
0 0 0

⎞⎠ , ̃︀eIII = eee12 =

⎛⎝0 1 0
1 0 0
0 0 0

⎞⎠
as a natural basis of the subspace 𝜎𝜎𝜎.𝑒𝑒𝑒3 = 0 of stresses 𝜎𝜎𝜎, we get̃︁𝑀𝑀𝑀 = ̃︁𝑀1̃︀𝑒𝑒𝑒1 + ̃︁𝑀2̃︀𝑒𝑒𝑒2 and ̃︀𝜎𝜎𝜎 = ̃︀𝜎1̃︀eI + ̃︀𝜎2̃︀eII + ̃︀𝜎3̃︀eIII.
For each considered fiber, the restricted invariants are expressed as polynomial functions of ̃︀𝜎𝜎𝜎 and̃︁𝑀𝑀𝑀 as above. These polynomial functions are homogeneous, both in ̃︀𝜎𝜎𝜎 and ̃︁𝑀𝑀𝑀 . For such a bi-

homogeneous polynomial, we introduce the degree 𝛼 = deg(̃︁𝑀𝑀𝑀) in ̃︁𝑀𝑀𝑀 and the degree 𝛽 = deg(̃︀𝜎𝜎𝜎)
in ̃︀𝜎𝜎𝜎. This bi-degree is denoted by (𝛼, 𝛽) and the total degree by 𝑑 = 𝛼 + 𝛽. A bi-homogeneous
polynomial of bi-degree (𝛼, 𝛽) is thus a linear combination of monomials

𝑚𝛼𝛼𝛼,𝛽𝛽𝛽 = ̃︁𝑀𝛼1
1

̃︁𝑀𝛼2
2 ̃︀𝜎𝛽1

1 ̃︀𝜎𝛽2
2 ̃︀𝜎𝛽3

3 (A.1)

with 𝛼𝛼𝛼 = (𝛼1, 𝛼2) (𝛼𝑘 being the degree in ̃︁𝑀𝑘, so that 𝛼 = |𝛼𝛼𝛼| = 𝛼1 + 𝛼2) and 𝛽𝛽𝛽 = (𝛽1, 𝛽2, 𝛽3) (𝛽𝑙
being the degree in ̃︀𝜎𝑙, so that 𝛽 = |𝛽𝛽𝛽| = 𝛽1 + 𝛽2 + 𝛽3).
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On the set of bi-degrees, we introduce the degree lexicographic order as follows

(𝛼, 𝛽) < (𝛼′, 𝛽′) if 𝛼+ 𝛽 < 𝛼′ + 𝛽′

or 𝛼+ 𝛽 = 𝛼′ + 𝛽′ and (𝛼 < 𝛼′ or 𝛼 = 𝛼′ and 𝛽 < 𝛽′).

Using this order relation, we define (𝛼, 𝛽)1 and (𝛼, 𝛽)𝐽𝑀𝑎𝑥
respectively, as the least and the greatest

bi-degree (𝛼, 𝛽) appearing in the finite list of evaluated bi-homogeneous polynomials ̃︂ℳℬ, where

it is understood that each evaluated polynomial which vanishes is removed from ̃︂ℳℬ. We can

therefore partition ̃︂ℳℬ into bi-graded sets̃︂ℳℬ = ̃︂ℳℬ(𝛼,𝛽)1 ∪ · · · ∪ ̃︂ℳℬ(𝛼,𝛽)𝐽Max
,

using the following partition of the integrity basis ℳℬ in Table 1, and where the set ℳℬ𝛼,𝛽 consists
in bi-homogeneous polynomials in (𝜎𝜎𝜎,𝑀𝑀𝑀) of bi-degree (𝛼, 𝛽).

ℳℬ0,1 = {tr𝜎𝜎𝜎} , ℳℬ0,2 = {𝐼020, 𝐼002} ,
ℳℬ0,3 = {𝐼012, 𝐼003, 𝐼030} , ℳℬ0,4 = {𝐼004, 𝐼022} ,
ℳℬ0,5 = {𝐼014} , ℳℬ2,0 = {𝐼200} ,

ℳℬ2,1 = {𝐼201, 𝐼210} , ℳℬ2,2 =
{︁
𝐼𝑎202, 𝐼

𝑏
202, 𝐼211, 𝐼220

}︁
,

ℳℬ2,3 = {𝐼210, 𝐼201} , ℳℬ2,4 =
{︁
𝐼203, 𝐼

𝑎
212, 𝐼

𝑏
212, 𝐼221

}︁
,

ℳℬ4,0 = {𝐼400} , ℳℬ4,1 = {𝐼401, 𝐼410} ,
ℳℬ4,2 = {𝐼402, 𝐼411} , ℳℬ6,0 = {𝐼600} ,
ℳℬ6,1 = {𝐼601} .

The set of all bi-homogeneous polynomials in (̃︁𝑀𝑀𝑀, ̃︀𝜎𝜎𝜎) having the same bi-degree (𝛼, 𝛽) is a finite
dimensional vector space and the subspace of such polynomials which belong to the algebra 𝒜 is
denoted by 𝒜𝛼,𝛽. Hence 𝒜 can be written as the direct sum

𝒜 =
⨁︁
𝛼,𝛽

𝒜𝛼,𝛽.

Each finite dimensional vector space 𝒜𝛼,𝛽 is spanned (as a vector space) by ̃︂ℳℬ𝛼,𝛽 (which is empty
if (𝛼, 𝛽) > (𝛼, 𝛽)𝐽𝑀𝑎𝑥

) and the so-called reducible elements of bi-degree (𝛼, 𝛽) which can be written
as products of (at least two) elements in ⋃︁

(𝜇,𝜈)<(𝛼,𝛽)

̃︂ℳℬ(𝜇,𝜈).

Hence, a minimal set of generators 𝒢 of 𝒜 can be extracted from ̃︂ℳℬ by choosing a vectorial basis

in each 𝒜(𝛼,𝛽)𝐽 (1 ≤ 𝐽 ≤ 𝐽𝑀𝑎𝑥) and by eliminating arbitrarily some generators ̃︀𝐼𝑘. This can be

done, bi-degree by bi-degree (𝛼, 𝛽), once one knows exactly the linear relations between the ̃︀𝐼𝑘 and
the reducible elements of bi-degree (𝛼, 𝛽).

To do so, we proceed recursively as follows. Given 1 ≤ 𝐽 ≤ 𝐽𝑀𝑎𝑥, let (𝑃1, . . . , 𝑃𝑁 ) be the 𝑁

elements 𝑃𝑗 in ℛ𝐽 ∪ ̃︂ℳℬ(𝛼,𝛽)𝐽 , where ℛ𝐽 is the set of reducible elements of bi-degree (𝛼, 𝛽)𝐽 .
Then, let 𝑚1, . . . ,𝑚𝑀 be the monomials which appear in the family of bi-homogeneous polynomials
(𝑃1, . . . , 𝑃𝑁 ). Each of these monomials is written 𝑚(𝛼𝛼𝛼,𝛽𝛽𝛽) with |𝛼𝛼𝛼| = 𝛼 and |𝛽𝛽𝛽| = 𝛽 (see (A.1)). We
can thus write

𝑃𝑗 =
∑︁
𝑖

𝐴𝑖𝑗𝑚𝑖,
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where 𝐴 := (𝐴𝑖𝑗) is an 𝑀 ×𝑁 matrix. The computation of a basis 𝑢𝑢𝑢𝑘 :=
∑︀

𝑖 𝑢
𝑘
𝑖𝑚𝑖, where 1 ≤ 𝑘 ≤

𝑁 − 𝑅 and 𝑅 := rank(𝐴), furnishes all the independent linear relations between the 𝑃𝑗 , which are
written ∑︁

𝑗

𝑢𝑘𝑗𝑃𝑗 = 0, 1 ≤ 𝑘 ≤ 𝑁 −𝑅. (A.2)

Thanks to the knowledge of these relations, we are able to extract, by hand, a minimal set

𝒢(𝛼,𝛽)𝐽 ⊂ ̃︂ℳℬ(𝛼,𝛽)𝐽 ,

which spans (together with ℛ𝐽) the vector space 𝒜(𝛼,𝛽)𝐽 . The union

𝒢 = 𝒢(𝛼,𝛽)1 ∪ · · · ∪ 𝒢(𝛼,𝛽)𝐽 ∪ · · · ∪ 𝒢(𝛼,𝛽)𝐽Max
,

is then the sought minimal set of generators of the algebra 𝒜.
For a given in-plane loading defined by a normal 𝑛𝑛𝑛, and given by (4.1), the following algorithm

produces the expected finite list of relations ℒ among the set of restricted invariants ̃︂ℳℬ =
{︁
𝐼𝑘

}︁
.

∙ Input: The set ̃︂ℳℬ =
{︁
𝐼𝑘

}︁
of restricted invariants.

∙ Output: A list ℒ𝐽Max
of polynomials relations between these restricted invariants 𝐼𝑘.

∙ Initialization: 𝐽 = 0, ℒ0 := ∅.
∙ For 1 ≤ 𝐽 ≤ 𝐽𝑀𝑎𝑥:

(1) Generate the family ℛ𝐽 of all reducible homogeneous polynomials of bi-degree (𝛼, 𝛽)𝐽 ;
(2) Compute a basis (𝑢𝑢𝑢𝑘) (1 ≤ 𝑘 ≤ 𝑁 −𝑅) of the kernel of the matrix 𝐴;

(3) Update the list ℒ𝐽 :=
[︁
ℒ𝐽−1, [

∑︀
𝑢1𝑗𝑃𝑗 , . . . ,

∑︀
𝑢𝑁−𝑅
𝑗 𝑃𝑗 ]

]︁
;

∙ Return ℒ𝐽𝑀𝑎𝑥
.

A.2. Implementation in Macaulay2. The code presented here is in the Macaulay2 language
(see [29]) and can be run using a friendly web interface of Macaulay2 at

https://www.unimelb-macaulay2.cloud.edu.au/#home.

The invariants in Table 1 are computed for a particular form of 𝜎𝜎𝜎 and 𝑀𝑀𝑀 . This is the Input step of
the algorithm detailed above. The bounds dMax = 7 and 𝛼Max = 6 correspond respectively to the
highest total degree and the highest partial degree in magnetization in the list ℳℬ of invariants
𝐼𝑘. The increment k is associated to the total degree and 𝛼 to the degree in �̃�𝑀𝑀 .

-------------------------------------Input--------------------------------------

--definition of the algebra Alg of evaluated polynomials

Alg = QQ[sig1, sig2, sig3, m1, m2, Degrees=>{{0,1},{0,1},{0,1},{1,0},{1,0}}]

--off-diagonal part

dbar=(b)->(matrix{{0,b_(0,1),b_(0,2)},{b_(1,0),0,b_(1,2)},{b_(2,0),b_(2,1),0}});

--deviatoric diagonal part

ddev = (b)->(matrix{{b_(0,0) - 1/3*trace(b), 0, 0},{0, b_(1,1) -

1/3*trace(b), 0},{0, 0, b_(2,2) - 1/3*trace(b)}}) ;

--magnetization and stress bases for fiber theta

e1=matrix({{1_Alg},{0},{0}}); e2=matrix({{0},{1_Alg},{0}})

eI=matrix{{1_Alg,0,0},{0,0,0},{0,0,0}}

eII=matrix{{0,0,0},{0,1_Alg,0},{0,0,0}}

eIII=matrix{{0,1_Alg,0},{1_Alg,0,0},{0,0,0}}

--vectors and matrixes are omitted for others textures

--stress and magnetization for a given fiber

M = m1*e1+m2*e2

sig = sig1*eI+sig2*eII+sig3*eIII ; sigd = ddev(sig) ; sigdbar = dbar(sig)

--evaluation of the invariants

I010 = trace(sig)

I002=trace(sigdbar^2)

I020=trace(sigd*sigd)

https://www.unimelb-macaulay2.cloud.edu.au/#home


14 J. TAURINES, B. KOLEV, R. DESMORAT, AND O. HUBERT

I003=trace(sigdbar*sigdbar*sigdbar)

I012=trace(sigdbar^2*sigd)

I030=trace(sigd*sigd*sigd)

I004=trace(dbar(sigdbar^2)*dbar(sigdbar^2))

I022=trace(sigdbar*sigd*sigdbar*sigd)

I014=trace(sigdbar*dbar(sigdbar^2)*sigdbar*sigd)

I200=trace(transpose(M)*M)

I201=trace(dbar(M*transpose(M))*sigdbar)

I210=trace(ddev(M*transpose(M))*sigd)

I202a=trace(ddev(M*transpose(M))*(sigdbar^2))

I202b=trace(dbar(M*transpose(M))*dbar(sigdbar^2))

I211=trace(dbar(M*transpose(M))*sigdbar*sigd)

I220=trace((ddev(M*transpose(M)))*(sigd^2))

I203=trace(dbar(M*transpose(M))*dbar(sigdbar^2)*sigdbar)

I212a=trace(ddev(M*transpose(M))*ddev(sigdbar^2)*sigd)

I212b=trace(dbar(M*transpose(M))*dbar(sigdbar^2)*sigd)

I221=trace(dbar(M*transpose(M))*sigd*sigdbar*sigd)

I204=trace((ddev(M*transpose(M)))*sigdbar*dbar(sigdbar^2)*sigdbar)

I213=trace(dbar(M*transpose(M))*ddev(sigdbar^2)*sigdbar*sigd)

I400=trace(dbar(M*transpose(M))*dbar(M*transpose(M)))

I401=trace(dbar(M*transpose(M))*sigdbar*dbar(M*transpose(M)))

I410=trace(dbar(M*transpose(M))*sigd*dbar(M*transpose(M)))

I402=trace(dbar(M*transpose(M))*dbar(sigdbar^2)*dbar(M*transpose(M)))

I411=trace(dbar(M*transpose(M))*sigd*sigdbar*dbar(M*transpose(M)))

I600=trace(dbar(M*transpose(M))*dbar(M*transpose(M))*dbar(M*transpose(M)))

I601 = trace(ddev(M*transpose(M))*dbar(M*transpose(M))*ddev(M*transpose(M))*sigdbar)

I222=trace(dbar(M*transpose(M))*sigd*dbar(sigdbar^2)*sigd)

--creation of the list of evaluated invariants

MBtilde=new HashTable from {"I010"=>I010,"I002"=>I002,"I020"=>I020,"I003"=>I003,

"I012"=>I012,"I030"=>I030,"I004"=>I004,"I022"=>I022,"I014"=>I014,

"I200"=>I200,"I201"=>I201,"I210"=>I210,"I202a"=>I202a,"I202b"=>I202b,

"I211"=>I211,"I220"=>I220,"I203"=>I203,"I212a"=>I212a,"I212b"=>I212b,

"I221"=>I221,"I204"=>I204,"I213"=>I213,"I400"=>I400,"I401"=>I401,

"I410"=>I410,"I402"=>I402,"I411"=>I411,"I600"=>I600,"I601"=>I601,

"I222"=>I222}

--removal of vanishing invariants

MBtilde=delete(0_Alg,MBtilde)

--list of bi-degrees of MBtilde

MBtildeValues=values(MBtilde)

listDeg =apply(MBtildeValues,degree)

MBtildeIndex=keys(MBtilde)

--------------------------------------------------------------------------------

bound={7,6}

dMax=bound_0

alphaMax=bound_1

--definition of the free algebra FreeAlg

FreeAlg=QQ[MBtildeIndex,Degrees=>listDeg]

LJ={}

for k in 1..dMax do (

for alpha in 0..alphaMax do (

if k-alpha >= 0 then (

------------------------------------Step 1--------------------------------------

Base=toString(basis({alpha,k-alpha},FreeAlg)),

Pj=Base,

------------------------------------Step 2--------------------------------------

for i in 0..length(MBtildeIndex)-1 do (

Pj=replace(toString(MBtildeIndex_i),concatenate("

(",(toString(MBtildeValues_i)),")"),Pj)

),
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Pj=value Pj,

if Pj!=0_Alg then (

mi=monomials(Pj),

(m,A)=coefficients(Pj,Monomials=>mi),

uj=generators(ker A),

------------------------------------Step 3--------------------------------------

ujPj=(value(Base))*value(toString(uj)),

if ujPj!=0 then (

LJ=append(LJ,ujPj)) ,

)

)

)

)

"LJMax"<<toString(LJ)<<close
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