Julien Taurines 
  
Boris Kolev 
  
Rodrigue Desmorat 
  
Olivier Hubert 
  
Reduced polynomial invariant integrity basis for in-plane magneto-mechanical loading

Keywords: 2020 Mathematics Subject Classification. 74F15, 15A72 Invariants, Integrity basis, Strong coupling, Thin structures, Magnetostriction. 1

teaching and research institutions in France or abroad, or from public or private research centers.  

Introduction

Since the discovery of the crystalline nature of metals, and of the anisotropic nature of the associated behaviors, metallurgists have sought to improve thermomechanical treatments in order to develop the most favorable crystallographic textures. Research is carried out, in particular, on magnetic materials [START_REF] Chikazumi | Physics of Ferromagnetism. International series of monographs on physics[END_REF][START_REF] Hubert | Magnetic Domains. The analysis of magnetic microstructures[END_REF]. In this regard, we can cite the well-known Goss texture for 3%siliconiron alloys [START_REF] Littmann | Grain-oriented silicon steel sheets[END_REF] used as vehicles of the magnetic flux in high power transformers: the magnetic permeability in the rolling direction is greatly improved comparing to the magnetic permeability of an isotropic 3%silicon-iron polycrystal; the coercive field is considerably reduced, leading to a drastic decrease of energy losses per magnetization cycle. References [START_REF] Jiao | Texture evolution in twin-roll strip cast non-oriented electrical steel with strong Cube and Goss texture[END_REF][START_REF] Tripathy | On the through-process texture evolution assessment in grain oriented Fe-3wt%Si steel produced by a novel directional inoculation technique[END_REF][START_REF] Qiao | Development of thin-gauge low iron loss non-oriented silicon steel[END_REF] thus report recent developments in this field. On the other hand, cold rolled and annealed FeNi alloys are known to be able to develop a so-called cube texture during recrystallization [START_REF] Betanda | Influence of Sulfur on the Recrystallization and {100 }<001 >Cube Texture Formation in Fe48%Ni Alloys Tapes[END_REF][START_REF] Wang | Effect of cross cold rolling and annealing on microstructure and texture in pure nickel[END_REF], meaning that the crystallographic frame coincides with the sheet frame: this texture leads to a high magnetic permeability in both the rolling and transversal (to the rolling) directions. For their part, magnetic shape memory alloys (MSMA) are generally produced as single crystalline bulk materials since polycrystals exhibit lower magneto-mechanical and fatigue performances. Recent works show the possibility of producing hypertextured polycrystalline Ni-Mn-Ga MSMA and possibly in the form of thin layers, opening a wide new range of applications [START_REF] Li | In-situ neutron diffraction study of martensitic variant redistribution in polycrystalline Ni-Mn-Ga alloy under cyclic thermo-mechanical treatment[END_REF]. Conversely, the crystallographic texture can be high and uncontrolled. This is frequently observed for very thin magnetic materials used in high frequency electronic systems (the small thickness allows for a better homogeneity of the electromagnetic fields through the thickness at very high frequency, typically GHz). The textures encountered may vary but generally follow epitaxy rules (depending on the sublayer orientation): the direction normal to the layer is frequently a direction of strong crystalline symmetry [START_REF] Cates | Theoretical study of magnetostriction in FeTaN thin films[END_REF][START_REF] Yamaguchi | Soft magnetic materials application in the RF range[END_REF][START_REF] Hashimoto | Magnetic anisotropy and crystalline orientation in high Hk FeCoB thin films[END_REF].

Finally, the increasing miniaturization of electronic systems is pushing for the use of small size -therefore thin-magnetic components. We thus observe an increasing scale confusion between component and crystals, making behaviors very sensitive to surface effects [START_REF] Hubert | Magnetic Domains. The analysis of magnetic microstructures[END_REF][START_REF] Hubert | Comportement magnéto-mécanique des matériaux magnétiques[END_REF].

Moreover, just like a magnetic material magnetizes under the effect of a magnetic field, it deforms. This deformation, called magnetostriction strain, is the first manifestation of the magneto-elastic coupling [START_REF] Trémolet De Lacheisserie | Magnetostriction, Theory and Applications of Magnetoelasticity[END_REF]. The inverse magneto-elastic coupling is the effect of a mechanical stress on the magnetic behavior (the Villari effect) [START_REF] Bozorth | Ferromagnetism[END_REF][START_REF] Cullity | Introduction to Magnetic Materials[END_REF]. Some materials such as 3%silicon-iron or 27%cobaltiron alloys develop such a sensitivity to mechanical loading that a second-order phenomenon appears (the morphic effect [START_REF] Du | Trémolet de Lacheisserie. Magnetoelastic properties of amorphous alloys[END_REF]): increasing magnetic permeability with increasing stress at low stress level, then decreasing magnetic permeability with increasing stress at higher stress level. The introduction of a second-order (quadratic both in 𝜎 𝜎 𝜎 and in 𝑀 𝑀 𝑀 ) magneto-elastic coupling term in the expression of the Gibbs free energy density makes it possible to account for this effect: simulations and modelexperiment comparisons have been proposed in [START_REF] Hubert | Multiscale magneto-elastic modeling of magnetic materials including isotropic second order stress effect[END_REF] using a second-order isotropic approximation. The isotropic approximation is however reductive given the cubic symmetry of the medium. The development of a cubic second order term however requires the use of a 6th order tensor. Its construction and handling are difficult. The approach by Invariant Theory and the use of a minimal integrity basis (see [START_REF] Olive | A Minimal Integrity Basis for the Elasticity Tensor[END_REF][START_REF] Desmorat | Space of 2d elastic materials: a geometric journey[END_REF]) are the core of a recent article dealing with magneto-elastic coupling in cubic media [START_REF] Taurines | Integrity bases for cubic nonlinear magnetostriction[END_REF]. It allows for a rigorous construction of Gibbs free energy density at any order without missing any term.

However, this integrity basis has a large cardinal (= 30), which can make the identification process very cumbersome, when higher order terms are involved. In this paper, we consider thin textured sheets for which the integrity basis given in [START_REF] Taurines | Integrity bases for cubic nonlinear magnetostriction[END_REF] can be reduced when only in-plane magnetomechanical loadings are considered. Indeed, the magnetization of the material is assumed to remain in the sheet plane due to the strong demagnetizing fields created by any emergent magnetization [START_REF] Hubert | Magnetic Domains. The analysis of magnetic microstructures[END_REF]. This boundary condition is completed by the usual plane stress assumption.

The paper is organized as follows. In section 2, we present the main concepts related to the definition of a crystallographic texture for materials with cubic symmetry. In section 3, we introduce cubic magneto-elasticity energy densities and the fundamental 30 invariants 𝐼 𝑘 obtained in [START_REF] Taurines | Integrity bases for cubic nonlinear magnetostriction[END_REF] which are necessary to formulate them. The mathematical formalism used to describe in-plane loadings and reduce the number of fundamental invariants for these loadings is introduced in section 4. The results for the three main material fibers are provided in details in section 5. Finally, an algorithm and its implementation in Macaulay2 to obtain relations between the evaluated invariants 𝐼 𝑘 for some given crystallographic textures is proposed in Appendix A. The output is a minimal list of polynomial invariants that allows for the most general expression of Gibbs free energy density to be formulated for a large set of crystallographic textures.

Texture and orientation data function of crystalline materials

The crystallographic texture is a simplified description of how the individual crystallites that make up the material are distributed. In materials science, Euler angles are used to describe a single crystal orientation relative to the axes of the sample (as the reference orthonormal frame). The following denomination is usually employed and illustrated in Figure 1: 𝑟 𝑟 𝑟 =RD for Rolling Direction, 𝑡 𝑡 𝑡 =TD for Transversal Direction and 𝑛 𝑛 𝑛 =ND for Normal Direction indicate the reference orthonormal frame. Such denominations are obviously borrowed from sheets metallurgy and rolling process.

The three angles defining the orientation of crystal axes relative to the reference frame are noted (𝜙 1 , 𝜓, 𝜙 2 ) using Bunge representation:

• 𝜙 1 corresponds to a first rotation operation around ND axis; the new coordinate system is named (𝑟 𝑟 𝑟 ′ , 𝑡 𝑡 𝑡 ′ , 𝑛 𝑛 𝑛). Some remarkable directions do obviously correspond to a given set of Euler angles. It is thus possible to place some of these remarkable directions in a (𝜙 1 , 𝜓) plane for a fixed 𝜙 2 . Figure 2 illustrates a cut of the Euler space for 𝜙 2 = 45 ∘ , highlighting some remarkable orientations. The three main situations colored in red, green and blue are:

• 𝜃 fiber: {100}< 𝑢𝑣𝑤 > -the normal plane corresponding to a cube face;

• 𝛼 ′ fiber: {110}< 𝑢𝑣𝑤 > -the normal plane corresponding to a cube diagonal plane;

• 𝛾 fiber: {111}< 𝑢𝑣𝑤 > -the normal direction corresponding to a cube trisectrix. When specific planes and directions are considered (and not direction and plane families), parentheses and brackets are used. We highlight the following classical textures:

• Cube texture, belonging to 𝜃 fiber: (001)[0 10];

• Goss texture, belonging to 𝛼 ′ fiber: (110)[001]. Of course, most materials do not present a single {hkl} < 𝑢𝑣𝑤 > orientation but a set of orientations, corresponding to a set of Euler angles and defining the orientation data function (ODF). A material is denoted as textured when this distribution is tightened on one or more particular directions. Otherwise, it is a non-textured material. Magnetic materials obtained by rolling process or deposit thus often present remarkable textures that can be found in the above list 1 . Some others may be described by a combination of these textures [START_REF] Nabi | Nouveaux alliages Fe-Co magnétiques pour laéronautique, à microstructure partiellement recristallisée et à texture fortement orientée[END_REF][START_REF] Daniel | Multiscale modeling of magnetic materials[END_REF]. A texture can thus represent, beyond a simple assembly of crystals, the material itself, thereby allowing for a macroscopic modeling, ignoring its multiscale nature. Within the framework of the development of magnetoelastic constitutive laws of any order, taking into account the existence of a texture can lead to significant simplifications. We focus our efforts on the three main fibers listed above.

Cubic magneto-elasticity

There are two main manifestations of magnetoelastic coupling in magnetic materials: the magnetostriction strain and the variation of the magnetization under stress. The modeling which is proposed in the literature is generally based either on constitutive tensors (of order 3 and higher [START_REF] Hubert | Multiscale magneto-elastic modeling of magnetic materials including isotropic second order stress effect[END_REF][START_REF] Malikan | Flexomagneticity in buckled shear deformable hard-magnetic soft structures[END_REF]) or on well chosen invariants [START_REF] Toupin | The elastic dielectric[END_REF][START_REF] Fomethe | Material forces in thermoelastic ferromagnets[END_REF][START_REF] Fonteyn | FEM for Directly Coupled Magneto-Mechanical Phenomena in Electrical Machines[END_REF][START_REF] Dorfmann | Universal relations for non-linear magnetoelastic solids[END_REF][START_REF] Danas | Experiments and modeling of iron-particle-filled magnetorheological elastomers[END_REF][START_REF] Beheshti | Finite deformation analysis of isotropic magnetoactive elastomers[END_REF]. Such a modeling can also be carried out at different scales from microscopic to macroscopic. At the crystal scale, magnetization is associated with the cubic (octahedral) symmetry group O which is defined by

O = {𝑔 ∈ O(3); 𝑔𝑒 𝑒 𝑒 𝑖 = ±𝑒 𝑒 𝑒 𝑗 } ,
where (𝑒 𝑒 𝑒 𝑖 ) is the canonical orthonormal basis of R 3 and O(3) is the orthogonal group. This group is of order 48 : it contains 24 rotations and 24 orientation-reversing isometries leaving the cube invariant [START_REF] Kiral | On the constitutive relations for anisotropic materials-triclinic, monoclinic, rhombic, tetragonal and hexagonal crystal systems[END_REF][START_REF] Kiral | Constitutive Equations of Nonlinear Electro magnetic-Elastic Crystals[END_REF][START_REF] Weller | Piezomagnetic tensors symmetries: an unifying tentative approach[END_REF][START_REF] Taurines | Integrity bases for cubic nonlinear magnetostriction[END_REF]. The stress tensor 𝜎 𝜎 𝜎 and the magnetization pseudo-vector 𝑚 𝑚 𝑚 (with ‖𝑚 𝑚 𝑚‖ = 𝑚 𝑠 the saturation magnetization) are almost homogeneous at this scale. The macroscopic behavior, i.e., at the representative volume element (RVE) scale of volume 𝑉 , is obtained by an homogenization process [START_REF] Daniel | Reversible magneto-elastic behavior: a multiscale approach[END_REF][START_REF] Daniel | A multiscale model for reversible ferroelectric behaviour of polycrystalline ceramics[END_REF][START_REF] Hubert | Multiscale magneto-elastic modeling of magnetic materials including isotropic second order stress effect[END_REF]. The macroscopic magnetization is, for example, given by

𝑀 𝑀 𝑀 = ⟨𝑚 𝑚 𝑚⟩ = 1 𝑉 ∫︁ 𝑉 𝑚 𝑚 𝑚 𝑑𝑣. (3.1) 
A direct description of the macroscopic behavior by using a well chosen expression of the Gibbs free energy density is an alternative approach. For instance, isotropic energy densities have been proposed in [START_REF] Sablik | Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis[END_REF][START_REF] Rasilo | Model for Stress-Dependent Hysteresis in Electrical Steel Sheets Including Orthotropic Anisotropy[END_REF][START_REF] Beheshti | Finite deformation analysis of isotropic magnetoactive elastomers[END_REF], transversely isotropic ones in [START_REF] Danas | Magnetorheological Elastomers: Experiments and Modeling[END_REF] and orthotropic ones in [START_REF] Qu | A microstructure-dependent anisotropic magneto-electro-elastic Mindlin plate model based on an extended modified couple stress theory[END_REF]. Cubic invariants of the pair (𝑚 𝑚 𝑚, 𝜎 𝜎 𝜎) [START_REF] Smith | Integrity Bases for a Symmetric Tensor and a Vector-The Crystal Classes[END_REF][START_REF] Taurines | Integrity bases for cubic nonlinear magnetostriction[END_REF], fully relevant at the magnetic domains scale, may also be relevant at the macroscopic scale, by considering the macroscopic magnetization 𝑀 𝑀 𝑀 in place of the local magnetization 𝑚 𝑚 𝑚, if cubic symmetry applies at the macroscopic scale. As extensively explained in the introduction of this paper, this situation is encountered in single crystals, or when the material, consisting of an assembly of cubic crystals, is highly textured.

1 Other textures are referenced in literature -so called brass texture, copper texture, 𝛼 fiber, 𝜖 fiber and so on -but they do not exhibit a single crystallographic direction perpendicular to the sheet plane.

Classical Invariant Theory [START_REF] Sturmfels | Algorithms in Invariant Theory[END_REF][START_REF] Olver | Classical Invariant Theory[END_REF][START_REF] Derksen | With two appendices by Vladimir L. Popov, and an[END_REF] is a robust and efficient tool which helps to formulate Gibbs energy densities that respect the material symmetry, the key points of this theory being (1) the choice of the relevant group 𝐺 for the material symmetry/physics [START_REF] Landau | Electrodynamics of Continuous Media[END_REF][START_REF] Birss | Symmetry and Magnetism[END_REF][START_REF] Sirotine | Fondements de la Physique des Cristaux[END_REF][START_REF] Weller | Piezomagnetic tensors symmetries: an unifying tentative approach[END_REF],

(2) the determination of an integrity basis {𝐼 𝑘 } or, more generally, of a functional basis [START_REF] Boehler | On a Rational Formulation of Isotropic and Anisotropic Hardening[END_REF][START_REF] Weyl | The classical groups[END_REF]. Therefore, each magneto-elasticity energy density which is 𝐺-invariant can be expressed as

Ψ 𝜇𝜎 = Ψ 𝜇𝜎 (𝐼 𝑘 ). (3.2)
In the following, we consider a cubic microstructure, i.e., a microstructure which is invariant by the octahedral symmetry group 𝐺 = O, and where the set {𝐼 𝑘 } is the integrity basis for polynomial cubic invariants in 𝑀 𝑀 𝑀 and 𝜎 𝜎 𝜎 [START_REF] Smith | Integrity Bases for a Symmetric Tensor and a Vector-The Crystal Classes[END_REF][START_REF] Kiral | On the constitutive relations for anisotropic materials-triclinic, monoclinic, rhombic, tetragonal and hexagonal crystal systems[END_REF][START_REF] Kiral | Constitutive Equations of Nonlinear Electro magnetic-Elastic Crystals[END_REF] provided in Table 1 (see also [START_REF] Weller | Piezomagnetic tensors symmetries: an unifying tentative approach[END_REF][START_REF] Taurines | Integrity bases for cubic nonlinear magnetostriction[END_REF] for how accounting for magnetic point groups [START_REF] Sirotine | Fondements de la Physique des Cristaux[END_REF][START_REF] Eringen | Electrodynamics of Continua: Foundations and solid media. Electrodynamics of Continua[END_REF]). Transversely isotropic (resp. orthotropic) magneto-elastic energy densities are handled in the same way, but by considering transversely isotropic (resp. orthotropic) invariants instead of cubic ones (see [START_REF] Adkins | Symmetry relations for orthotropic and transversely isotropic materials[END_REF][START_REF] Adkins | Further symmetry relations for transversely isotropic materials[END_REF][START_REF] Danas | Experiments and modeling of iron-particle-filled magnetorheological elastomers[END_REF]).
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Table 1. A minimal integrity basis [START_REF] Taurines | Integrity bases for cubic nonlinear magnetostriction[END_REF] of O-invariants for (𝑀 𝑀 𝑀 , 𝜎 𝜎 𝜎).

A minimal integrity basis of 30 polynomials for cubic invariant polynomials in the pair (𝑀 𝑀 𝑀 , 𝜎 𝜎 𝜎) has been obtained first by Smith, Smith and Rivlin in [START_REF] Smith | Integrity Bases for a Symmetric Tensor and a Vector-The Crystal Classes[END_REF], and expressed in the components 𝑀 𝑖 and 𝜎 𝑖𝑗 of 𝑀 𝑀 𝑀 and 𝜎 𝜎 𝜎. Recently [54, Theorem 2.10 and Remark 2.11], we have proposed an alternative minimal integrity basis of invariants expressed using intrinsic tensorial expressions, rather than components. They are provided in Table 1. To obtain these invariants, the following decomposition of the stress tensor, which was introduced in [START_REF] Bertram | Anisotropic creep modelling of the single crystal superalloy SRR99[END_REF] 𝜎 𝜎 𝜎 = 𝜎 𝜎 𝜎 𝑑 + 𝜎 𝜎 𝜎 𝑑 + 1 3 (tr 𝜎 𝜎 𝜎)1, has been used. In the canonical cubic basis (𝑒 𝑒 𝑒 1 , 𝑒 𝑒 𝑒 2 , 𝑒 𝑒 𝑒 3 ),

𝜎 𝜎 𝜎 𝑑 = ⎛ ⎝ 0 𝜎 12 𝜎 13 𝜎 12 0 𝜎 23 𝜎 13 𝜎 23 0 ⎞ ⎠ , 𝜎 𝜎 𝜎 𝑑 = ⎛ ⎝ 𝜎 ′ 11 0 0 0 𝜎 ′ 22 0 0 0 𝜎 ′ 33 ⎞ ⎠ .
This decomposition is stable under the action of O. In particular, for cubic materials, the deviatoric stress tensor 𝜎 𝜎 𝜎 ′ = 𝜎 𝜎 𝜎 - 

In-plane stress and magnetization for plates with strong crystallographic textures

General three-dimensional magneto-elasticity laws have been proposed in [START_REF] Taurines | Integrity bases for cubic nonlinear magnetostriction[END_REF] for alloys composed of cubic symmetry crystals. Due to the quite high (= 30) cardinal of the minimal integrity basis [START_REF] Taurines | Integrity bases for cubic nonlinear magnetostriction[END_REF] for polynomial energy densities with given bi-degree in (𝑀 𝑀 𝑀 , 𝜎 𝜎 𝜎).

{𝐼 𝑘 }, recalled in
When studying thin sheets or layers and considering in-plane stress and magnetization, some relations may appear between the evaluated invariants, leading to a redundancy of information in the Gibbs energy density Ψ(𝐼 𝑘 ). A beforehand rewriting of Ψ, involving only the invariants that cannot be rewritten when evaluated for the considered in-plane loading, as functions of some other 𝐼 𝑘 is then necessary for an efficient (low-parameter) modeling. These relations depend on the crystallographic texture of the sheet, i.e., on the considered fiber (𝜃, 𝛼 ′ or 𝛾, see Figure 2).

It is obvious that the form of the stress 𝜎 𝜎 𝜎 and of the magnetization 𝑀 𝑀 𝑀 that satisfy the in-plane conditions are 𝜎 𝜎 𝜎 • 𝑛 𝑛 𝑛 = 0 and 𝑀 𝑀 𝑀 • 𝑛 𝑛 𝑛 = 0. (4.1)

We note stress and magnetization: 𝜎 𝜎 𝜎 𝜃 , 𝑀 𝑀 𝑀 𝜃 (for 𝑛 𝑛 𝑛 = 𝑛 𝑛 𝑛 𝜃 ), 𝜎 𝜎 𝜎 𝛼 ′ , 𝑀 𝑀 𝑀 𝛼 ′ (for 𝑛 𝑛 𝑛 = 𝑛 𝑛 𝑛 𝛼 ′ ) and 𝜎 𝜎 𝜎 𝛾 , 𝑀 𝑀 𝑀 𝛾 (for 𝑛 𝑛 𝑛 = 𝑛 𝑛 𝑛 𝛾 ), for the three fibers 𝜃, 𝛼 ′ and 𝛾. More precisely, the following equations describe the in-plane hypothesis (4.1) for these three cases,

𝜎 𝜎 𝜎 𝜃 = ⎛ ⎝ 𝜎 11 𝜎 12 0 𝜎 12 𝜎 22 0 0 0 0 ⎞ ⎠ , 𝑀 𝑀 𝑀 𝜃 = ⎛ ⎝ 𝑀 1 𝑀 2 0 ⎞ ⎠ , (4.2) 
𝜎 𝜎 𝜎 𝛼 ′ = ⎛ ⎝ 𝜎 11 𝜎 12 -𝜎 12 𝜎 12 -𝜎 23 𝜎 23 -𝜎 12 𝜎 23 -𝜎 23 ⎞ ⎠ , 𝑀 𝑀 𝑀 𝛼 ′ = ⎛ ⎝ 𝑀 1 𝑀 2 -𝑀 2 ⎞ ⎠ , (4.3 
)

𝜎 𝜎 𝜎 𝛾 = ⎛ ⎝ -𝜎 12 -𝜎 13 𝜎 12 𝜎 13 𝜎 12 -𝜎 12 -𝜎 23 𝜎 23 𝜎 13 𝜎 23 -𝜎 13 -𝜎 23 ⎞ ⎠ , 𝑀 𝑀 𝑀 𝛾 = ⎛ ⎝ 𝑀 1 𝑀 2 -𝑀 1 -𝑀 2 ⎞ ⎠ . (4.4)
Expressions are given in the canonical cubic symmetry basis (𝑒 𝑒 𝑒 1 , 𝑒 𝑒 𝑒 2 , 𝑒 𝑒 𝑒 3 ) of Figure 1, with

𝑛 𝑛 𝑛 𝜃 = 𝑒 𝑒 𝑒 3 , 𝑛 𝑛 𝑛 𝛼 ′ = 1 √ 2 (𝑒 𝑒 𝑒 2 + 𝑒 𝑒 𝑒 3 ) and 𝑛 𝑛 𝑛 𝛾 = 1 √ 3 (𝑒 𝑒 𝑒 1 + 𝑒 𝑒 𝑒 2 + 𝑒 𝑒 𝑒 3 ).
The assumption of plane stress leads to the reduction of the number of independent components 𝜎 𝑖𝑗 from 6 to 3. The assumption of plane magnetization reduces the number of independent components 𝑀 𝑖 to 2 instead of 3. We denote by ℳℬ = {𝐼 𝑘 } the initial integrity basis given in Table 1. The set ̃︂ ℳℬ of restrictions of polynomial functions 𝐼 𝑘 to the subspace of (𝑀 𝑀 𝑀 , 𝜎 𝜎 𝜎) which satisfy (4.1) spans a new algebra 𝒜 of polynomial functions in 5 variables. Our goal is to reduce this set ̃︂ ℳℬ of 30 invariants into a smaller generating set 𝒢 = {︁ Ĩ𝑙 }︁ of 𝒜.

Reduced sets of generators for the different fibers

Several algorithms/programs, able to check whether or not a set ℬ = {𝐼 𝑗 } of homogeneous polynomial invariants 𝐼 𝑗 is an integrity basis, are available in the literature [START_REF] Gordan | Les invariants des formes binaires[END_REF][START_REF] Boehler | On a Rational Formulation of Isotropic and Anisotropic Hardening[END_REF][START_REF] Derksen | With two appendices by Vladimir L. Popov, and an[END_REF][START_REF] Olive | About Gordan's Algorithm for Binary Forms[END_REF][START_REF] Desmorat | Computation of minimal covariants bases for 2D coupled constitutive laws[END_REF][START_REF] Taurines | Integrity bases for cubic nonlinear magnetostriction[END_REF]. In the case of finite groups, these algorithms require the knowledge, a priori, of a bound on the total degree of the generators. Moreover, these algorithms also allow for reducing an integrity basis ℬ into a minimal integrity basis ℳℬ, by checking linear relations among the invariants. In the present problem, a minimal integrity basis ℳℬ = {𝐼 𝑘 } is already known [START_REF] Smith | Integrity Bases for a Symmetric Tensor and a Vector-The Crystal Classes[END_REF][START_REF] Taurines | Integrity bases for cubic nonlinear magnetostriction[END_REF] and recalled in Table 1. Then, we evaluate all the 𝐼 𝑘 for a given stress/magnetization state (here for 𝑀 𝑀 𝑀 • 𝑛 𝑛 𝑛 = 0 and 𝜎 𝜎 𝜎 • 𝑛 𝑛 𝑛 = 0). The restrictions of the function 𝐼 𝑘 to this subspace, denoted by Ĩ𝑘 , are however not linearly independent: they satisfy some linear relations. An algorithm to compute these relations is provided in Appendix A, as well as its implementation in Macaulay2 [29], a software system devoted to computations in algebraic geometry and commutative algebra.

Finally, a minimal set of generators 𝒢 = {︁ Ĩ𝑘 𝑙 }︁ of 𝒜 can be produced, removing redundant generators from ̃︂ ℳℬ = {︁ Ĩ𝑘 }︁ . This has been done for each in-plane magneto-mechanical loading (4.2), (4.3) or (4.4). Corresponding minimal sets of generators are denoted respectively by 𝒢 𝜃 , 𝒢 𝛼 ′ , and 𝒢 𝛾 . The results are summarized in Table 3. The cardinalities of these sets are small (compared to the initial 30 invariants in Table 1). In terms of modeling, this means that the Gibbs free energy density can be expressed, with no lack of generality, as a function of invariants 𝐼 𝑘 such that Ĩ𝑘 belongs to 𝒢 when in-plane stress and magnetization are considered: Ψ = Ψ(𝐼 𝑘 1 , . . . , 𝐼 𝑘 𝐿 ), Ĩ𝑘 𝑙 ∈ 𝒢, 𝐿 = card 𝒢.

Remark 5.1. Plane constitutive laws can be deduced either by restricting first the energy density to the plane state variables and then, by deriving them with respect to these variables to get the dual plane variables (a) or by selecting the in-plane terms of 3D constitutive laws restricted to a 2D loading (b). This is mathematically justified by the fact that the pullback and the exterior derivative commute [52, As explained in introduction of this work, it is usually possible to find a set of fibers that describes the texture of a material. If the three previous fibers are combined to form the texture of a thin layer material subjected to an in-plane magneto-mechanical loading, the invariant generators in this situation is the union of the invariant generators of each fiber. Then it can be noticed that the list of O-invariants of the reduced generating sets of 𝜃 and 𝛾 fibers are included in the list of O-invariants of the reduced generating set of the 𝛼 ′ fiber. This means that the list of 15 invariants associated with the reduced generating set 𝒢 𝛼 ′ is the reduced generating set of any combination of the three preceding fibers.

Conclusion

The magneto-elasticity of cubic ferromagnetic materials is described using a Gibbs free energy density Ψ = Ψ(𝐼 𝑘 ) defined as a function of well-chosen cubic invariants 𝐼 𝑘 of the stress 𝜎 𝜎 𝜎 and the magnetization 𝑀 𝑀 𝑀 . It is relevant to take these cubic invariants into account for every crystallographic texture/fiber, with the drawback that the corresponding minimal integrity basis is constituted of a quite large number [START_REF] Hashimoto | Magnetic anisotropy and crystalline orientation in high Hk FeCoB thin films[END_REF] of invariants [START_REF] Smith | Integrity Bases for a Symmetric Tensor and a Vector-The Crystal Classes[END_REF][START_REF] Taurines | Integrity bases for cubic nonlinear magnetostriction[END_REF].

The magneto-mechanical coupled behavior of textured (cubic) ferromagnetic materials subjected to in-plane magneto-mechanical loadings has been streamlined. We have shown that for such loadings, and for specific textures/fibers, the Gibbs free energy density can be written as a function of a lower number of invariants Ψ = Ψ(𝐼 𝑘 1 , . . . , 𝐼 𝑘 𝐿 ), 𝐿 < 30.

Indeed, we have computed relations among the fundamental cubic invariants 𝐼 𝑘 which arise when they are restricted to plane magneto-elasticity problems. We have obtained, this way, some reduced (minimal) sets of cardinal 𝐿 of cubic generators 𝐼 𝑘 𝑙 for three major fibers, namely 𝜃 (𝐿 = 7), 𝛼 ′ (𝐿 = 15) and 𝛾 (𝐿 = 8) and their combination (𝐿 = 15). To do so, we have adapted an algorithm initially proposed to prove the minimality of an integrity basis in [START_REF] Taurines | Integrity bases for cubic nonlinear magnetostriction[END_REF]. An implementation of this algorithm in Macaulay2, a software devoted to algebraic geometry and commutative algebra [START_REF] Grayson | Macaulay2, a software system for research in algebraic geometry[END_REF], has also been provided. On the set of bi-degrees, we introduce the degree lexicographic order as follows (𝛼, 𝛽) < (𝛼 ′ , 𝛽 ′ ) if 𝛼 + 𝛽 < 𝛼 ′ + 𝛽 ′ or 𝛼 + 𝛽 = 𝛼 ′ + 𝛽 ′ and (𝛼 < 𝛼 ′ or 𝛼 = 𝛼 ′ and 𝛽 < 𝛽 ′ ).

Using this order relation, we define (𝛼, 𝛽) 1 and (𝛼, 𝛽) 𝐽 𝑀 𝑎𝑥 respectively, as the least and the greatest bi-degree (𝛼, 𝛽) appearing in the finite list of evaluated bi-homogeneous polynomials ̃︂ ℳℬ, where it is understood that each evaluated polynomial which vanishes is removed from ̃︂ ℳℬ. We can therefore partition ̃︂ ℳℬ into bi-graded sets The set of all bi-homogeneous polynomials in ( ̃︁ 𝑀 𝑀 𝑀 , ̃︀ 𝜎 𝜎 𝜎) having the same bi-degree (𝛼, 𝛽) is a finite dimensional vector space and the subspace of such polynomials which belong to the algebra 𝒜 is denoted by 𝒜 𝛼,𝛽 . Hence 𝒜 can be written as the direct sum

︂ ℳℬ = ̃︂ ℳℬ (𝛼,𝛽) 1 ∪ • • • ∪ ̃︂ ℳℬ (𝛼,
𝒜 = ⨁︁ 𝛼,𝛽
𝒜 𝛼,𝛽 .

Each finite dimensional vector space 𝒜 𝛼,𝛽 is spanned (as a vector space) by ̃︂ ℳℬ 𝛼,𝛽 (which is empty if (𝛼, 𝛽) > (𝛼, 𝛽) 𝐽 𝑀 𝑎𝑥 ) and the so-called reducible elements of bi-degree (𝛼, 𝛽) which can be written as products of (at least two) elements in

⋃︁ (𝜇,𝜈)<(𝛼,𝛽) ̃︂ ℳℬ (𝜇,𝜈) .
Hence, a minimal set of generators 𝒢 of 𝒜 can be extracted from ̃︂ ℳℬ by choosing a vectorial basis in each 𝒜 (𝛼,𝛽) 𝐽 (1 ≤ 𝐽 ≤ 𝐽 𝑀 𝑎𝑥 ) and by eliminating arbitrarily some generators ̃︀ 𝐼 𝑘 . This can be done, bi-degree by bi-degree (𝛼, 𝛽), once one knows exactly the linear relations between the ̃︀ 𝐼 𝑘 and the reducible elements of bi-degree (𝛼, 𝛽).

To do so, we proceed recursively as follows. Given 1 ≤ 𝐽 ≤ 𝐽 𝑀 𝑎𝑥 , let (𝑃 1 , . . . , 𝑃 𝑁 ) be the 𝑁 elements 𝑃 𝑗 in ℛ 𝐽 ∪ ̃︂ ℳℬ (𝛼,𝛽) 𝐽 , where ℛ 𝐽 is the set of reducible elements of bi-degree (𝛼, 𝛽) 𝐽 . Then, let 𝑚 1 , . . . , 𝑚 𝑀 be the monomials which appear in the family of bi-homogeneous polynomials (𝑃 1 , . . . , 𝑃 𝑁 ). Each of these monomials is written 𝑚 (𝛼 𝛼 𝛼,𝛽 𝛽 𝛽) with |𝛼 𝛼 𝛼| = 𝛼 and |𝛽 𝛽 𝛽| = 𝛽 (see (A. 

𝒢 = 𝒢 (𝛼,𝛽) 1 ∪ • • • ∪ 𝒢 (𝛼,𝛽) 𝐽 ∪ • • • ∪ 𝒢 (𝛼,𝛽) 𝐽 Max ,
is then the sought minimal set of generators of the algebra 𝒜.

For a given in-plane loading defined by a normal 𝑛 𝑛 𝑛, and given by (4.1), the following algorithm produces the expected finite list of relations ℒ among the set of restricted invariants ̃︂ ℳℬ = {︁ Ĩ𝑘 }︁ .

• Input: The set ̃︂ ℳℬ = {︁ Ĩ𝑘 }︁ of restricted invariants.

• Output: A list ℒ 𝐽 Max of polynomials relations between these restricted invariants Ĩ𝑘 .

• Initialization: 𝐽 = 0, ℒ 0 := ∅.

• For 1 ≤ 𝐽 ≤ 𝐽 𝑀 𝑎𝑥 :

(1) Generate the family ℛ 𝐽 of all reducible homogeneous polynomials of bi-degree (𝛼, 𝛽) 𝐽 ;

(2) Compute a basis (𝑢 𝑢 𝑢 𝑘 ) (1 ≤ 𝑘 ≤ 𝑁 -𝑅) of the kernel of the matrix 𝐴;

(3) Update the list

ℒ 𝐽 := [︁ ℒ 𝐽-1 , [ ∑︀ 𝑢 1 𝑗 𝑃 𝑗 , . . . , ∑︀ 𝑢 𝑁 -𝑅 𝑗 𝑃 𝑗 ] ]︁ ; • Return ℒ 𝐽 𝑀 𝑎𝑥 .
A.2. Implementation in Macaulay2. The code presented here is in the Macaulay2 language (see [START_REF] Grayson | Macaulay2, a software system for research in algebraic geometry[END_REF]) and can be run using a friendly web interface of Macaulay2 at https://www.unimelb-macaulay2.cloud.edu.au/#home. The invariants in Table 1 are computed for a particular form of 𝜎 𝜎 𝜎 and 𝑀 𝑀 𝑀 . This is the Input step of the algorithm detailed above. The bounds dMax = 7 and 𝛼 Max = 6 correspond respectively to the highest total degree and the highest partial degree in magnetization in the list ℳℬ of invariants 𝐼 𝑘 . The increment k is associated to the total degree and 𝛼 to the degree in M 𝑀 𝑀 .

-------------------------------------Input----------------------------------------definition of the algebra Alg of evaluated polynomials Alg = QQ[sig1, sig2, sig3, m1, m2, Degrees=>{{0,1},{0,1},{0,1},{1,0},{1,0}}] --off-diagonal part dbar=(b)->(matrix{{0,b_(0,1),b_(0,2)},{b_(1,0),0,b_(1,2)},{b_(2,0),b_(2,1),0}}); --deviatoric diagonal part ddev = (b)->(matrix{{b_(0,0) -1/3*trace(b), 0, 0},{0, b_(1,1) -1/3*trace(b), 0},{0, 0, b_(2,2) -1/3*trace(b)}}) ; --magnetization and stress bases for fiber theta e1=matrix({{1_Alg},{0},{0}}); e2=matrix({{0},{1_Alg},{0}}) eI=matrix{{1_Alg,0,0},{0,0,0},{0,0,0}} eII=matrix{{0,0,0},{0,1_Alg,0},{0,0,0}} eIII=matrix{{0,1_Alg,0},{1_Alg,0,0},{0,0,0}} --vectors and matrixes are omitted for others textures --stress and magnetization for a given fiber M = m1*e1+m2*e2 sig = sig1*eI+sig2*eII+sig3*eIII ; sigd = ddev(sig) ; sigdbar = dbar(sig) --evaluation of the invariants I010 = trace(sig) I002=trace(sigdbar^2) I020=trace(sigd*sigd) Pj=value Pj, if Pj!=0_Alg then ( mi=monomials(Pj), (m,A)=coefficients(Pj,Monomials=>mi), uj=generators(ker A), ------------------------------------Step 3--------------------------------------ujPj=(value(Base))*value(toString(uj)), if ujPj!=0 then ( LJ=append(LJ,ujPj)) , ) ) ) ) "LJMax"<<toString(LJ)<<close (Julien Taurines) Université Paris-Saclay, ENS Paris-Saclay, CentraleSupélec, CNRS, LMPS -Laboratoire de Mécanique Paris-Saclay, 91190, Gif-sur-Yvette, France
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 2 Figure 2. Cut of Euler space for 𝜙 2 = 45 ∘ and highlighting of some major texture components.

Appendix A. Reduction algorithm and implementation A. 1 .

 1 Algorithm. The algorithm we propose here generates all the relations between the homogeneous polynomials {︁ Ĩ𝑘 }︁ in ̃︂ ℳℬ, the set of cubic invariants {𝐼 𝑘 } restricted to plane loadings (plane defined by the normal unit vector 𝑛 𝑛 𝑛). For instance, for the fiber 𝜃 (𝑛 𝑛 𝑛 𝜃 = 𝑒 𝑒 𝑒 3 ), 𝑀 3 = 0 and 𝜎 13 = 𝜎 23 = 𝜎 33 = 0. If we choose ̃︀ 𝑒 𝑒 𝑒 1 = 𝑒 𝑒 𝑒 1 , ̃︀ 𝑒 𝑒 𝑒 2 = 𝑒 𝑒 𝑒 2 as a natural basis of the subspace 𝑀 3 = 0 of vectors 𝑀 𝑀 𝑀 and ︀ e I = e e e 11 = basis of the subspace 𝜎 𝜎 𝜎.𝑒 𝑒 𝑒 3 = 0 of stresses 𝜎 𝜎 𝜎, we get

  𝜙 2 corresponds to a third and last rotation operation around 𝑒 𝑒 𝑒 3 axis; the new frame is denoted (𝑒 𝑒 𝑒 1 , 𝑒 𝑒 𝑒 2 , 𝑒 𝑒 𝑒 3 ). Associating the cubic crystallographic frame ([100] [010] [001]) to the orthonormal frame (𝑒 𝑒 𝑒 1 , 𝑒 𝑒 𝑒 2 , 𝑒 𝑒 𝑒 3 ), it is possible to observe some connection between a crystallographic axis [𝑢𝑣𝑤] and the principal axes of the reference frame. We thus usually designate by the following Miller indices combination {ℎ𝑘𝑙} < 𝑢𝑣𝑤 > a situation where {ℎ𝑘𝑙} corresponds to ND (for cubic symmetry, ℎ, 𝑘 and 𝑙 also indicate the components of the vector normal to the sheet plane) and where < 𝑢𝑣𝑤 > corresponds to RD.
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• 𝜓 corresponds to a second rotation operation around 𝑟 𝑟 𝑟 ′ axis; the new coordinate system is named (𝑟 𝑟 𝑟 ′ , 𝑡 𝑡 𝑡 ′′ , 𝑒 𝑒 𝑒 3 ). Figure 1. Illustration of reference (𝑟 𝑟 𝑟, 𝑡 𝑡 𝑡, 𝑛 𝑛 𝑛)=(RD,TD,ND) and rotated (𝑒 𝑒 𝑒 1 , 𝑒 𝑒 𝑒 2 , 𝑒 𝑒 𝑒 3 ) frames using (𝜙 1 , 𝜓, 𝜙 2 ) Euler angles and Bunge rotation rules.

•

  1 3 (tr 𝜎 𝜎 𝜎)1 splits into 𝜎 𝜎 𝜎 ′ = 𝜎 𝜎 𝜎 𝑑 + 𝜎 𝜎 𝜎 𝑑 .

	Remark 3.1. The introduction of the following two fourth order tensors P 𝑑 O and P 𝑑 O = J -P 𝑑 O ,
	where	P 𝑑 O :=	2 1	∑︁

𝑖<𝑗

e 𝑖𝑗 ⊗ e 𝑖𝑗 , e 𝑖𝑗 := 𝑒 𝑒 𝑒 𝑖 ⊗ 𝑒 𝑒 𝑒 𝑗 + 𝑒 𝑒 𝑒 𝑗 ⊗ 𝑒 𝑒 𝑒 𝑖 (𝑖 ̸ = 𝑗).

and J = I -1 3 1 ⊗ 1 is the deviatoric projector, removes the dependency of this decomposition to the canonical basis (𝑒 𝑒 𝑒 𝑖 ). Indeed, P 𝑑 O and P 𝑑 O correspond to the two orthogonal projectors of 𝜎 𝜎 𝜎 onto the O-irreducible components 𝜎 𝜎 𝜎 𝑑 and 𝜎 𝜎 𝜎 𝑑

[START_REF] Rychlewski | On Hooke's law[END_REF][START_REF] Francois | Détermination des symétries matérielles de matériaux anisotropes[END_REF][START_REF] Desmorat | Non-quadratic Kelvin modes based plasticity criteria for anisotropic materials[END_REF] 

in any orthonormal frame: {︃ 𝜎 𝜎 𝜎 𝑑 := P 𝑑 O : 𝜎 𝜎 𝜎 𝜎 𝜎 𝜎 𝑑 := P 𝑑 O : 𝜎 𝜎 𝜎 This result is axis (𝑒 𝑒 𝑒 𝑖 ) independent.

Table 1

 1 , a large number of material parameters -quantified for polynomial energy densities -has been introduced.

	deg(𝑀 𝑀 𝑀 )	deg(𝜎 𝜎 𝜎) 0 1 2 3	4	5	6	7	8	9	10
	0	-1 3 6 11 18 32 48	75	111 160
	2	0 2 6 14 31 60 106 180 288 442 659
	4	1 3 10 24 53 102 185 312 504 777 1161
	6	1 4 13 34 73 144 262 444 717 1112 1660
	8	1 5 17 42 95 186 378 576 933 1443 2162
	10	1 6 20 52 115 228 375 708 1146 1748 2661

Table 2 .

 2 Number of material parameters

Table 3 .

 3 𝐼 002 , 𝐼 020 , 𝐼 200 𝐼 201 , 𝐼 210 , 𝐼 400 𝒢 𝛼 ′ 15 tr 𝜎 𝜎 𝜎, 𝐼 002 , 𝐼 020 , 𝐼 003 , 𝐼 030 , 𝐼 200 , 𝐼 201 , 𝐼 210 , 𝐼 𝑎 202 , 𝐼 211 , 𝐼 220 , 𝐼 400 , 𝐼 401 , 𝐼 410 , 𝐼 600 𝒢 𝛾 8 tr 𝜎 𝜎 𝜎, 𝐼 020 , 𝐼 030 , 𝐼 200 , 𝐼 210 , 𝐼 220 , 𝐼 410 , 𝐼 600 Reduced generating sets 𝒢 = For this configuration, we get the following 15 relations. 18𝐼 030 + 9𝐼 002 tr 𝜎 𝜎 𝜎 + 9𝐼 020 tr 𝜎 𝜎 𝜎 -2(tr 𝜎 𝜎 𝜎) 3 )︀ 𝐼 002 ) 2 + 6𝐼 002 𝐼 020 -3(𝐼 020 ) 2 + 12𝐼 003 tr 𝜎 𝜎 𝜎 -12𝐼 012 tr 𝜎 𝜎 𝜎 + 12𝐼 030 tr 𝜎 𝜎 𝜎 -2𝐼 002 (tr 𝜎 𝜎 𝜎) 2 -2𝐼 020 (tr 𝜎 𝜎 𝜎) 2 )︀ 𝐼 020 + 3(𝐼 020 ) 2 -12𝐼 030 tr 𝜎 𝜎 𝜎 + 2𝐼 020 (tr 𝜎 𝜎 𝜎) 2 )︀ 6𝐼 020 𝐼 003 + 9𝐼 002 𝐼 012 + 3𝐼 020 𝐼 012 + 6𝐼 002 𝐼 030 -2𝐼 002 𝐼 020 tr 𝜎 𝜎 𝜎 -2𝐼 012 (tr 𝜎 𝜎 𝜎) 2 )︀ 3𝐼 002 𝐼 210 -3𝐼 020 𝐼 210 + 12𝐼 220 tr 𝜎 𝜎 𝜎 -2𝐼 210 (tr 𝜎 𝜎 𝜎) 2 )︀ 𝐼 201 + 72𝐼 203 + 18𝐼 221 -12𝐼 𝑏 202 tr 𝜎 𝜎 𝜎 + 12𝐼 211 tr 𝜎 𝜎 𝜎 + 2𝐼 201 (tr 𝜎 𝜎 𝜎) 2 6𝐼 003 𝐼 210 + 9𝐼 002 𝐼 𝑎 202 + 3𝐼 020 𝐼 𝑎 202 + 6𝐼 002 𝐼 220 -2𝐼 002 𝐼 210 tr 𝜎 𝜎 𝜎 -2𝐼 𝑎 202 (tr 𝜎 𝜎 𝜎) 2 )︀ 3𝐼 003 𝐼 201 + 3𝐼 012 𝐼 201 -3𝐼 020 𝐼 𝑏 202 -12𝐼 203 tr 𝜎 𝜎 𝜎 + 2𝐼 𝑏 202 (tr 𝜎 𝜎 𝜎) 2 𝐼 211 -2𝐼 020 𝐼 201 tr 𝜎 𝜎 𝜎 + 3𝐼 020 𝐼 211 + 3𝐼 003 𝐼 201 + 6𝐼 012 𝐼 201 +6𝐼 030 𝐼 201 + 2𝐼 𝑏 202 (tr 𝜎 𝜎 𝜎) 2 -2𝐼 211 (tr 𝜎 𝜎 𝜎) 2 -12𝐼 203 tr 𝜎 𝜎 𝜎 𝐼 200 + 3𝐼 020 𝐼 200 -18𝐼 𝑎 202 -36𝐼 211 -18𝐼 220 + 6𝐼 201 tr 𝜎 𝜎 𝜎 +6𝐼 210 tr 𝜎 𝜎 𝜎 -2𝐼 200 (tr 𝜎 𝜎 𝜎) 2 )︀ 𝐼 200 + 24𝐼 012 𝐼 200 + 12𝐼 030 𝐼 200 + 9𝐼 002 𝐼 201 + 3𝐼 020 𝐼 201 + 3𝐼 002 𝐼 210 -3𝐼 020 𝐼 210 -4𝐼 002 𝐼 200 tr 𝜎 𝜎 𝜎 -4𝐼 020 𝐼 200 tr 𝜎 𝜎 𝜎 -12𝐼 𝑎 202 tr 𝜎 𝜎 𝜎 -24𝐼 211 tr 𝜎 𝜎 𝜎 + 2𝐼 201 (tr 𝜎 𝜎 𝜎) 2 + 2𝐼 210 (tr 𝜎 𝜎 𝜎) 2 )︀ 𝐼 200 -18𝐼 012 𝐼 200 -12𝐼 030 𝐼 200 -6𝐼 020 𝐼 201 + 3𝐼 020 𝐼 210 + 2𝐼 002 𝐼 200 tr 𝜎 𝜎 𝜎 +4𝐼 020 𝐼 200 tr 𝜎 𝜎 𝜎 + 6𝐼 𝑎 202 tr 𝜎 𝜎 𝜎 + 6𝐼 𝑏 202 tr 𝜎 𝜎 𝜎 + 12𝐼 211 tr 𝜎 𝜎 𝜎 -2𝐼 201 (tr 𝜎 𝜎 𝜎) 2 -2𝐼 210 (tr 𝜎 𝜎 𝜎) 2 𝐼 210 -24𝐼 200 𝐼 211 + 3𝐼 020 𝐼 400 + 12𝐼 401 tr 𝜎 𝜎 𝜎 -2𝐼 400 (tr 𝜎 𝜎 𝜎) 2 )︀ 6𝐼 201 𝐼 210 -24𝐼 200 𝐼 𝑏 202 -24𝐼 200 𝐼 211 + 12𝐼 002 𝐼 400 + 9𝐼 020 𝐼 400 +8𝐼 200 𝐼 201 tr 𝜎 𝜎 𝜎 + 12𝐼 401 tr 𝜎 𝜎 𝜎 -6𝐼 400 (tr 𝜎 𝜎 𝜎) 2 )︀ 𝐼 201 + 6𝐼 201 𝐼 400 -3𝐼 210 𝐼 400 + 6𝐼 200 𝐼 410 + 𝐼 200 𝐼 400 tr 𝜎 𝜎 𝜎 -3𝐼 600 tr 𝜎 𝜎 𝜎 )︀ 𝐼 002 tr 𝜎 𝜎 𝜎 + 9𝐼 020 tr 𝜎 𝜎 𝜎) 𝐼 201 + 3𝐼 020 𝐼 201 + 12𝐼 203 -𝐼 𝑏 202 tr 𝜎 𝜎 𝜎 + 6𝐼 211 tr 𝜎 𝜎 𝜎 𝐼 201 -𝐼 020 𝐼 201 -6𝐼 221 -4𝐼 211 tr 𝜎 𝜎 𝜎) 𝐼 210 -6𝐼 002 𝐼 𝑎 202 + 18𝐼 020 𝐼 𝑎 202 + 3𝐼 002 𝐼 210 tr 𝜎 𝜎 𝜎 -9𝐼 020 𝐼 210 tr 𝜎 𝜎 𝜎) 𝐼 201 -32𝐼 002 𝐼 211 + 72𝐼 020 𝐼 211 + 3𝐼 002 𝐼 201 tr 𝜎 𝜎 𝜎 -3𝐼 020 𝐼 201 tr 𝜎 𝜎 𝜎 -16𝐼 203 tr 𝜎 𝜎 𝜎) 12𝐼 200 𝐼 𝑎 202 -3𝐼 002 𝐼 400 -6𝐼 020 𝐼 400 + 4𝐼 200 𝐼 210 tr 𝜎 𝜎 𝜎 -12𝐼 410 tr 𝜎 𝜎 𝜎) 8𝐼 002 𝐼 201 tr 𝜎 𝜎 𝜎 + 9𝐼 002 𝐼 𝑏 202 -108𝐼 002 𝐼 211 -45𝐼 020 𝐼 𝑏 202 + 216𝐼 020 𝐼 211 +3𝐼 003 𝐼 201 -12𝐼 012 𝐼 201 -36𝐼 203 tr 𝜎 𝜎 𝜎) 6𝐼 002 𝐼 003 -14𝐼 020 𝐼 003 + 𝐼 2 002 tr 𝜎 𝜎 𝜎 -6𝐼 002 𝐼 020 tr 𝜎 𝜎 𝜎 + 9𝐼 2 020 tr 𝜎 𝜎 𝜎 )︀ 𝐼 200 -12𝐼 002 𝐼 201 + 24𝐼 020 𝐼 201 + 𝐼 002 𝐼 200 tr 𝜎 𝜎 𝜎 + 12𝐼 𝑎 202 tr 𝜎 𝜎 𝜎)

		theorem 5.3].				
	Reduced basis Cardinal 𝐿 List of O-invariants
	𝒢 𝜃	7	tr 𝜎 𝜎 𝜎, {︁	Ĩ𝑘 𝑙	}︁	for the different textures.

5.1. 𝜃-fiber. This is the most favorable texture orientation for a reduction of the integrity basis evaluated with in-plane conditions. The direction {001} is indeed the normal 𝑛 𝑛 𝑛 𝜃 = 𝑒 𝑒 𝑒 3 to the cubic crystal network (a symmetry plane of the microstructure). Because of the presence of null coefficients in (4.2) (especially on the off-diagonal part of 𝜎 𝜎 𝜎), 12 evaluated invariants in ℳℬ vanish, namely

𝐼 003 = 𝐼 004 = 𝐼 014 = 𝐼 𝑏 202 = 𝐼 203 = 𝐼 𝑏 212 = 𝐼 204 = 𝐼 402 = 𝐼 222 = 𝐼 401 = 𝐼 411 = 𝐼 600 = 0.

In addition, we get the following 11 relations.

5.2. 𝛼 ′ -fiber. 𝑛 𝑛 𝑛 𝛼 ′ is normal to another symmetry plane of the crystal network. This explains why the number of useful invariants is drastically reduced (this reduction is however smaller than for the 𝜃 fiber).

5.3. 𝛾-fiber. In this configuration, stress tensor and magnetization do not have vanishing components (see

(4.4)

). However, useful relations appear between the invariants involving the off-diagonal part of 𝜎 𝜎 𝜎. We get for this fiber the following 22 relations. 201 -6𝐼 200 𝐼 401 -6𝐼 600 tr 𝜎 𝜎 𝜎 )︀ 5.4. Combination of 𝜃, 𝛼 ′ and 𝛾 fibers.

︁

  𝑀 𝑀 𝑀 = ̃︁ 𝑀 1 ̃︀ 𝑒 𝑒 𝑒 1 + ̃︁ 𝑀 2 ̃︀ 𝑒 𝑒 𝑒 2 and ̃︀ 𝜎 𝜎 𝜎 = ̃︀ 𝜎 1 ̃︀ e I + ̃︀ 𝜎 2 ̃︀ e II + ̃︀ 𝜎 3 ̃︀ e III . This bi-degree is denoted by (𝛼, 𝛽) and the total degree by 𝑑 = 𝛼 + 𝛽. A bi-homogeneous polynomial of bi-degree (𝛼, 𝛽) is thus a linear combination of monomials 𝑚 𝛼 𝛼 𝛼,𝛽 𝛽 𝛽 = ̃︁ 𝑀 𝛼 1 𝛼 1 , 𝛼 2 ) (𝛼 𝑘 being the degree in ̃︁ 𝑀 𝑘 , so that 𝛼 = |𝛼 𝛼 𝛼| = 𝛼 1 + 𝛼 2 ) and 𝛽 𝛽 𝛽 = (𝛽 1 , 𝛽 2 , 𝛽 3 ) (𝛽 𝑙 being the degree in ̃︀ 𝜎 𝑙 , so that 𝛽 = |𝛽 𝛽 𝛽| = 𝛽 1 + 𝛽 2 + 𝛽 3 ).

	For each considered fiber, the restricted invariants are expressed as polynomial functions of ̃︀ 𝜎 𝜎 𝜎 and
	︁ 𝑀 𝑀 𝑀 as above. These polynomial functions are homogeneous, both in ̃︀ 𝜎 𝜎 𝜎 and ̃︁ 𝑀 𝑀 𝑀 . For such a bi-
	homogeneous polynomial, we introduce the degree 𝛼 = deg( ̃︁ 𝑀 𝑀 𝑀 ) in ̃︁ 𝑀 𝑀 𝑀 and the degree 𝛽 = deg(̃︀ 𝜎 𝜎 𝜎)
	in ̃︀ 𝜎 𝜎 𝜎. 1	̃︁ 𝑀 𝛼 2 2 ̃︀ 𝜎 𝛽 1 1 ̃︀ 𝜎 𝛽 2 2 ̃︀ 𝜎 𝛽 3 3	(A.1)
	with 𝛼 𝛼 𝛼 = (		

  𝛽) 𝐽 Max , using the following partition of the integrity basis ℳℬ in Table 1, and where the set ℳℬ 𝛼,𝛽 consists in bi-homogeneous polynomials in (𝜎 𝜎 𝜎, 𝑀 𝑀 𝑀 ) of bi-degree (𝛼, 𝛽). ℳℬ 0,1 = {tr 𝜎 𝜎 𝜎} , ℳℬ 0,2 = {𝐼 020 , 𝐼 002 } , ℳℬ 0,3 = {𝐼 012 , 𝐼 003 , 𝐼 030 } , ℳℬ 0,4 = {𝐼 004 , 𝐼 022 } , ℳℬ 0,5 = {𝐼 014 } , ℳℬ 2,0 = {𝐼 200 } , ℳℬ 2,1 = {𝐼 201 , 𝐼 210 } ,

		ℳℬ 2,2 =	{︁ 𝐼 𝑎 202 , 𝐼 𝑏 202 , 𝐼 211 , 𝐼 220	}︁	,
	ℳℬ 2,3 = {𝐼 210 , 𝐼 201 } ,	ℳℬ 2,4 =	{︁ 𝐼 203 , 𝐼 𝑎 212 , 𝐼 𝑏 212 , 𝐼 221	

}︁

,

ℳℬ 4,0 = {𝐼 400 } , ℳℬ 4,1 = {𝐼 401 , 𝐼 410 } , ℳℬ 4,2 = {𝐼 402 , 𝐼 411 } , ℳℬ 6,0 = {𝐼 600 } , ℳℬ 6,1 = {𝐼 601 } .

  𝐴 𝑖𝑗 ) is an 𝑀 × 𝑁 matrix. The computation of a basis 𝑢 𝑢 𝑢 𝑘 := ∑︀ 𝑖 𝑢 𝑘 𝑖 𝑚 𝑖 , where 1 ≤ 𝑘 ≤ 𝑁 -𝑅 and 𝑅 := rank(𝐴), furnishes all the independent linear relations between the 𝑃 𝑗 , which are written ∑︁ Thanks to the knowledge of these relations, we are able to extract, by hand, a minimal set𝒢 (𝛼,𝛽) 𝐽 ⊂ ̃︂ ℳℬ (𝛼,𝛽) 𝐽 ,which spans (together with ℛ 𝐽 ) the vector space 𝒜 (𝛼,𝛽) 𝐽 . The union

	𝑢 𝑘 𝑗 𝑃 𝑗 = 0,	1 ≤ 𝑘 ≤ 𝑁 -𝑅.	(A.2)
	𝑗		
			1)). We
	can thus write		
	𝑃 𝑗 =	∑︁	

𝑖

𝐴 𝑖𝑗 𝑚 𝑖 , where 𝐴 := (