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ON H??2 ISOMORPHISM THEOREMS AND REINFORCED LOOP SOUP

YINSHAN CHANG, DANG-ZHENG LIU, AND XIAOLIN ZENG

ABSTRACT. We show that supersymmetric (susy) hyperbolic isomorphism theorems that
relate Vertex Reinforced Jump Processes and H?? field, introduced in [2] and [3], are an-
nealed version of isomorphism theorems relating Markov processes and Gaussian free field,
with the help of a Bayes formula that relates susy hyperbolic field to susy free field. On
the other hand, we also prove a BFS-Dynkin’s isomorphism theorem for reinforced loop
soup. Moreover, we provide yet another proof of BFS-Dynkin’s isomorphism for VRJP a la
Feynman—Kac.

1. INTRODUCTION

In [2] and [3], several isomorphism theorems relating a susy hyperbolic sigma field (called
the H?2 model, see [7] for details) and the Vertex Reinforced Jump Process (VRJP, discussed
in e.g. [1, 5, 6 18, 19, 15| 3], 14], 4] etc list non exclusive, this process is also related to the
edge reinforced random walk, e.g. see references in [19]) are introduced, and were applied to
deduce the recurrence of the VRJP on two dimensional lattice. In this paper we try to answer
the following question: are these isomorphism theorems related to the classical ones
(e.g. [9],[17],[10]) that correspond to Gaussian free field?

We provide a positive answer to this question and give alternative proofs to these isomor-
phism theorems. In particular, we prove a Bayes formula (Theorem [I]) that relates the susy
hyperbolic sigma field to the classical Gaussian free field. Using the Bayes formula, we also
provide the susy hyperbolic version of BFS-Dynkin’s isomorphism for loop soup (Theorem
[d), which we define as reinforced loop soup. For motivation on loop soup, see [20] and [I1]
and references therein. Finally, we also give another proof of susy hyperbolic BFS-Dynkin’s
isomorphism a la Feynman-Kac in the appendix.

1.1. Definitions and notations. In this section, we define our notations and gather some
useful facts about our subjects. We will exclusively work on a finite graph, denoted by
G = (V, E), where the edges are non-oriented, to each edge {i,j} € E we associate a positive
real W, ;, and W, ; = 0 if there is no edge between 4, 7. This weighted graph is encoded by
the following matrix

—Wi; i FJ

AW = (AW(iaj))i,jEVa where Aw(l,]) = {Z Wk i _j .
keV\{i} "% -

Sometimes we add a cemetery point to our graph, denoted by 4, so the graph with the
cemetery is G = (V, E), where V =V U {0} and E = FU {{0,i} : W5, > 0}. We assume
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that at least one of the Ws; > 0 (so the graph is connected), usually all the W;,; are the
same, in such case, we usually denote W;s; = h, Vi € V. This enlarged graph is encoded by

Wi i

Ay = (Aw(4,9)); e, Where Agz (i, j) = .
W W Jev W ey Win 0=

Note that we have (Ag:)v <y = Aw + h, where (Ag;)vxv is the restriction of Ag; to the set
V and h is considered as the diagonal matrix A Id.

1.1.1. The susy hyperbolic sigma model. The H*? model is discussed in detail in [7], in this
subsection we briefly recall the basic properties of this model. For more details, we refer
to [2, Section 2] and the reference therein. To each vertex i € V, we associate a (super)
vector ®; = (x4, v;, 2,&,m;). Here, z; and y; are real variables, ¢ and 7; are Grassmann
variables. Considerable care must be taken when dealing with Grassmann variables, the
product between &; and 7; are anticommutative, i.e. §n; = —n;&. In particular, §¢& = & =
0. This vector ®; lives in the H?? susy hyperbolic space, i.e.

D, By = B = af +yi — 2+ 26m = —1,

where z; is chosen in the positive branch, i.e.

§ini
V1+al+y?

Here, one should think of z; = \/ 1+ 22 4+ y? + 2&m; as a super-function of x;, y;, & and
n;. Its precise meaning is given by the Taylor expansion of /- at 1 + z? 4 y? as follows:

zi= /1422442 + §in _ Emi&in g
L+af+yp 2(1+a7 +y7)2

Since &;&; = 0, we have &n;&mi = —&&mim; = 0, therefore the third term vanishes. Simi-
larly, all the higher order terms vanish and the expansion has only the first two terms.

The collection of vectors (®;);ey = @ live in (H??)V, on which the inner product of two
vectors is defined by

zi:\/1+x?+yi2+2£mi: \/1+x§+y$+

Q- P = O,D; = wyw; + yiy; — 2z + &y — i

This inner product is symmetric, i.e. ®;®; = ®,;9;, the zero vector is (0,0,1,0,0), which is
simply denoted by 0. The energy of the H?? model on V is defined by

1 1 1
§<I>AW<I> = §<I>tAW<I> =3 Z (Aw )i ®; - @,
(1) i,jeEV
= — Z Wm(l’il’j +YiY; — zizj + &UJ‘ - §j7h' + 1)

{i,j}eE

The Haar measure (Berezin integral form, rather) on (H??)V equals
1

(2) Duy(®) =] Dy

2%

dz;dy;d&;dn;.

)

Later, we will integrate a super-function F(z,y,§,n) against Dy and denote [ F Dy (P)

the resulting integral. Equivalently, this amounts to integrate the super-function G = H-FV —
i€ z




ON H?? ISOMORPHISM THEOREMS AND REINFORCED LOOP SOUP 3

dzidy;d;dn; dx;dy;d€idn;

2 ’

against [, il For the integration of a super-function F' against [[..,,
we refer to [2, Eqgs. (28) and (29)].

Due to the non compact feature of hyperbolic space, the integral fe_%q’AW‘I’D,uV(CI)) is
not normalizable, we have to add a pinning, or equivalently, a boundary condition. i.e., we
consider the graph V instead, if at least one of the W;; > 0, then the following integral is
normalizable:

/1¢5=06_%5AW5D/~LV(®) =1,
where & = (®i),c7- Note that

(3) &)AW&S = Z (AW)UEISZ&)J = -2 Z Wi,j(:ci:cj + yiy; — 2z + &’f}j + fj’f]i + 1)
i,jev {i,j}eE
In particular, if we have ®s =0 = (0,0, 1,0,0), then

(4) 5AW§> = -2 Z Wi,j(SL’iCL‘j +yiy; — 2z + &ﬁj + @m + 1) -2 Z W5,Z~(—zi + 1)
{i.j}eE eV

We recover the usual definition of H?2-model defined in [7] when Wj,; = h for some h > 0
for all 7 € V, and in the language of statistical mechanics, h is the mass of the model. In
the sequel, this is our default choice if we do not mention anything else explicitly, and is
called H?? model on V pinned at ®5 = 0, or equivalently, H?? model on V with mass h.
We denote

(5) <.>W,¢5:0 :/'ﬂéézoe_%c}AWQ)DMV(@)

the expectation w.r.t. the above density measure, moreover, abusively, we denote

©) = [ D)

the (non-normalizable) expectation, for which we must be very careful on the observable we
integrate with.

There are some natural symmetries on this model, in particular, we will use two of them,
which we recall here. The first one is called the supersymmetry (or @-symmetry), which
states that, if F' = F(®) is any function that is invariant under the symmetric group of the
inner product on H?? space, then

(7) (F)i7 ;=0 = £7(0),

where F'(0) is simply the value obtained by taking its argument ®; = 0 for all i« € V. In
particular, if F' = F(z) is a function of the component z, then (F 4 _o = F(1).

The second type of invariance we want to discuss here is the rotational symmetric in the
xy plane and Lorentz boost in the zz plane, which are defined (respectively) by

(1) Euclidean rotation R,, with a € [0, 27]
R,® = (xcosa+ ysina, —xrsina + ycosa, 2, £, 1m)
(2) Lorentz boost 5, with s € R,
0P = (xchs+ zshs,y,zchs+xshs, & 7).
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Both the rotation and the boost leave the inner product (®;, ®;) and the Haar measure
Dpy(®) invariant, as a consequence, (-)y, is also invariant. Note that if we boost with
()i o;—0: the boundary condition is shifted, so ()3 4, 18 not invariant. To be more
precise, if we boost with () 4 _o, We obtain ()i 4 _g . Where 6,0 = (shs,0,chs,0,0)
and

8 O asen = [ Lasmae 5 Dy @),
Similarly, for a € V and s € R, we define
(9) (wazo,0 = / La,=0.06" 2" Dy (0 (D).

1.1.2. Vertex Reinforced Jump Process. The Vertex Reinforced Jump Process (VRJP) is first
discussed in [5], most of the facts we recall here can be found in [18],[16]. The VRJP on
G with edge weight W and initial local time z € RY, is a continuous time jump process,
denoted by Y = (Y})>0, starts from a vertex ig € V, and it jumps from ¢ to j at time ¢ at
rate W, ;L;(t), where

t
L](t) = Zj +/ ]lYS:de.
0
The quantity L;(t) is called its local time. If we perform the following time scaling: let

D(t) =) (Li(t)* =2}

=%
and define Z, = Yp-1(5) = Y}, where D(t) = s, then we have
(10) SZ(S) = / ]]-Zt:idt = Li(D_l(S))z — Zi2’
0

The jump rate from ¢ to j of the process Z = (Z;)s>0 at time s equals

1 Sj(S) + 2]2
2 "\ Si(s) + 227

The process Z turns out to be a mixture of Markov jump process, that is, to sample Z, we
can first sample the environment u € {u; € R,i € V, u;, = 0}, according to the probability
density function

1) 5 (du) = 1, _geb StearenWaa(e 9 24es 2002 /B Y TT 26
(1) o (du) = 1y (ﬂ%

Uj

dui,

where

D(W,u) = > [T wijevt.

spanning tree T of G {i,j}€T
Then, sample a Markov jump process (called the quenched process) with (static) jump rate
from 7 to j:

1
U5 —Ug
QWm'@ T
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We denote E" the expectation w.r.t. the probability law of the quenched process (Z;) starting
from a. The generator of the quenched process is not symmetric, but it can easily be made
symmetric by a simple time change. First, let A" = (Agfj)mev be the matrix with entries

(12) Al = W emew
Zke\/\{i} ik€ L=

The generator of the quenched process equals %e‘“Aue“, where e" is considered as the V' x V'
diagonal matrix with diagonal entry e“. If we scale the time at each vertex by a factor

2e2% then we get a reversible Markov process Z with jump rate W je" ™% its generator is
denoted by B*, where

B?L' _ _Wi’jeuri-uj- i #]
D ke gy Wige" i =g
The local time S;(t) of Z, is related to the local time S(t) of Z; by 2624 5;(t) = S;(t).
Similarly, if we consider the VRJP on V| let ¢ = inf{t > 0: Y; = d}, we kill the process

when it hits §. The process without killing is a mixture of Markov process for the same
reason as above, the mixing measure is

(13) 7/ (du) _ ]lul _oe -3 Z{z J}EEW1 J(euz u]z +e J*uzzQ—Zzzzj / H \/_ du“

ieV\{io}

and we can also define A" and B" on V as before for suitable time changes:

= —Wi; i £ieV  ~ IV ity cv
(14) A = J o izjeV B - e y i j
Dokery Wine™ ™ i=g eV, " Skerypy Wike ™ i=j eV,

As a consequence, the killed VRJP is a mixture of Markov process, killed (in the quenched
meaning) at its first hitting of .

Another property that we will use in our argument is the following. If we perform the
change of variable v; = u; — uy, for i € V' in the measure v)""!(du), then we have

(15) e yWol (du) = 1) (dv).
Hence, if F' is a function of the gradients (u; —u; : 4,5 € V), then

(16) / Fet=tey W1 (dy) — / Fo (du).

1.1.3. Supersymmetric free field and Parisi-Sourlas formula. In this subsection we discuss
the classical supersymmetric free field, and its related Parisi-Sourlas formula (or localization
of susy integral), and we apply the formula to show that H2? model shares the very same
localization formula. This is a classical topic in supersymmetry, cf. [§],[22] etc.

The susy free field on V' with generator W is a random vector ¥ = (U,),;cy, where ¥; =

(3, i, &, M) 1s a four-vector, with two real component and two fermions. Its energy is defined
by

1 1
(17) FVAWY =5 S (Aw)i Tl = Y Wi (U — y)(T; - Ty)
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where
W05 = iy + yiy; + &iny + &
The Haar measure DV is defined by
1
1 pu— —_— . . . .
(18) D =[] 5-dwidydédn,
eV

For the integration of a super-function against DW, we refer to [2, Egs. (28) and (29)]. The
integral [ e~3YAwY D is not normalizable, we consider the graph V as above, then

(19) /]1%:06—%‘3%%\1/ = /e—%q’@whﬂ’p@ =1

The expectation w.r.t. this density is denote [H]W\I/(;:W and is called the susy free field

with boundary 0 or with mass h. The normalizing constant equals 1 because
(20)

-1
e (Awrha) 2 Bw ) TT Zgdyy — — L / ~&@w+nm TT de-dn
2 2 = = .
/ ‘ Ezw T et (Aw + 1) c g i

As for the H?? field, we abusively denote [-]Jy the non normalizable free field. The Parisi-
Sourlas formula states that, if F'(V;¥;, i,j € V) is a function of the variables V;¥;s, and it
decays fast enoughﬁ, then, denote A = Ay + h,

(21) /Fe—%““I’D\If = F(0).

To be self-contained we include a short proof here, which we were told by M. Disertori and
T. Spencer fA.

Proof of Parisi-Sourlas formula (21)). We will prove the theorem for |V| = 1 (general case
follows in a similar manner), since F' decays fast enough, we can write, for some ¢ > 0,
F = ¥ f(0?), and assume that f satisfies the inverse Fourier transform formula: f(z) =
[ f(k)é**dk. Then we have

/Fe_%‘l’A‘I’D\If://f(k)ei“ﬂdkeeqﬂ_%\I’Aq’D\If
:/f(k)/e—\ll(A—ik—a)\I/D\I]dk
~ [ Fwdk = 1(0) = £ (0),

assuming A > ¢. O

Recall that if A is replaced by W, the integral [ e~ 2TAwY) D does not converge, but
the above formula still holds if F' is a function such that the integral converges. As an

ITo simplify the exposition, we do not look for the optimal decay of F (one can check [8] for details), in
our application of Parisi-Sourlas formula, Laplace transform of local times will be enough, so we always take
‘suitable’ test functions.

2AIM workshop on Self Interacting Processes, Supersymmetry and Bayesian Statistics 2019
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application, if we define z; = /1 + V2, and take the (fast decay) function to be

F = e%szyz—(h,z—l) 1

Z
ieV
for some i > 0, then from [Fw = F(0), we recover (1) 4 _, = 1, similarly, for reasonable
function f(z), <f(z)>fw7,%:0 = f(1). To recap, the susy integral localization is the same for

free field and H?? field.

We see from the above example that, in fact, when considering susy hyperbolic sigma field
and susy free field, we don’t have to distinguish between ® and ¥, as they can be ‘coupled’
into one (super) ‘probability’ space. We do distinguish them in the sequel, we hope this will
make the exposition more clear.

Finally, we extend our notion of susy free field on V' to those with certain congruent
transformation of a Markov generator, the typical case is to relate the reversible VRJP
with generator B to A = e " B"e™™. We can of course talk about susy free field with
generator B* (non normalizable, but can be make well defined by adding mass h as before),
the expectation is denoted [-]pu, now note that A* = e *B"e™, which is not a Markov
generator, we define the expectation [-] 4« by

(22) [F ()] 4 = [F (D)) g -

Similarly we can add mass or pinning to these generalization of susy free fields as before.
Recall (I2) and (I4). For s € R, we define

(23) [z ws=0.0 = /']I\PFGSOQ_%EIZWD\I’,
where 0,0 = (sh,0,0,0), VAW = 37, ¢ ApW0; = 37, o Al (wi; + yay; + &y + &)
and DV =], %dmidyid@dm. And fora € V, s € R,
(24) []avw.=6.0 = /']lxl/azasot?_%\mw H DV,
i€V\{a}

where 0,0 = (shs,0,0,0) and DV; = 2=dw;dy;dé;dn;.

o
2. RESULTS

The first part of our results is to provide a Bayes formula for VRJP with random initial
local times, which relates the susy hyperbolic field to a susy free field. As an application
we provide alternative proofs to the three isomorphism theorems and show their relations to
classical isomorphism theorems.

Since our definitions and notations can be heavy, to make the forthcoming results more

reader friendly, we would like to recall that the definitions of symbols VZ)V “ I/X)V S W da=6.0)

() @5=0.00 []av,w,=0,0 and [] 7u 4,0 can be found respectively in (1), [13), @), @), @4)
and (23)).

Theorem 1 (Susy Bayes formulae). For sufficiently decaying function g such that the ex-
pectations exist, we have, for any a € V and b € V', any s € R, the following hold,

Za fres 2 i
(25) <— [ <du>>~ = [l ),
<5 W, ®5=050
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(26) < [ uZVvZ<du>>W@bzeso = [T ),

where 0,0 = (shs,0,chs,0,0) in the case of H*? field and 6,0 = (shs,0,0,0) in the case of
free field.

The following corollaries are first announced in [2],[3], but our formulation is slightly
different.
Corollary 2 (BFS-Dynkin isomorphism). Consider VRJP on a graph G = (V, E, W) killed

atd, let ( =inf{t >0, Y; =0}, and L = L(() the final local time, i.e. L;({) = 1+f0C Ty,—ids,
for any a,b € V', and any suitable function g,

(27) / EY, (9(L)yimpece) dt = (a2sg(2))57 0.0 -
0
In particular, when Ws,; = h for all i,

ES (9(L) Ly, =) = b (2029(2))i7: 0,0 -

Corollary 3 (Generalized second Ray—Knight theorem). Consider VRJP on G = (V, E, W)
start from a € V', for any s # 0, let 7(y) = inf{t > 0 : Ly(t) > 7}, then for any suitable
function g,

(28) Ea (9(L(7(ch s)))) = (9(0:2)) w0, —0 -

Corollary 4 (Eisenbaum’s isomorphism). Consider VRJP on G = (V, E, W) killed at §, let
¢ =inf{t >0, Y; =3}, and L = L(Q) the final local time, i.e. L;({) =1+ foc Ly,—ds, for
any suitable function g, for any s #0, any a € V,

(29) <%EZ(Q(L))>W,%:930 _ <f3—:g<z>>wﬁ%zm.

Theorem 5 (Relation to flat isomorphism theorems). The equalities in Corollaries (2, [3,
are annealed version of the corresponding theorems for the quenched VRJP Markov process.

The second part of our results is about reinforced loop soup. We defer the definition of
reinforced loop soup to Section [, intuitively speaking, it is a random collection of loops L;
of VRJP trajectories, in which the number of loops increase with time t. See [12] for an
introduction to Markov loop soup.

Theorem 6 (Reinforced loop soup BFS-Dynkin isomorphism). Consider the reinforced loop
soup defined in [@4) at time 1, then its occupation field equals in law to (x* + y?) in the susy
hyperbolic sigma model, more precisely,

(30) B (g(£1)) = (92 + 1)) i 0,0 -

3. RELATION BETWEEN FLAT AND HYPERBOLIC ISOMORPHISM THEOREMS

In this section we give alternative proofs to the three isomorphism theorems, in particular,
our proofs show that the susy hyperbolic isomorphisms are in fact annealed versions of the
classical isomorphism theorems. The main tool we used is a Bayes formula for VRJP with
random initial local times.
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Proof of Bayes formula. All the formulae are proved by straight computations. For (23]), we

can combine (§)), (I3) and 23]). For (28), we combine (@), (I1) and (24]). We provide detailed
derivation of ([25) in the following and left the similar computation of (26)) to the reader.

Let F(2) = [ g(z,u)r}"*(du). By (8), we have that

(2 [aFsaw)  =(ZFe)
<5 W, ®5=050 <5 W, ®5=050

Za

= [ 2 F 0y 255 Dy (),

2]

Recall that 6, = (shs,0,chs,0,0), @) and ([B]). We have that

(31) <ﬁ / gu?%(du>>
2 W ,®5=050

B / ﬁF(Z)]lc1>529 petigren Wi (s tuiy; —2iz H e +Emi+1) H deidyidfidm
25 s L1 2mz;
eV

_ F(Z)]l%:é)soez“’j}eé Wi j(@imj+yiyj—2izj+E&n;+E€ni+1) H l H )
el 2m
ieV\{a} €V

Next, we use (I3) and obtain that
(32)

F(z) = / 9w (du)

/g(z U)]lu —0€ 22{13}6EW21( T 2R e T T 22— 2225) \/7 H /

ieV\{a}

Plugging ([B2) into (B1I), we have that

(2 [l etan))
2 W, 05=050

—u;
2 —ug 2
// 2 U u o ZZ{ZJ}GE Wi (e 22 e ™ 122 ~22;2)) / | | Z;i€ dul

zEV\{a}

>piiyes Wi @iz tyay;—zizj+6m; +&mi+1) 1 du:-d&.dn;
]143629806 {i,jreE 7" %I J 7 J I H Oz dezdyzdgzdnz
ieV\{a} iV

U_ \/_

zEV\{a}

(33)

1
]14)6:03062{1 JjYEE Wi j(@i@;+yiy;+8&in;+&5ni+1) H —d:vzdy,d&dm
eV 2m
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Using 22 = 1+ a? + y2 + 2&m;, we calculate the exponent in the integral:

S Z VV” Ui~ ugz L uzz Z M/;]afl']—i—yzy]‘i—&%“‘gﬂ%‘l'l)

{z j}EE {i, ]}EE
1
=5 D Wile ™ e —2)
{i,j}€E
(34) + Z WZJ XLyl + YilY;j + 527]] + fj’fh Z Z Wlkeuk Wi (;L’ —+ yl -+ 2&7}2)
{i.j}eE i€V keV
1
=5 3 Wiglen et —2) - _sz v,
{i,j}cE
1
= 3 Z W, ;(e"™ 4 e —2) — §\IIA“\II,
{i,j}cE
u _Wi'u 1 | € ‘7,
where (A");; = { 5 ’ T th—ui Zfi ey ad Wil = mia + yiy; + G + i By
keV ? ’ - )

(@), @3), B3) and ([34), we obtain that

Za 2 1 ”
< % <du>>~ = [ [ et
<5 W, Ws5=0,0

1 —~
(35) H gdl'zdyldgldnll/};v’l(du)

2%

- / 0] 50 0,077 (du).

3.1. Proof of BFS—Dynkin’s isomorphism.

Proof of BFS-Dynkin’s isomgj’phism. Denote Z: inf{t > 0: Z, =6} the time when 7 is
killed. Therefore, let S = S({) be the final local time of Z,

EY (g(L)y,_ =) = <zaE;V,Z(9(L)]1Y<=b)>V~V7%:0
= (o [ B2 (o/5F ) (0
ol A G GRS | ATl

Au Ts=0

rWV,CP(;:O

Conditionally on u, the process is Markov, so there is a classical BFS—Dynkin’s isomorphism
(see Appendix [Al for details), which is the following

Theorem A (Classical susy BFS-Dynkin’s isomorphism). Let Z be a Markov jump process
on G with jump rate %I/Vi,je“j_“i and killed when it hits 9, let S be its final local times, and
let (z,y,&,m) be susy free field with generator A%, with 2? = z* + y? + 2én + 1,

(36) [[Efj (g(S + z2)1ZE:b)]]gu,% = Wiy [ " zarp9(2?)] 1. =0
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If we apply this theorem to our previous computation and use (I6) and (25]), we get that
B (D)) = Wa [ [ g (2)] 5.y, 72 (00)

= Wa,b/’/gv’l(du) [[g(z)ifaxb]]ﬁu,%:o

= Wsp <$aIb9(Z)/V§V’Z(dU)>N
W, ®5=0

= Wiy <xa$bg(z)>’w7,c1>5=0 :

The particular case when Ws; = h for all i € V follows immediately, since ¢ becomes an
independent exponential random variable of rate h. O

3.2. Proof of second Ray—Knight theorem.

Proof of second Ray—Knight Theorem. This time we will use (26]). Recall that 7() = inf{t >
0: Lu(t) > ~}, define for Z, o(y) = inf{s > 0: S,(s) > v}. Since we work with initial local

time z, = 1, we have L;(7(ch s)) = \/Si(a(sh2 s)) + 22 for all i € V. Therefore, we have

Eq1(9(L(7(ch5)))) = (Ea,:(9(L(7(ch $))))) .0, -0

s (o (oot e 2)))
< ( <\/S(a(sh2 s))+22)) VJV’Z(du)>W@FO
_ / |[E;‘ (g (\/S(U(sm SDHZ))HA%%:OVF(CZU)

Now we can apply the classical susy generalized second Ray—Knight theorem for the Markov
jump process under the law E¥, which states (see Appendix [Al for details):

Theorem B (Classical susy generalized second Ray—Knight theorem). Consider the Markov
jump process on G with generator te A", and o(y) = inf{s > 0: S,(s) > v}, where S
is its local times. For any s # 0, if (x,y,£,n) is a susy free field , then for any test function
g, with 22 = 2% +y*> + 2fn + 1,

(37) [[EZ;‘ (g (S(U(Sh2 s)) + ))]] UR [[g ]]Au,\lfazeso

Plug the theorem to our previous computations, we obtain that

Eon(9(L(7(chs)))) = / [9() v 5,=0,0 va " (dut)

:</@@w&%ww>m%ﬁw

= (9(2)) W,a,=6,0
= <g(982)>W,¢a:0 :
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3.3. Proof of Eisenbaum’s isomorphism.

Proof of Fisenbaum’s isomorphism. This time we will use (25), denote S the final local time
of the process Z (killed at ¢),

<2EZ<9<L>>>W’%:980 - (25, (s(v572)))

Zs ) W, 85=0,0

_ <i—5 / B (g (VS+2)) v ,z(u)>ﬁ%:m

= [ [ (o (V552 1 E 00

Now apply the following classical susy Eisenbaum’s isomorphism (see Appendix [A] for de-
tails):

Theorem C (Classical susy Eisenbaum’s isomorphism). Let S be final local time of Markov
process with generator te™"A%e" on G killed at 0, and (x,y,&,1) a susy free field with gen-

erator g“, for any s # 0, and for suitable test function g, with 2> = x? + y? + 20 + 1,
u Us—Uq Ia
(39) [ 615+ D oo = e [2ot2]
s Au W 5=6,0

Plug this theorem into our computation, we get that

2a T ws—us || Ta =
(Zefow)) = fe @]
<5 W,25=0,0 s Av W 5=0,0
Ty 7
S A
Ls A W5=0,0
Lq W,z
_ <—g<z> [ad" <u>>~
s W, 05=0,0

T4
- <—g(2)>~ :
s W, ®5=050

4. REINFORCED LOOP SOUP.

As it is shown that susy hyperbolic isomorphisms are simply annealed versions of classical
isomorphisms related to free field, we can hence discuss another susy hyperbolic isomorphism
in the same manner, namely the BFS-Dynkin’s isomorphism for reinforced loop soup. To
be self-contained, we give a brief definition of this classical object (cf. [12]) here.

Sample the environment {u;, i € V, u; = 0} according to the mixing measure vy’ " (du),
from now on, fix this environment, let us first construct the quenched loop soup. To do
so, consider the Markov process Z* with jump rate %I/Vi,je“j_“i on V, Kkilled at ¢, i.e. the
generator is L" where

(39) L“(z}j)z{ e A

Pkeirgiy sWake i =
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The semi-group associated to this quenched Markov process is P¥ = e " ie. PU(i,j) =
E}(1ze—;), where I is the expectation of Z* starts from i.

The collection of based loops on V' are admissible trajectories in V' with same end points,
based loop measure associated to L" is a (usually not probability) measure on based loops.
More precisely, for a given path

{Z[Q(L],tl) =1 = 1lp, Zﬁ17t2) =0 Zﬁkqik) = k-1, Zﬁkvt} =J]= Zk} )

which we will denote

Lot . ta—t1 . . tp—tk—1 . t—tg
11 —> 9 —> ... U1 i ;

The trivial path (that makes no jumps) is denoted i L. In the remainder, the path measure
is defined, for fixed ¢t > 0,

iy (.t . to—ti . . te—th_1 . t—t
(40) Ptu’(l’]) (z—lml iy = S i —— k‘)

_ L’ZUHL;LI . LZC g —t1 Ly, —(ta—t1) LY ;. — (tk_tkfl)L;‘lkil,ikil_(t_tk)L;jdt
where dt = dt - - - dt;; and Hu’(lo’m)(io 5) = e oo Tt is a measure on paths up to time ¢
(and k& > 0 is arbitrary), with Zg§ =i, Z; = j. In particular, P is the marginal of the
probability of the Markov process up to time t.
A based loop with base point ¢ is a path of the following form

Lot . to—t1 . . te—tk—1 . t—1g

1 —> 1% —> ... = U1 T —
The based loop measure is a measure on the collection of based loops (endowed with the
sigma algebra generated by finite dimensional marginals):

te—thoa, o ity kzo,t>Qth“wmev:}
)

.t . to—t . .
{2—1>21—>2122—)...—)Zk_1 ’O<t1<t2<"'<tk<t

defined by

(41) jZ/ priig

eV

Note that, Ptu’(i’i) is a non-normalized bridge measure from i to i.

Once we have a measure on based loops, we can forget the base point of a based loop, and
work on the equivalence class of based loops. The loop measure p* is the image measure of
based loop measure w.r.t. this equivalence relation. The observables on loop soup that we
will consider are loop functionals, so all the computations can be done on based loops. For
example, a particularly interesting loop functional is ¢, which is the occupation time of a
loop (or based loop, which makes no difference):

~

t
b = /h@dsWEV
0

In the sequel, we will not distinguish based loops and loops.
The loop soup (L, a > 0) is a Poisson point process on the space of loops of intensity u*.

In particular, for any measurable subset F' of loops, the number of loops of L in F'is P01sson

distributed with parameter apu”(F'). The occupation field E“ is defined by E =D pecu b
The distribution of the loop soup L is denoted Es"P:*,
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The following theorem for loop soup is well known (e.g. p48. Remark (c) after Theorem 2
in [12]):

Theorem D (BFS-Dynkin’s isomorphism for loop soup). With the definition in this section,
the occupation field of LY has the same distribution of the sum of squares of two Gaussian
free fields with generator A". That is, for any suitable test function g,

(12) B (G(ZD) = [ gla® + 2)e AT det (A" dndy,

With the trick in appendix, we can translate this theorem into its susy free field version.

Corollary 7 (BFS-Dynkin’s isomorphism for loop soup, susy free field version). For suitable
test function g, with 2*> = x* + y? + 2&n + 1,

(43) [Eoro @i v 2o+ )] = 19

Motivated by the above theorem, we define occupation field for reinforced loop soup to be

the annealed version of ZE under vy ' (du). That is

(44) B (g( L)) = / B (g £2))dv ().

Remark 8 (Time change in reinforced loop soup). One would ask for a natural definition of
reinforced loop soup, in the manner of throwing loops on the graph, each loop will update the
occupation field when it is threw, thus results in changing the initial local time for the next
loop. A definition with this kind of feature can be carried out by using Remark 21 in [12], by
cutting a Markov paths into loops. We plan to develop these aspects in a further work.

Proof of susy hyperbolic loop soup BFS—Dynkin’s isomorphism.

Bw(o(20) = [ B (g(Eh)a ()
= / [9a® + 9%)] 5 g 03 ()

= <g(x2 +y2)/dV§V’Z>W¢ = (9% +9°))7 0,0
,P5=

U

APPENDIX A. THE SUSY FREE FIELD VERSIONS OF CLASSICAL ISOMORPHISM THEOREMS

The standard BFS-Dynkin’s isomorphism, generalized second Ray—Knight theorem and
Eisenbaum’s isomorphism for reversible Markov processes are related to Gaussian free field,
see [21] for a thorough discussion. Here we would like to explain their slightly more general
susy versions. Basically, we use the following two integrals: for a symmetric real M-matrix
A >0 of size V x V, say for some h > 0,

1, — » .
Wiith i=]
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We have

—3yAy dy _
(45) / H \/ﬁ vdet A

eV

and
(46) /e_gA"dgdn = det A.

Now, consider for example the BFS-Dynkin’s isomorphism, which states that, for a Markov
process X; of generator A, with law EZ, killed at rate h, at time (. Let L be its final local
times, and z is a real Gaussian free field of generator A, then, we have the equality in Laplace
transform:

dx det A
/det E;X —kL——kx ——:(:Ax ¢ A + k a, b -
/ b( ) 161/— )7 (a.0) det(A + k)

/vdet Az xpe” zhe "M:”H \O/L;S_Z
T

where EZ,(-) = %Ef(-]lng =b). Now on both the LHS and RHS of the above equality, we
can replace the v/det A by

vdet A = -det A

1
Vdet A
and use (43]) and (46]) to write

Vdet A / ¢~ 3YAY—€An dé&;dn;,

[

Now if we replace A by e™*A%e" as in (22]), we recover Theorem [Al Similar arguments provide
susy counterparts of the other two theorems.

APPENDIX B. ANOTHER PROOF OF BFS-DYNKIN’S ISOMORPHISM A LA FEYNMAN-KAC

In this appendix we provide another proof of BFS-Dynkin’s isomorphism, i.e. Theorem
2l This proof is done in a more classic way, i.e. it uses some kind of Feynman—Kac idea.
We use the notion of trajectory density introduced in Lemma 1 of [23], by this lemma the
trajectory density of a VRJP (Y;) on G with starting point a € V' up till some ¢ > 0 equals

dy = Tocty <<ty <t H Wi s iy (b e~ o Zoev WrnaLi@dugy, . qg,
k=1

where ¢ is the trajectory up to time ¢, defined by
0= {Y[Qtl) =19 = a, Y[t17t2) =11, Y[tn,htn) = ln-1, Y[tn,t]zz'n:b}

As initial local times of Y equal 1 everywhere,

k-l(o):=kl(o) = /Ot ky, du.
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By Lemma 1 of [23], we have

/ PV, (e 01y, ) he Mdt = / >y / Tig=a€™ 1, yd, he " dt
0

0 . -
n>0i1,..,9n—1

_ h/oo Z Z /]lioza, in:bd\;dt
0

n>041,...,in—1

where

n

dy = Nocpycty <t H Wiy vin L, (te—1)e” Jo Zyevonn Wrwala@dugy gy,

k=1
Here, ¢ is a cemetery point and we set W;, = k; for i € V. In the above way, the term e kb
is absorbed into the trajectory density. On the other hand, let § be another cemetery point

such that W;s = h for i € V' U{c}. Then the hitting time Tj of the vertex ¢ has probability
density he™". Let us denote by Pmk the law of the VRJP with one cemetery point ¢ and by
Pyik’h the law of the VRJP with two cemetery point 6 and ¢.

/ PZ‘Q (e_kg(t)]lytzb) he " dt :/ Pmk (Y, = b,t <T,) he "dt
0 0
,h
:Pz,/l (YT(;:M Ts < Tb)a
where T, = inf{t > 0: Y; = ¢}. Now this probability is invariant under time change as it

only concerns the discrete time chain (a.k.a. the skeleton) associated to the continuous time
process, and by Theorem 2.(ii) in [I6] we know that the skeleton is a mixture of Markov

chain with conductance W; je**" where u is sampled according to v}V*!(du), where W is
the extended conductance W on V U {¢,6}.

For a Markov jump process Z on V U {i,d} with a generator B, by considering the
corresponding discrete Markov chain, we have that

]P)a(ZTg:bu Ts < T,) = (Blvxyv) a,b)B(b,0).

In our case, B is the generator B" related to the conductance W; je**% for i,5 € VU{s,0}
and B(b,d) = he*s*" . Hence, we have that

Pyik’h(YTg:b, Ts <T,) = h/(B“\VXv)_l(a, b)e“”“be“‘s_““l/;w’l(du).
Performing the change of variables v; = u; — us, we have that

P Ve To < T) = b [ (Blva) @D o o).
By the explicit Laplace transform of (2@- =D keVulLs) Wi,ke“k_“i) , e.g (5.4) of [19], we
o  Jiev
see that the marginal of (3;);ey are the same under VXV’I and l/gVHh’l, it is not hard to check
by a change of variable that

/ (B"|vv) " (a, b)er i (dv) = / (B"|vsv) " a, b)et o (du),



ON H?? ISOMORPHISM THEOREMS AND REINFORCED LOOP SOUP 17

where Wk”‘ W, for i,5 € V and Wk+h = k; + h. Now, in the horospherical coordinate

(See e.g. appendlx of [2]) of H? model, for the effective bosonic measure on the variables
(u,s), y = e*s, conditionally on u, s is a GFF with generator W; e *%. Besides, the

distribution of w under (-)jpxin g,— i vy (du) Hence, by Wick’s formula,

u — Ug+U ~k+h,
S / (Blyxv)~ (@, Byt ().

Finally, note that

<yayb>Wk+h’cI>6:0 = <yaybe kz 1 >W (I)(S 0 <£L’a$b€ kz 1 >W (I)(S 0’

therefore,

(k,z—1) >W<I)6 o

/ IP’ZE/1 (e_kz(t)]lyt:b) he Mdt = h <:)3azvbe
0
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