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Generation of three-dimensional patterns through

wave interaction in a model of free surface swirling

flow

D. Fabre & J. Mougel
1 Institut de Mécanique des Fluides de Toulouse (IMFT), University of Toulouse

Abstract.

The free surface flow in a cylindrical tank over a rotating bottom is known to

support spectacular three-dimensional patterns, including deformation of the inner

free surface into the shape of rotating polygons, and sloshing behavior of the upper

free surface (e.g. Iga et al., FDR 2014, same issue). Through a stability analysis

of a simplified model of this flow, we show that such patterns can be explained as

a resonance mechanism involving different families of waves. The approach extends

a previous work (Tophøj et a., PRL 2013) which explained the rotating polygons as

an interaction between gravity waves and centrifugal waves, under the assumption

that the base flow can be modeled as a potential vortex. We show that this previous

model is justified for strong rotation rates (Dry-Potential case), and that for weaker

rotations it can be improved by introducing an inner vortex core in solid-body rotation,

which either extends to the center of the plate (Wet case) or surrounds a dry central

region (Dry-Composite case). The study of this improved model predicts two new

kind of instabilities. The first occurs at low rotations (Wet case) and results from an

interaction between gravity waves and the Kelvin-Kirchhoff wave (namely, oscillation of

the boundary of the vortex core). This instability is proposed to be at the origin of the

sloshing phenomenon. The second new instability occurs, for moderate rotations, (Dry-

Composite case) as an interaction between gravity waves and a ”Kelvin-Centrifugal”

wave characterized by deformation of the inner surface and the vortex core boundary

in opposite directions. This instability exists for all azimuthal wave numbers starting

from m = 1, this case corresponding to a ”monogon” pattern.

Keywords: Rotating flow, free surface waves, instabilities, sloshing.
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1. Introduction

Rotating flows with a free surface are known to support spectacular three-dimensional

patterns. A configuration which has been particularly studied corresponds to cylindrical

container driven by a rotating bottom plate. This setup leads to the occurrence of

polygonal patterns which rotate with essentially unchanged form. Initially discovered

by Vatistas [1], this feature was rediscovered independently by Jansson et al. [2], which

provided a state diagram in terms of the rotation frequency of the bottom plate, and

the mean height of fluid in the container. Generally, as the rotation rate of the plate

is increased, the numbers of corners of the polygons increase from 2 to 6. In some

cases, the three-dimensional patterns occur in a recurrent way, with an alternance of a

highly deformed surface of elliptical cross-section and a quasi-axisymmetric flow. This

phenomenon was called ”switching” by Suzuki et al. [3, 4]. A related but different

phenomenon called ”sloshing” has been reported [1] ‡. The latter is also a recurrent

phenomenon, but corresponds to an oscillation mostly affecting the outer part of the

free surface. It is observed for lower rotation rates compared to the range of existence

of polygons, in a range of parameters where the plate remains entirely wet. Recently,

Iga et al. [5] have conducted extensive sets of experiments, considering a wider range of

parameters than previous studies. They provided an extended state diagram, covering

the range of existence of all these patterns. They particularly considered the sloshing

phenomenon, and observed this state for both m = 3 (triangles) and m = 2 (ellipses)

azimuthal wave numbers. In particular, they showed that the m = 3 sloshing exists in

a very narrow range of rotation frequencies, which is almost independent of the height

of liquid in the container.

In a recent paper, Tophøj et al. [6] (hereafter TMBF) have shown that the polygonal

patterns can be explained as the result of an instability of the axisymmetric base-

flow predating their occurrence. In this study, the base flow was modeled as a simple

potential vortex; a hypothesis which is supported by experimental results and theoretical

arguments [7]. They first used a momentum energy balance argument to relate the

circulation of the potential vortex to the rotation rate of the plate. Subsequently, using

both a global stability approach and a simplified ’toy-model’ in which all the motion

is assumed to take place in a two-dimensional domain lying along the boundaries, they

showed that this potential flow is unstable to perturbations with azimuthal wavenumber

m ≥ 2, in qualitative accordance with the experiments. They finally showed that the

instability can be explained as the result of a resonance between two kinds of waves,

namely gravity waves affecting the external parts of the flow where the free surface is

almost horizontal, and centrifugal waves affecting the inner parts of the flow where the

free surface is almost vertical.

Although the modeling of the flow as a potential vortex is justified for large rotation

rates corresponding to situation where the flow displays central dry region of significant

‡ In the original paper [1] ”switching” and ”sloshing” are reported but without clear distinction as

both phenomena where called ”sloshing”.
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Figure 1. Description of the model in the three possible cases : (a) Wet-Composite

(W), (b) Dry-Composite (DC), (c) Dry-Potential (DP). Up : Sketch of the flow

featuring the shape of the free surface, and the 2D layers constituting the simplified

model (bounded by the dashed lines). Bottom : angular velocity laws of the fluid

(plain, blue line) and of the bottom plate (dashed, red line).

extent, experiments [7] show that it becomes insufficient at lower rotation rates. In

such situation, measurement suggest that in the central parts, the velocity field is more

accurately represented as a solid-body rotation. Also, the potential model is unable to

explain the occurrence of the switching and sloshing phenomena, which generally exist

in range of parameters where the plate remains wet.

The purpose of the present paper is thus to study an improved version of the TMBF

model, in which the flow is modeled as a composite flow with a central region in solid

body rotation matched to an outer region in potential rotation (thereby corresponding to

the classical Rankine vortex). We first describe the model and derive its characteristics

as function of the rotation rate of the plate , extending the momentum energy balance

argument of TMBF (§3). We subsequently investigate the stability of this flow through a

two-dimensional ’toy-model’ solvable on analytic grounds, and interpret the instabilities

as wave resonances (§4). We finally summarize the results (§5) and discuss their

relevance with experimental observations.

2. Modelling of the base flow

2.1. The composite model

The model of axisymmetric base flow considered in this paper is sketched in figure 1.

This model is parametrized by two nondimensional numbers. The first is the aspect

ratio H/R where R is the radius and H and the mean height of liquid (or more properly
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the height of liquid in absence of rotation). The second is the Froude number defined

as

F = Ω
√

R/g, (1)

where g is the acceleration of gravity and Ω the angular velocity of the plate (in rad/sec,

so Ω = 2πf with f the frequency). Depending upon these parameters, three cases have

to be distinguished. First, if the rotation rate is fast enough, the fluid follows the

potential rotation law V (r) ∼ 1/r and always rotates faster than the plate. In this

case, which will be referred here as Dry-Potential (DP ; figure 1c), the results of TMBF

remain unchanged. Reducing the rotation rate, keeping the potential model leads to

the prediction of an inner zone in which the flow rotates faster than the plate. This

unphysical feature, which was noted in a supplementary online material linked to TMBF,

is corrected here by assuming that in this inner zone the flow rotates as a solid body

with the angular velocity of the plate. Depending on the rotation rate, this inner region

may be limited and still encircle a dry region (Dry-Composite or DC case ; figure 1b),

or extend to the center and cover the whole plate, (Wet-Composite or W case ; figure

1a).

We will use ξ as the radius of the dry region (with ξ = 0 for case W), x as the

radius of the solid-body rotation core (or more rigorously the radius where the velocity

predicted by the potential law matches with that of the plate, which is outside of the

flow in case DP), ζ = z(R) as the height of liquid at the wall of the container, and

z0 = z(0) as the height at the center (for case W).

The angular velocity law is given by :

V (r) =

{

Ωr for ξ < r < x

Γ/(2πr) for x < r < R.
(2)

The corresponding shape of the free surface can be deduced in a classical way from

the computation of the pressure field, and is given in the three cases by :

Case DP : z(r) =
1

2g

(

Γ

2πR

)2 (
R2

ξ2
− R2

r2

)

. (3)

Case DC : z(r) =

{

Ω2

2g
(r2 − ξ2) for ξ < r < x

Ω2

2g
(x2 − ξ2) + 1

2g

(

Γ
2π

)2 ( 1
x2 − 1

r2

)

for x < r < R.
(4)

Case W : z(r) =

{

z0 +
Ω2

2g
r2 for 0 < r < x

z0 +
Ω2

2g
x2 + 1

2g

(

Γ
2π

)2 ( 1
x2 − 1

r2

)

for x < r < R.
(5)

The model is thus characterized by three parameters, namely [Γ, x, ξ] (or [Γ, x, z0] for

case W) which have to be determined as function of the control parameter, which is

the rotation rate of the plate Ω. Three equations are thus needed to solve. The first is

provided by the continuity of the flow at r = x, namely:

Γ

2πx
= Ωx. (6)



5

0 1 2 3 4 5
0

0.5

1

1.5

Γ

0 1 2 3 4 5
0

0.4

0.8

ξ
/
R
;
x
/
R

0 1 2 3 4 5
0

0.5

1

F

ζ
/
R
;
z
0
/
R

 

 

W DC DP

FW FC
0 1 2 3 4 5

0

0.5

1

1.5

Γ

0 1 2 3 4 5
0

0.4

0.8

ξ
/
R
;
x
/
R

0 1 2 3 4 5
0

0.5

1

1.5

F

ζ
/
R
;
z
0
/
R

DC DPW

FW FC

(a) : H/R = 0.3 (b) : H/R = 0.6

Figure 2. Characteristics of the composite model for (a) H/R = 0.3, and (b)

H/R = 0.6, as function of the plate’s Froude number. Upper plots : non dimensional

circulation in the potential zone Γ = (Γ/2π
√

gR3) ; middle plots : ξ/R (plain, red)

and x/R (dashed, blue) ; lower plots : ζ/R (plain, red) and z0/R (green). The dashed

vertical lines indicate the separation between the three regimes (W, DC and DP), and

the thin dotted lines correspond, to the prediction of the previous model by Tophøj et

al. (2013) which does not include a solid-body rotation zone.

The second one corresponds to the conservation of volume:
∫

rz(r) 2πdr = πHR2 (7)

Finally, the third equation is taken as a balance of angular momentum, following the

original idea of TMBF. This idea consists of equaling the accelerating torque due to the

friction of the fluid with the plate (in the potential region) to the decelerating torque

due to the friction with the wall. Assuming the boundary layers to be of turbulent type

and modeling the skin friction as a quadratic drag leads to the following equation :
∫ R

max(x,ξ)

(

r2

x2
− 1

)2

dr = ζ, (8)

where the lower bound of the integral is x in cases DC, W and ξ in case DP. Note that

in cases DC and W, the inner zone (for r < x) gives no contribution to the skin friction

since the flow and the plate rotate at the same angular velocity, thereby correcting a

flaw of the TMBF model (see also supplementary online material of TMBF).

Figure 2 shows the characteristics of the model as function of F for two values of

H/R, namely : the nondimensional circulation Γ, the radius of the dry region ξ (for

cases DC and DP), the radius of the solid-body rotation core x, the height of liquid at

the outer bound ζ = z(R) and at the center z0 = z(0) (for case W). For high values of

F , the Dry-Potential model of TMBF remains relevant. When the Froude number is

decreased, a first transition occurs for a value F = FC where x = ξ (see middle plots).

Below this threshold, the Dry-Composite case is relevant, down to F = FW where z0 = 0

(see lower plots) where the transition to the Wet-Composite case occurs. In all plots,

the black dotted lines are the predictions from the original model of TMBF which is no
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longer relevant in the W and DC cases. It is interesting to see that the circulation is

almost the same in the original model ; on the other hand the radius ξ of the dry core

substantially differs. Note that the radius of the solid-body rotation core x is almost

constant, and in all cases in the range [0.5; 0.6].

2.2. The simplified ”toy model”

In the sequel, we will investigate the stability of this flow through a simplified model.

Following the original idea of TMBF, this ”toy model” consists of restricting the flow to

a narrow channel along the boundaries, as indicated by the dashed lines in figure 1. In

the DP case (figure 1c), this ”toy model” is identical as that of TMBF, and consists of

two two-dimensional manifolds : a vertical cylindrical layer (segment BC) and a circular

annulus (segment AC). In the two other cases, the latter region reduces to segment XC,

and we add a third two-dimensional region, which is either an open annulus (case DC ;

segment AX) or a full circle (case W ; segment OX).

3. Stability analysis

3.1. Flow expansion and matching conditions

For the stability analysis, we suppose that the flow is perturbed by a small perturbation

of azimuthal wavenumber m and frequency ω. The positions of the upper free surface,

the inner free surface, and the solid body rotation core are thus considered in the

following way :

z = ζ + ǫζ1e
i(mθ−ωt), (9)

r = ξ + ǫξ1e
i(mθ−ωt), (10)

r = x+ ǫx1e
i(mθ−ωt), (11)

with ǫ a small parameter. In the two vertical layers and the outer horizontal layer, the

perturbation can be considered as potential, and is taken as follows :

φc = ǫ
(

K1(r/R)m +K2(r/R)−m
)

ei(mθ−ωt) (z = 0; r ∈ [x,R]) (12)

φg = ǫ
(

K3e
mz/R +K4e

−mz/R
)

ei(mθ−ωt) (r = R; z ∈ [0, ζ]) (13)

In the inner, solid-body rotation layer, as the base flow is rotational, the

perturbation cannot be assumed as potential. Instead, we work with the pressure,

which is the solution of Laplace equation ∆p = 0, and can be taken as :

p(r) = ǫ
(

K5(r/R)m +K6(r/R)−m
)

ei(mθ−ωt) (z = 0; r ∈ [ξ, x]). (14)

One should note that this approach, although not potential, is still inviscid. The velocity

is defined as u = ur(r)e
i(mθ−ωt)er + uθ(r)e

i(mθ−ωt)eθ, and the components are deduced

from :

ur =
iǫ

ρ(λ2 − 4)Ω

[

2mp

r
− λ

∂p

∂r

]

, (15)
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uθ =
ǫ

ρ(λ2 − 4)Ω

[

λmp

r
− 2

∂p

∂r

]

, (16)

where λ is the non dimensional frequency in the rotating frame, defined as

λ =
ω −mΩ

Ω
. (17)

This derivation is standard, and can be found for instance in Ref. [9].

We now have to write down the equations which connects the layers. The condition

at the corner C is the same as in TMBF, namely:

K1 = K3;K2 = K4. (18)

At the free surface (point B), the kinematic and dynamic boundary conditions are

(using the Bernoulli equation for the latter):

i(mΩR − ω)ζ1 = ∂φg/∂z; i(mΩR − ω)φg + gζ1 = 0. (19)

Eliminating ζ1, the two latter can be combined in a single equation :

(mΩR − ω)2φg = g∂φg/∂z. (20)

The matching at point X (for cases DC and W) leads to the following conditions :

∂φc/∂r = ur = i(mΩR − ω)x1; p = −i(mΩ− ω)φc. (21)

Finally, the free-surface conditions at point A (for case DC) lead to :

i(mΩR − ω)ξ1 = ur; p+

(

∂P

∂r

)

r=ξ

ξ1 = 0, (22)

Where P (r) is the pressure of the base flow, linked to the azimuthal velocity V (r) given

in Eq. (2) through the centrifugal balance ∂P/∂r = V 2/r. The boundary conditions at

point A can eventually be combined in a single one :

i(mΩ− ω)p+ gξur = 0; with gξ =

(

∂P

∂r

)

r=ξ

= ξΩ2. (23)

Solving the stability problem now means finding the values of ω for which

a nontrivial set of the coefficients [K1, K2, K3, K4, K5, K6, ζ1, ξ1, x1] is possible.

Technically, this requires writing the matching conditions in matrix form; the

determinant of the matrix thus provides the dispersion relation D(ω) = 0 whose roots

are the possible frequencies (or eigenvalues). We will investigate separately the three

possible cases depicted in figure 1, plus an additional interesting case.
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3.2. Dry-Potential case

This case is the one treated by TMBF ; here the inner zone and the coefficients K5, K6

are not relevant, and the boundary condition at point A (Eq. 23) has to be replaced by

(ω −mΩξ)
2 φc(ξ) = −gc

∂φc

∂r

∣

∣

∣

∣

r=ξ

, (24)

where Ωξ = Ω(x/ξ)2, and gc = ξΩ2
ξ .

The dispersion relation can then be written in the following compact form :

Dcp(ω)Dgp(ω) =
m2g gc
ξR

(K2 − 1), (25)

with

K =
1 + e−2mζ/R

(

ξ
R

)2m

1− e−2mζ/R
(

ξ
R

)2m , (26)

Dcp(ω) = (ω −mΩξ)
2 − gcmK/ξ, (27)

Dgp(ω) = (ω −mΩR)
2 − gmK/R. (28)

This dispersion relation is written in wave interaction form, as it takes the form of

the product of two dispersion relations describing two types of waves, coupled by a small

parameter. The dispersion relation Dgp is readily recognized as the dispersion relation

for gravity waves. It has two branches of solutions ω = mΩR±
√

gmK/R, (noted waves

G+ and G
−
in the following), which propagate in opposite way with respect to the frame

of reference rotating with the flow at r = R. In the fixed frame, this means that the

wave G+ rotates faster than the flow while G
−
is retrograde (i.e. rotates slower, or in

the opposite direction). The dispersion relation Dcp was identified by TMBF as the one

describing centrifugal waves, which are surface waves for which the role of the restoring

force is played by centrifugal acceleration. The two solutions ω = mΩ ±
√

gcmK/R

(noted waves C+ and C
−
) rotate respectively faster and slower than the flow, but now

at r = ξ.

TMBF investigated the possible resonances, which correspond to situations where

two waves have the same frequencies. Following Cairns [8], such resonances lead to

instability whenever the two interacting waves have energies of opposite sign; the wave

energy (in the sense of Cairns) being defined as ∂D/∂ω. It can be verified that the

wave energy is positive for branches G+, C+ and negative for branches G
−
, C

−
. Hence

the criterion is met for the pair of waves (G+, C−
) which effectively intersect. This

wave interaction was proposed by TMBF to be at the origin of the rotating polygon

instability.

3.3. Wet-Composite case

This case corresponds to ξ = 0. In this case, the matching conditions at the inner surface

have to be replaced by the simpler condition K6 = 0, which requires the solution to be

bounded at r = 0.
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The dispersion relation can be factorized into the following expression :

Dgw(ω)Dkw(ω) +
2Ωmg

R
e−2mζ/R

( x

R

)2m

= 0. (29)

with

Dgw(ω) = (ω −mΩR)
2 −mg/R, (30)

Dkw(ω) = ω − Ω
(

m− 1− e−2mζ/R(x/R)2m
)

. (31)

Again this dispersion relation takes a wave interaction form. The first part Dgw(ω)

still describes gravity waves (noted G+ and G
−
), while Dkw(ω) describes a single wave

which is recognized as the Kelvin-Kirchoff waves (noted KK); namely the oscillation of

a two-dimensional Rankine vortex. This can be recognized by noting that in the case

where R and/or ζ is large, the frequency tends to the classical result ω ≈ (m − 1)Ω

which is the oscillation frequency of a Rankine vortex in an infinite space (see [9] for

instance). §
We can again investigate the possible resonances using the Cairns theory [8]. Here,

theKK wave is found to rotate slower than the vortex core, and to have negative energy.

Hence an unstable resonance involving waves G+ and KK appears possible.

3.4. Dry-Composite case

This third case is a bit more complex, but the dispersion relation can still be written in

wave-interaction form:

D(ω) = Dgd(ω)Dkcd(ω) + e−2mζ/R
( x

R

)2m

Kd(ω) = 0 (32)

with:

Dgd(ω) = (ω −mΩR)
2 − gm/R, (33)

Dkcd(ω) = −λ3 + (1− a)λ2 + (m+ 2− 2a)λ+m(1− a), (34)

Kd(ω) =
[

(ω −mΩR)
2 + gm/R

]

(35)

×
(

−aλ3 + (1− a)λ2 + (ma− 2a+ 2)λ+m(a− 1)
)

.

(here a = (ξ/x)2m).

Here, along with the gravity waves (G+, G−
) described by Dgd(ω), the system

displays new kinds of waves described by the relation Dkcd(ω). This relation has three

roots which are always real, and noted KC1, KC2 and KC3 (in order of increasing

frequency). The structure of these waves will be described further in section 4.3; as

§ Note that the oscillations of a Rankine vortex in a bounded space were also studied by Vatistas [10]

who gave a dispersion relation with a slightly different form compared to (31), namely : Dkw′(ω) =

ω−Ω
(

m− 1 + (x/R)2m
)

. The differences are due to (a) the presence of the vertical layer which was not

included in [10], and (b) to the fact that non-interacting problem leading to (31) actually corresponds

to a zero-pressure boundary condition at the outer surface, instead of a non-penetration condition as

in [10].
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we will see they combine the characteristics of centrifugal and Kelvin-Kirchhoff waves,

hence the designation. It is found that two of them (KC1, KC2) are retrograde with

respect to the vortex core and have negative energy, while the third one (KC3) rotates

faster than the vortex core and has positive energy. We hence anticipate the possibility

of resonances involving G+ and either KC1 or KC2.

3.5. The solid-body rotation case

Before presenting the results, we briefly discuss the predictions of our stability approach

in the case where the flow is in solid body rotation, with a dry core in the center.

This situation is not encountered in our model, but it was proposed to be a relevant

description of the flow in some previous studies [12, 13].

This case is obtained by setting x = R in Eq. (32). This equation still describes the

interaction between two gravity waves and three KC waves. However, in that case, since

the angular velocities of the flow at the inner (point A) and outer (point B) surfaces are

the same, all waves with positive energy (namely G+ and KC3) are located in the range

ω > Ω, while all waves with negative energy (namely G
−
, KC1 and KC2) are located

in the range ω < Ω. Hence, it is impossible to have a crossing between two branches of

opposite energies, which is the condition for instability according to Cairns theory [8].

We thus conclude that no instability is allowed by our model in that situation.

Note that a study of a solid-body rotation with inner surface was conducted by

[13] who showed that this flow can stand large-amplitude deformations under the form

of nonlinear waves. However, our present analysis shows that in the absence of any

differential rotations, such patterns cannot spontaneously arise as the result of an

instability.

4. Results

4.1. Phase diagram

Figure 3, which constitutes the main result of our study, depicts the range of existence

of instabilities, for azimuthal wave numbers m = 1 to 5, as function of the two control

parameters H/R and F . It is first notable that the present model predicts a range of

instability for m = 1. This state is found to exist only in the ”dry-composite” case,

and for aspect ratios H/R comprised between 0.18 and 1.2. The range of instability for

m = 2 consists of two parts. The first is contained in the Dry-Composite region and

exists for 0.07 < H/R < 0.65. The second one arises for H/R > 1 and splits into two

branches; the lower rapidly enters the Wet region, while the upper one shifts upwards

and eventually reaches the Dry-Potential region (for H/R = 2, outside of the range of

the figure). For m = 3, the unstable region is a simply connected one; it starts from

H/R = 0.06 in the Dry-Composite region, and splits in two branches for H/R = 0.42,

the lower one entering the Wet region and the upper one moving towards the Dry-

Potential region. The case m = 4 is again different. Here the unstable region consists of
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Figure 3. Parametric map of the unstable bands as function ofH/R and F = Ω
√

R/g.

The colored areas correspond to the regions of instability for m = 1 (light yellow) to

m = 5 (dark purple). The thick lines delimit the three regimes: Wet (lower region) ;

Dry-Composite (middle region) ; Dry-Potential (upper region).

two parts. The first starts from H/R = 0.06 in the Dry-Composite region, and continues

into the Wet region for H/R > 0.29. The second part arises for H/R > 0.26 ; it then

splits into two branches, the lower one vanishing at the border of the Wet region for

H/R = 0.35 and the upper one continuing into the Dry-Potential region for H/R > 0.32.

The case m = 5 is qualitatively similar, and m ≥ 6 also lead to the same picture.

Compared to the predictions of the simpler model of TMBF, this diagram of states

is notably more complex. The latter study predicted that when increasing F , the

instabilities are found with increasing values of m, starting from m = 2. This picture

remains accurate in the upper part of the diagram corresponding to the ”Dry-Potential”

case. On the other hand, our study predicts that in the ”Wet” case the instability

bands occur in reversed order, i.e. the wavenumber (starting from m = 2) increases

as the Froude number is decreased. The picture in the intermediate ”Dry-Composite”

region is even more complex, with in some cases three ranges of instability for the same

wavenumber and the same value of H/R. Finally, another notable difference is the

prediction of instabilities with m = 1, a situation which was not possible in TMBF. In

practice, a perturbation with m = 1 corresponds to a ’monogon’, or more properly to a

precession of the dry core as a whole.
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4.2. Study of branch interactions

To explain the complex features observed in figure 3, we will now investigate the solutions

of the eigenvalue problem as function of F , for selected values of m and H/R (figures

4 and 5). In section 3.2, we have shown that the dynamics can be interpreted as an

interaction between two families of waves. The first family is the gravity waves, which

exist in the three regimes, and consist of two branches, noted G+ and G
−
. The second

family differs according to the regimes ; in the Wet regime there is a single wave called

KK; in the Dry-Composite case there are three, noted KC1, KC2, KC3; in the Dry-

potential there are two, noted C+ and C
−
. We will show that the way these various

branches reconnect is responsible for the qualitative differences observed between the

various values of m in figure 3.

For m = 1, the branch KC1 connects the KK and C
−
branches, the branch KC2 is

disconnected, and the branch KC3 connects to the C+ branch. For H/R = 0.3 (figure

4a), the branch G+ intersects the branch KC2, giving rise to instability in the center

of the ”Dry-Composite” area. As the Froude number is varied, the respective positions

of these two branches are modified. For instance, for H/R = 1.5 (figure 4b), the lower

termination point of the KC2 branch passes above the G+ branch. This explains why

instability is no longer possible, and why the instability region in figure 3 ends up at the

W/DP boundary. Similarly, for smaller H/R (not shown), the upper termination point

of theKC2 branch passes bellow the G+ branch, explaining the vanishing of the unstable

region at the DC/DP boundary. Note that in figure 4b an interaction also occurs along

the G
−
and KC1 branches ; however here the Cairns criterion is not verified as both

waves have negative energy. Accordingly, the resonance is stable and the branches avoid

each other.

For m = 2, the branches are connected in the same way as for m = 1, and for

H/R = 0.5 (figure 4c), the instability likely corresponds to interaction between G+ and

KC2 branches. For H/R > 0.65, the KC2 branch displaces upward and the branches

no longer intersect (as for m = 1 in figure 4b), explaining the vanishing of the unstable

region. However, when H/R is further increased, the branch KC1 rises up and intersects

twice with the G+ branches, as illustrated by figure 4d for H/R = 1.3. This explains

the recovery of instability and the subsequent splitting into two regions.

For m = 3, unlike the previous case, both KC1 and KC2 branches are connected

with the KK branch at the W/DC boundary. For H/R = 0.3 (figure 5a), the instability

corresponds to interaction between G+ and KC2 branches. For H/R = 0.44 (figure 5b),

the G+ branch interacts with both the KC1 and KC2 branches, explaining the widening

of the unstable region observed in figure 3. When H/R is further increased, the unstable

region splits in two parts, the first one entering the Wet region and involving the G+

and KK branches, the second one involving G+ and KC1 (which latter becomes branch

C
−
when entering into the DP region).

For m = 4 (and higher values of m), the branches are connected differently at the

W/DC boundary, as now the continuation of branch KK is branch KC2, while branch



13

0 1 2 3 4

0

2

4

6

ω
r

0 1 2 3 4
0

0.05

ω
i

F

C
−

G
+

G
−

KC
3

KC
2

KC
1KK

C
+

0 2 4 6 8

0

2

4

6

ω
r

0 2 4 6 8
0

0.05

ω
i

F

(a) m = 1;H/R = 0.3 (b) m = 1;H/R = 1.5

0 1 2 3 4 5

0

2

4

6

ω
r

0 1 2 3 4 5
0

0.02

0.04

ω
i

F

KC
2

KC
1

KK

C
−

G
+

G
−

0 2 4 6 8

0

2

4

6

ω
r

0 2 4 6 8
0

0.01

0.02

ω
i

F

(c) m = 2;H/R = 0.5 (d) m = 2;H/R = 1.3

Figure 4. Eigenvalues (real and imaginary parts) for m = 1 and 2, and selected

values of H/R. The dashed vertical lines indicate the transitions between the three

regimes ( W / DC / DP ). The branches along which an unstable interaction is possible

(G+, C−
,KC1,KC2,KK) are indicated in red; the others in black (note that branches

C+ and KC3 are outside of the range of the plots in most cases). The non-interacting

branches (i.e. roots of the dispersion relations Dgp, Dcp, etc...) are in dotted lines ;

note that the latter are hardly distinguished from the roots of the coupled system in

most cases, except for m = 1. In the plots, ωr and ωi are nondimensionalized with
√

g/R.

KC1 is disconnected. At low values of F , the instability first occurs as interaction

between G+ and KC2, and this branch smoothly continues as a G+/KK interaction

when entering into the Wet region. For H/R = 0.28 (figure 5c), the branch KC1 moves

upwards, and interacts twice with the G+ branch, explaining the onset of the second

instability region composed of two branches observed in figure 3. Increasing further the

height to H/R = 0.4 (figure 5d), the upper branch continues into the DP region, as the

KC1 branch continues into the C
−
one, but the lower branch vanishes at the DC/W

boundary, as the KC1 branch is disconnected.
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Figure 5. Eigenvalues (real and imaginary parts) for m = 3 and 4, and selected values

of H/R. Same legend as in figure 4.

4.3. Mode structure

Finally, we show in figure 6 a 3D reconstruction of the structure of some of the

eigenmodes predicted by our model. The location of the upper and lower free surfaces

are taken from Eqs. (9- 10- 11). The overall amplitude ǫ is arbitrary and chosen for

visual convenience, but the ratio of amplitudes and phase shifts between the waves at

the three surfaces are respected.

The three plots in the upper row illustrate the structure of the pure waves for a set

of parameters located away from any resonance, namely (m = 3, H/R = 0.25, F = 1.3)

(see figure 5(a)). It can be noted that for wave KC1 (plot 6a) the deformation of the

inner free surface and of the solid-body rotation core are in phase. The structure of

the wave KC3 (not shown) is very similar. This property indicates that these waves

are mostly influenced by centrifugal effects at the inner surface, and that the solid-body

rotation region mostly follows the dynamics imposed by the inner surface in a passive

way. This interpretation is consistent with the fact that, at the DC-DP transition, the

waves KC1 and KC2 always continuously reconnect with the centrifugal waves C
−
and
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Figure 6. Illustration of the structure of some eigenmodes. The dashed circles indicate

the mean position of each surface.The parameters for the cases displayed are as follows:

(a) m = 3, H/R = 0.25, F = 1.3 (KC1 wave). (b) m = 3, H/R = 0.25, F = 1.3 (KC2

wave). (c) m = 3, H/R = 0.25, F = 1.3(G
−

wave). (d) m = 3, H/R = 0.25, F = 1.5.

(e) m = 3, H/R = 0.5, F = 1.57. (f) m = 3, H/R = 0.5, F = 2.64. (g) m = 1,

H/R = 0.3, F = 1.85. (h) m = 2, H/R = 0.5, F = 1.9. (i) m = 4, H/R = 0.5, F = 1.

C+ . The structure of the KC2 wave (plot 6b) is markedly different, as the deformation

of the inner surface and core boundary are out of phase. This indicates that for this

wave, centrifugal effects at the inner surface and vorticity dynamics within the solid-

body region are both essential to explain the properties of this wave. Thus, this wave

is really of an hybrid nature. This is consistent with the fact that this wave vanishes at

the DC-DP transition. Plot 6(c) illustrates the structure of the wave G+ for the same

set of parameters ; this one hardly induces any motion at the inner surface.

The three plots in the middle row illustrate some unstable modes for m = 3.

Plot 6(d) is for H/R = 0.25 where there is a single interval of instability for m = 3,

corresponding to a resonance between KC2 and G+ branches (see figures 3 and 5a).

The signature of the wave KC2 is visible in this mode, the deformation of the inner free

surface and of the solid-body rotation core being out of phase. Note that the deformation



16

of the upper surface has a π/2 phase shift with respect to the two latter. The two next

plots are for H/R = 0.5 where the interval of instability splits into two bands (see

figures 3 and 5b). Plot 6(e) corresponds to the unstable mode found in the upper band,

and corresponds to resonance between G+ and KC1 waves. Plot 6(f) shows the mode

found in the lower band, which belongs to the Wet regime. This one corresponds to an

interaction between G+ and KK waves.

Finally, the three plots in the lower row illustrate sample modes for other values

of the azimuthal wavenumber. Plot 6(g) shows an example of an unstable mode for

m = 1. The structure is a ”monogon” characterized by out-of phase oscillations of the

inner surface and solid-body rotation core, thereby indicating the presence of wave KC2

(in accordance with figure 4(a)). Plot 6(h) shows an elliptical mode with m = 2, also

caused by interaction of waves KC2 and G+ (see figure 4(c)). Finally, plot 6(i) displays

a square (m = 4) wet mode, caused by interaction of waves KK and G+ (see figure 5d).

5. Discussion

5.1. Effect of the azimuthal wavenumber

We have seen that in each of the three regimes (DP, DC, W), instabilities are found in

narrow bands of the [F,H/R] diagram, and that their occurrence can be explained as a

resonance between waves belonging to different families and affecting different regions of

the flow. However, the nature of the waves involved in the resonance and the dependence

with the azimuthal wavenumber m of the range of instability is very different in each

of the three regimes. In this section we summarize the properties of the unstable mode

in each of the three regimes, and look for arguments to explain the dependency with

respect to the azimuthal wavenumber m.

For strong rotations (Dry-Potential case), the instability is due to the interaction of

a gravity wave affecting the upper free surface, and of a centrifugal wave, affecting the

inner free surface. When increasing F , the instabilities are found with increasing values

of m, starting from m = 2, a feature in good accordance with the order of apparition of

the polygons in experiments. To explain this trend, we consider how the uncoupled waves

behave when both F andm are assumed to be large. First, the gravity wave G+ given by

(28) can be approximated at leading order as ωG+
= mΩR+

√

mgK/R ≈ mΩR: the term

involving gravity becomes negligible with respect to the term associated to rotation (in

other words, the gravity wave becomes almost stationary in the frame rotating with the

upper surface). On the other hand, the leading order approximation of the centrifugal

wave is ωC
−

≈ (m−
√
m)Ωξ. Equating both these leading orders leads to

ΩR/Ωξ ≈ (1− 1√
m
).

So, for large m, the condition for resonance requires the ratio of rotation rates at both

surface ΩR/Ωξ to be very close to 1, and thus, as ΩR/Ωξ = (ξ/R)2, the inner surfaces

ξ has to be very close to the cylinder wall R. Such conditions are only met for large
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Froude numbers, when the flow is strongly pushed against the vertical wall by centrifugal

effects.

For weak rotations (Wet case), the mechanism is different, and now involves the

interaction of a Kelvin-Kirchhoff wave corresponding to a deformation of the boundary

of the vortex core with the gravity wave. Interestingly, the bands of instability in this

regime occur in reversed order, and their location is almost independent of the value

of H/R. This can also be understood by looking at the behavior of the frequencies

of the uncoupled waves for large m. Here, the leading order of the gravity wave is

ωG+
= mΩR +

√

mgK/R ≈ mΩR + Ω
√
m/F , and the leading order of the KK wave is

ωKK = (m− 1)Ω. Equating the two leading orders lead to

F ≈ 1

[1− (ΩR/Ω)]
√
m
.

Now, according to figure 2, the ratio ΩR/Ω = (x/R)2 is almost independent of H/R

and F in all the wet regime, with value ΩR/Ω ≈ (0.6)2. The formula given above thus

explains both the inverse dependency with m of the Froude corresponding to resonance,

and the almost independence with respect to H/R.

The situation in the Dry-Composite case is, at fist glance to figure 3, far more

complex. However, there are actually only two kinds of resonances. The first type is

found along the instability bands which enter the Dry-Composite range from above,

as a continuation of the unstable bands existing in the Dry-Potential range. These

instabilities involve the KC1 waves, whose structure, characterized by in-phase motion

of the inner surface and the vortex boundary, is actually very close to that of the

centrifugal waves (see e.g. figure 6e).

The second type of instabilities in the Dry-Composite case involve the KC2 waves.

The latter are always characterized by substantial deformation of the vortex core (see e.g.

figure 6a), and are thus more related to the KK waves existing in the Wet regime. The

general organization of the unstable bands is also more akin to that in the Wet regime,

with almost horizontal bands occurring in reverse ordering. However, the connection

between KC2 and KK waves only exists for m ≥ 3. The cases m = 2 and m = 1

are thus a bit particular, with a vanishing of the band corresponding to this type of

instability at the DC/W connection.

5.2. Comparison with experiments

We now discuss the relevance of our theoretical predictions with respects to available

experimental results.

The relevance of the interaction between gravity and centrifugal waves to explain

the polygonal patterns was already demonstrated in TMBF. The present study shows

that, although this interaction only occurs in its purest form in the Dry-Potential case,

it is still relevant in the upper half of the Dry-Composite range of the state diagram,

where there exist a type of composite waves (KC1 waves) which are qualitatively similar

to the centrifugal waves existing in the purely potential cases. This points gives us
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further confidence in the arguments of TMBF, by showing that the gravity/centrifugal

interaction mechanism is still accurate if the base flow presents an inner solid-body

rotation of limited extend.

A second striking prediction of our model is the existence of a new mechanism,

involving gravity and Kelvin-Kirchhoff waves, existing in its purest form in the Wet

regime. We propose this mechanism to be at the origin of the sloshing phenomenon

observed in experiments in the same range of parameters. The range of existence of the

sloshing phenomenon was particularly described in the experiments of Iga et al.[5]. In

particular, the range of existence of the sloshing behavior with azimuthal wavenumber

m = 3 in figure 5 of [5] is strikingly similar to the range of existence of the m = 3

’Wet instability’ in our theoretical diagram (figure 3). In both cases, the range is a

very narrow band with nearly constant Froude number (F ≈ 1.8 in the experiment ;

F ≈ 1.4 in our model). The bands also occur in the same range of aspect ratios, namely

H/R ∈ [.4, .9]. The range of existence of sloshing with m = 2 is also well predicted

by our model, namely F ≈ 3 and H/R = 1 while [1] observed this state for F ≈ 2.8

and H/R ≈ 0.84, and [5] for F ≈ 3 and H/R ≈ 0.9. Additional experiments should be

conducted to confirm our interpretation of the sloshing mechanism. First, our analysis

predicts instability in the wet regime for azimuthal wave numbers m ≥ 2, while only

sloshing with m = 2 and m = 3 was observed. One should thus check if sloshing

with m ≥ 4 also occurs at lower values of F . Secondly, our interpretation involves

the existence of a Kelvin-Kirchoff wave propagating along the boundary of the vortex

core. This point should also be confirmed by detailed velocity measurements, as such a

motion is not directly visible at the free surface.

The predictions of our model in the intermediate, Dry-Composite case are more

puzzling. First, the situation for m = 2 is peculiar: the model predicts that

perturbations with this wavenumber are stable in the range H/R ∈ [0.7, 1], and that

below this rage H/R < 0.7 instabilities with m = 2 appear at higher Froude number

than the ones with m = 3. This is not consistent with experiments, where elliptical

patterns have the largest range of existence and always occur at lower Froude numbers

than the polygons with m ≥ 3. The prediction of instability with m = 1 is also puzzling,

as such a behavior was not observed in experiments with a rotating bottom. However,

one should point out that a ”monogon” pattern was actually observed by [11] in a slightly

different experimental setup in which both the bottom plate and the outer vertical wall

are put into rotation in a differential way.

5.3. Perspectives

In this work, we have studied the stability properties of the swirling flow in a cylindrical

tank with rotating bottom through a very simplified approach, which reduces the flow

to its very essential aspects by assuming that the whole motion occurs within a narrow

channel along the walls. Despite its extreme simplicity, this approach is able to predict

the onset of three-dimensional patterns at both large rotation rates (Dry-Potential case)
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and weak rotation rates (Wet case), to interpret them as wave-interaction phenomena,

and to explain their range of existence in a qualitative way.

In order to make these predictions more quantitative and to clarify the situation in

the range of intermediate rotation rates (corresponding to the Dry-Composite range of

the present model), we are now continuing this study using a global stability approach,

which fully retains the spatial structure of the base flow and of the perturbations.

Preliminary results were given in TMBF (for the potential flow) and in Ref. [12] for

both the solid-body rotation case and the composite case. This approach allows for a

much larger diversity of waves (and hence of possible interactions). First, each family of

waves is actually composed of an infinite set, each described by a radial wave number,

instead of the 2 or 3 leading ones captured by the present model. These waves are not

described by the simple model explained in detail in the present paper but preliminary

results [12] show that some of them can resonate. Secondly, when a zone in solid body

rotation is retained, the global approach captures two entirely new families of waves:

first the ’topographic’ Rossby waves associated to the radial variation of the liquid height

and secondly the inertial waves due to the Coriolis acceleration. Future efforts should

also improve the modeling of the base flow, beyond the simple potential and composite

cases considered so far. In particular, the boundary layers as well as the secondary flow

should be incorporated into the base flow modeling.

Finally, the linear stability approach employed here can not explain some

important features associated with large-amplitude patterns. In particular the hysteresis

phenomenon associated to the transition between axisymmetric flow and elliptic pattern

[4, 5], the recurrent behavior displayed by both the ”switching” and ”sloshing”

phenomena, and eventually the large zone of existence of the polygons compared to

the stripes of instability seem to be due to non linear effects. A theoretical study using

a weakly nonlinear approach is underway, and the preliminary results are promising.
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